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Abstract— Meals are one of the greatest challenges to glucose
regulation in diabetes mellitus type 1. Several times each day,
food causes heavily elevated blood glucose concentrations that
may result in long-term complications. Meal-time insulin bo-
luses are administered to mitigate these hyperglycemic periods.
Sporadic omissions of prandial boluses impair the outcome
of the insulin therapy by leading to significant variations in
blood glucose levels. As continuous glucose monitoring (CGM)
becomes more common, an automated detection based on
CGM data could support patients by reminding about missed
boluses. In fully automated systems, meal detection could
temporarily modify controller parameters until the meal is
mitigated. In the present study, moving horizon estimation
(MHE) and linear discriminant analysis (LDA), abbreviated
“MHE+LDA”, are proposed for meal detection. An augmented
version of Bergman’s minimal model is used for the estimator
model. Neither the model parameters nor the MHE tuning
are individualized. The method is tested in simulations on the
UVa/Padova simulator and its performance is compared to
two other methods, namely threshold checking of the current
estimated glucose appearance and the GRID algorithm. All
meals are detected by MHE+LDA within 35 min while the two
comparative methods do not detect the smallest simulated meal.
The combination of MHE and LDA outperforms the two other
methods also with respect to time of detection. The MHE+LDA
method’s ability to identify even smaller meals without the need
for individual tuning suggests that the method should be further
investigated.

I. INTRODUCTION

THE natural insulin secretion is destroyed in diabetes
mellitus type 1 (DM1). Thus, exogenous insulin is

usually administered into the subcutaneous (SC) tissue to
achieve acceptable blood glucose levels (BGL). The basal
insulin needs are covered by either manual injections of long-
lasting insulin with insulin pens, or continuous infusion of
short-acting insulin from an insulin pump. In both cases,
meal time boluses of short-acting insulin are necessary to
avoid large BGL excursions. Both size and timing of these
boluses influence the effectiveness in normalizing BGL.
However, it is rather difficult to estimate the suitable bolus
size [1], and patients sometimes even forget administering
the bolus. In particular, adolescents tend to omit their dia-
betes care [2]. Skipped meal-time boluses result in elevated
BGL and increase the risk of subsequent over-dosing in
an effort to quickly lower the BGL. Formulas relating the
amount of carbohydrates and the expected effect of insulin
help the patient in estimating the bolus size. Such bolus
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calculators are also integrated in insulin pumps [3]. A system
that automatically detects missed meal boluses and reminds
the patient could increase the safety and convenience of DM1
treatment further.

Sensors placed in the SC tissue provide continuous glu-
cose monitoring (CGM) with typical sampling intervals of
1 to 5 min. A meal can be detected if the measured glucose
concentration rises above a certain threshold. Measurement
noise can be handled by using a Kalman filter (KF) estimate
of the glucose concentration rather than the raw CGM signal,
see e.g. [4]. Combinations of subsequent threshold violations
of the estimated glucose concentration and its rate of change
have been proposed to increase the specificity [4], [5], [6].
The KF requires linear models whereas extended (EKF) and
unscented Kalman filters (UKF) are designed for the use
of non-linear models which may even describe the glucose
dynamics in the human body. The UKF using an extended
version of Bergman’s minimal model [7] has been proposed
for meal detection where not the estimated glucose concen-
tration but rather the estimated glucose rate of appearance
in plasma is checked against a threshold [8]. Defining the
thresholds is in any case a trade-off between sensitivity and
specificity. This issue is complicated by the fact that not only
short-term perturbations like meals may occur but that the
glucose-insulin dynamics, the insulin sensitivity, may vary
between and within days.

This paper investigates moving horizon estimation (MHE)
with subsequent linear discriminant analysis (LDA), abbrevi-
ated “MHE+LDA”, for meal detection in DM1. Both MHE
and LDA are briefly outlined and motivated in section II.
A simulation study that applies the proposed methods is
presented in section III and discussed in section IV. The
conclusion and future work follow in section V.

II. METHODS

A. Moving Horizon Estimation
A set of ordinary differential equations (ODEs) describes

the glucose-insulin dynamics:

ẋ(t) = f̃(x(t),u(t)) (1a)
y(t) = h(x(t)) (1b)

with the vectors of differential states x ∈ Rnx , inputs
u ∈ Rnu , and outputs y ∈ Rny .

Moving horizon estimation is a model-based technique
similar to model predictive control (MPC) [9], [10]. The
current states xk are estimated based on N past measure-
ments

{
yk−N+1, ...,yk

}
, instead of predicting the future

states xk+1 based on the current measurement as in MPC.



The degrees of freedom in MHE are thus the state esti-
mates {xk−N+1, ...,xk} while the historical control vari-
ables {uk−N , ...,uk−1} are known at time k.

The ODE in eq. (1) was discretized by direct collocation.
The discretization allows us to optimize the originally infinite
problem as a finite dimensional problem:

minimize
xj ,wj ,vj

J (2a)

s. t. xj+1 = f(xj ,uj) +wj (2b)
j = k −N + 1, ..., k − 1

yj = h(xj) + vj (2c)
j = k −N + 1, ..., k

xj,min ≤ xj ≤ xj,max (2d)
j = k −N + 1, ..., k .

Unknown disturbances are accommodated by the additive
process noise wj ∈ Rnx and the measurement noise vj ∈
Rny .

While minimizing the cost function J , the optimized state
values xj must fulfill the process and measurement equations
in (2b) and (2c), respectively. The lower and upper bounds
in (2d) constrain the state estimates additionally.

The chosen objective function explicitly considers both
process and measurement noise vectors, wj and vj :

J = ‖xk−N+1 − x̄k−N+1‖2P−1
k−N+1

(3a)

+

k−1∑
j=k−N+1

‖wj‖2R−1 (3b)

+

k∑
j=k−N+1

‖vj‖2Q−1 . (3c)

Its first term (eq. (3a)) represents the arrival cost which
considers the confidence in the initial estimate x̄k−N+1

(first state within the estimation horizon) by means of the
estimated error covariance matrix Pk−N+1 ∈ Rnx×nx . The
second and third terms penalize deviations from the process
f(xj ,uj) (eq. (3b)) and the measurement equations h(xk)
(eq. (3c)), respectively.

As time passes, the confidence in the initial state may
change as well and the arrival cost needs to be updated.
Here, a smoothing update of the initial state x̄k−N+1 and its
covariance Pk−N+1 was chosen [11]. By tuning the matrices
R ∈ Rnx×nx and Q ∈ Rny×ny , the magnitudes of process
and measurement noise are weighted.

The non-linear problem was implemented with CASADi
[12] in Matlab and solved using IPOPT [13].

B. Classification using linear discriminant analysis

The goal of pattern recognition is to discriminate between
different classes within a data set (in this work: “meal onset”
and “no meal onset”). First, features need to be selected that
are characteristic for the given data set. Features can be any
measures or properties of the data. Based on the features,
classification algorithms are trained to separate the data into
the classes.

Linear discriminant analysis (LDA) is one of the standard
classification methods in pattern recognition. In LDA, linear

-40 -20 0 20 40
0

1

2

3

4

5

6

7

Time (min)

R
at

e
of

ap
pe

ar
an

ce
(m

g/
kg

/m
in

) Real
MHE

MHE(t=15)
MHE(t=20)
MHE(t=25)
MHE(t=30)
MHE(t=35)

Fig. 1. Glucose rate of appearance estimated by the MHE following a
meal at 0 min. Filled circles mark the current estimate at each time step. The
dotted line illustrates the estimation using only “current” estimates. Open
circles, connected by thin lines, show the horizon estimated in retrospect.

functions are built based on linear combinations of the
extracted features and optimized for maximum separation
between the classes. A data set with known classification
is used to gain the separating functions which then can
be applied to classify unknown data sets. The method is
described in more detail by e.g. Dougherty [14].

C. Motivation for using moving horizon estimation and
linear discriminant analysis for meal detection

Moving horizon estimation has the advantage that con-
straints on states and parameters are explicitly handled.
Both glucose rate of appearance and insulin sensitivity are
estimated simultaneously. It is assumed that the insulin
sensitivity does not change abruptly but rather drifts over
a longer period. Constraints on the respective process noise
ensure that the insulin sensitivity changes only gradually.
An abrupt change of the glucose concentration as caused
by a meal can therefore not be explained by a varying
insulin sensitivity. The non-linearity of models is kept in
MHE and all measurements within the chosen horizon are
considered without linearizing the model at each estimation
step or summarizing all measurement information in one
state estimate and its covariance, as it is done in KF-type
estimators. The result is a whole horizon of estimated past
states rather than a single value. Figure 1 illustrates how the
estimation becomes more accurate with time if the whole
horizon is considered compared to looking at only the current
estimate.

The horizon offers additional information that is lost when
the detection algorithm checks only the current estimate
(filled circles in fig. 1) against some threshold. Linear
discriminant analysis considers the characteristic shape of
the increasing glucose concentration following a meal.



III. SIMULATION STUDY

A. Estimator model and parameters

The estimator model used in this study is an augmented
version of the non-linear model from Bergman et al. [7]. The
model has originally been developed to describe the glucose-
insulin dynamics during an intravenous glucose tolerance
test and has later been used to determine insulin sensitivities
during oral glucose loads [15], [16], [17].

The original model has two states: the glucose concen-
tration in plasma G (mg/dL) and the action of insulin X
(1/min). We are interested in the rate of appearance of
glucose in plasma Ra (mg/kg/min) and thus append Ra
to the states as a first order Markov process. The insulin
sensitivity SI (ml/U/min) varies within subjects over time
and is therefore estimated simultaneously. However, SI is
assumed constant but subject to noise. The augmented state
vector is: x = [G,X,Ra, SI ]

T . The following dynamics
describe the system:

ẋ(t) =


−SGG(t)−X(t)G(t) + SGGb +Ra(t)/Vg

−p2X(t) + p2SI(t) (I(t)− Ib)
−Ra/τ

0

 (4)

y(t) = G(t) . (5)

The only measurement y is the glucose concentration in
plasma G. Diffusion dynamics of glucose from plasma to
the SC tissue is not described in order to restrict the dimen-
sionality of the model. The SC measurements are instead
substituted for the plasma concentration in the measurement
equation 5. Along the same lines, the absorption of insulin
from the SC tissue into the plasma is not modeled but the
insulin concentration in plasma I (pmol/L) remains as input.
With the motivation of detecting meals, it is assumed that
the insulin infusion is close to the basal rate that keeps the
glucose concentration stable. On that assumption, the actual
value of I has minor impact on the estimation. The basal
glucose concentration Gb and the basal insulin concentration
Ib in plasma are specific for each subject and given in the
simulator. The remaining parameters are not individualized.
Descriptions of these generic parameters, the used values and
their origin are provided in Table I.

TABLE I
PARAMETER VALUES USED IN THE ESTIMATOR MODEL (EQ. (4)).

Parameter Description
SG 1.4 · 10−2 min−1 [15] Glucose effectiveness
Vg 1.7 dL/kg [15] Distribution volume of glucose
p2 3.0 · 10−2 min−1 [15] Rate constant of insulin action
τ 40 min [18] Meal absorption time constant
SI,nom 8.56 · 10−4 ml/U/min [16] Nominal insulin sensitivity

B. Estimation set-up

A sampling time of 5 min is chosen as it is the most
common sampling rate of CGM devices. The optimization

problem is constructed at time samples 5 min apart from
each other over the whole horizon. These samples are called
nodes. The number of nodes in a horizon of e.g. 300 min is
thus N = 300min/5min = 60.

The initial state (i.e. x̄k−N+1 and P−1
k−N+1 in (3) at

k = 1) was defined as x̄0 =
[
y0, 10

−4, 0, SI,nom
]T

with an
initial covariance P0 = I . The covariance P of the initial
state is part of the arrival cost calculation; a smoothing
update based on an EKF was chosen [11]. The process
and measurement covariances used in this EKF scheme
were Q̃ = diag (10, 10, 1, 1) and R̃ = 100, respectively.
The weighting matrices in the MHE cost function (3) were
Q = diag (50, 10, 10, 1)2 for the process noise and R = 102

for the measurement noise. States and noise vectors were
bounded as xmin

wmin
vmin

 ≤
xw
v

 ≤
xmax
wmax
vmax

 , (6)

in which the inequalities should be interpreted elementwise,
with

xmin =
[
36,−10−2, 0, 0.5 · SI,nom

]T
, (7a)

xmax =
[
300, 10−2, 10, 2 · SI,nom

]T
, (7b)

wmin =
[
−10−4,−10−8, 0,−10−8]T , (7c)

wmax =
[
10−4, 10−8, inf, 10−8]T , (7d)

vmin = −108 and (7e)

vmax = 108 . (7f)

C. Methods for meal detection

A meal detection is defined as a true positive (TP) when
the meal is detected within 60 min after the onset. All
instances of detection out of this period are consequently
regarded as false positives (FP). Series of consecutive TPs
are counted as a single TP instance. Likewise, any number
of consecutive FPs are counted as one single FP detection.
A false negative (FN) detection occurs if the meal is not
detected within a period of 60 min after the meal onset. All
other instances without detection are true negative (TN) but
not explicitly counted here.

Three methods for meal detection are compared.
1) Threshold on Ra-estimate: The first method checks

the current Ra estimate from the MHE against a thresh-
old. The current estimate at each time step corresponds
to the last value in the horizon. In a study using UKF,
meals of various glucose content are detected if the es-
timated glucose rate of appearance exceeded 2 mg/dL/min
[8]. This threshold is used after adjusting the units to
2mg/dL/min · Vg = 3.4mg/kg/min.

2) GRID algorithm: Secondly, we apply the Glucose Rate
Increase Detector (GRID) by Harvey et al. [6] to the glucose
measurements. The GRID algorithm is used with the tuning
reported in [6].



3) MHE+LDA: The two previously listed methods serve
as comparison for our meal detection using MHE+LDA.

Linear discriminant analysis (section II-B) is applied to the
estimated Ra-horizons from MHE. The classifier is trained
on simulated data from 3 distinct meals applied to each of
the 10 adult subjects, yielding a total of 30 simulated single
meals. The three meals have a carbohydrate content of 25, 50
and 75 g, respectively, and last for 15 min. The last 20 nodes
of the Ra-horizons, i.e. a period of the most current 100 min,
are used for detection. A horizon with a meal onset falling
within the horizon’s most current 60 min, i.e. the horizon
ends no later than 60 min after meal onset, is designated
to the class “meal onset”, all others are assigned to the
class “no meal onset”. That ensures that the classification
is trained to detect the onset of meals. The LDA based on
MHE estimations is tested in a leave-one-out cross-validation
for those 30 meals. The detection algorithm is started as soon
as the full horizon length is reached.

D. Estimation on data simulated with estimator model

In a first scenario, a meal is simulated by feeding a
trajectory of glucose rate of appearance as input into the
estimator model, thereby generating a glucose concentration.
The resulting glucose concentration is used as measurement
in the MHE that estimates Ra again. The initial Ra-trajectory
was generated with the UVa/Padova simulator simulating a
meal with carbohydrate content of 50 g in adult subject 1.

An oscillating insulin sensitivity with a period of 1440 min
was simulated as follows:

SI(t) = SI,nom + 0.5 · SI,nom · sin(2πt/1440min) . (8)

This corresponds to an insulin sensitivity that is changing
from its nominal value by ±50% within 6 hours, which
appears realistic [19].

In addition, an oscillating insulin concentration in plasma
was simulated with a period of 360 min:

I(t) = Ib + 20 · sin(2πt/360min) . (9)

Figure 2 illustrates the current estimate of the MHE for
different horizons for a simulation where Gaussian white
noise with a variance of σ2 = 2 (mg/dL)2 was superimposed
to the simulated glucose measurements. The estimates for the
shortest horizon of 60 min are more noisy than the estimates
for the longer horizons which do not differ significantly.

Figures 3 and 4 show the estimations of insulin action
and insulin sensitivity for simulations without additional
measurement noise. The estimated insulin action in fig. 3
follows the simulated oscillations well. Longer horizons are
again beneficial for the accuracy. There is a larger deviation
between the estimates of the insulin sensitivity and the
simulated data in fig. 4. Opposite to Ra and X , a shorter
horizon leads to more accurate estimations of the insulin
sensitivity. The reason is that SI is constant within one
estimated horizon due to the modeling in (4) (not shown).
Any changes can only origin from the added process noise
in the MHE formulation (2b). For the purpose of meal
detection, an accurate Ra-estimate is more important than

300 400 500 600 700 800
0

2

4

6

Time (min)

R
at

e
of

ap
pe

ar
an

ce
(m

g/
kg

/m
in

)

sim.
60 min
240 min
300 min

Fig. 2. Comparison of estimated glucose rate of appearance Ra for
different MHE horizons in a scenario where Ra mimics a meal starting
at 360 min. (Ra-trajectory generated with UVa/Padova simulator, simulated
as input into estimator model, random measurement noise added).
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a good approximation of insulin sensitivity, and therefore, a
horizon of 300 min is chosen in this work.

E. Estimation on data simulated with UVa/Padova simulator

The proposed MHE+LDA method for meal detection is
tested on simulated measurement data generated with the
academic version of the UVa/Padova T1DM simulator from
2013. The simulator model describes the glucose-insulin
metabolism in man with DM1 [20] with higher complexity
than the estimator model. This mimics the differences be-
tween an estimator model and the real metabolism. Open
loop scenarios of single meals are simulated in 10 adult
subjects. The subjects are controlled at their basal glucose
concentration before the meals start. This is achieved by
administering insulin continuously at the subject-specific
basal rate defined in the simulator. The basal rate is injected
during the whole experiment without superimposed insulin
boluses.

Single-meal scenarios with a carbohydrate content of 25,
50 and 75 g are simulated for the ten adult subjects. All meals
last for 15 min regardless of their carbohydrate content. An
error-free pump and the sensor Freestyle Navigator (Abbott
Diabetes Care, Alameda, CA) with a partial auto-correlation
coefficient (PACF) of 0.25 is used in all simulations. An
example of all three meal sizes for one subject their detection
by MHE+LDA is shown in fig. 5.

Table II summarizes the detection with MHE+LDA and
with the two comparative methods (described in section III-
C) for each meal size. The results for the meal with a
carbohydrate content of 50 g are separately listed for each
subject in table III. The sensed glucose concentration and
the times of detection for subject 7 are shown additionally
in fig. 6. The MHE+LDA detects all 30 meals within a
maximum of 35 min after their onset. Two false positive
detections occur with MHE+LDA 90 min after the meal, one
for subject 7 after a meal with 50 g and one for subject 5
following a meal with 75 g.

IV. DISCUSSION

In both cases of false positive detections with MHE+LDA,
the glucose concentration is still rising when the “false”
detection occurs. Figure 6 illustrates this for the 50 g-meal
in subject 7. If the period, in which a detection is accepted
as true positive, was extended to e.g. 90 min, neither of the
FP would appear in the statistics. In practice, the detection
of a new meal could be suspended until the effect of injected
insulin has settled to avoid detecting the same meal several
times and possibly triggering the infusion of too much
insulin. Another possibility to avoid the two reported FP in
table II is to extend the postprandial period that is defined
as “meal onset” in the training set. No FP would occur, for
example, if data from horizons estimated up to 90 min after
the meal onset were included. The smallest meals would
then be detected on average 6.5 min later, so it is a trade-off
between detection times and rates of false positives. The best
option is possibly to define the training data depending on
the meal size.

While MHE+LDA can detect meals of all sizes used in this
study, neither the GRID algorithm nor the threshold check is
able to detect the smallest meal of 25 g carbohydrates. This
result is not surprising as the GRID algorithm was tuned for
meals from 50 g upwards [6]. On the other hand, the GRID
algorithm shows no FP detection. A different tuning of the
GRID algorithm has not been tested here.

A lower threshold on the current estimate increases
the sensitivity of the threshold check to smaller meals.
All 25 g-meals are detected with a halved threshold of
Ra,th = 1.7mg/kg/min, for example. The detection with
MHE+LDA still outperforms the threshold check in this
scenario with respect to early detection as the meals are on
average detected 5 min earlier. Moreover, eight FP occur with
the halved threshold only for the smallest meals (compared
to zero with full threshold), illustrating the obvious fact that
the risk of false positives increases with lower thresholds.

All FP with the threshold check occur after the meal. Most
of them (9 of 14) appear while the glucose concentration
is still increasing after a meal as discussed above. The re-
maining five FP occur in the period with decreasing glucose
concentrations after a 75 g-meal due to poor Ra-estimations.
The reason could be that the MHE has been tuned for a
meal of 50 g in subject 1 and performs less well for the
other subjects. The related Ra-horizons could also be less
accurate because of an inappropriate meal model in the third
subequation of eq. (4). However, the LDA in MHE+LDA
overcomes this issue by focusing on the meal onset.

The tuning of the optimization problem in the MHE is
complex and was partly found by trial and error for one
meal size in one subject. A slightly different tuning may
lead to different results. Future work should thus explore the
possibilities for robust, automatic tuning. The sampling rate
of 5 min restricts the detection opportunities to every 5 min.
A more frequent detection might be achievable with higher
sampling frequency.

Glucose measurements were generated with a simulation
model that is more complex than the one used in the estima-
tor. The parameters in the estimator model were not adjusted
to individual subjects. Thus, the results are promising as
the MHE with subsequent LDA detects all meals and at an
earlier time than the compared methods. Individualization of
model parameters could be investigated as it may improve
the performance further, though the fact that the method
might not require individualization is definitely a strength
with respect to the applicability in clinical practice.

The estimator model in eq. (4) describes the glucose-
insulin dynamics in blood plasma, although the CGM device
and the insulin injection are usually located in the SC tissue.
Equations for insulin absorption to and glucose diffusion
from the plasma are omitted in this study to restrict the
number of uncertain parameters. The results indicate that a
model of glucose diffusion is not necessary because all meals
are successfully detected by just substituting the glucose
concentration in plasma by SC CGM data.

No insulin bolus or closed-loop scenario is simulated
in this study. In order to do that, MHE would need to
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TABLE II
RESULTS OF DETECTION OF MEALS WITH DIFFERENT SIZES USING DIFFERENT METHODS: (1) THRESHOLD CHECK ON LAST Ra-ESTIMATE FROM

MHE (Ra,TH = 3.4 MG/KG/MIN), (2) GRID ALGORITHM [6] AND (3) MHE WITH SUBSEQUENT LDA ON Ra-ESTIMATES. 1

Threshold on Ra-estimate GRID algorithm [6] MHE+LDA

Meal ∆tDet ∆GDet FP FN
∆tDet ∆GDet FP FN

∆tDet ∆GDet FP FN
size (min) (mg/dL) (min) (mg/dL) (min) (mg/dL)

25 g - - 0 10 - - 0 10 26.0 (4.9) 10.1 (5.1) 0 0

50 g 32.2 (4.8) 30.1 (5.4) 6 1 41.1 (5.2) 48.6 (6.4) 0 1 19.5 (3.5) 6.4 (2.9) 1 0

75 g 26.5 (3.9) 26.6 (6.1) 8 0 35 (3.2) 53.6 (9.1) 0 0 18.5 (2.3) 7.7 (2.4) 1 0

1 ∆tDet: time of detection after meal onset, ∆GDet: glucose deviation from basal at detection, FP: false positives, FN: false negatives.

Average (standard deviation) of ∆tDet and ∆GDet, total number of FP and FN for all 10 subjects.

TABLE III
RESULTS OF DETECTION OF A 50 G-MEAL USING DIFFERENT METHODS: (1) THRESHOLD CHECK ON LAST Ra-ESTIMATE FROM MHE

(Ra,TH = 3.4 MG/KG/MIN), (2) GRID ALGORITHM [6] AND (3) MHE WITH SUBSEQUENT LDA ON Ra-ESTIMATES. 1

Threshold on Ra-estimate GRID algorithm [6] MHE+LDA

∆tDet ∆GDet FP FN
∆tDet ∆GDet FP FN

∆tDet ∆GDet FP FN
(min) (mg/dL) (min) (mg/dL) (min) (mg/dL)

Subject 1 35 38.1 1 0 45 58.5 0 0 20 7.1 0 0

Subject 2 25 22.7 0 0 35 45.0 0 0 15 3.5 0 0

Subject 3 - - 0 1 - - 0 1 25 10.9 0 0

Subject 4 35 27.4 0 0 45 43.2 0 0 20 4.7 0 0

Subject 5 35 35.6 2 0 40 43.2 0 0 20 8.1 0 0

Subject 6 30 25.7 0 0 40 50.9 0 0 20 6.5 0 0

Subject 7* 25 25.7 1 0 35 56.8 0 0 15 3.9 1 0

Subject 8 35 30.4 1 0 45 49.1 0 0 20 5.2 0 0

Subject 9 30 27.2 1 0 35 38.1 0 0 15 2.6 0 0

Subject 10 40 38.0 0 0 50 52.6 0 0 25 11.4 0 0

1 ∆tDet: time of detection after meal onset, ∆GDet: glucose deviation from basal at detection, FP: false positives, FN: false negatives.
* The meal detection for subject 7 is shown in fig. 6.

be informed about insulin doses that are administered in
addition to the basal dose, and then the estimator model
would need to be extended with the insulin absorption from
the SC tissue into blood. This may prove to be beneficial if

it increases the accuracy of the MHE estimates.
Meal detection by MHE+LDA may be improved using

simulations with extended scenarios including insulin bo-
luses and more severe perturbations. As LDA may prove
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to be less precise, other methods of pattern recognition
than LDA can be exploited. Finally, the method should be
validated on clinical data.

V. CONCLUSION

All simulated single meals are detected with the LDA
based on the estimated horizons of the glucose rate of
appearance. Compared to threshold checking on an estimated
glucose appearance and the GRID algorithm, meals are
detected significantly earlier with only a few false detections.
These false detections only occur in non-critical situations
that are per se still during the meal and can be avoided
easily by slightly redefining the marking of “meal onset”
in the training data of the LDA, or be silenced by a logic
handling the detections. Neither the minimal estimator model
nor the MHE needs individually tuned parameters to achieve
this result in the simulated cases. Meal detection using
MHE+LDA should therefore be tested on real CGM data
in order to further investigate its suitability.
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