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Indentation tests are used to study inelastic response of ice and other snateeal loaded
under a compressive stress state. Indentation testing providestifoec@lots which are often
converted to pressurarea curves, which can later be used in the design of ships and offshore
structures. In an inverse application of indentation testing one can use thgniercesponse to
extract material constants characterizing the extent ofggnansorption, including dynamic
hardness. The aim of the present study is to access the energy consumption irelergfice
as the ability to absorb the indentation energy. Data from indentation expericoaducted on
naturaliceberg ice at Pond Inlet in 1984 have beeanalyzed for three different spherically
terminated indenter sizes. For any given testisfound that the crushing specific energy of the
ice shows little, if any, dependency on the volume of the displaced ice and teragdsta@w
constant value. Furthermore there is no apparent correlation of the crushing: speifly of
the ice with indenter size, nor is there clear consistency in the values faaedtsted with the
same indenter. Possible reasons for these observateodsanssed.
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1. Introduction

Energy methods are widely used in the design of ships and offshore structures ¢ubjexte
impacts(IACS, 2011; 1ISO19906, 2010; RMRS, 2014), and for energy methods applicati®ns it i
important to know the amount of energy dissipated due to ice crushing. However, in contrast t
other engineering disciplines such as automotive design and rock mining, thetadrerashing
specific energy of ice is only seldom addressed in the fields of ice mechaniceeand
engineering. Research studies addressitieegy consumption index of ice by means of ball drop
tests and indentation tests; see e.g., (Barnes et al., 1971; Gagnon and Gammon, 1@94; Garc
al., 1985; Kheisin and Likhomanov, 1973; Pounder and Little, 1959; Timco and Frederking,
1993; Timco and Martin, 1979; Tsuprik, 201BKisting experimental data cover freshwater lake
ice, river ice, laboratory grown freshwater granular and columnar iaecseand icebergs, but
despite the research efforts, engineering applications that use ice energatitedstics are still
lacking. Possible reasons for that are (1) inconsistent use of terming®)ggontradicting
observationsind lack of systaatic experimentanore below.

1.1 Use of terminology

It would appear that in some earlier works such as Bagnes et al. (1971andPounder and
Little (1959)theenergy consumption index of ice is expressed as impact (or dynaanir)ess

— a resistance of a materit local indentation when the indentation is produced by a rapidly
moving indenter. For sea ice, the terrmpact hardnesswas defined byPounder and Little
(1959)asfollows

energyof indenter
volumeof indentatio

[1]

Impact(dynamic)hardness

Later waks (Gagnon and Gammon, 1997; Garcia et al., 1985; Tsuprik, 2x83)he term
‘specific energyto expresghe energy consumptiomdex of ice. Despite a different name, the
specific energy is mathematically idevatl to impact (dynamic) hardness. Both have dimensions
of pressure and sometimes referred toimpact strength(Timco and Martin, 1979). Russian
workers, i.e., Kheisin and Likhomanov (1973), among others, exfiregnergy consumption
index of ice in a slightly different manner, i.e., aspacific energy of mechanical ice crushing
the amount of energy required to break a unit mass ofés&=(. 2).

energyof indenter
massof indentatin

[2]

Specificenergyof mechanicaice crushing=

Table 1. Terminology convention

Earlier terminology New terminology (in this Mathematical expression
study)
specific energy of mechanical ice | massspecific energy index energyof indenter
crushing (specific energy of mechanical (MSEI) X :
destruction of ice) massof indentation
* impact (or dynamic) hardness volumespecific energy index energyof indenter

e impact strength (VSEI)

e specifc energy volume of indentatim
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In this study, in order to access the energy consumption index of ice dslitlye@absorb the
impact energy we introduce two slightly different terms of energy absopbopgrty ofice that
replace/unite earlier used terminology (see Table 1). First terrmassspecific energy indéx
(MSEI) in the displaced volume of ice. Other term isr@lumespecific energy indéxXVSEI)
which is virtually equivalent to the dynamic hardneissussed earlier.

1.2 Contradicting observations

From ball drop tests on freshwater lake ice, Kheisin and Likhomsahowed that over a wide

range of experimental conditions, MSEI is highly depended on ice thstatal(or temperature)

and ice microstructurelhey argue that under certain conditions the MSEI is weakly dependent
on mass of the dropped ball and on the drop height, but MSEI values increase with decreasing
temperatures (forT,; varying from —30°C to +4C). In contrast with the Kheisin and
Likhomanov observationg;imco and Martinfound in 1979 that, for river ice the VSEI values

are affected by changes in dropped ball mass and in the ball radius and that teestrong
temperature influencen VSEI (for T, varying from—-26"C to —17°C), probably because the
temperatureange is not close to’G.

1.3 Scope

As a contribution to current and previous research dealing with specific engngiesm of the
present study is to access the energywmpsion index of iceberg ice as the ability to absorb the
impact energy. In the interests of clarity, we limit our discussion taapel indentationof
freshwater, polycrystalline ice at temperatukgs around —10°C by spherically-terminated
indenters. Tie term ‘rapid indentation’ is used here to indicate that ice exhibitedcttstcs

of brittle compressive failure: radial cracks, simoth load behavior, etc. The Pond Inlet iceberg
impact data sets are-examined with emphasis on the energy consumption index of ice within
the brittle regime. The energy consumption index is expressed here as Wipih{ch may
change with the ice type, its thermal and mechanical state and the rate of indelmtatisn.
study, MSElI is defined as in the following:

JZ.F(Z)-dz

¥,(z) = function(ice type,Tie,d,v) = &——, [3]
p-V(2)

whereTie is the ice temperaturd,is the characteristic grain sizeis the indentation speed(z)

is the nominal volume of the crushed material at the penetration zjepththe ice density, and

the nominator in Eq. (3) is a total work required to displace a certain volume of iae, thvbe

total work is defined as ¢éharea under the loadisplacement curve=(vs.2).

2. Empirical data re-examination

The mediumscale ice indentation experiments at Pond Inlet were originally desigsedutate

an interaction of an iceberg impacting an offshore structure apiokaina relationshipbetween
impact pressure and contact area for iceberg ice. Details of the indergapenments
including the major tesesults can be found in the report of Geotech Arctic Services (1288)

in Masterson et al. (129. Only a brief description of tests and a summary of the major results
are provided herein.
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The tests were conducted on iceberg ice using spherteatiynated indenters with radiR) 0.2,

0.4, 0.9, 1.28 and 2.3 m and therefore involve loading & aotume of ice. The experiments
were performedn a manneto minimize effects of sample boundaries. The impact simulation
tests were velocity controlledhe velocity was initially0.1 m/s and it decreased during the
penetration, coming to zero at a penetration depth of O hR&.iceberg ice density was 9033
kg/m® (measurean sitd, and the average grain sizf) (vas 10 mm in diameter (measured in the
laboratory). Masterson et al. (1992)sed local peaks of the lo#éiche histories to construct
pressurearea plots. The pressure on the projected area of the indenter was calcullited as
measured load from the load cells divided by the contact area at the time obadakhe
surface contact area, calculated from indenter penetration as a functiomr,oivsused in the
pressure calculations. Pressure was found to decrease witasimg theoretical contact aye
and for a specific area of contact, the pressure decreases as the indenter cur®ture (1/
increases. The presstmeea datdor the 2.3m indenter have bearsedfor the local ice pressure
calculations iNnS0O19906 (201Q)Section “Local ice actions’Figure 1 shows force versus time
curves that were registered during the experimaniBond Inlet.
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Figure 1. Force versus time curves that were registered during the indentation intaethe ic
considered data sets (this study) are highlighted in grey.

1.4 Data selection

Indentation of ice is a complex process which depends on many parameters such as ice
temperature, indentation rate, ice type, geometry of the ice and the indenter.imtetest of

clarity, we consider only results from the tests where possible effectsnpfeshoundaries and

grain size were minimized by careful selection of the sample size, of the insieet@nd of the
experimental setup. In other words, we consider results only from testsothespond to so
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calledindentation into an ice wallSodhi, 2001and toindentation into polycrystalline material
(i.e.,Z/d>5.0, wherez is the maximum penetration depth). See Table 2 summarizing the data.

Table 2. Data summary

Test ID Indenter zld Selected (y/n) Reason
radius, m
Tultestl 0.20 2 n Zd <5.0
(uncertain force data)

Tultest2 0.40 4 n zld <5.0
Tultest3 0.40 4 n zld <5.0
Tultest4 1.28 12.8 y
Tultest5 2.30 23 y
Tu2testl 0.90 9 n oy
Tu2test2 0.90 9 n oy
Tu2test3 0.40 4 n zld <5.0
Tu2test4 0.20 2 n zld <5.0
Tu2test5 1.28 12.8 y
Tu2test6 1.28 12.8 y
Tu3test2 2.30 23 y
Tu3test3 0.90 9 y
Tu3test4 0.90 9 y
Tu3test5 0.20 2 n z/d <5.0
Tudtestl 1.28 12.8 y
Tudtest2 2.30 23 y
Tu4test3 2.30 23 y
Tu4test4 0.40 4 n z/d <5.0
Tu4test5 0.40 4 n z/d <5.0

In Figure 1, the considered data sets are highlighted in grey. The data includd ibOtota
indentation tests, among which are two indentation tegksindenter ofR of 0.9 m, four tests
with R of 1.28 and four tests witR of 2.3 m.For each selected test, the total load versus time
curves (see Figure 1) were used to calculate and plot W versus normalized crushed volurnide
normalized crushed volumeVy) at any given point in time was determined using the
corresponding displacement of the indentggatcording to Eq. (4).

v ;7[22(3R—Z)
V(@) == —— [4
05 IR
3

In Eq. (4), the nominatol; is the volume of a spherical cup of heighi; is equivalent to the
nominal volumeof ice replaced by a spherical indendéradiusR). The denominatoYysis the
volume of hemisphere with radiés

Figure 2 showshe MSEI values (Ed3) versus normalized crushed volume for all selected tests.
The normalized crushed volume was calculated as a ratio between the nooghato/olume
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at the penetration @géh z and the nominal crushed volume at depth R. Figure 3 shows
variation of the mean value and the standard deviation (as error bars) of the8/&HEinction
of crushed volumé&/,. For comparison, the average values of MSEI for lake ice argaaoin

Figure3.

MSEI, [J/kg]
N iN »
(e»] (e»] o
(e»] o o
(@»] (@] (@]

tests with R=900 mm
tests with R=1280 mm| |
tests with R=2300 mm

o
o

0.005 0.01 0.015
Normalized crushed volume, VN [-]

Figure 2. Massspecific energy indexXMSEI) of iceberg ice versus normalized crushed volume

(Wn).
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Figure 3. Variation of the mean value and the standard deviation (as error bars) of the MSEI as a

function of crushed volume/y).
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1.5 Observations

This section highlights the specific energy trends observed from the aradlyfsgstest results in
Figure 2and Figure 3. For the purpose of analysis it is useful to think of the horizontahaxis i
Figures 2 and 3as a relative measure of thenetration depth.

Looking at the data in Figures 2 and 3 one of the possible interpretations is thenfypllowi

— The MSEI of iceberg ice decreases slightly with the penetration depth (largealized
crushed volumes) and approaches a horizontal asymptote for larger depths.

— There is no apparent correlation of the crushing specific energy of theticengenter
size, nor is there clear consistency in the values for tests condudtedheisame
indenter. At larger penetration deptlisssimilarities in ce from tunnel to tunnahay
accountto some degree, for the spread.

— MSEI data forargerpenetration depths hasallerspread A part of the reason is that at
larger penetrations depths, more data are being used for assessing the M&EI, hen
lowering tre spread.

4. Discussion of results

In this study, the impact response of iceberg icel8tC has been ranalyzed for three different
indenter radii with the focus on the masgsecific energy absorption capacity within the brittle
regime. The results (ikigure 2) have indicated that the MSEI for any particular test tends to
flatten out to a constant value regardless of the crushing volume or the indenter radius. T
not surprising, because the pressure versus area curves from severabriglaondin situ
experiments alsshow a roughly constapressurevalue if the saweeth are smoothed out for
indentationtype tests. Gagnon (201g¢gerformed a pressua@ea reanalysis of the data from
impacts of the Louis St. Laurent vessel with sea ice that covered a large rangeaof area (up

to approximately 15 i) and observed a roughly flat pressunea relationship. Similarly, if one
looks at data from Hobsons'’s Choice Ice Island testscaneeeimilar behavior.

Similar to this study, in some drdgall type laboratory experiments, such @agnon and
Gammon (1997pnd Timco and Frederking (1990)he specific energy of the ice is higher at
smaller crushed volumes and then tends to flatten out as the volume increases. Thes may
attributed to a fact that as a larger volume of ice is engaged, the effects of lodéileasged
inhomogeneitiesare likely to be less significant. nfdther explanation is related to the
observation of the high kinetic energy of ejecta from the overall contact zore éadly stages

of the tests. The ejecta consists of chunks of ice, smaller pieces corresporsjiatistor pieces

of spalls, pulveried ice that is wet to some extent due to liquid flowing out of relatively intact
hard zones and also liquid produced aticgecontacts during the pulverization. The processes
involved in the ice crushing occur throughout the whole event however it gbammore
kinetic energy iproduced in the earlier stage.

It is important to know how the testing procedures affect the calculageifisgenergy values.
Although the effects of temperature have not been addressed in this study, thespdaifie
enegy index of iceberg ice was found to decrease with increasing temper@agnon and
Gammon, 1997)This issimilar tothe behavior of laboratorgrown freshwater polycrystalline
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ice, lake ice and natural se= (Barnes et al., 1971; Kheisin and Likhomanov, 1973; Tsuprik,
2013).

The effects of the impact velocity on the specific energy values are still uritdheanumerous
data points reported by Barnes et al. (19d&monstrate an effect of loading rate (ice
deformaton regime) on the specific energy. Here it should be noted that for cases wheee the
response is dominated by the brittle failure mechanisms, the effects of |oaidirmge difficult to
capture. In particular, within the rage from 1.5 to 6.0 /s, nocutgl effects can be traced from
the data byKheisin and Likhomanov (1973). A possible reason for this weak, if any velocity
effect is that the brittle compressive strength of ice is weakly dependent loadivg rate.

Another important consatation when analyzing laboratory data and especially large scale field
data is the nature of the test setup itself. In a sense, the test configuiayiteathto substantial
energy being dissipated by the apparatus rather than the ice. For instanceyevhaxne a
sphericdly-terminatedor wedgeshaped indenter there will be a tendency for lateral loads to
occur as ice pieces may break from the contact zone in an unsymmetrical fashias, dltharge

ice piece may break from one side of the contact rofrent of the hemispherical indenter that
causes the remaining ice to push more on the other side of the indenter. Because #reisndent
rounded this will create a certain amount of side loading that may cause thelspfmarabve
sideways to some &nt depending on how well it is constrained. Nevertheless the apparatus
heaves around in a back and forth sideways fashion in addition to its forward motion during the
test and substantial energy goes into pushing the apparatus laterally. In Pomepkdetests, it

does not appear to be a tendency to develop major cracks or fractures which could legdt i
scale flaking and sideway motions of the inder@ack penetratiowas relatively shallow, and

the indenters were moving ahead at a strictly controlled(@¢etech Arctic Services, 1985)

But the sdewaystype of motion was very obvious in Hobson’s Choice Ice Island tests where a
wedgeshaped indenter was used. In this case, the energy of lateral motion hag twttw with
removing ice from the contact zone and it tends to introduce errors dalthegation of specific
energy.

This implies that it would be better to analyze tests where a flat rigid inden®eds@ indent
convexshaped ice faces/features because there would be no side forces imposed on the
apparatus. Besides, this typeteff is more relevanfor engineeringproblems such as wave
driven bergybit and/or growler impact or as ice edge crushing during shige interactionslt

should bealsonoted that for highly convex ice geetry, it will be easier for ice to spall, and

one can anticipate that the specific energy values will be somewhat lower thanathtse f
considerably less convex geometmhis is due to the fact thaivhen a flattype indenter is

pushed against a convee surface, the degree of ice confinement at the ice/indenter interface
will be somewhat lower than that when a spherically shaped indenter is pushed attaca fl
surface. At present, there is a lack of systematic experimentabdatther comment on this.

For future indentation or impact tests we think it could be important to tin@ckctualcontact

area of high-pressure and loygressure zones during the course of the penetration, in order to
get a more accurate estimate of the specific enafrdjye ice. That, for example, could be done
with the kind of pressure sensing technology availabléha@tNational Research Council of
Canada (NRC), see e.&opper et al. (2015).
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5. Conclusions

As a contribution to current and previous research dealing with specific energikaya/found
that under certain anditions for any particular testthe crushing specific energy of natural
iceberg ice showllittle, if any, dependency on the volume of the displaced ice and tenérds

a constant value.urthermorethereis no apparent correlation of the crushing specific energy of
the ice with indenter sizélhis weakdependenc®n the crushed volume (and indenter size)
makes thecrushingspecific energy a candidaparameter for use in engineering models of ice
impact loads and for use in numerical simulations of ice crushing. To study tleiguxtber and

to provide good information atie crushingspecific energycertain types of experiments (i.e., a
flat-type indenter pushing against an ice con@aavedge)would be more usefulThese types of
tests would be eas to analyzesinceusing aflat indenterwould reducethe tendencyof the
apparatuso move sideways during ice spalling events, depending oeffibacy of the actuator
control system.
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