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Abstract Bézier surfaces are mathematical tools employed in a wide variety of appli-
cations. Some works in the literature propose parallelization strategies to improve
performance for the computation of Bézier surfaces. These approaches, however,
are mainly focused on graphics applications and often are not directly applicable
to other domains. In this work, we propose a new method for the computa-
tion of Bézier surfaces, together with approaches to efficiently map the method
onto different platforms (CPUs, discrete and integrated GPUs). Additionally, we
explore CPU–GPU cooperation mechanisms for computing Bézier surfaces using
two integrated heterogeneous systems with different characteristics. An exhaustive
performance evaluation—including different data-types, rendering and several hard-
ware platforms—is performed. The results show that our method achieves speedups
as high as 3.12x (double-precision) and 2.47x (single-precision) on CPU, and 3.69x
(double-precision) and 13.14x (single-precision) on GPU compared to other methods
in the literature. In heterogeneous platforms, the CPU–GPU cooperation increases the
performance up to 2.09x with respect to the GPU-only version. Our method and the
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associated parallelization approaches can be easily employed in domains other than
computer-graphics (e.g., image registration, bio-mechanical modeling and flow simu-
lation), and extended to other Bézier formulations and Bézier constructions of higher
order than surfaces.

Keywords Bézier surfaces · GPU computing · Parallel computing ·
Computer-graphics · Heterogeneous computing

1 Introduction

Bézier tensor-product surfaces (in the following referred to as Bézier surfaces) are
geometric constructions widely used in engineering and computer-graphics. Despite
Bézier curves and surfaces have been studied for decades, they are still an active field
of research [1,2].

Due to their simplicity and mathematical properties, Bézier surfaces have been
employed in applications such as surface reconstruction fromclouds of points [3],mod-
eling of free-form deformations [4,5], interactive manipulation of three-dimensional
meshes and rendering [6–8], bio-mechanical modeling [9], hybrid volumetric object
representation [10], registration in medical imaging [11,12], and computer games [13]
among others.

Computation of tensor-product Bézier constructions—regardless of whether these
are surfaces or higher order constructions like volumes—is considered a computation-
ally expensive task. Applications such as shape optimization in aerodynamics [14],
flow modeling [15], simulation [16] and non-rigid medical image registration [11]
require, indeed, high-degree Bézier formulations to cope with the complexity of the
underlying data.

In the last decade, strategies to parallelize the evaluation1 of Bézier surfaces have
been developed (Sect. 3). These strategies, however, circumscribe mostly to the field
of computer-graphics as part of tessellation applications (conversion of continuous
surfaces to discrete triangle meshes). Furthermore, these strategies are often limited
to the computing of bi-cubic Bézier patches widely used in rendering and animation.

New trends in computing like heterogeneous computing systems (HCS), where
multi-core processors are integrated (on-chip) with GPUs in the same device, allow
new possibilities for improving the performance. These systems, as opposed to
traditional computing systems (e.g., CPU and GPU in separate devices) establish
cooperation mechanisms across computing units (e.g., CPU+GPU).

In the literature, works evaluating the performance of traditional systems often
present their results as a comparison of devices competing to reach the higher perfor-
mance. In this context, the performance of multi-core CPUs, GPUs and FPGAs have
been evaluated in multiple application domain like image processing [17] and com-
puter graphics [18]. As opposed to this approach, HCS evaluate performance results in
terms of cooperative work across computing units. These mechanisms range from dis-
tribution of the same processing stage among the computing units [19] to distribution

1 In the line of other related works, we use the term evaluation to refer to computation.
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of processing stages (from pipelines) based on optimal mapping to the most adequate
computing unit [20,21]. To date, organization of new applications using HCS is an
active area of research; in order to understand the challenges and opportunities forHCS
for leveraging improved performance over traditional computing systems, benchmark
suites like Hetero-Mark [22] and CHAI [23] have been recently developed.

Generalized parallel strategies going beyondbi-cubicBézier schemes, togetherwith
techniques to map the parallelization efficiently onto different hardware platforms,
including HCS, have consequently the potential to make an impact in the performance
of not only computer-graphics, but a broader range of applications.

1.1 Contribution

The aim of this work is computing real-time Bézier tensor-product surfaces that can
be employed not only in rendering applications—where bi-cubic Bézier surfaces are
predominant—but also in applications requiring high-degree surfaces.The main con-
tribution of this work is threefold:

– A multi-level method (MLE) for the computation of parametric non-rational
Bézier tensor-product surfaces of arbitrary degree. The use of this method can
be further applied to other formulations (e.g., rational Bézier), as well as tensor-
products of higher order than surfaces.

– We propose different techniques to map MLE onto different hardware platforms,
including central processing units (CPU), discrete and integrated graphics pro-
cessing units (GPU) as well as mobile integrated GPUs—these latter ones being
poorly explored in the literature.

– As the latest trends in computing move towards hybrid systems (more than one
kind of processor present), we also propose CPU–GPU cooperation mechanisms,
including the exploitation of (HCS) models with different properties.

In addition, we review and classify the most important works in the literature
concerned with the optimization and acceleration of computation of Bézier surfaces.

The rest of the paper is organized as follows. Section 2 provides fundamental math-
ematical background on Bézier surfaces. Section 3 lists and shortly reviews relevant
works in the literature which accelerate and optimize the computation of Bézier sur-
faces. In Sect. 4 the proposed method (MLE) is described. Section 5, on other hand,
addresses the parallelization and mapping of MLE onto different computing plat-
forms, including CPUs, GPUs and HCSs. In Sect. 6, our experiments and results are
described. These results and themost relevant findings are discussed in Sect. 7. Finally,
in Sect. 8, some concluding remarks are presented.

2 Background

In this section, a brief description of Bézier surfaces is provided. A deeper description
of this type of surfaces and its properties can be found in [24]. For simplicity and clarity
reasons, in this work, the focus is on the use of the parametric non-rational formulation
of Bézier surfaces. However, the methods presented in this paper are generalizable to
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Fig. 1 Bi-cubic Bézier
tensor-product surface and its
4 × 4 net of control points

other Bézier tensor-product formulations (e.g., rational formulations or higher order
tensors).

Mathematically, non-rational Bézier tensor-product surfaces S : R
2 → R

3 are
defined as:

S(u, v) =
m∑

i=0

n∑

j=0

Pi, j Bi,m(u)Bj,n(v), (1)

where u, v ∈ [0, 1] form the parametric space of the surface andPi, j are control points.
The m and n values determine the degree of the Bernstein polynomials Bi,m(u) and
Bj,n(v) used as basis functions. These polynomials are generically defined as:

Bi,m(u) =
(
m

i

)
(1 − u)(m−i)ui , (2)

with 0 ≤ i ≤ m. Bj,n(v) is defined similarly.
The most common case of Bézier surface in the scientific literature is the bi-cubic

surface (m = n = 3). An example of this type of surface together with its control
points is shown in Fig. 1.

Bézier surfaces can also be expressed in terms of the matrix product:

S(u, v) = U(u)R(m)PR(n)TV(v)T , (3)

where the P is the matrix representing the net of control points. This matrix is given
by:
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P =

⎡

⎢⎢⎢⎣

P0,0 P0,1 . . . P0,n
P1,0 P1,1 . . . P1,n

...
...

. . .
...

Pm,0 Pm,1 . . . Pm,n

⎤

⎥⎥⎥⎦ .

The vectors U and VT are polynomial spaces of degree m and n, associated to the
parameterization directions u and v respectively. Generically, these basis vectors take
the form T(t) = [tα, tα−1, . . . , t0], where α is the degree of the polynomial space.
The matrix of coefficients R is then defined as:

R(t) =

⎡

⎢⎢⎢⎣

(t
0

)(t
t

)
(−1)t

(t
1

)(t−1
t−1

)
(−1)t−1 . . .

(t
t

)(t−1
t−1

)
(−1)0

...
...

. . .
...(t

0

)(t
1

)
(−1)1

(t
1

)(t−1
0

)
(−1)0 . . . 0(t

0

)(t
0

)
(−1)0 0 . . . 0

⎤

⎥⎥⎥⎦ .

In the literature, some authors like [25] express Eq. (3) in a more compact form:

S(u, v) = U(u)GV(v)T (4)

whereG = R(m)PR(n)T is constant. This has important implications under the point
of view of the implementation and optimization.

3 Related Work

To a great extent, the driving force behind the use and development of Bézier surfaces
has been the computer-graphics community. In this context, tessellation algorithms
emerged as a mechanism for converting surfaces to triangle meshes [26].

As Bézier surfaces were gaining popularity—eventually becoming the standard for
the representation and communication of geometric data—performance became more
important. Initially, tessellation was performed in the CPU, then the results were sent
to the GPU for further processing and visualization. This transferring process was
considered as a bottleneck for high-quality surfaces (which imply high number of
triangle transfers). To address this issue, [27] proposed an algorithm and a specific
hardware architecture integrated in the GPU.

Later, the GPUs evolved into programmable parallel processors where the graphics
pipeline could be redefinedby software. TheseGPUs, included twonewprogrammable
units, the vertex processing unit dealing with geometry and attributes (i.e., texture
coordinates, colors, etc.) and fragment processing unit dealing with data stored in
textures. User-defined programs, also referred to as shaders, were also structured into
either vertex programs or fragment programs. Some works made use of this approach
to evaluate and render Bézier surfaces [7,12,28–30].

Amore contemporary trend to exploit the massive parallelism of graphics hardware
is the general purpose GPU (GPGPU), made available through the CUDA [31] and
OpenCL [32] programming frameworks. Some works make use of this approach for
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the evaluation of Bézier surfaces not only with applications to computer-graphics
[4,8,33–36].

Regardless of the implementation mechanisms, many of the parallelization strate-
gies can be utilized in both shaders and GPGPU approaches. These strategies can be
roughly classified into algorithmic strategies or hardware-specific strategies.

Algorithmic strategies are generally concerned with reducing the number of oper-
ations to perform. In this line, [7] uses the matrix formulation in Eq. (3) instead of
Eq. (1). Later in [25], the authors make use of Eq. (4), which allows, not only the
reduction of the number of operations needed (constant values are pre-calculated), but
also the exploitation of spatial coherence of data. Other algorithmic strategies employ
numerical approximations, like [8] which is based on forward differencing [37]. How-
ever, thesemethods are subject to error accumulation, and therefore, the generalization
to high-degree surfaces is limited.

Hardware-specific strategies are based on providing an efficient mapping of the
method on the underlying hardware. The flexibility provided by CUDA and OpenCL
allows for a more fine-grained mapping of the method than that obtained by using
shaders. [8]make use of a selective transfer of control points to the fast on-chipmemory
of the GPU (in the following referred to as GPU shared memory), thus providing
fast access to those elements frequently accessed during computations. Additionally,
[34] utilizes a selective distribution of threads (one GPU thread per control point for
evaluation of bi-cubic Bézier patches and one GPU thread per patch for subsequent
processing). In [38], the authors present a more generic evaluation (based on non-
uniform rational B-splines) approach in which the operations are distributed between
CPU and GPU, so that inherently serial operations are carried out by the CPU.

Despite the recent advances of computing in mobile devices, the evaluation of
Bézier surfaces in these devices has been given very little attention. To the best of our
knowledge, the only work bringing evaluation of Bézier surfaces in mobile platforms
is [7]. In this work, the authors highlight the difficulties for real-time tessellation of
complex objects.

A summary of all the works considered in this section can be found in Table 1.
For each of these works, the table includes the type of Bézier formulation, maximum
degree evaluated, employed optimization strategies, programming model used, and
whether rendering was the purpose of the application.

4 Multi-Level Evaluation of Bézier Surfaces

On the basis of designing a flexible algorithm able to adapt to different applications,
we define the following requirements:

(A) Update of control points coordinates: this is the most common criterion for real-
time evaluation of Bézier surfaces. In this case, the coordinates of the control
points change in every evaluation cycle, while the number of control points [(m+
1)×(n+1)] and surface resolution (ρ×δ) remain invariant. Applications related
to evaluation of Bézier surfaces in regular grids, like 3D representation using
Bézier patches or deforming surfaces, meet this requirement.
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Fig. 2 Decomposition of Bézier formulation in a hierarchy of levels and the associated data items and
dependencies

(B) Variable resolution of surface: subsequent evaluations of the surface present dif-
ferent resolutions (ρ × δ) (e.g. tessellation applications).

(C) Variable degree of the surface: this implies a change on the number of control
points [(m + 1) × (n + 1)] in subsequent evaluations (e.g., applications related
to degree elevation and surface subdivision).

In order to fulfill these requirements and to reduce the number of operations, we
propose an approach based on the a decomposition of the Bézier formulation in a
hierarchy of levels. First, we expand Eq. (1) as:

S(u, v) =
m∑

i=0

n∑

j=0

Pi, j

Bu

︷ ︸︸ ︷(
n

i

)

︸︷︷︸
Cu

(1 − u)(n−i)ui

Bv

︷ ︸︸ ︷(
m

j

)

︸ ︷︷ ︸
Cv

(1 − v)(m−i)v j . (5)

From this formulation, where the different terms, for all points in the surface, are
computed and stored in arrays: Bu and Bv for arrays of Bernstein basis with lengths
|Bu| = (m + 1)ρ and |Bv| = (n + 1)δ for the directions u and v respectively; Cu and
Cv for arrays of binomial coefficients with lengths |Cu| = m + 1 and |Cv| = n + 1
for the directions u and v respectively.

From a data-dependency standpoint, those arrays can be structured into a hierarchy
of levels (Fig. 2) in which each level directly corresponds to the computation of a set
of terms:

Level 1 is formed by the coordinates of the set of points S belonging to the Bézier
surface. This level requires the array of control pointsP and the Bernstein polynomials
corresponding to the u and v directions (Bu and Bv respectively), which could have
been pre-calculated. A description of the computation of Bézier surfaces with pre-
calculatedBernstein basis is given inAlgorithm1. Similarly toEq. (3), the computation
of level 1 is equivalent to a matrix-vector form of a Bézier tensor-product:

S(u, v) = φφφ(u)TPψψψ(v), (6)
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whereφφφ andψψψ are subsets ofBu andBv, andP is thematrix of control points previously
described. The complexity of level 1 is characterized by O(ρ × δ × m × n).

Algorithm 1 Bézier Surface (level 1)

1: function BézierSurface(m, n, ρ, δ,Bu,Bv,P)
� Loop over resolution in u direction

2: for i ← 0 to ρ − 1 do
� Loop over resolution in v direction

3: for j ← 0 to δ − 1 do
4: Si, j ← 0

� Loop over control points in u direction
5: for k ← 0 to m do

� Loop over control points in v direction
6: for l ← 0 to n do
7: Si, j ← Si, j + Pk,l × Bu

i,k × Bv
j,l

8: end for
9: end for
10: end for
11: end for
12: return S
13: end function

Level 2 represents the basis Bu and Bv of the tensor-product (Bernstein polyno-
mials) in the directions u and v respectively, which complexity is characterized by
O(ρ × m + δ × n) . Under isotropy conditions (i.e., equal number of control points
and resolution for the directions u and v), Bu equals Bv, and therefore one of these
arrays can be obtained from the other by eithermemory copy or directmemory address-
ing. A description of the process, including the copy/direct-addressingmechanism, is
described in Algorithm 2.

Algorithm 2 Bernstein basis (level 2)

1: function BernsteinBasis(m, n,Cu,Cv, ρ, δ)
2: for i ← 0 to ρ − 1 do
3: μi ← i

(ρ−1)
4: for j ← 0 to m do
5: Bu

i, j ← Cu
j × μ

j
i × (1 − μi )

ρ−1− j

6: end for
7: end for
8: if m �= n or ρ �= δ then � Isotropy check
9: for i ← 0 to δ − 1 do
10: μi ← i

(δ−1)
11: for j ← 0 to n do
12: Bv

i, j ← Cv
j × μ

j
i × (1 − μi )

δ−1− j

13: end for
14: end for
15: else
16: Bv ← Bu � Copy/Direct-addressing on isotropy
17: end if
18: return [Bu,Bv]
19: end function
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Level 3 is composed by the array of binomial coefficients Cu and Cv which are
employed in the computation of the Bernstein basis arrays Bu and Bv . Algorithm 3
shows the computation of the binomial coefficients. As in the Bernstein basis (level 2),
there is no need of duplicated calculation of bothCu andCv under isotropy conditions.
The complexity of level 3 is characterized by O(m + n).

Algorithm 3 Binomial coefficients (level 3)

1: function BinomialCoefficients(m, n)
� This loop computes the binomial coefficients for u-direction basis

2: for i ← 1 to m do
3: Cu

i ← (m−1)!
i !(m−i−1)!

4: end for
5: if m �= n then � Isotropy check

� This loop computes the binomial coefficients for v-direction basis
6: for j ← 1 to n do
7: Cv

j ← (n−1)!
j !(n− j−1)!

8: end for
9: else
10: Cv ← Cu � Copy/Direct-addressing on isotropy
11: end if
12: return [Cu,Cv]
13: end function

As shown in Fig. 2, the multi-level evaluation of Bézier surfaces opens up the
computation (per evaluation cycle) of only those coefficients needed, while reusing
all those coefficients remaining invariant. Hence, for evaluations where the number
of control points and resolution are constant (i.e., requirement [A]), we can re-utilize
pre-computed level 2 and level 3, therefore using computing resources for only level 1.
Following the same logic, evaluations with variable resolution (requirement [B]) can
re-utilize level 3, only computing level 1 and level 2 for every cycle. Finally, in case the
number of control points changes (requirement [C]), all levels need to be computed
every cycle.

5 Parallel Implementations

The evaluation of Bézier surfaces is a problem suitable for parallelization due to the
lack of data dependencies between output data items (i.e., 3D surface points). The
simplest way to parallelize is the use of OpenMP [39] pre-processor directives on
multi-core CPUs. For instance, Algorithm 1 can be easily parallelized employing the
directive: #pragma omp parallel for.

More interestingly, the huge amount of points in a typical Bézier surface matches
the availability of computing resources in massively parallel processors such as GPUs.
The following section describes our GPU implementation of the evaluation of Bézier
surfaces. Afterwards, we explore the cooperation of CPU and GPU on integrated
heterogeneous systems in order to attain further acceleration.
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5.1 GPU Parallel Computing

Algorithmically, the multi-level evaluation approach proposed in the previous section
facilitates the parallelization possibilities of the evaluation of Bézier surfaces. Hence,
the parallelization strategy described in this work follows a scheme based on the
parallelization of levels, particularly level 1 and level 2. The reader should note that
these levels require significantly more operations than level 3 (e.g, bi-cubic surfaces
require the computation of only 2 × 4 × 4 binomial coefficients), even for high-
degree surfaces. Furthermore, for most of the applications, level 3 remains unchanged.
Therefore, level 3 can be computed by the CPU with a negligible impact.

Parallelization of level 1 (Algorithm 4) and level 2 (Algorithm 5) is carried out in
different kernel functions using a gather approach [40], this is, assigning aGPU thread
to each output data item (i.e., Bernstein basis coefficient for level 2 and 3D surface point
for level 1). This pattern ensures that threads have write access to disjoint memory
locations, thus avoiding mutual exclusion and thread synchronization mechanisms,
which may introduce serialization. The geometry of the kernels is 2D thread-blocks
clustered in a 2D grid 2, where the block/thread indexes are used to address memory
locations related to a particular thread. The parallelization optimizations we apply to
these kernel functions can be better understood in terms of existing data dependencies
in the computation of an output data item and its neighboring data items within the
same block (Fig. 3a), and mapping of data items (basis, surface points and binomial
coefficients) onto different processors and memory locations (Fig. 3b).

As shown in Fig. 3a, a GPU thread assigned to the computation of a 3D output
surface point (light yellow tile) requires: all the control points, a subspace of the basis
Bu and Bv, as well as all the binomial coefficients (all these dependencies highlighted
in dark red in the figure). Similarly, neighboring GPU threads within a block (dotted
tiles) require: all the control points, all the binomial coefficients and neighboring
sub-spaces of Bu and Bv (in the figure, tiles are highlighted with a dot).

Considering these data dependencies, Fig. 3b shows the distribution of memory in
the GPU. Following the line of [8], in our level 1, control points are transferred to
GPU shared memory (Algorithm 4, lines 2–4), which is a fast on-chip memory that is
accessible by all threads within a block. Additionally, in our work, sub-spaces of Bu

and Bv are transferred to GPU shared memory (Algorithm 4, lines 5–12), since these
elements are going to be accessed frequently. Spatial locality of control points and
basis ensures coalesced memory accesses, as consecutive threads load consecutive
data items. After loading the data items into GPU shared memory, and given that not
all threads within a block perform the same amount of memory transfers, intra-block
synchronization is necessary (Algorithm 4, line 13).

Computation of Bernstein basis (level 2) in GPU can not benefit from using GPU
shared memory since the binomial coefficients are accessed only once. However, as in
the case of CPUs, it is possible to use the copy/direct-addressing mechanism in order
to reduce the number of basis elements computed (Algorithm 5, lines 9–19).

2 CUDA threads and thread blocks correspond to OpenCL work-items and work-groups respectively. In
this work, we use the CUDA terminology.
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(a)

(b)

Fig. 3 Parallel computation of Bézier surfaces using MLE under GPU and heterogeneous computing
approaches. a Geometry of the data and data dependencies at different levels for a GPU thread and its
neighboring threads in a thread-block. bDistribution ofMLE elements across computing units and memory
units
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Distribution of data items across memory units can be complemented with distri-
bution of computing across processors. To a great extent, the design and distribution
of computing is guided by the application. As shown in Fig. 3b, and due to the inher-
ent parallelism, it is indicated that level 1 and level 2 are processed by the GPU.
Alternatively, and for cases where level 2 is constant (i.e., constant resolution and
number of control points), level 2 can be pre-computed in CPU. Changes in coordi-
nates of the control points often happen upon user interaction or in a pre-defined way,
CPU is therefore adequate. Although these distributions imply cooperation between
processors, CPU and GPU do not operate simultaneously, but sequentially one after
another. In the next section, we present more elaborated cooperation techniques which
allow processors to operate simultaneously in level 1 (as shown in Fig. 3b), including
inter-processor coordination mechanisms.

Algorithm 4 Bézier Surface GPU kernel (level 1).

Note: sx , sy block sizes in the x and y dimensions. tx , ty thread indexes in x and y dimensions. Elements

with double-dot accent (e.g. B̈u
i ) represent allocations in GPU shared memory.

1: function BézierSurfaceGPU(m, n, ρ, δ,Bu,Bv,P)

� This loop transfers the control points to shared memory

2: for i ← ty × sx + tx to m × n step sx × sy do

3: P̈i ← Pi � Load into shared memory

4: end for

� This loop transfers needed basis (u-direction) elements to shared memory

5: for i ← ty × sx + tx to sy × m step sx × sy do

6: j ← by × sy + (i mod sy) + i
sy

× ρ

7: B̈u
i ← Bu

j � Load into shared memory

8: end for

� This loop transfers needed basis (v-direction) elements to shared memory

9: for i ← ty × sx + tx to sx × n step sx × sy do

10: j ← by × sx + (i mod sx ) + i
sx

× δ

11: B̈v
i ← Bv

j � Load into shared memory

12: end for

� Synchronization of threads within block

13: intra-block_synchronization()

14: a ← bx × sy + tx � Thread-index of output item (x-coordinate)

15: b ← by × sx + ty � Thread-index of output item (y-coordinate)

� Evaluation of the corresponding surface point

16: if a < ρ and b < δ then � If thread index is within surface

17: q ← 0

18: for ki ← 0 to m do

19: bi ← B̈u
tx+ki×sy

20: for k j ← 0 to n do

21: b j ← B̈v
tx+k j×sx

22: q ← q + P̈ki+n+k j × bi × b j
23: end for

24: end for
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25: Sa×δ+b ← q

26: end if

27: return S

28: end function

Algorithm 5 Bernstein basis GPU kernel (level 2).

Note: sx , sy block sizes in the x and y dimensions. tx , ty thread indexes in x and y dimensions.
1: function BernsteinBasisGPU(m, n,Cu,Cv, ρ, δ)
2: x ← sx by + tx
3: if x < (m + 1)ρ then
4: i ← x mod ρ

5: j ← x
ρ

6: μ ← i
(ρ−1)

7: Ui+ j×ρ ← Cu
j × μ j × (1 − μ)(m− j)

8: end if
9: if m �= n or ρ �= δ then � Isotropy check
10: x ← sx bx + tx
11: if x < (nx + 1)δ then
12: i ← x mod δ

13: j ← x
δ

14: μ ← i
(δ−1)

15: Vi+ j×δ ← Cu
j × μ j × (1 − μ)(m− j)

16: end if
17: else
18: Vi+ j×δ ← Ui+ j×δ � Copy/Direct-addressing on isotropy
19: end if
20: return [U,V]
21: end function

5.2 Heterogeneous Parallel Computing

Heterogeneous computing systems (HCS) are composed by hybrid collections of
processors (frequently GPUs and CPUs) in the same system [41], and often in the
same chip. This trend is intended to satisfy the computational needs of everyworkload.
Inherently sequential or modestly parallel computations are typically executed on the
CPU side, while massively parallel phases are executed on the GPU side.

Besides discrete heterogeneous systems where CPU and GPU are connected
through peripheral component interconnect express (PCIe), a more recent trend inte-
grates CPU and GPU cores on the same die. The integrated heterogeneous systems
solve the bottleneck of the data transfers through the PCIe bus by means of a unified
dynamic random-access memory (DRAM).

Current developments try to facilitate communication and concurrency across CPU
and GPU cores. The heterogeneous system architecture (HSA) [42] provides cache
coherence mechanisms [43] and cross-device atomic operations [44]. These systems
allow CPU and GPU cores to access the same memory space simultaneously.
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(a) (b)

Fig. 4 Heterogeneous parallel computing for a grid of 2 × 2 tiles of 3D surface elements. a SDC where,
the first n blocks are statically assigned to the CPU and the remaining blocks are assigned to the GPU. b
DDC where, blocks are assigned on-the-fly (in run-time) to the CPU and the GPU as they finish processing
other blocks and become available

A common way to exploit CPU–GPU cooperation is assigning serial tasks to the
CPU and parallel tasks to the GPU. However, the regularity of the operations involved
in the evaluation of Bézier surfaces makes possible cooperation strategies in which
both GPU and CPU can perform the same operations. In this line, we use two CPU–
GPU schemes based on the distribution of computation between processors through
tiling [45]. The use of tiling is supported by the fact that output surface elements are
independent and written in disjoint memory locations.

Two schemes for distributing the computational burden between CPU and GPU are
possible depending on the characteristics of the underlying hardware.

Scheme 1: static distribution of computation (SDC). In absence of memory coher-
ence, dynamic communication between CPU and GPU is not possible. Translated to
our problem, this means that in run-time none of the processors can verify which
part of the 3D surface has already been computed by other processors with concur-
rency condition guarantees. Despite of that, it is still possible to statically assign the
amount of elements that should be processed by the CPU and the GPU. As shown in
Fig. 4a, the output surface space is divided into tiles containing neighboring 3D surface
points. Each tile is then statically assigned to either a CPU thread or a GPU block.
In highly regular problems, the number of tiles processed by the CPU is significantly
lower than the number of tiles processed by the GPU. If only level 1 is computed,
offline profiling can help to find a fair workload distribution thanks to the regularity of
computations.

Scheme 2: dynamic distribution of computation (DDC). Under memory coherence
conditions such as HSA platforms (Fig. 4b), processors assume the computation of
non-processed tiles available in a list. This list can be concurrently accessed by CPU
and GPU cores through the use of cross-device atomic operations. As opposed to
SDC, the assignment of tiles to the CPU threads and the GPU blocks is not known
beforehand.
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5.3 Rendering and Graphics Interoperability

Aspreviouslymentioned, computer-graphics applications and in particular tessellation
are the most prominent fields of application for Bézier surfaces. The mechanism by
which GPUs can utilize and coordinate computing and graphics capabilities is known
as graphics interoperability. This mechanism consists of a common buffer of vertices
known as vertex buffer object (VBO) which is shared by the evaluation of the surface
(CUDA/OpenCL) and the rendering. The use of graphics interoperability avoids large
data transfers between the CPU and the GPU.

In order to test the performance of MLE in rendering applications, we have imple-
mented an event-driven renderer which employs OpenGL and GLUT [46], together
with CUDA graphics interoperability. With the aim to keep simplicity and generality
of results, our renderer only considers geometry/topology rendering without coloring
and illumination which are not present in every application. The resolution of the out-
put is set to high definition (1920× 1080) regardless of the underlying hardware. The
reader should note that event-driven always present some degree of CPU computing
handle the events. This type of renderers is closer to applications where interactions
that change the properties of the surface occur (e.g., computer-aided design appli-
cations or computer games). Higher performance can be achieved using dedicated
engines avoiding events (e.g, animation rendering).

6 Performance Evaluation and Results

In this section, we present the evaluation setup and the results obtained by the pro-
posed method and its parallel mapping onto different hardware platforms, including:
one CPU; two discrete GPUs running our CUDA (for NVIDIA) implementation; one
mobile integrated GPU (NVIDIA Jetson TK1) running our CUDA implementation;
and one integrated GPU (AMD) running our OpenCL implementation. A summary
of the employed architectures and the associated implementations are shown in
Table 2.

The presented results are based on the comparison of the proposed approach (MLE)
with: (1) a “brute force” (BRF) iterative approach which computes Eq. (1) and all its
elements, including those in Eq. (2) for every evaluation cycle (every frame); and (2)
the matrix form in Eq. 4 (MAT) employed by [25]. The reader should note that the
latter approach can be seen as an optimized formulation of the matrix form in Eq. (3)
previously employed by [7].

Performance evaluation in multi-threading (CPUs) often leads to significant vari-
ation of results [47,48] due to memory access mechanisms and operating system
scheduling policies. This poses a challenge for benchmarking. In order to reduce the
variability of results, our implementations consist of 10 warm-up evaluations fol-
lowed by 10 measured evaluations which are then averaged. This process is repeated
10 times, providing 10 averaged samples from which the observations exceeding the
mean value plus 1.96 standard deviations (95%confidence interval) are removed.After
removal of outliers, the resulting observations are used to calculate themean execution
time.
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Some of our results are expressed in terms of performance increments, measured
by a function f in frames per second (FPS). Hence, �MAT = f (MAT) − f (BRF)

represents the difference between MAT and BRF, and �MLE = f (MLE)− f (MAT)

is the difference between MLE (in level 1) and MAT. The results include evaluation
(in our results evaluation), as well as evaluation followed by a rendering stage (in
our results evaluation+rendering) through the graphics interoperability mechanisms
explained.

In order to widen the applicability of the results, the evaluation takes into consid-
eration the use of single-precision (float), as well as double-precision (double)
data types. For many applications this is an important consideration which may have
an impact on the performance, precision and numerical stability. Computer-graphics
applications, for instance, are mostly concerned about performance and often use
single-precision as the data-type of choice; in simulation applications on the other
hand, precision and numerical stability are of paramount importance, and hence, a
double-precision data-type is preferred.

6.1 Evaluation on CPU

The evaluation on CPU is performed using a quad-core Intel®CoreTM i7 930 2.80GHz
processor (64-bits architecture) with Hyper-Threading technology enabled, thus pro-
viding up to 8 virtual cores. The parallel implementation of all themethods evaluated is
obtained by means of OpenMP pre-processor directives. The degree of parallelization
ranges from 1 to 8 CPU threads.

In a first experiment, the number of control points and the resolution are arranged
so that the size of the Bernstein basis arrays meet favorable memory alignment con-
ditions (4 × 4 control points and 256 × 256 resolution). Then, evaluations using
different methods and different numbers of threads are performed both with and with-
out rendering. For double-precision, the results (Fig. 5a) show a notable performance
improvement of MLE over both MAT (2.41x to 3.12x speedup) and BRF (18.98x to
25.47x speedup). The maximum performance is reached by using 4 CPU threads in
evaluation (1149FPS), and8CPU threads in evaluation+rendering (254FPS). The use
of single-precision favors the performance of evaluation+rendering (1.62x to 2.82x
speedup) over evaluation, where there is no significant difference in performance.
This is mainly due to the reduction of the CPU–GPU data transfer. Our results show
adequate scalability of performance in evaluation, this is, a linear increase of perfor-
mance as the number of threads increases (both for single and double-precision); this
behavior holds separately for 1–4 cores (physical cores) and 5–8 (Hyper-threading).
Similarly, for evaluation+rendering linear scaling of results is observed; for double
precision, however, linear scaling does not hold for 5–8 threads (Hyper-threading) due
to memory transfers.

In a second experiment, the number of CPU threads is fixed to 4 and evaluations
are performed as combinations of a variable number of control points (4×4, 8×8 and
12×12) with variable surface resolutions (256×256, 384×384 and 512×512). As in
the first experiment, for double-precision,MLE exhibits higher performance than both
MAT (2.18x to 3.15x speedup) and BRF (24.97x to 72.89x speedup). The speedup
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Fig. 5 Parallel evaluation of bi-cubic Bézier surfaces in Intel®CoreTM i7 CPU930 2.80GHz. a, bCompare
computation of the same surface using different number of CPU threads. c, d Compare computation of
surfaces of variable resolution and number of control points using 4 CPU threads

of MLE over MAT and BRF diminishes as the degree of the surfaces increases—
which is further discussed in Sect. 7. For CPUs, including rendering stages not only
implies more operations to perform, but also CPU–GPU memory transfers. Thus,
the performance of evaluation+rendering is within the range 24.4–261.8 FPS for
double-precision. As in the first experiment, the use of single-precision can improve
the performance significantly (1.02x–2.50x speedup). Scalability of results adheres to
the size (ρ × δ) and degree (m × n) in a linear manner for both parameters according
to O(ρ × δ × m × n) described in Sect. 1; this phenomenon can be easily observed
in Fig. 5c, d where a quadratic increase in either the size or the degree of the surface
produces a quadratic performance decrease.
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Fig. 6 Parallel evaluation and rendering of Bézier surfaces (variable control points and resolution) in
NVIDIA® GTXTM 460 (Fermi architecture)

6.2 Evaluation on GPUs

In this section, we test the CUDA implementation of the different methods on two
of the three most recent NVIDIA architectures (Maxwell and Fermi). More precisely,
the results are obtained from a NVIDIA® GTXTM 980 4GB and a NVIDIA® GTXTM

460 1GB, both over a PCIe 2.0 bus. Additionally, we present results on a mobile GPU
(NVIDIA® JetsonTM TK1). The geometry (size of blocks) of the kernel functions is
16×16GPU threads, which showed slightly better performance than 8×8 and 32×32
GPU threads, thanks to a higher occupancy value (number of active threads per GPU
core).

In a first experiment, the performance of themethods on the older architecture (GTX
460) is evaluated. In the case of CPUs, surfaces with variable number of control points
(4 × 4, 8 × 8 and 12 × 12) and resolution (300 × 300, 400 × 400 and 500 × 500)
for evaluation and rendering. As shown in Fig. 6, for double-precision, MLE obtains
a significant performance improvement over both MAT (1.43x to 5.42x speedup) and
BRF (28.63x to 49.20x speedup). For evaluation+rendering, the performance varies
between 57 FPS and 206 FPS under double-precision. The use of single-precision
favors both evaluation+rendering (2.11x to 3.17x speedup) and evaluation (2.84x to
2.98x speedup) in a similar manner.

For the most recent architecture (GTX 980), the experiment consists of the eval-
uation and rendering of high-resolution surfaces. The complexity of the surfaces
combines variable number of control points (4×4, 8×8, and 12×12) with a variable
resolution (500× 500, 1000× 1000, and 2000× 2000). The results, in Fig. 7, show a
performance improvement of MLE over bothMAT (1.33x to 3.69x speedup) and BRF
(20.68x to 42.62x speedup). For evaluation+rendering in double precision, the perfor-

123



Int J Parallel Prog

Fig. 7 Parallel evaluation and rendering of Bézier surfaces (variable control points and resolution) in
NVIDIA® GTXTM 980 (Maxwell architecture). Results in logarithmic scale. *BRF and MAT show similar
performance in both evaluation and evaluation+rendering

mance varies between 5 FPS and 99 FPS depending on the complexity of the surface.
The use of single-precision increases the performance dramatically (5.15x to 11.82x
speedup for evaluation, and 5.62x to 7.32x speedup for evaluation+rendering). Fol-
lowing the same trend as inCPU (Sect. 6.1), the speedup ofMLEoverMATdiminishes
as the degree of the surfaces increases.

The evaluation in mobile GPUwas performed using aNVIDIA® JetsonTM TK1. For
evaluation purposes, we set the hardware parameters to a high-performance profile
(i.e., no CPU down-scaling and GPU frequency at 852MHz). As in previous evalua-
tions, we conduct an experiment consisting o fthe execution of the methods with the
complexity of the surfaces presenting variable number of control points (4× 4, 8× 8,
and 12×12) combinedwith variable resolution (300×300, 400×400, and 500×500).
Figure 8 shows the results in double-precision where evaluation onMLE outperforms
MAT (1.67x–4.68x speedup) and BRF (29.3x–49.07x speedup). The performance of
evaluation+rendering varies from 3.7 FPS to 11.5 FPS for double-precision. The use
of single-precision over double-precision increases the performance notably (3.72x to
4.80x speedup for evaluation and 9.71x to 18.09x for evaluation+rendering).

Similarly to our performance results in CPU, performance results in GPU adhere
to the linear decrease of performance established by O(ρ × δ × m × n) in Sect. 4.

6.3 Evaluation on HCSs

Experiments in this section were designed to demonstrate how the CPU–GPU coop-
eration can improve the performance of the evaluation of Bézier surfaces in HCSs.
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Fig. 8 Parallel evaluation and rendering of single-precision Bézier surfaces (variable control points and
resolution) in NVIDIA® JetsonTM TK1 (Kepler architecture)

Rendering is not subject to cooperation since this is a task carried out by solely the
GPU.

For the SDC scheme, we consider the multi-level evaluation approach with pre-
defined distribution of computation on a NVIDIA® JetsonTM TK1 (no memory
coherence). In order to obtain the optimal computation distribution, surfaces pre-
senting a different number of control points (4× 4, 8× 8, and 12× 12) and different
resolutions (300 × 300, 400 × 400, and 500 × 500) were evaluated using MLE. For
each of these evaluations we assign a CPU load from 0 to 100% in steps of 5%, which
determines how many tiles the CPU (and therefore the GPU) will process. We employ
4 CPU threads in order to use the four available cores. The results, in Fig. 9, show
how the performance increases when the CPU assumes 10 to 15% of the workload
(1.07x to 1.22x speedup compared to a GPU-only approach). Such stable percentages
of workload prove that offline profiling has the ability to ensure a reasonably good
workload distribution regardless of the number of control points and resolution.

For the DDC scheme,MLE is executed on an AMD®KaveriTM (HSA) under DDC.
The use of different number of CPU threads (1, 2 and 4) was tested for a variable num-
ber of control points (4× 4, 8× 8, and 12× 12) and different resolutions (300× 300,
400×400, and 500×500). Figure 10 shows the benefit of introducing some degree of
CPU–GPUcooperation. The positive impact of theCPU–GPUcooperation and the dif-
ference between the use of different number of threads diminish as the surface becomes
more complex. This increase of performance of the best CPU–GPU cooperation was
1.03x–2.09x speedup compared to the GPU-only approach. In order to compare per-
formance results in different configurations (i.e. 1,2 or 4 CPU threads cooperating
with GPU) careful consideration should be paid to hardware-specific aspects such that
power-saving policies; for instance, low complexity surfaces in Fig. 10 show higher
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Fig. 9 Parallel evaluation and rendering of Bézier surfaces in NVIDIA® JetsonTM TK1 under a SDC
strategy

Fig. 10 Parallel evaluation of Bézier surfaces in AMD® KaveriTM (HSA) using different MLE with dif-
ferent CPU–GPU cooperation degrees under a DDC strategy
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Table 3 Time results (in ms) for heterogeneous approaches for surfaces of 400 × 400 and 8 × 8 control
points in AMD® A10-7850K (Kaveri) including level1 and level2 computations, memory transfers and
allocations

OpenCL Cooperation Basis transfer level2 level1 Surface transfer Total

2.0* CPU+GPU (DDC) 0.000 0.052 4.026 0.000 4.078

1.2 CPU+GPU (SDC) 0.293 0.052 4.631 0.278 5.253

2.0* CPU+GPU (SDC) 0.000 0.054 4.603 0.000 4.657

*Allows the use ofmemory coherence forCPU–GPUcooperation in the samememory
space

performance for the use of 1 and 2 CPU threads compared to 4 CPU threads. This
phenomenon, produced by the power-saving policies of the hardware, is contrary to
the expected behavior, which is produced for complex surfaces (Fig. 10).

For hardware platforms allowing the use of both SDC and DDC approaches, DDC
has greater potential for achieving optimal workload balance between GPU and CPU
since the discrete steps on SDC profiling might only find sub-optimal workload bal-
ances. This effect is shown in Table 3 where the DDC level1 computing time is lower
than the SDC level1 time. The use of separate memory spaces for CPU and GPU
processing imposes two additional memory transfers: an initial CPU-to-GPU transfer
the basis Bu and Bv; and a final CPU-to-GPU transfer of part of the surface to the
memory holding the final result (in Table 3 final results are stored in GPU memory).

Theoretical order of complexity, regardless of the cooperation scheme, is preserved
as described in Sect. 4, that is, linear decrease of performance is observed when either
the degree or the size of the surface increases.

7 Discussion

The use of optimization techniques and parallel computing has been present in mod-
ern implementations utilizing Bézier constructions (not only surfaces). As shown in
Table 1, the most prominent area of use of parallel computing and optimization tech-
niques is computer-graphics. This explains the relatively low degree of the surfaces
employed in the literature (since 3D mesh models can be composed of low-degree
sets of Bézier patches). However, due to its interesting properties, Bézier construc-
tions can be found in applications other than computer-graphics. New parallelization
and optimization techniques, able to extend the application scope while keeping high-
performance results in computer-graphics are, therefore, of great interest. In this line,
we propose a method (MLE) and associated parallelization strategies to map the
method onto different hardware platforms (CPUs, GPUs, mobile integrated GPUs
and HCSs), thus covering a wide spectrum of possible applications.

The idea behind the proposed method is to reduce the number of operations exe-
cuted. In essence, our approach exploits re-utilization of data items, thus replacing
computations by memory accesses. Compared to other methods like MAT in [25]
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(some degree of re-utilization) and BRT (no re-utilization), our approach shows a
generalized increase of the performance. Using CPUs, the benefit can be as high as
3.12x speedup for double-precision MLE over MAT, and 25.47x speedup over BRF.
For discrete GPUs the gain is even larger, making MLE up to 3.69x faster than MAT
and up to 42.62x faster than BRF.

The trends observed in the results indicate that as the degree of the surface increases,
the speedupofMLEoverMATreduces. This can be explained by looking at the number
of operations performed by MAT (Eq. 3) and MLE in level 1 (Eq. 6). Operationally,
MATneeds to compute the basisU andV, the productsUR andRTVT , as well the final
product with the matrix of control points P. This imposes an overhead with respect
to MLE which only needs to perform a matrix multiplication. In MAT, the size of U
and V arrays of basis grows linearly with the number of control points while the size
of the matrices grows quadratically. Therefore, the overhead takes a larger fraction of
the total time for low-degree surfaces than for high-degree surfaces.

The use of single-precision versus double-precision arises as a very important
question since our aim is to cover a wide range of applications. Our results reveal
a generalized performance gain, that can be as high 11.82x speedup, on using single-
precision over double-precision in high-end discrete GPUs (GTX 980). Computer-
graphics applications, which do not require double-precision are clear targets for
choosing single-precision. For scientific applications requiring double-precision (e.g.,
simulations), the best performance can be achieved by the scientific-class GPU (e.g.,
NVIDIA® TeslaTM K20).

New trends in computing, like HCSs, can leverage higher performance by cooper-
ation mechanisms between processors. In the two strategies for cooperation between
processors (SDC and DDC), a speedup as high as 2.09x is observed using DDC, while
with the use of SDC a maximum of 1.22x speedup is obtained. The use of SDC and
DDC is determined by whether the system possesses memory coherence mechanisms
and cross-device atomic operations. For hardware platforms allowing both SDC and
DDC, DDC has greater potential to achieve optimal workload balance across proces-
sors.

In mobile computing, real-time evaluation and rendering of Bézier surfaces has
been considered a difficult task [7]. Our results show that modern mobile processors
including an integrated GPU (like NVIDIA® JetsonTM TK1), together with paralleliza-
tion and CPU–GPU cooperation can achieve real-time performance (650.93 FPS in
double-precision and2366FPS in single-precision) for relatively complex surfaces (bi-
cubic at resolution 300×300). In the absence of rendering, the computation of Bézier
surfaces can reach higher performance while presenting better hardware integration
possibilities thanmodernCPUs. In respect to rendering (inwhich case single-precision
is advised), performance can be as high as 157.91 FPS.

With the aim of providing other researchers with a broad coverage of applications,
our results include evaluations far beyond the limits of other works found in the liter-
ature (Table 1). This, together with the broad set of hardware architectures evaluated,
can be used as a guide to establish the limits and scalability of the use of Bézier
surfaces in a wide variety of applications including high-degree and high-resolution
Bézier surfaces. MLE and the associated strategies proposed, are also easily general-
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izable to higher-order Bézier construction and other Bézier formulations (i.e., rational
Bézier).

8 Conclusion

In this work, we present a new method (MLE) and the use of different parallel com-
puting techniques to accelerate the computation of Bézier tensor-product surfaces in
different hardware platforms (CPUs, discrete GPUs, integrated GPUs, mobile GPUs
and HCSs). In line with the latest trends in hybrid computing, we also propose two
CPU–GPU cooperation strategies (SDC and DDC) to be exploited by HCS platforms.
Our results—which include an exhaustive evaluation using different data-types, dif-
ferent degrees and resolution of surfaces and different computing platforms—show
that our method achieves speedups as high as 3.12x (double-precision) and 2.47x
(single-precision) on CPU compared to other proposals found in the literature. In GPU
computing, the speedup is as high as 3.69x (double-precision) and 13.14x (single-
precision). CPU–GPU cooperation strategies employed in this work pose a clear
benefit increasing the performance up to 2.09x with respect to GPU-only approaches.
MLE, as well as the parallelization and CPU–GPU cooperation strategies are easily
generalizable to high-order Bézier constructions (e.g., volumes in medical imaging)
and other Bézier formulations (i.e., rational Bézier).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
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