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Abstract

During the past few decades, the power sectors of several countries have been
substantially reorganized, and liberalized markets for trading of electricity
have been established. In this report, evidence from six electricity markets
are studied in order to identify characteristics of electricity prices. The mar-
ket structures, statistical quantities, as well as long-term dependence, are
investigated. Detrended fluctuation analysis and the average wavelet coeffi-
cient method are employed in order to estimate the Hurst exponent, which
quantifies the presence of long-termed dependence. Since it is concluded that
the price series are periodic on several time scales, all characteristics are in-
vestigated for both the original and deseasonalised versions of the time series.
In particular, it is confirmed that the electricity prices are volatile, but that
a considerable amount of the volatility is caused by the daily and weekly
periodicities. Furthermore, the characteristic return distributions, volatility
clustering and price spikes are analysed.
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Chapter 1

Introduction

I react pragmatically. Where the market works, I’m for that.
Where the government is necessary, I’m for that. (...) I’m in
favor of whatever works in the particular case.

John Kenneth Galbraith

There is no doubt that the idea of free markets has had an enormous im-
pact on the world society. Ever since the pioneering thoughts of the political
economist Adam Smith, liberalized markets have been the ideal for trading
of commodities. However, some commodities and services, such as railway,
telecommunication and electricity, require large and expensive facilities. It
has therefore been regarded that the easiest way of organising such markets
is to let a governmental institution be responsible for all parts of the service.
Still, during the last few decades, attempts have been made to liberalize mar-
kets like these. As will be seen for the electricity markets, the liberalization
process is not trivial. For that reason, in the spirit of the economist and
author John Kenneth Galbraith quoted above, it is important to study evi-
dence from the markets that have been liberalized, in order to clarify what
is working and what is not.

As electricity has become one of the most important commodities of the
western society, well-functioning power markets are of essential importance.
In particular is the reliability of the electricity supply crucial. As will be seen,
there are different solutions to how the supply capacity is ensured. Do these
solutions influence the characteristics of the electricity prices? Extended un-
derstanding of the price dynamics is necessary in the search for the best
way of organizing the markets. Identifying the characteristics of electricity
prices could help revealing the condition of the market. Furthermore, knowl-
edge about the price process is necessary for modelling purposes, which is
important for any market participant.
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CHAPTER 1. INTRODUCTION

Aim and Structure of Thesis
The main objective of this thesis is to investigate characteristics of time
series of electricity system prices. Evidence from six electricity markets will
be studied in detail, and some of the features are compared to those of other
financial markets in order to get an understanding of how electricity markets
differ from these. Since, as will be seen, the electricity prices exhibit periodic
patterns on several time scales, it is necessary to moderate the effect of these
periodicities before the electricity prices are compared to time series other
types of markets. In order to explain the characteristics, it is also necessary
to study the structure, in particular the price setting mechanisms, of the
different markets.

Chapter 2 gives an overview of the basic theory of liberalized electricity
markets, as well as case studies of the structure of six different markets. Fur-
thermore, the mathematics of time series analysis and the wavelet transform
are introduced. In Chapter 3, the two employed methods for estimating the
long-range dependence of time series are given. The six analysed data sets
are described in Chapter 4, before the results are presented and discussed in
Chapter 5. There are two appendices attached to this report. In the first,
basic statistical theory that are employed in this thesis is included. The
second appendix gives an introduction to how the wavelet transform can be
utilized in order to smooth a time series.

2



Chapter 2

Theory

In this chapter, an overview of common electricity market structures is given.
The price setting mechanisms in six electricity markets are particularly inves-
tigated. Then, a few important aspects of time series analysis are discussed,
before the wavelet transform, which is a fundamental part of one of the meth-
ods for estimating the Hurst exponent, is introduced in short. Finally, the
characteristics later to be investigated in detail are defined at the end of the
chapter.

2.1 Deregulation of Electricity Markets
Up until the 1980’s, electricity was produced, transported and sold by state-
owned companies. These vertically integrated companies operated in a monopoly
market and they often had the full responsibility of supplying industry, house-
holds and other consumers with electricity. However, the success of liberal-
ization of other vertically integrated economies such as telecom and railway
markets, led to the belief that electricity with advantage could be traded
in a deregulated market. This belief was supported by the common politi-
cal ideology of free markets: it was argued that introducing competition in
the market would stimulate technological innovation, allocate resources in a
better way and improve the effectiveness in the supply of services [1, 2]. In
addition to this ideological motivation, technological progress in generation
and transmission of electricity made the change in market structure possible.

Most of the historical details of electricity market liberalization in differ-
ent countries and regions will not be studied here, but it should be mentioned
that the military dictatorship of Chile, ironically enough, was the pioneer in
liberalizing electricity. A reform of 1982 paved the way for separate genera-
tion and distribution companies, and extensive privatization began in 1986.

3



CHAPTER 2. THEORY

The British electricity sector was reorganized in 1990, followed by the estab-
lishment of Nord Pool, the Nordic market, in Norway in 1992. Motivated
by the experience from well developed markets, more and more electricity
markets are now being liberalized worldwide [2].

The deregulation of electricity markets is still an object of heated discussions,
and the experiences from other markets do not give any obvious answers:
some markets have successfully been operated for up to two decades, others
have failed with calamitous consequences. The breakdown of the Californian
market in the beginning of this century, which led to the bankruptcy of En-
ron, as well as frequent electricity blackouts in Europe and North America in
2003 are used as warnings against liberalization. However, Weron [2] points
out that market liberalization can not be blamed solely for these failures.

One of the main objections against the liberalization of electricity markets
is the lack of incentives for market participants to invest in new generation
and transmission capacity [1]. Expensive and time consuming projects are of-
ten avoided in the deregulated market, since the profit maximizing and least
risky option often is to build power plants with short construction times (such
as gas-fuelled plants). The risk that private electricity generation companies
have to take when building new power plants is often high due to the uncer-
tainty in the expected payback. The risk averse nature of participants in a
free market may therefore lead to capacity shortage. In order to stimulate
market participants to increase their generation (and transmission) capacity,
the authorities may intervene in different ways. Possible interventions are
discussed in the following subsections.

2.1.1 Capacity Payments
The basic idea behind capacity payments is to award companies that con-
tribute to the reliability of the power system. It is a daily payment rewarded
to each generator, based on the level of their availability for power genera-
tion. Even if capacity payments in theory should stimulate the construction
of new capacity, it is in practice seen that the payments are weak incentives
for building capacity. Capacity payments are still present in several markets,
but various solutions exist. However, they are all based on the basic idea of
rewarding those who contribute to generation capacity.

2.1.2 Capacity Markets
In capacity markets, it is common that distribution companies are required
by law to fulfil some capacity obligations. The size of the capacity obligations

4



2.1. DEREGULATION OF ELECTRICITY MARKETS

may differ from market to market, but it is common that it is calculated as the
company’s expected monthly peak load plus a safety margin. The company
can meet the capacity requirement either through their own generators (if
they have any), through bilateral agreements, or by purchasing a right to buy
electricity from other generators. The latter option is termed recall rights and
are the product that is traded in the capacity markets. Since the generation
companies with idle production capacity are able to sell recall rights in the
capacity market, they get a motivation for investing in installation of new
capacity. The capacity markets are independent markets but are at the same
time closely connected to the electricity markets.

It is of uttermost importance for the electricity market that the capacity
is correctly valued. If for instance a bubble were present in the capacity mar-
ket, i.e. capacity was valued higher than the real value, it would encourage
construction of a lot of new capacity. This would again lead to overcapac-
ity, pinched electricity prices and lower income than expected for the utility
companies. If, on the other hand, the value of capacity were underestimated,
it would lead to a shortage of installed capacity, high electricity prices and
possibly blackouts [3].

To summarize, electricity markets with capacity payments or parallel capac-
ity markets may drive the amount of installed capacity to both shortage and
overcapacity. This implies that a balance must be possible, but it strongly
depends on the (constructed) way that the capacity (or the capacity pay-
ments) are valued.

2.1.3 Energy Only Markets
In energy only markets, the electricity price is the only compensation gener-
ators receive, and it should therefore compensate for both fixed and varying
costs. These markets rely on the belief that a shortage of capacity will en-
courage investments in new power plants, since there is a demand for new
plants. However, since the demand for electricity varies a great deal through-
out a year, the demand in periods with low electricity consumption may not
be high enough for new plants to enter the market; it may simply be too
risky. The result may be that companies decline to build new capacity since
it is too risky compared to the expected income. On the other hand, if the
demand for new generation capacity is high, companies may find it profitable
to build new plants. In this way, energy only markets may balance at a level
of minimum capacity. In other markets, the balance of supply and demand
is desired, since it leads to low prices for the consumers and “survival of the
fittest” for the suppliers. In electricity markets, however, the supply capacity

5



CHAPTER 2. THEORY

must be high enough to ensure the supply in times of high demand. Con-
sequently, the supply capacity will have to be far greater than necessary in
times of low demand.

As argued above, the incentives for suppliers to invest in generation ca-
pacity in order to meet high demand periods may not be strong enough. This
may result in occasional shortage of supply which, as will be shown, again
results in price spikes. If consumers are not willing to accept such possibly
extreme price spikes, it is necessary for the authorities to introduce price
caps on the electricity price. This intervention again leads to the necessity
of other regulatory incentives for companies to invest in increased capacity.

The reason why several structures for ensuring generation capacity exist
is that the perfect solution to the issue is not known. This acknowledgement
emphasize the importance of studying evidence from the already existing
market structures.

2.2 Construction of Electricity Markets
In order to understand the dynamics of price fluctuations in electricity mar-
kets, it is obviously necessary to have knowledge about and understand the
price setting mechanisms of the market in question. These mechanisms in-
clude bidding structure, how the price is set based on the bids, as well as
the time horizon for the bids. This section will give an overview of different
market solutions with emphasis on the price setting mechanisms of two fun-
damental market kinds: power pools and power exchanges. However, before
these are introduced, it should be emphasized what makes the trading of
electricity so different from trading of many other commodities.

2.2.1 Electricity as a Commodity
Among other trade goods, electricity stands out as one of the commodities
that require the most sophisticated trading facilities. The main reason for
this is the physical constraint of electricity storage: electric energy can not
be stored to a large extent with today’s technology1. The consequence of
this limitation on the market organization is substantial. It means that
power generation and demand must be strictly balanced at all times. This
results in the need for a transmission system operator (TSO), whose task is to
balance the supply and demand. The details of how the generation-demand

1The only exception from this rule of thumb is the conversion of electric energy into
hydro potential energy by means of hydro pumps. However, pumping facilities are not
common in most countries.

6



2.2. CONSTRUCTION OF ELECTRICITY MARKETS

equilibrium is assured will not be investigated here; it is enough to mention
that the balancing procedure is handled in separate markets, often referred
to as balancing markets. The focus of attention in this work will be on the
day-ahead markets for electricity, whose structure and mechanisms will be
investigated later on.

In addition to the non-storability feature, there is a constraint on the
transmission of electricity. Since the transmission is bounded to the trans-
mission grid, there are no prospects of a global electricity market with the
current technology. Furthermore, as will be discussed later on, grid conges-
tions may restrict the flow of electricity between distant market participants,
setting further constraints on the free market.

2.2.2 Sub-markets within Electricity Markets

In many deregulated electricity markets, electricity is traded in different kinds
of sub-markets. These have different purposes and may be described as
physical or financial markets. They are categorized by means of the time
horizon for the agreements traded.

Day-Ahead and Intra-day Markets

The most common market for physical delivery of electricity is day-ahead
markets. These are markets where contracts with physical delivery the sub-
sequent day are traded. Day-ahead markets are the main sub-markets in
most electricity markets, and form the basis for the related financial sub-
markets. Some market operators also operate Intra-day markets. These are
sub-markets for delivery of electricity at the same day, which enable power
generators to react to unforeseen levels of demand. Here, it should also be
mentioned that in many regions, most electricity is still traded through bilat-
eral agreements, so-called over-the-counter (OTC) transactions. An example
of this is long-term agreements where the price is set through tender rounds
or negotiations.

Balancing Markets

These are markets where the balance between supply and demand are ad-
justed by a regulator. The details of how this equilibrium is assured are
different from market to market and will not be studied here.

7



CHAPTER 2. THEORY

Forward and Futures Markets

The forward and futures markets are specifically created to allow market par-
ticipants to hedge against the risk of losses. The contracts offered in these
markets usually have longer time horizons than a day, and the products are
often traded extensively before the agreed delivery date. This indicate that
some of the participants at these markets are pure traders who speculate in
the forward and futures contracts.

In the following, the emphasis will be put on the day-ahead markets, since
these are the most important markets for physical delivery of electricity.
Also, the pricing of the financial derivatives are usually dependent on the
day-ahead markets.

2.2.3 Power Pools
Power pools, also termed economic pools, are markets where generators com-
pete for dispatching electricity. The pools are commonly established by gov-
ernmental authorities who want to introduce competition between the power
generators. Every generator evaluates what price they are willing to sell elec-
tricity for, and place bids based on that. All the bids are collected by the
market administrator, and an aggregated supply curve2 of the market is cre-
ated based on the bids. The supply curve is then compared with an estimated
demand, and the market clearing price (MCP), also termed system price, is
established as the intersection of these curves, see Fig. 2.1 (a). Power pools
are criticised for having a low level of transparency: the price determination
is a complex optimization mechanism because the technical constraints pos-
sibly make the bids complicated [2]. In areas with power pools, it is usually
not allowed to trade electricity outside the pool.

2.2.4 Power Exchanges
Power exchanges (PX) are often established as private initiatives to facilitate
trading of electricity between generators, distributors and customers [2]. As
opposed to power pools, power exchanges are based on two-sided auctions,
which means that both supply and demand curves are calculated based on
bids. The intersection of these curves determines the system price for the
effective life of the bids (usually an hour), see Fig. 2.1 (b). For the day-ahead
markets, it is common that the auctions are conducted once a day, where the
participants place bids for each hour of the succeeding day, and an hourly

2A curve where the supply is given as a function of the price.

8



(a)

(b)

Figure 2.1: The price determining mechanism for: (a) power pools and (b)
power exchanges. It is seen that in a power pool, the market clearing volume
(MCV) (and demand) is estimated, while in a power exchange, the aggregated
demand curve is calculated based on the bids. The market clearing price
(MCP), or system price, is given as the intersection between the supply and
demand curves. The figure is based on a figure taken from the web pages of
Nord Pool Spot [4].
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market clearing price is set based on the hourly supply and demand curves.
There exist two common auction types to determine the price the customers
have to pay: uniform price and pay-as-bid auctions.

Uniform price auction

In a uniform price auction, buyers with bids above or equal to the system
price get to buy electricity to that price. Likewise, suppliers with offers below
or equal to the system price get to dispatch electricity and are paid the system
price. This means that customers who are desperate for electricity may place
very high bids, but still don’t have to pay any more than the system price.
Likewise, a supplier may offer electricity to a price equal to his marginal cost
(which is most probably his reservation price3), but is paid the system price,
which may be considerably higher. In this way, the generators are rewarded
when they have a marginal cost lower than other market participants. In
order to prevent too high bids, many markets have a price cap, which sets a
restriction to the maximal bidding level.

Pay-as-bid auction

In a pay-as-bid auction, suppliers are paid exactly the price at which they
offered electricity as long as there exist buyers willing to pay that price. This
type of auction is also referred to as discriminatory auction [2].

Both in uniform price and pay-as-bid auctions it is possible for one mar-
ket participant to place multiple offers and/or bids with different prices and
electricity quanta. An example of a bid/offer order from a generation com-
pany is given in Fig. 2.2. It is an order valid for a given hour of the day.
From the figure, it is seen that the fictitious generation company is willing
to sell V A

1 MWh at price level pA
1 . In addition, the company is willing to sell

V A
2 MWh at price level pA

2 . Such a sell order could either originate from that
the company has two generators with different production costs, or that one
generator has a non-linear marginal production cost function. Both exam-
ples give the result that it is cheap to produce up to V A

1 MWh, but more
expensive to produce above this level.

In Fig. 2.2, it is also seen that the fictitious generation company is willing
to buy V B

1 MWh at price pB
2 NOK/MWh. This is commonly appearing in

reality and is explained by the fact that many generation companies have
special delivery agreements with the industry that they have to fulfil. If the
electricity price is especially low, the generation company may choose to buy

3The lowest price at which a seller is willing to sell electricity [5].
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2.2. CONSTRUCTION OF ELECTRICITY MARKETS

electricity from other generators in order to fulfil these agreements. If the
company mainly had hydro power plants, which are known as very flexible
regarding production speed, the profit optimizing option for the company
could be to buy electricity from less flexible power plants, such as nuclear
power plants, who would have to produce energy anyway.

Figure 2.2: Typical bid order from a fictitious generation company. Figure
taken from Simonsen, Weron and Mo [6].

2.2.5 Bottlenecks and Local Prices
Transmission of electricity in a deregulated market requires a well constructed
electrical grid. However, in a market where some generators do not want to
deliver electricity below a certain level of the system price, bottlenecks (grid
congestions) may arise. Such congestions may reduce the availability of the
cheapest electricity for some areas in the market, and these areas are forced
to buy more expensive electricity from other generators.4 It is important to

4As an example, it is worthwhile to mention the county of Sør-Trøndelag in Norway,
which has been infamous for incoming grid congestions and shortage on self-production of
electricity. During wintertime, this has often led to a higher electricity price in this area
than in other parts of Norway.
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CHAPTER 2. THEORY

be aware that local prices may differ significantly from the system price. In
this work, however, only the system prices are considered, since these are the
ones that reflect the nature of the market mechanisms, while specific area
prices mainly attribute to limitations in the electric network.

2.3 Case Study of Electricity Markets
In the previous section, some common mechanisms and solutions in the con-
struction of a deregulated electricity market were introduced. Now it is time
to take a look at how some of the markets world wide are organized, starting
with the Nordic market: Nord Pool.

2.3.1 Nord Pool
As the oldest and one of the most mature power exchanges in the world,
Nord Pool5 has been leading the way as an example for other electricity
markets [2, 4]. It was established in Norway in 1992, but has later expanded
to Sweden (1996), Finland (1998) and Denmark (2000). Nord Pool consists
of both markets for physical delivery of electric power (Elspot and Elbas),
and a financial market (Eltermin) where various derivatives are traded. A
balancing market is operated by the transmission system operator in order
to secure delivery. In this work, the focus of attention will be the large day-
ahead Elspot market, which has about three times as many participants as
the intra-day Elbas market. Participation in the market is voluntary. Still,
Nord Pool Spot AS claimed that they had a market share of about 70% in
the Nordic region in 2008 [4]. A large fraction of the power generated in
Nord Pool is hydro power. This makes bids such as the ones seen in Fig.
2.2, where generation companies want to buy power in case of low prices,
common. Since many generation companies have delivery agreements with
the industry, they may find it profitable to buy cheap power from other
generators and save their own easily adjustable hydro power.

The price setting at Elspot is a two-sided, uniform price auction, where
the system price is given as the intersection between the aggregated supply
and demand curves, as described in Section 2.2.4. Every day at noon, market
participants submit their bids and offers for every hour of the succeeding day
to the market administrator. There are three different ways of bidding at
Elspot. Hourly bidding is the intuitive way of bidding, where pairs of price
and volume for each hour are submitted. Block bidding is a special case

5Nord Pool has a misleading name, since it in fact is a power exchange and not a power
pool.
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of hourly bidding where the bidding price and volume are fixed for several
subsequent hours. In flexible hourly bidding, a coupled price and volume sale
offer is valid for the whole day until it is redeemed when the spot price exceeds
the price indicated by the bid [2]. Nord Pool does not have a capacity market
or any capacity payments, and is characterised as an energy-only market.

2.3.2 The Iberian Market: OMEL/MIBEL
Spain was the first country in continental Europe to liberalize the electricity
market. Compania Operadora del Mercado Español de Electricidad (OMEL)
was assigned the task of organising and managing the new market, also called
OMEL, in 1997. As Portugal was included in 2007, the market changed its
name to MIBEL, but OMEL is still the market operator of the MIBEL day-
ahead market [2]. An additional intra-day market intends to function as an
adjustment market, where only buyers who participated in the corresponding
daily market auction are allowed to participate. In this work, the focus of
attention will be the Spanish part of the day-ahead market. When analysing
historical time series from this market, the market expansion must be kept
in mind.

MIBEL is described as a power exchange, but as Weron [2] argues, it is
actually a hybrid solution since the use of capacity payments usually is as-
sociated with power pools. The MIBEL daily market is characterised as a
two-sided, uniform price auction where bids for every hour of the succeed-
ing day are submitted before 10 a.m. every day. OMEL then matches the
supply and demand and calculates the system price, which is adopted as the
price of electricity for that hour. Bidders have the possibility to specify some
complex bidding conditions in their bids, which makes the matching of bids
more complex for the market administrator. For a description of the dif-
ferent complex bid structures possible in MIBEL, a reference to the market
administrator OMELs website is made [7].

MIBEL is a voluntary market, but as Weron [2] argues, the capacity
payments, which are only employed at the market, make trading outside the
market less attractive.

2.3.3 Germany: EEX
Today’s German power exchange, The European Energy Exchange (EEX)[8],
was formed in 2002 as a fusion between two separately existing German power
exchanges. EEX, or its spin-off companies, now operate both a day-ahead and
intra-day power spot market, as well as day-ahead markets for natural gas and
emission rights. Furthermore, EEX operates financial derivatives markets for
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these products. As earlier, it is the day-ahead market for electricity that is
the focus here. This market is a power exchange that is operated by the
European Power Exchange (EPEX)6, which is a spin-off from EEX and the
french Powernext SA. The German day-ahead market for electricity is a
two-sided, uniform price auction where hourly bids and offers are submitted
within noon every day [10]. Participation in the market is voluntary.

In terms of consumption, Germany represents the largest power market in
Europe. However, because of the extensiveness of bilateral (over-the-counter,
OTC) transaction contracts, the volume traded on EEX was lower than in
Nord Pool and the Italian IPEX in 2008 [11]. Still, the trading on EEX
corresponded to about one quarter of Germany’s total demand in 2008, and
the amount is rising [10]. The German market is described as an oligopoly
since the four largest production companies have a market share of almost
85%. Moreover, the two largest production companies have a market share
of approximately 55%, according to Weight and Hirschhausen [12]. In their
study from 2006, they find indications that the German market still is not
sufficiently competitive to overcome market abuse. Hence the prices over
time are higher than expected from a perfect competition model.

2.3.4 Poland: TGE/PolPX
Towarowa Gielda Energii (TGE), in English referred to as the Polish Power
Exchange (PolPX), was established in the end of 1999 and the day-ahead
market was launched in July 2000 [11]. TGE suffers from a relatively small
trading volume. Several causes for this are pointed out, among them in-
appropriate structure and high charges for participation [2]. Furthermore,
long-term delivery agreements that were made before the liberalization of
the electricity market started are obstacles in the market development [2].
TGE now operates an intra-day market as well as financial derivatives and
CO2 emission right markets. The physical day-ahead market is a two-sided,
uniform price auction that finishes one day before the delivery day.7

2.3.5 American East: PJM Interconnection
The PJM (Pennsylvania-New Jersey-Maryland) Interconnection[14] is the
world’s largest competitive market for electricity wholesale. A day-ahead

6EPEX operates power exchanges in Germany, Austria, Switzerland and France. On
their webpages, they claim that these countries account for more than a third of the
European energy consumption [9].

7See TGE’s webpages [13] for details on the bidding schedule.
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market, a realtime market, two generating capacity markets (daily and long-
term), a financial market allowing to hedge against price differences between
locations, and an ancillary services market are operated [2]. The day-ahead
market is a two-sided, uniform price auction. However, different uniform
prices are calculated for every node of the transmission grid (locational
marginal pricing, LMP). This means that if there is a grid congestion at
the transmission lines connecting one node to the others, the node may have
a price that differs from the price at the other nodes. This is reminiscent of
the area prices in Nord Pool.

2.3.6 California: The Miserable Collapse of CalPX

Beginning in 1998, California was the first US state to liberalize their elec-
tricity sector. A comprehensive process full of compromises resulted in the
creation of an independent system operator (CAISO) and a power exchange,
CalPX [2]. The exchange conducted two-sided, uniform price auctions in
a day-ahead market as well as an hour-ahead market. CalPX was also re-
sponsible for real-time balancing and congestion management. Also being
an energy only market, the main structures were equal to the structure of
Nord Pool. In year 2000 the electricity prices began rising rapidly. From
the second half of 1999 until the second half of 2000, the prices increased
by a factor of 50 [2]! CalPX stopped operating on Jan 31, 2001 and went
bankrupt soon after. What went wrong?

Weron [2] points out a fundamental flaw in the market design of CalPX.
Even if CalPX was meant to be a voluntary market, the major utilities were
obligated to trade electricity through CalPX exclusively. This exposed them
to an enormous risk. Weron explains [2]:

On the one hand, their retail revenues were fixed at the regulated
rates; the utilities did not receive any additional compensation in
the event wholesale prices exceeded the regulated rates. On the
other, they were barred from hedging by purchasing power in ad-
vance of the day-ahead market. This restriction made the market
vulnerable to manipulation. For a disaster to strike, all that was
needed was a period of tight supply.

A coincidence of several factors8 caused the prices to rise during 2000, leading
to the fatal destiny of CalPX.

8Recognised and explained by Joskow [15].
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2.4 Basic Concepts of Time Series Analysis
A time series is a sequence of observations. The observations can generally
be taken through any dimension, but are usually taken in terms of equally
spaced time intervals. A well-known example of a time series is the Dow Jones
Industrial Average index, given in Fig. 2.3, showing how the daily closing
value of the index has evolved during the period 1928-2011. In order to
describe such a time series, some important aspects of time series analysis are
introduced in this section. A real-valued time series {Zt : t = 0,±1,±2, ...}
will, in this thesis, commonly be denoted as {Zt}.

Figure 2.3: Example of a time series, showing the daily closing value of the
Dow Jones Industrial Average index during 1928-2011 [16].

2.4.1 Stationarity
Strictly speaking, an n’th order distribution stationary time series {Zt} is a
time series for which

FZt1 ,...,Ztn
(x1, ..., xn) = FZt1+k,...,Ztn+k

(x1, ..., xn),

for any (t1, ..., tn) and integer k, where F is the n-dimensional cumulative
distribution function defined as the probability

FZt1 ,...,Ztn
(x1, ..., xn) = P{Zt1 ≤ x1, ..., Ztn ≤ xn}.
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This strict definition of stationarity is however too strict for practical appli-
cations. Thus, a weaker sense of stationarity is defined as the existence and
time invariance of the joint moments.

Definition 1. A process is n’th order weakly stationary if all its joint mo-
ments up to order n exist and are time invariant [17].

In this work, stationarity will be used as a term for second order weak sta-
tionarity. Hence a stationary time series is understood as a time series with
constant mean and covariance.

If a time series has a covariance that varies with time, transformations such
as the log-transform may be tried out in order to get a stationary series. If
the series has a mean that varies with time, a stationary time series may be
obtained by applying the difference operator

Z∗t = ∇Zt = Zt − Zt−1. (2.1)

2.4.2 The Autocorrelation Function
For a stationary time series, the autocorrelation function (ACF) is defined
as

ρk = Cov(Zt, Zt+k)√
Var(Zt)

√
Var(Zt+k)

(2.2)

= Cov(Zt, Zt+k)
Var(Zt)

(2.3)

where the covariances and variance are defined as

Cov(Zt, Zt+k) = E
[
(Zt − E

[
Zt
]
)(Zt+k − E

[
Zt+k

]
)
]
, (2.4)

Var(Zt) = E
[
(Zt − E

[
Zt
]
)2
]
, (2.5)

where E
[ ]

is the expectation value operator. For a sample of n observations,
the ACF can be estimated by

ρ̂k =
∑n−k
t=1 (Zt − µ̂)(Zt+k − µ̂)∑n

t=1(Zt − µ̂)2 , (2.6)

where {Zt} is the sequence of observations and µ̂ = E
[
Zt
]

its sample mean.
The ACF is often given graphically, where the spike at lag k indicates the
correlation between points separated by k−1 points, cf. for example Fig. 5.5.
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In this way, the ACF expresses how an observation tends to be correlated to
earlier observations. Many programming languages have built-in functions
for estimation of the ACF of a time series.

The confidence bands of an ACF-plot are given by

∆ = ±z1−α/2√
N

, (2.7)

where z is the percent point function of the standard normal distribution,
α is the significance level, and N is the sample size. The confidence bands
signify the interval in which (1 − α) % of the auto-correlation values are
expected to be if there in fact is no correlation present. Therefore, a value
|ρ̂k| > |∆| indicates that the time series has an auto-correlation at time lag
k.

2.5 The Wavelet Transform
The wavelet transform is a mathematical tool that has been applied in numer-
ous fields of science and engineering, ranging from compression of fingerprints
and other digital images [18] to sound synthesis, and recovery of signals from
noisy data [19]. The fundamental idea is that it decomposes data into a
new basis, hereby called the wavelet basis. The data are decomposed, at a
given scale, into a smooth and detailed component, and this procedure is ap-
plied recursively to coarser and coarser scales (starting from the finest scale).
In the following, the wavelet transform will be roughly introduced, partly
based on the approaches of Jawerth and Swelden [20] and Press, Teukolsky,
Vetterling and Flannery [21].

2.5.1 The Continuous Wavelet Transform
The continuous wavelet transform (CWT) of a square-integrable function
f(t), is defined as [20]

W [f ](a, b) =
∫ ∞
−∞

ψ†a;b(t)f(t)dt = 〈ψa;b, f〉 , (2.8)

where

ψa;b(t) = 1√
a
ψ

(
t− b
a

)
, a, b ∈ < and a > 0 (2.9)
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define the wavelet basis. In equation (2.9), different a’s and b’s correspond to
dilations and translations, respectively, of the so-called mother wavelet ψ(t),
which itself is a square-integrable function.

It can be shown [22] that the wavelet transform (2.8) is invertible if

Cψ =
∫ ∞
−∞

| ψ̂ |2

ω
dω <∞, (2.10)

where ψ̂(ω) denotes the Fourier transform of ψ(t). When this requirement is
met, then the inverse wavelet transform is given by

f(t) = 1
Cψ

∫ ∞
−∞

∫ ∞
−∞

ψa;b(t)W [f ](a, b)dadb
a2 . (2.11)

Requirements on the mother wavelet

To meet requirement (2.10), one must have that ψ̂(0) = 0, which leads to
the requirement

ψ̂(0) =
∫ ∞
−∞

ψ(t)dt = 0. (2.12)

This means that ψ(t) must oscillate around zero, i.e. ψ(t) is a wave or simply
a wavelet.9 A wavelet ψ must hence meet two critera: it should be a square-
integrable function, and it should fulfill requirement (2.12). There are many
possible wavelets to choose from, all of which have different characteristics
when it comes to the trade-off between localization in space (or time) and
frequency. Two of these wavelets, namely the simple Haar wavelet, and a
DAUB4 (introduced in the next sections), are given in Fig. 2.4. The class
of which the latter is a member of, was discovered by Ingrid Daubechies in
1988, and is subject of attention in the following.

2.5.2 The Discrete Wavelet Transform (DWT)
The wavelet transform may be discretized by letting a and b take on discrete
values restrictively. In particular, it can be assumed that a = 2i, for integer

9This, together with the limited extension in the time domain, is the reason why ψ is
called a wavelet, meaning “small wave” (French: ondelette) [20].
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Figure 2.4: The Haar and DAUB4 wavelets. A wavelet basis can be made by
scaling and translations of these mother wavelets.

i, and that b are restricted to be multiples of a. For a discrete signal s(k),
equation (2.8) may then be written as [23]

W [f ](2i, 2in) = 1√
2i
∑
k

ψ†( k2i − n)s(k), (2.13)

where i, n and k are integers. The inverse wavelet transform may be dis-
cretized in the same manner. In the next few subsections, it will be focused on
a rough introduction to an implementation of the discrete wavelet transform
(DWT). For a detailed description of the DWT, refer to Refs. [20, 23].

Daubechies Wavelet Filter Coefficients

In the discrete case, wavelets are specified by a set of numbers, called wavelet
filter coefficients [21]. For Daubechies wavelets, the number of wavelet filter
coefficients is referred to as the order of the wavelet. For simplicity, the focus
in this section will be on the 4th order Daubechies wavelet, DAUB4. The
DAUB4 will have four wavelet filter coefficients, named c0, c1, c2, c3. These
coefficients may form a transformation matrix in the following way:
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A =



c0 c1 c2 c3
c3 −c2 c1 −c0

c0 c1 c2 c3
c3 −c2 c1 −c0

... ... . . .
c0 c1 c2 c3
c3 −c2 c1 −c0

c2 c3 c0 c1
c1 −c0 c3 −c2


, (2.14)

where blank entries indicate zeroes. By letting this matrix operate on a vec-
tor to its right, a transformation of the vector will be obtained. The odd rows
generate a weighted moving average of four points in the original vector, and
is called the smoothing filter. The even rows, on the other hand, perform a
“weighted differencing” and generate what is referred to as the data’s detail
information.

In order to make use of the transformation (2.14), it is necessary to be able
to reconstruct the original data through an inverse transformation matrix.
By requiring (2.14) to be orthogonal, the inverse transformation is given by
the transpose of (2.14):

AT =



c0 c3 · · · c2 c1
c1 −c2 · · · c3 −c0
c2 c1 c0 c3
c3 −c0 c1 −c2

. . .
c2 c1 c0 c3
c3 −c0 c1 −c2

c2 c1 c0 c3
c3 −c0 c3 −c2


. (2.15)

It can be shown [21] that if the DAUB4 filter coefficients equal

c0 = (1 +
√

3)/4
√

2, c1 = (3 +
√

3)/4
√

2,
c2 = (3−

√
3)/4
√

2, c3 = (1−
√

3)/4
√

2,

then (2.14) is orthogonal, and (2.15) is hence the inverse transformation.
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The Pyramidal Algorithm

Having introduced the transformation (2.14), the DWT (still using the DAUB4
wavelet) may be found through the following procedure, often called a pyra-
midal algorithm [21]:

1. Apply an N × N transformation matrix like (2.14) to a vector with
N components, where N = 2n and n is a positive integer. This will
generate a vector where odd rows are “smooth” data and even rows are
“detailed” data.

2. Permute the data vector so that the first half contains the smooth data
and the second half contains the detailed data.

3. Apply an N
2 ×

N
2 transformation matrix like (2.14) to the smooth vector

of size N
2 .

4. Permute the resulting data vector into smooth data and detailed data.

5. Continue until there is only two smooth datapoints left.
The following diagram, taken from Ref. [21], where d’s signify detailed infor-
mation and s’s signify smooth information, should make the procedure clear
in the case of N = 16:

y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15
y16



apply
(2.14)→



s1
d1
s2
d2
s3
d3
s4
d4
s5
d5
s6
d6
s7
d7
s8
d8



permute→



s1
s2
s3
s4
s5
s6
s7
s8
d1
d2
d3
d4
d5
d6
d7
d8



apply
(2.14)→



S1
D1
S2
D2
S3
D3
S4
D4
d1
d2
d3
d4
d5
d6
d7
d8



permute→



S1
S2
S3
S4
D1
D2
D3
D4
d1
d2
d3
d4
d5
d6
d7
d8



etc.→



S1
S2
D3
D4
D1
D2
D3
D4
d1
d2
d3
d4
d5
d6
d7
d8


(2.16)

To transform back to the original vector, the above algorithm is performed
backwards with the inverse matrix (2.15) as the operating matrix.
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2.6 Measures of Electricity Market Charac-
teristics

Since the main objective of this thesis is to compare the statistical charac-
teristics of different electricity markets, a few well-known measures, as well
as some stylized facts, of electricity system price time series, will now be
introduced and defined. As a point of reference and an example of a time
series of hourly system prices, the analysed time series from the Nord Pool
day-ahead market is given in Fig. 2.5.

Figure 2.5: Time series of the hourly Nord Pool system price from May 4,
1992 until May 4, 2011. A plot of an arbitrarily chosen week is added in the
top right corner, revealing a daily periodic pattern.

2.6.1 Spikes
As is visualized in Fig. 2.5, spikes are commonly appearing in time series of
electricity prices. Spikes are by definition short intervals in time at which the
price surpasses a threshold value [24]. However, the time interval and thresh-
old value may be defined in different ways, both static and time varying. As
Trueck, Weron and Wolff [24] point out in their literature study, it seems
hard to reach a general agreement on what the time interval and threshold
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value should be. Due to this ambiguous definition of spikes, several ways of
identifying spikes have been proposed.

The literature study of Trueck et al. [24] reveals the following approaches.
The simplest is to set a fixed price threshold, and classify all prices that
exceed the threshold price as spikes [25]. However, in time series with a non-
constant mean, this definition may lead to a misleading classification since
some periods of time might have persistent, natural high prices. To overcome
this, some authors suggest instead to set a threshold, fixed or time-varying,
for the log-price change10 [26, 27]. Yet another possibility is to identify spikes
as prices above a varying threshold value, given by the moving mean price
plus a number of moving standard deviations [28]. This way of identifying
spikes is robust to non-stationary time series with a significant price trend.
However, as will later be seen, clustering of the volatility is common in the
spot price time series. In periods with high volatility, the moving standard
deviation will also be high, the spike threshold may grow unreasonably high
and hence reject some spikes as fluctuations within the “normal”. Of course,
the discussion then falls back to the definition of a spike. The employment
of wavelets to separate spikes has also been proposed [2, 29].

It is obvious that the different methods to identify the spikes will yield
different results, but it is a highly subjective manner which definition that
suits different tasks the best. In this thesis, it is desirable to identify spikes
only in order to compare the level of “spikedness” in the different markets.
For this purpose, a spike will be defined as any value above the moving
weekly mean price plus three standard deviations. The moving mean price
is calculated from an hourly price time series Pt as

P t,week = 1
168

168∑
i=1

Pt−i, (2.17)

and the standard deviation σP is calculated over the entire series.

Definition 2. A spike is defined (in the context of this thesis) as any value
above the time varying threshold value Θt = P t,week + 3σP .

2.6.2 Returns
As claimed in the previous section, electricity spot prices may change dras-
tically within short periods of time. An extensively used measure of price
changes in financial markets is the return. The return is simply the relative

10Which equals the logarithmic return, cf. Section 2.6.2.
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change in price,

R∆t(t) = p(t+ ∆t)− p(t)
p(t) = ∆p(t)

p(t) , (2.18)

within a certain time period, ∆t. An alternative quantity is the logarithmic
return,

r∆t(t) = ln
(
p(t+ ∆t)
p(t)

)
= ln

(
1 + ∆p(t)

p(t)

)
. (2.19)

It can easily be shown, through the Taylor series expansion of the natural
logarithm11 for −1 < ∆p(t)/p(t) ≤ 1, that these two quantities are equal to
the lowest order:

r∆t(t) = ln
(

1 + ∆p(t)
p(t)

)

≈
(

1 + ∆p(t)
p(t) − 1

)
, for |∆p(t)/p(t)| � 1

= R∆t(t).

Since |∆p(t)/p(t)| � 1 usually holds for stock markets, the return (2.18)
and logarithmic return (2.19) are often not distinguished in the literature.
However, the presence of price spikes in electricity markets may result in
∆p(t)/p(t) > 1, or even ∆p(t)/p(t) � 1. Consequently, the return and log-
arithmic return should be distinguished when analysing power markets. In
this report it is chosen to analyse the logarithmic returns, since these are less
sensitive to large increments in the system price.

Originally, the return quantity was introduced as a way to measure the gain
or loss of an investment [30], but the technological restrictions on storing
electricity makes it hard to buy an amount of electricity today and sell it
tomorrow. Therefore it is questionable whether the return is a meaningful
quantity to study for the power markets. Still, the logarithmic return of elec-
tricity markets will be studied here, in order to compare this quantity with
results from other financial markets. Furthermore, the return is a necessary
quantity to establish in order to investigate other interesting characteristics
such as the volatility. Precautions should, however, still be made. The con-
cept of return as a measure of unforeseen changes in the price only makes
sense under the assumption that the data in question have no seasonality.

11ln x =
∑∞

n=1(−1)n+1 (x−1)n

n , for 0 < x ≤ 2.
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The exception from this rule of thumb is when ∆t fulfil ∆t = nT , where T is
the period of the seasonality and n an integer. As electricity system prices
often exhibit periodic behaviour on several time scales, the seasonal patterns
should ideally be filtered out before calculating the return. This filtering may
be a challenging task, since it is hard to define exactly how much of a price
level that is caused by the seasonal pattern, and how much that is caused by
other phenomena. In order to get around any daily periodic pattern, return
periods of ∆t = n · 24 hours could be considered. A weekly cycle could be
phased out in a similar manner, but in order to calculate the daily returns it
may be desirable to try to remove the weekly periodicity instead, cf. Section
5.1.1. Finally, when calculating the returns over a few days, or at most a few
weeks, any annual periodicity may be neglected [6].

2.6.3 Volatility
The (logarithmic) volatility is defined as the standard deviation of the (log-
arithmic) return [30]. In this work, the term volatility will refer to the log-
arithmic volatility unless the opposite is clearly stated. A stylized fact of
electricity markets is that the electricity prices are very volatile compared to
other commodity or financial markets. Some common volatility values are
listed in table 2.1.

Table 2.1: Typical values for daily volatilities found in different kinds of
markets [2, 6].

Market Volatility [%]
Stock indices 1− 1.5
Individual stocks < 4
Bonds < 0.5
Crude oil 2− 3
Natural gas 3− 5
Short-term interest rates 0.03
Electricity markets Up to 50!
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Chapter 3

Hurst Analysis

In 1951, the British hydrologist H.E. Hurst posted his study [31] of an 850
year long record1 of the Nile River’s overflows. He had observed that a year
with large river overflow tended to be followed by still larger overflows, while
years with small overflow was likely to be followed by other years with small
overflows. The time series of the overflow levels tended to persist its value,
before it suddenly changed. It seemed that cycles, as well as some kind of
long-termed memory, were present in the data. Since standard analysis did
not uncover long-term correlation, Hurst developed a new measure called the
rescaled range. The scaling properties of the rescaled range gives the Hurst
exponent, which may reveal the presence of long-term correlations in a time
series [32].

3.1 The Rescaled Range and the Hurst Ex-
ponent

For a discrete time series {Zi : i = 1, 2, ..., N} of length N , from now on
denoted in short-form as {Zi}, the rescaled range can be calculated by first
dividing {Zi} into d subsequences of length n, such that N = dn. For each
subsequence {Xm

j : j = 1, 2, ..., n} with m = 1, ..., d, perform the following
algorithm [2, 33]:

1. Calculate the mean µm and standard deviation Sm of {Xm
j }.

2. Create the mean-adjusted accumulated series {Y m
j }, such that Y m

j =∑j
k=1(Xm

k − µm) for j = 1, 2, ..., n.

1The Egyptians kept record of the overflows for a long time!

27



CHAPTER 3. HURST ANALYSIS

3. Find the range Rm(n) = max(Y m
1 , Y m

2 , ..., Y m
n ) − min(Y m

1 , Y m
2 , ..., Y m

n ).

4. The rescaled range for {Xm
j } is then (R/S)m(n) = Rm(n)/Sm(n).

Finally, the characteristic rescaled range for subsequences of length n is found
as the mean value of the rescaled ranges of each subseries, i.e.

(R/S)(n) = 1
d

d∑
m=1

(R/S)m(n). (3.1)

As will be seen in the next paragraph, the Hurst exponent may be be found
by calculating the characteristic rescaled range for subsequences of different
lengths n, and finding a scaling relation for these rescaled ranges.

The Hurst Exponent

The Hurst exponent, H, is implicitly estimated through the asymptotic be-
haviour of the rescaled range [33]:

(R/S)(n) ∼ CnH , (3.2)

where C is a constant. H is strongly connected to the autocorrelation of a
time series, and is investigated in order to identify some of the correlation
characteristics of the series. A process with 0 < H < 0.5 will have negative
auto-correlation, it is anti-correlated, meaning that the values are likely to
alternate around its constant mean. If 0.5 < H < 1.0, the process has
positive autocorrelation, meaning that the series has a higher probability of
sustaining its either positive or negative value. The increments of an ordinary
random walk process, which are uncorrelated and commonly termed white
noise, will have a Hurst exponent of H = 0.5.

For time series such as the electricity system prices, it is of interest to
investigate the Hurst exponent of the increments, i.e. the differenced series
(cf. (2.1)). This would indicate the nature of the movements of the system
prices. If H < 0.5 one would expect that the system prices usually do not
move far away from the mean over large time periods. In such cases, it is said
that the prices are anti-persistent or mean-reverting. For H > 1/2, on the
other hand, the increments could have the same sign for a longer period of
time, and the system price may hence move away from the mean for a longer
period of time. In this case, the price is said to be persistent. Persistent time
series are known to be smoother than anti-persistent ones.

The entrance of the rescaled range analysis led to the development of
models for long memory processes. Mandelbrot and van Ness [34] introduced
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the fractional Gaussian noise, which by definition is a stationary process with
an ACF given by [35]

ρk = 1
2
(
|k + 1|2H − 2|k|2H + |k − 1|2H

)
, (3.3)

where k is the time lag, see Section 2.4.2. Fractional Gaussian noise can be
considered as the increments of fractional Brownian motion, which also is
characterized by the parameter H [35]. This means that both fractional
Gaussian noise and fractional Brownian motion are characterized by H.
Hence, the statement that a time series is characterized by some H may
either imply that the series itself or that the differenced series has an ACF
that can be approximated by (3.3). From now on, when it is said that the
Hurst exponent of a time series is estimated, it is implicitly meant that the
time series itself has an ACF that can be approximated by (3.3), i.e. the
time series can be compared to fractional Gaussian noise. As will be seen,
this may be the case for the increments of electricity system prices.

To estimate the Hurst exponent of a time series is in general a difficult task.
The simple estimation method based on the scaling of the rescaled range,
termed R/S analysis, has proven to produce increasingly biased estimates
as H drops below 0.5 [36]. Moreover, R/S analysis is not able to distin-
guish presence of long-term correlation from non-stationarity. Since earlier
evidence has suggested that H < 0.5 for the increments of electricity prices
[2, 37], the R/S analysis is omitted here. However, several other estimation
methods are suggested in the literature. Empirical studies have also been
carried out in order to agree upon which methods that produce the best es-
timates [38, 39]. Unfortunately, it seems that there is no or little consensus,
and that each method has different advantages and disadvantages depending
on the time series under investigation.

In this work, two independent methods termed Detrended Fluctuation
Analysis and the Average Wavelet Coefficient method, are employed. Fur-
thermore, in order to introduce the wavelet based method, another method
based on the Fourier transform is briefly introduced.

3.2 Detrended Fluctuation Analysis
The Detrended Fluctuation Analysis (DFA), introduced by Peng et al. in
1994 [40], is a method that, as opposed to the R/S analysis mentioned above,
can handle a non-stationary mean. Given a time series {Zt : t = 1, 2, ..., N},
the DFA begins by dividing {Zt} into d subseries {Xm

i : i = 1, 2, ..., n} of
length n (with m = 1, 2, ..., d). Then, for each subseries [2]:
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1. Define the accumulated subseries as Y m
i = ∑i

j=1X
m
j for i = 1, 2, ..., n.

2. Perform a least squares fit of the line Ỹ m(i) = ami + bm to {Y m
i : i =

1, 2, ..., n}.

3. Calculate the root mean square (RMS) of
{(
Y m
i −Ỹ m(i)

)
: i = 1, 2, ..., n

}
,

i.e.

RMS(n,m) =
√√√√ 1
n

n∑
i=1

(
Y m
i − Ỹ m(i)

)2
.

Finally, calculate the mean RMS for all subseries of length n,

RMS(n) = 1
d

d∑
m=1

RMS(n,m). (3.4)

As the rescaled range, RMS(n) will obey a power law scaling RMS(n) ∼ cnH

(if the original series {Zt : t = 1, 2, ..., N} can be approximated as fractional
Gaussian noise). The slope of a linear least squares fit to log(RMS(n)) versus
log(n) would thus give an estimate ĤDFA of the Hurst exponent.

To the knowledge of the author, it is not yet developed any distribution
theory for ĤDFA. However, Weron [41] performed a Monte Carlo study which
resulted in confidence intervals for ĤDFA in the case H = 0.5 (for different
sample sizes N). Using his results, a test against a null hypothesis of hav-
ing H = 0.5 can be performed. From this, a conclusion of whether ĤDFA
is significantly different from H = 0.5 or not can be drawn. Unfortunately,
confidence intervals for H can not be obtained using the results of this study.

As already mentioned, a method based on the Fourier transform will now
be introduced as a logical step before introducing the wavelet method. It
should be noted that these two methods assume that the input is fractional
Brownian motion, i.e. employing these methods to a time series should yield
equivalent results for H as employing DFA to the increments of the same
series.

3.3 Power Spectral Density Methods
The Hurst exponent can also be estimated by first estimating the power
spectral density of the time series and then fit a power-law to the spectrum.
If the series is a fractional Brownian motion, the power spectrum will scale
approximately as |f |−1−2H for small f [35].
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3.3.1 The Periodogram
For a discrete time series {xt : t = 1, ..., n}, the power spectrum may be
estimated by the periodogram [2]

In(ωk) = 1
n

∣∣∣∣ n∑
t=1

(
xte
−i(t−1)ωk

)∣∣∣∣, (3.5)

where ωk = 2πk/n are the Fourier frequencies, for integers k = 1, ..., int(n/2).
Here, int(n/2) denotes the largest integer smaller than or equal to n/2. If n
is a power of two, i.e. n = 2N for integer N , then the Fast Fourier Transform
algorithm can be employed. The line that appears in a plot of log(In(ωk))
versus log(ωk) will then have a slope β = −1− 2H which may be estimated
by a least squares fit, implicitly estimating H.

In a log-log scatter plot of In(ωk) versus ωk, most points will be at the right
hand side of the plot2. This causes the large frequencies to be overweighted
in a regular least squares fit. Since the power law decay of the periodogram
is most pronounced for small frequencies, as stated above, the overweighting
is not desired. To get around this, one may resample the periodogram such
that all points are approximately equidistant in the log-log plot. On the
other hand, due to the limited length of {xt}, there will be increasingly large
estimation errors associated with the In(ωk) at low frequencies. Therefore,
one could say that it is a subjective manner which points should be counted
in the regression and which should not.

The periodogram is not investigated further in this work. However, there
exist possible modifications to the method that will improve the estimation
of H [2]. Instead of investigating these methods, a less famous approach of
estimating the power spectral density will now be introduced. This wavelet
based approach is chosen because the employment of the wavelet transform
bring along some desired properties, as will be seen.

3.3.2 The Wavelet Variance
The power spectral density of a discrete signal may also be estimated by
means of the discrete wavelet transform (DWT), which was introduced in
Section 2.5. There are several reasons for employing the DWT for this pur-
pose. First, the DWT is known to decorrelate a wide variety of time series
that frequently occurs in physical sciences. The application of common statis-
tical theory can be more appropriate on the uncorrelated wavelet coefficients

2The reason for this is that a decade at the right hand side, for instance [10−1, 100],
spans a wider interval than a decade at the left hand side.
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than on the original time series3. Second, the fast DWT algorithm is faster
than the FFT algorithm [35]. Third, non-stationary effects that can affect
the statistical measures in time space, may have less influence on the mea-
sures in the wavelet space. Last, but not least, a wavelet based approach
can be developed to be robust against any extreme-valued artefact. In the
case of electricity prices, the presence of extreme valued spikes will influence
the entire Fourier spectrum4. The spikes are usually less distinct in the daily
average prices than in the hourly prices, but their influence on the Fourier
spectrum can still be considerable. In the wavelet space, however, a spike
will only contribute to coefficients nearby in time and the spike can thus be
ignored, if that is desirable.

By means of the DWT, the power spectral density may be estimated by esti-
mating the wavelet variance, namely the variance of the wavelet coefficients
corresponding to each dyadic time scale. Since the expectation values of the
wavelet coefficients by definition are zero, the following simple estimator for
the wavelet variance at scale j is obtained:

ν̂2
j = V̂arb{W [Xt](a, b)} ≡ 〈|W [z(t)](a, b)|〉b = 1

N/2j
∑
b

∣∣∣W [Xt](a, b)
∣∣∣2. (3.6)

Here, N/2j ≡ Nj is the number of wavelet coefficients at scale a = 2j∆t,
where ∆t is the time difference between two subsequent points in the analyzed
time series {Xt}. Similarly as the power spectral density scales as |f |−(2H+1)

for a fractional Brownian motion {Xt}, the wavelet variance will scale as
ν̂2
j ∼ a2H+1.

Instead of estimating H by means of the wavelet variance, the corre-
sponding wavelet standard deviation could be employed,

ν̂j =
√
ν̂2
j ∼ aH+1/2. (3.7)

An estimate of H is found through a linear least squares fit of log(ν̂j) versus
log(a). In the next section, confidence intervals for ν̂j are developed.

3.3.3 Confidence Intervals for the Wavelet Standard
Deviation

A linear least squares fit of the log-log plot of the wavelet standard deviation
versus the time scale will produce a fair estimate of the Hurst exponent.

3For a demonstration of this, think of how the sample variance of a time series with
long positive correlations could fail to estimate the true variance of the process.

4Think of the resulting Fourier transform of a Dirac delta function. It will give contri-
butions to the entire frequency domain.
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However, a better estimate can be found by making certain assumptions on
the statistics of the wavelet coefficients.

Since the number of wavelet coefficients are decreasing with the scale
(Nj = N/2j), the wavelet standard deviations at large time scales are calcu-
lated from only a few number of coefficients. This brings on an increasing
uncertainty associated with the standard deviation estimates (3.7) at large
time scales. By calculating a confidence interval for each estimate of the
wavelet standard deviation, the width of these intervals can be used as ba-
sis for a weighted least squares fit of log(ν̂j) versus log(a). The confidence
interval for ν̂j can be calculated as explained in the following.

First, assume that wavelet coefficients corresponding to the same time
scale make up a random sample from a Gaussian distribution with zero mean
and standard deviation νj = STDb{W [Xt]a,b}. As Percival and Walden [35]
argues, the assumption of having a random sample, i.e. no auto-correlation,
is in fact a reasonable approximation because of the decorrelation property
of the DWT. The assumption that the wavelet coefficients are Gaussian dis-
tributed may not always be true. However, this assumption is made only in
order to be able to say something about the confidence intervals and hence
attribute weights in the weighted least squares fit.

Second, under the assumptions stated above, the sum of squares of the
wavelet coefficients at scale j will correspond to a sum of squares of inde-
pendent and identically, normally distributed random variables. This means
that the sum in (3.6) divided by its expectation value is chi-square distributed
with Nj degrees of freedom, i.e.

ν̂2
j

ν2
j

Nj ∼ χ2
Nj
. (3.8)

Consequently, the square root of this is chi distributed,
ν̂j
νj

√
Nj ∼ χNj

. (3.9)

Having stated this, a confidence interval for the wavelet standard deviation
can be found. Letting QNj

(p) signify the p·100 % point of the χNj
probability

density function, i.e.

P
{
χNj
≤ QNj

(p)
}

= p, (3.10)

the (1− p)·100 % confidence interval for the chi distributed variable in (3.9)
will be given by

P
{
QNj

(p
2
)
≤ ν̂j
νj

√
Nj ≤ QNj

(
1− p

2
)}

= 1− p. (3.11)
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By manipulation of this expression, a (1 − p)×100% confidence interval for
the wavelet standard deviation νj at scale j can be found as ν̂j

√
Nj

QNj

(
1− p

2

) , ν̂j
√
Nj

QNj

(
p
2

)
. (3.12)

3.3.4 The Roughness Parameter
By generalizing (3.6) and (3.7), a generalized Hurst exponent, referred to as
the Hölder exponent or the roughness parameter [42], denoted H(q), may be
introduced through the scaling of the qth moment [43]:

〈∣∣∣W [Xt](a, b)
∣∣∣q〉1/q

b
∼ aH(q)+1/2. (3.13)

For so-called mono-affine processes, H(q) is not dependent on q. However,
for some processes, termed multi-affine processes, H(q) can vary with q. In
these cases, the Hurst exponent is taken to be H(q = 1). There have been
indications during this work that some of the electricity system price series
may be multi-affine. Therefore, the Hurst exponents of all the system price
increment series are estimated through the scaling of the first moment, i.e.
q = 1. The wavelet based method based on q = 1 is termed the Average
Wavelet Coefficient (AWC) method [37].

The disadvantage of choosing q = 1 is that the distribution of
〈∣∣∣W [Xt](a, b)

∣∣∣〉
b

does not have a closed-form expression5. The distribution could be estimated
empirically, but this is outside the scope of this thesis. For the purpose of
determining the weights for performing a weighted least squares fit, as de-
scribed above, it will here be assumed that

〈∣∣∣W [Xt](a, b)
∣∣∣〉
b

(the wavelet ab-

solute mean) follows the same distribution as
〈∣∣∣W [Xt](a, b)

∣∣∣2〉1/2

b
(the wavelet

standard deviation). Hence, the confidence interval from (3.12) is adopted,
but ν̂j =

〈∣∣∣W [Xt](a, b)
∣∣∣2〉1/2

b
is replaced by ν̂j∗ =

〈∣∣∣W [Xt](a, b)
∣∣∣〉
b
.

5If Xt is normally distributed, then |Xt| is said to be half-normally distributed. To the
author’s knowledge, there exists no closed-form expression of the distribution of a sum of
half-normally distributed random variables.
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Chapter 4

Description of the Data

4.1 Nord Pool

The analysed time series from Nord Pool is provided by Nord Pool Spot AS
[4] and consists of the hourly Elspot market clearing price from May 4, 19921

until May 4, 2011. This adds up to a total number of 166 560 data points,
making it the longest time series analysed in this work. The series is already
introduced in Section 2.6, Fig. 2.5. The arbitrarily chosen week 29 of 2003
is added to the plot in order to graphically show the common daily pattern
in the electricity prices.

4.2 OMEL

The data from MIBEL/OMEL consists of hourly system prices in the Spanish
branch of MIBEL from Jan 2, 1998 until May 28, 2011, resulting in a time
series of 117 480 data points shown in Fig. 4.1. Since the time series is
from the Spanish branch of the market, it will be denoted OMEL in this
report. The series can be downloaded from OMEL’s web pages [7]. Having
a first look at the series, it seems that it is vertically “fatter”, meaning that
it fluctuates more on small time scales than the Nord Pool series.

The OMEL time series includes a total of 367 zero valued data points.
In order to be able to analyse the logarithm of the series, the zero points are
replaced with values of 0.1 EUR/MWh.

1Which was the very first Elspot auction day.
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Figure 4.1: Time series of the hourly OMEL market clearing prices from Jan
2, 1998 until May 28, 2011.

4.3 EEX
The analysed data from the German EEX market consists of 29 664 data
points and covers the time period from Jan 1, 2007 until May 20, 2010. The
time series of hourly system prices is shown in Fig. 4.2. An interesting
feature of this series is seen clearly here: the EEX system price has several
data points below zero. In fact, as many as 93 negative valued data points are
registered in this time period. This means that, during these short periods
of time, consumers are paid to use electricity. Such a feature is hardly seen
in any other financial or commodity markets without having any strings
attached. In order to find a possible explanation for this mechanism, one
has to remember the special characteristics of electricity as a commodity,
described in Section 2.2.1: electricity can not be stored to a significant extent.
In addition, the German power market has a considerable high amount of
nuclear power plants2, which are known to have a low flexibility regarding
production volume adjustments. When the demand is low, this may lead to
excess of power. Once the electricity is produced, it needs to be distributed

2However, the German government announced in May 2011 that they will shut down
all German nuclear power plants within year 2022 [44].
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Figure 4.2: Time series of the hourly EEX market clearing prices from Jan
1, 2007 until May 20, 2010. A total of 93 hours had negative valued system
prices.

and consumed instantaneously. In extreme cases, consumers are then paid
to receive electricity. Fig. 4.3 shows histograms of which hours of the
day, as well as months of the year, that the 93 negative values occurred.
As expected, it is seen that they occurred during night and mid-day, the
low-consumption time periods. The events seem to spread throughout the
whole year, which also is not that surprising. As a mid-European country,
Germany’s electricity consumption is not as season dependent as for instance
in the Nordic countries (heating during winter) or California (air-conditioning
during summer).

In order to be able to employ the logarithmic transform to the series, the
93 negative valued are replaced by 0.1 EUR/MWh. The same goes for the 50
zero valued data points. Some of the results of the analysis to be performed
in the next chapter are marginally sensitive to the choice of the replacement
value. This goes especially for the kurtosis and skewness3 of the logarithmic
return distributions. The replacement value is a highly subjective manner,
but it is reasonable to choose a value that is close to zero but still large
enough to not result in too large return values. For replacement values of
0.01 EUR/MWh and 1.0 EUR/MWh, the volatility of the series remains the

3Defined in Appendix A.
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(a) (b)

Figure 4.3: Histograms showing in which (a) hours of the day and (b) months
of the year the EEX system prices have been negative valued.

same.

4.4 TGE
The analysed data from the Polish power exchange is a time series, shown
in Fig. 4.4, of the hourly market clearing price going from Jan 1, 2007 until
Dec 4, 2010, giving a total of 34 416 data points. There are three zero valued
data points which are replaced by 0.1 PLN/MWh.

4.5 CalPX
Fig. 4.5 shows the analysed time series from the Californian market, con-
sisting of 24 888 hourly market clearing prices going from Apr 1, 1998 until
the market was shut down on Jan 31, 2001. It is apparent that the market
changed during this period. The last part of the series consists of severe fluc-
tuations and extreme price spikes. The all-time high value occurred on Jan
21, 2001, and measured 2499.6 $/MWh, approximately 38 times the mean
value of the series.

There is a total number of 152 zero valued points in the time series, all
of which are replaced by 0.1 $/MWh.
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Figure 4.4: Time series of the hourly Polish TGE market clearing prices from
Jan 1, 2007 until Dec 4, 2010.

Figure 4.5: Time series of the hourly CalPX market clearing prices from Apr
1, 1998 until the market shut down on Jan 31, 2001.
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Figure 4.6: Time series of the daily PJM Interconnection market clearing
prices from Jan 1, 2001 until Jan 1, 2009.

4.6 PJM Interconnection
The time series from the PJM Interconnection, given in Fig. 4.6, consists of
daily mean prices from the day-ahead market. It spans the time period from
Jan 1, 2001 until Jan 1, 2009, giving a total number of 2 922 data points.
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Chapter 5

Results and Discussion

5.1 Seasonality
As already indicated, time series of electricity system prices are often peri-
odic, both on the daily, weekly and annual time scale. Fig. 5.1 shows the
power spectral density (PSD), introduced in Section 3.3.1, of the daily mean
system price time series. A distinct weekly cycle is observed in all the series.
Furthermore, all series except the CalPX series indicate two peculiar peaks
at frequencies corresponding to cycles of 7/2 and 7/3 days. Both of these
frequencies are smaller than the Nyquist frequency1, and can therefore not
be explained by aliasing effects. Instead, a likely explanation is that these
two cycles are caused by the difference in demand between working days and
weekend days. This effect will not be seen in only one frequency component
because the weekend (two days) is shorter than the working day period (usu-
ally five days). The odd weekend-workday periodicity will therefore have
contributions from several frequencies and it seems evident that f = 2/7
days−1 and f = 3/7 days−1 are the two most important contributors to these
fluctuations. National holidays and other frequently occurring events will
also influence the PSD. However, since there are only a few national holidays
outside the weekends during the year, their contribution to the PSD is here
assumed to be negligible.

The daily periodicity of electricity prices can not be observed from Fig.
5.1 because the data employed to produce these figures are of daily resolu-
tion. However, when investigating the PSDs of the hourly system prices, the
presence of a daily periodicity is also apparent. Fortunately, when analysing
system prices at time scales equal to or larger than a day, the daily periodicity
is averaged out.

1For daily data, the Nyquist frequency is fN = 1/2 days−1.
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(a) Nord Pool (b) OMEL

(c) TGE (d) EEX

(e) PJM (f) CalPX

Figure 5.1: The power spectral densities of the system prices of the different
electricity markets.



5.1. SEASONALITY

In the PSDs for Nord Pool and OMEL, frequencies up to the annual
periodicity are included. The limited lengths of the datasets make it hard
to identify one peak as the main contributor. Furthermore, as described
in Section 3.3.1, the PSD is expected to increase exponentially for smaller
frequencies. Still, Fig. 5.1 (a) and (b) show strong indices of a yearly cycle
in Nord Pool as well as cycles with annual, 3/4 year and approximately half
year periods in OMEL. The other series were not long enough to investigate
annual cycles. However, as will be discussed, it seems probable that annual
cycles are present in some of the markets because of the seasonal weather
fluctuations.

The daily and weekly periodicity is mainly caused by human consumption
patterns. Electricity is most demanded at the peak hours during the morning
and afternoon. As discussed above, the demand pattern is also different on
working days than on weekends and holidays. On the annual scale, there is
an additional climate factor, especially the temperature, that leads to the
seasonal fluctuations in demand2. For markets dominated by hydro-power,
such as Nord Pool, there are also seasonal fluctuations in the amount of
available power.

Looking past the periodic contributions

When the returns and volatilities of the system prices are measured, it is of
interest to reduce the contributions from seasonal factors. The reason for
this is that the seasonal fluctuations could give severe contributions to for
instance the level of volatility. This could give a wrong picture of the market,
since these fluctuations are more or less predictable. When comparing elec-
tricity markets to other types of commodity or finance markets, it is only fair
to compare the fluctuations that can not be attributed to periodic behaviour.
When calculating the daily return, the daily periodicity has no contribution.
Furthermore, the annual periodicity can be neglected, as described in Section
2.6.2. For a precise measure of the daily returns, it is therefore the weekly
periodicity that is the most important to reduce. Recall that this periodic-
ity is caused by two factors. The first factor, namely that the demand for
electricity is differently distributed throughout working days than throughout
the weekends, is eliminated by employing the daily mean prices to calculate
the daily return. The other factor, which is that the overall demand are less
in the weekends, causes weekly periodicity in the daily mean prices as well.

2In areas with a warm climate, it is common that the demand, and hence the electricity
prices, are higher during summertime, because of extensive use of air conditioning. In cold
areas, such as the Nordic countries, the demand for electricity is highest during winter due
to the extensive use of indoor electricity heating.
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A method to remove the weekly periodicity in the daily mean prices,
based on a moving median filter combined with trend removal, will now
be introduced in order to compare the return levels and volatilities to the
original price data.

5.1.1 Removing the Weekly Periodicity
This method is based on an assumption that the daily electricity system
prices can be decomposed into three components: a time-varying trend Tt;
a periodic component Pt; and a stochastic component Yt. It is also assumed
that these components combine in an additive way3, i.e. xt = Tt+Pt+Yt [2].
As seen in the previous section, the periodic component Pt contains several
periodicities. The aim of this method is to remove the weekly component of
the daily mean prices. This is accomplished in the following way.

First, a smoothed version of the time series of daily mean prices is sub-
tracted from the time series itself. This will result in a time series where the
time-dependent mean is removed. Since the aim of the method is to extract
the weekly periodicity, it is important that the weekly periodicity itself is
not included in the smoothed time series, i.e. the smoothing should be per-
formed over time scales larger than a week. The smoothing can be performed
in several ways, for example by employing a moving average. Another ap-
proach, using wavelets, is chosen here. This method for smoothing a time
series is described in Appendix B. Independent of the method chosen, the
subtraction of the smoothed time series should result in a time series with
approximately zero mean, showing only the fluctuations at the weekly time
scale and below.

Second, the resulting detrended time series is sorted into seven columns
so that each column represents a day of the week and every row represents
a week. Then, a median filter of length4 n = 13 is applied to each column
in the following way. Each element is replaced with the median value of the
interval spanning from the preceding six values to the subsequent six values.
This can be illustrated with an example: the value at the first column and
seventh row, i.e. Monday at week 7, is replaced with the median value of the
13 Mondays from week 1 until week 13. This is performed for all days until
the seventh last week of the dataset. It should be stressed that all median
values are calculated before any values are replaced. Cutting off the first
and last six weeks of the dataset results in a time series containing typical

3A different approach would be to assume that the components combine multiplicatively
[2].

4This choice of n represents the assumption that the weekly pattern varies with the
season of the year.
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5.2. VOLATILITY

Figure 5.2: Typical weekly pattern of the Omel system price, beginning with
a monday. It is seen that the weekends have lower system prices.

weekly patterns with fluctuations around an approximate zero mean. As an
illustrative example, a subsequence of such a time series, using the OMEL
data set, is shown in Fig. 5.2.

Finally, the time series of typical weekly patterns is subtracted from the
original time series of daily mean prices. Using the OMEL time series as an
example, the PSD of the original time series can be compared to the PSD
of the “deseasonalised” time series, see Fig. 5.3 (a) and (b). It is seen that
the weekly periodicity, including frequencies f = 2/7 days−1 and f = 3/7
days−1, is considerably reduced. It is also seen that other characteristics,
such as the annual periodicity, are left as good as untouched.

5.2 Volatility
The daily volatilities, defined in Section 2.6.3, based on respectively hourly
system prices, daily mean system prices and deseasonalised daily mean sys-
tem prices, are given in Table 5.1. As seen in Table 5.1, there are large
differences between these three measures of the volatility. It is seen that the
daily volatilities based on the hourly system prices (calculated from the 24
hour return series) are considerably higher than the daily volatilities based
on the daily system prices. This may be explained by at least two factors.
First of all, as previously seen, the daily consumption pattern is differently
distributed on working days than in the weekends, e.g. the 24 hour return
from Friday at 8 a.m. to Saturday at 8 a.m. is on average expected to be
a considerable negative return value (The demand is lower on a Saturday
morning than on a Friday morning). This difference in the demand distri-
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(a) Original (b) Deseasonalised

Figure 5.3: PSDs of (a) the original OMEL time series and (b) the deseason-
alised OMEL time series.

Table 5.1: Volatility of the analysed time series from the different electricity
markets, as well as the volatility of the closing values of the Dow Jones Index.

Market Daily Volatility
Hourly Daily Deseas. daily

Nord Pool 0.17 0.12 0.09
OMEL 0.58 0.18 0.15
TGE 0.21 0.11 0.07
EEX 0.74 0.28 0.19
CalPX 0.76 0.23 0.20
PJM n/a 0.19 0.16
Dow Jones n/a 0.01 0.01

bution will cause fluctuations in the return series, and therefore increase the
volatility. Since the distribution of the demand throughout a day is not
captured in the daily mean prices, the daily mean prices will have a lower
expected volatility. The second factor that causes the hourly prices to have
a higher volatility than the daily prices, is that the price spikes present in
the hourly price series are partly averaged out in the daily mean price series.
This make the daily return values, and the volatility, smaller for the daily
mean price series than for the hourly price series.

To summarize, it is the weekly periodicity caused by the difference in the
demand distributions throughout working days compared to the weekends
that is captured by the hourly data but not the daily data. However, as it
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was seen in Section 5.1, there is still another weekly periodicity in the daily
price data. This periodicity is removed in the deseasonalised series of daily
mean prices, which is the reason why the deseasonalised time series have less
volatile daily returns than the original daily mean time series.

Whether the periodicity is taken into consideration or not, Table 5.1
shows that the analysed electricity markets all exhibit a strong volatility
compared to other financial and commodity markets (see Table 2.1). The
failed Californian PX is found to have the highest “deseasonalised volatility”,
with σ∆t=1day = STD(r∆t=1day) = 0.20, while the Polish TGE is found to have
the lowest deseasonalised volatility, with σ∆t=1day = 0.07, which still is seven
times the volatility of the Dow Jones Index closing values.

5.3 Characteristics of the Returns
The (logarithmic) returns for the different time series are calculated as de-
scribed in Section 2.6.2. The daily returns are chosen to be investigated
because, as already argued, then the daily periodicity are phased out. The
daily returns are calculated both for the hourly price data (with ∆t = 24h)
and, for comparison, for the daily mean price data. Furthermore, the daily
returns of the deseasonalised data are calculated.

In order to have a measure of how large a return value is compared to
the “normal” fluctuations of the returns, the return series are normalized
with their standard deviations5. The normalized return series based on the
original daily mean system price series are plotted for the different markets
in Fig. 5.4. The normalized return series based on the hourly data and the
deseasonalised daily data look quantitatively similar to the series based on
the daily mean data. However, when the ACFs, introduced in Section 2.4.2,
of the daily returns based on the daily data are compared to those of the
deseasonalised daily data, Fig. 5.5, the periodicity becomes apparent. While
the periodic daily mean prices yield an apparent correlation at time lags 7
days, 14 days, 21 days, etc., the deseasonalised daily mean prices seem to
have an autocorrelation with lags up to between two and 9 days.

Another feature that can be seen in Fig. 5.5, is that the daily returns of
the daily system prices (both original and the deseasonalised) are negatively
correlated to the previous day or the day before that. This is an indication
of mean-reversion, which will be studied in detail in Section 5.5.

Empirical evidence has long suggested that the returns of financial assets are
5Which equal the daily volatilities of the price series and can thus be found in Table

5.1.
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(a) Nord Pool (b) OMEL

(c) EEX (d) TGE

(e) CalPX (f) PJM

Figure 5.4: Normalized logarithmic returns based on the daily mean prices
with ∆t = 1 day.



(a) Nord Pool (b) OMEL

(c) EEX (d) TGE

(e) CalPX (f) PJM

Figure 5.5: ACFs of the normalized, logarithmic daily returns for daily data
and deseasonalised daily data.



(a) Nord Pool (b) OMEL

(c) EEX (d) TGE

(e) CalPX (f) PJM

Figure 5.6: Probability density functions of the logarithmic returns. The
superimposed lines are Gaussian distributions with equal mean and standard
deviation as the empirical data.



5.3. CHARACTERISTICS OF THE RETURNS

not normally distributed [2]. Looking at the normalized daily return distri-
butions of the daily mean system prices, see Fig. 5.6, this is evident also for
electricity system prices. Table 5.2 summarizes the kurtosis and skewness6 of
the distributions, including the daily return distributions based on the hourly
and deseasonalised data. In summary, all the distributions are found to be
leptokurtic, meaning that they have excess kurtosis, and are characterised
by fat tails. This indicates that large daily variations in electricity prices are
more common than what one could expect from a process where the returns
were normally distributed7. This result is in agreement with earlier reports
[2].

Table 5.2: Kurtosis and skewness for the probability distributions of loga-
rithmic daily returns in the respective markets. The resolution of the data
employed in the calculations is indicated as “Hourly” or “Daily” data. The
columns labelled “Deseas. daily” indicate that any weekly periodicity of the
daily mean time series is removed before the time series of returns are created.

Market Kurtosis Skewness
Hourly Daily Deseas.

daily
Hourly Daily Deseas.

daily
Nord Pool 440.2 87.5 49.8 -1.10 0.03 -0.32
OMEL 100.8 9.04 46.2 0.00 0.11 -0.85
TGE 1640.8 15.4 76.8 0.76 0.86 3.65
EEX - - - - - -
CalPX 83.5 8.07 17.9 0.26 0.25 -0.37
PJM - 3.04 7.20 - 0.18 -0.43
Dow Jones - 24.8 23.1 - -0.60 -0.52

Volatility Clustering

The daily returns, shown for the daily data in Fig. 5.4, indicate that the
volatility varies with time and that the series may be categorized into regimes
with different volatility. It seems that there are periods when the returns fluc-
tuate strongly, while other periods may be calm with only small fluctuations.
This phenomenon is termed volatility clustering and, as Simonsen, Weron and
Mo [6] points out, it is reminiscent of the intermittent patterns often found
in time series of the velocities of turbulent fluids [45, 46]. In order to take
a closer look on the volatility clustering, an estimate of the time-dependent
daily volatility should be investigated.

6Defined in Appendix A.
7Gaussian distributions have a kurtosis of 0.
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The time-dependent volatility could be estimated in several ways, but
the simplest and most intuitive choice would be to use a time interval with
length T , perfectly embracing the point of evaluation, as a basis to calculate
the time-dependent volatility as

σ̂∆t(t, T ) = STD
[
r∆t(τ)

]
, τ ∈

[
t− T/2, t+ T/2

]
=

 1
N − 1

t+ T
2∑

τ=t−T
2

(
r∆t(τ)− r∆t

)2
1/2

. (5.1)

Here, r∆t denotes the sample mean of the returns in the interval
[
t− T

2 , t+
T
2

]
and N is the number of data points in the same interval. Fig. 5.7 displays
the results of employing (5.1) with T = 100 days as a moving filter on the
normalized daily returns series of Fig. 5.4. It is seen that the time-dependent
volatilities are varying quite drastically in time. For both Nord Pool, OMEL,
TGE and CalPX, the maximum volatility levels are about five times the
minimum volatility levels. The variations in volatility at the PJM and EEX
markets seem to be at a more moderate level.

It should be mentioned that there exist more sophisticated ways of esti-
mating the time-dependent daily volatility. An example of this would be to
employ an exponentially weighted moving average (EWMA) instead of the
non-weighted approach of (5.1). Such a weighted approach would put more
emphasis on the values close to the point of evaluation. However, for the
purpose of being able to qualitatively conclude that the volatility is time-
varying, the non-weighted approach given here is considered adequate.

There are many factors that cause the volatility to change. For instance
would non-stability in the production units cause more volatile system prices.
Furthermore, it is not hard to imagine that certain seasons of the year have
large fluctuations in the temperature, which again would lead to higher
volatility. In Fig. 5.8 the time-dependent volatilities calculated with T = 30
days in (5.1) are plotted as functions of the mean system price of the same
T = 30 days. In order to give a clearer picture of any trend, median filters of
length N = 25 are employed on the scattered data, as described by Simonsen
[47]. To better visualize any trend, either a linear or an exponential curve is
fitted to the median filtered data. It is seen that the volatility at the Nord
Pool market tends to be at a higher level when the system price is low, but is
not dependent on the system price when the prices are above a certain level.
This effect is also seen weakly in the OMEL data, but is not apparent for
the other markets.
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(a) Nord Pool (b) OMEL

(c) EEX (d) TGE

(e) CalPX (f) PJM

Figure 5.7: The normalized time-dependent volatility of the daily mean prices,
defined in (5.1) with T = 100 days. The normalization factor is the overall
volatility given in Table 5.1.



(a) Nord Pool (b) OMEL

(c) EEX (d) TGE

(e) CalPX (f) PJM

Figure 5.8: Scatter plot of the time dependent volatility (5.1) versus the
corresponding mean system price. The circles are the result of applying a
median filter of length N=25 to the raw data, as described in the text. The
solid, red lines are either exponential or linear curves meant only as a guide
to the eye.



5.4. SPIKES

It is not entirely clear what causes this effect. At first, one could suspect
that the weekly seasonality could be one of the reasons. However, the de-
seasonalised data yields qualitatively the exact same results. Simonsen [47]
speculates that the effect might origin from what he refers to as forced pro-
duction. In seasons with low demand, which often is reflected in low system
prices, some production companies still need to produce a certain amount
of electric energy. In the Nordic countries, for example, overfull water reser-
voirs will force the production company to either produce electricity or to
drain water without producing electricity. The profit-optimizing option will
then often be to produce more electricity even if the demand, and price,
is low. Then, when the filling fraction of the reservoir again is within the
safety limit, the profit-optimizing option could be to wait for times of higher
system prices. This leads to a higher volatility, as is seen in Fig. 5.8. It is
not clear what causes the higher volatility in times of low system prices in
the Spanish OMEL market. An interesting observation is also the absence of
the effect described above for the other markets. In fact, for the Polish TGE
market the opposite effect is apparently observed. However, it is question-
able whether the size of the data set is large enough to draw any conclusions
about this8.

5.4 Spikes
Using the spike definition of Section 2.6.1, an intuitive measure of the “spiked-
ness” of the electricity markets is the frequency of occurring spike events, e.g.
the number of spikes occurring on average per year. The results are given in
Table 5.3. Since the duration of a price spike is usually a few hours, only the
hourly time series are investigated here. Furthermore, since the spiky nature
of Nord Pool apparently changed around 1998-20009, it is chosen to use the
11 year period from year 2000 until the end of 2010 as basis for the inves-
tigation. Consequently, the same period of time is chosen from the OMEL
data. For all datasets, only full years are taken into consideration. It is seen
that Nord Pool and OMEL had approximately 10 spikes per year, while the
other three markets seem to have a more spiky nature.

Weron [2] argues that price spikes are a consequence of the bidding struc-
ture. Recall from Section 2.2.4 that in uniform price auctions, market par-
ticipants do not necessarily have to pay the price they bid. As long as their
bids are above the system price, they can buy electricity for the system

8For the TGE dataset, there are 47 independent periods of T = 30 days.
9This was most likely caused by the market entrance of Finland in 1998 and Denmark

in 2000.
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Table 5.3: The number of spikes occurring in the hourly data on average per
year.

Market (year) Spikes
[#/year]

Nord Pool (2000-2010) 10.4
OMEL (2000-2010) 9.4
TGE (2007-2009) 75.0
EEX (2007-2009) 44.7
CalPX (1999-2000) 71.0

price. Since electricity is a necessity for many of the market participants,
they regularly place bids at the maximum allowed price level. Furthermore,
the marginal production cost, i.e. the cost of producing one more unit of
electricity, is growing rapidly at high production levels [6]. In times of high
demand, e.g. peak hours during extreme cold winter days, the offers of the
more expensive production utilities are accepted at the auction and the sys-
tem price gets higher. Of course, the power generation companies also know
that some buyers place bids at high price levels. If they anticipate that the
demand at some time will be high, the profit optimizing option for them
could be to try to force increases in the price by placing offers at a high price
level. This kind of speculation is probably most common in generation com-
panies with flexible generators. For other generators, the price of shutting
down the production may be so high that they do not speculate in forcing
the prices up, since this would expose them to expensive risk of being forced
to reduce the production.

An interesting issue related to the spikes are the abuse of market power
to force the prices up. If a generation company with a large market share
anticipate high demand, then they may single-handedly be able to force an
increase in the prices. In Section 2.3.3, it was mentioned that EEX may
have a lack of competition since the two largest production companies have
a combined market share of 55%. This could be one of the reasons why
EEX are more spiky than for example Nord Pool. However, the underlying
mechanisms of price spikes are probably complex. It is reasonable to believe
that other factors, such as the amount of available production capacity and
the type of power plants available, are also affecting the number of price
spikes in a market.
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Table 5.4: Estimates of the Hurst exponent using the AWC and the DFA
methods. The level of significance at which a null hypothesis of H=0.5 can
be rejected for the DFA estimates are put in parenthesis. The RMS(n) (3.4)
of the PJM data did not obey a power law and the DFA could therefore not
estimate H for this series.

Method AWC DFA (daily data)

Market Hourly* Daily Deseasonalised
daily

Nord Pool 0.43 0.38 (99%) 0.43 (90%)
OMEL 0.24 0.24 (99%) 0.29 (99%)
TGE 0.26 0.21 (99%) 0.35 (99%)
EEX 0.23 0.13 (99%) 0.22 (99%)
CalPX 0.33 0.32 (99%) 0.36 (95%)
PJM (daily) 0.02 - -
Dow Jones 0.57 0.52 (<90%) 0.52 (<90%)
*Hourly data is employed, but only time scales correspond-
ing to above one week are used as basis for the estimation
of the Hurst exponent, see Fig. 5.9.

5.5 Hurst Analysis
The Hurst exponents for the increments of the different time series are esti-
mated with the DFA and AWC methods, described in Section 3.2 and 3.3.4,
respectively. The results are given in Table 5.4. In addition, the wavelet
spectra of the AWC method are presented in Fig. 5.9. The regression lines
that estimated the Hurst exponents, found by weighted linear least squares
fits to the logarithmic values, are indicated in the figure. For the hourly
price data, a crossover is observed between the intra-day time scale and the
time scale above a day. Furthermore, another crossover corresponding to
the weekly time scale is observed in all datasets, but this crossover is less
pronounced. These crossovers are most likely caused by the periodicities in
the hourly data, and demonstrate the reason why daily data, and not hourly,
are employed in the DFA analysis. The AWC estimates of H, given in Table
5.4, are valid for the scaling regimes corresponding to time scales larger than
a week.

As can be seen by the differences between the AWC and DFA Hurst esti-
mates in Table 5.4, determination of the Hurst exponent of a time series is a
non-trivial business. For many purposes, however, it is sufficient to establish
whether H is smaller than, equal to or bigger than 0.5. By using the empir-
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(a) Nord Pool (b) OMEL

(c) TGE (d) CalPX

(e) EEX (f) PJM

Figure 5.9: Wavelet spectra and estimation of the Hurst exponent.
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ical confidence intervals for H = 0.5, which Weron [41] established for the
DFA, the null hypothesis of H = 0.5 may be tested at 90%, 95% and 99% sig-
nificance levels. Employing DFA to the daily mean system price increments
reveals that all10 of the analysed series have a Hurst exponent significantly
less than H = 0.5, meaning that the system prices are anti-persistent. When
analysing the deseasonalised daily system prices the same conclusion can be
drawn, but the significance levels for the Nord Pool and CalPX data sets are
then reduced to 90% and 95%, respectively. For comparison, it is also seen
that the Hurst exponent of the Dow Jones data set can not be distinguished
from H = 0.5 using this DFA method.

10The PJM series did not reveal any power law scaling of the RMS(n) of (3.4), and H
for this series could hence not be estimated using DFA.
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Chapter 6

Conclusions

In this thesis, the market structures of six electricity markets have been stud-
ied. These markets are the Nord Pool (the Nordic countries), OMEL/MIBEL
(Spain), EEX (Germany), TGE (Poland), CalPX (California, US) and PJM
(the American East) markets. Time series of the corresponding system prices
for electricity have been analysed, in order to identify characteristics of elec-
tricity prices and differences between the markets.

It has been observed that time series of electricity system prices exhibit
periodic patterns both on the daily, weekly and annual time scale. These
periodicities can affect other measures of the time series. It has been argued
how the daily periodicity can be eliminated and in which cases it is reasonable
to neglect the annual seasonality. Furthermore, a method to remove the
weekly periodicity in daily mean electricity prices has been employed. Based
on the power spectral densities, it is seen that the method succeeds with
removing the weekly periodicity. To what extent the method also removes
other characteristics should be investigated further in future works.

The daily and weekly periodicities amount to a considerable amount of
the daily volatilities. Still, the daily volatilities of the deseasonalised data
have all been found to be higher than the daily volatilities seen in other types
of commodity markets. Hence, it is affirmed that electricity system prices
are very volatile. Furthermore, it is concluded that the high level of volatility
can not be attributed to the periodic fluctuations alone.

The logarithmic return series exhibited intermittent patterns, which is an
indication of volatility clustering. By employing a time-dependent measure
of the daily volatility, it has been observed that the level of volatility is
fluctuating. In particular, for Nord Pool and OMEL, it has been found that
the volatilities are high in times of low system prices. It was concluded that
this effect can not be attributed to either the daily nor weekly periodicity.

It has been concluded that, for all the markets investigated, the proba-
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bility density functions of the logarithmic returns are leptokurtic.
The hourly system prices from TGE, EEX and CalPX have been found

to be more spiky than the series from Nord Pool and OMEL. Still, spikes are
occurring frequently in all of the analysed time series.

Finally, two different methods of measuring the long-term correlations in
the increments of the system prices have been employed. It was concluded
that the series from all the electricity markets are anti-persistent, i.e. the
Hurst exponents of the increments were less than 0.5. Furthermore, the
AWC method revealed that there were up to three different scaling regimes
in the hourly system prices.

Further Work
First of all, different ways of removing the weekly periodicity, and their im-
pact on for instance the volatility, could be compared to the method employed
in this work. Also, other measures of the spikes could be considered. Further-
more, in this report it was discussed how the amount of flexible generators
could influence some of the characteristics, such as the number of spikes. It
would have been interesting to investigate the market share of different power
plants in the different markets, and compare the findings to the mentioned
discussion in this report.

When it comes to the Hurst analysis, the impact of the three different
scaling regimes observed with the AWC method could be investigated. It is
also believed that there is a potential in further development of the AWC
method. Instead of measuring the fluctuations at the different time scales
with the absolute mean of the wavelet coefficients, the fluctuations could be
quantified by the median value of the wavelet coefficients at the different
time scales. This approach would decrease the influence of the price spikes,
which can be desired when investigating the influence of the more moderate
fluctuations of the time series.

It is desirable to establish statistical distributions for the absolute mean
of the wavelet coefficients. Developing confidence intervals for the Hurst
estimates of the AWC method would increase the utility value of the method.
If this is not possible, a Monte Carlo study of the AWC estimates could be
performed in a similar fashion as Weron did for the DFA estimates.

Finally, it has been briefly mentioned that indications were found, during
the work on this thesis, that the electricity system prices were multi-affine.
This property could be investigated further, for instance by means of the
wavelet transform or by employing generalized versions of the DFA.



Bibliography

[1] Newbery DM. Problems of liberalising the electricity industry. European
Economic Review. 2002;46(4):919-927.

[2] Weron R. Modeling and forecasting electricity loads and prices, A sta-
tistical approach, Chichester: John Wileys & Sons Ltd.; 2006.

[3] Oren S. Capacity payments and Supply Adequacy in Competitive Elec-
tricity Markets. Proceedings of the VII Symposium of Specialists in
Electric Operations and Expansion Planning (SEPOPE VII). Curitiba,
Brazil, May 21-26 (2000).

[4] Web pages of Nord Pool Spot AS [Internet]. Visited May 20, 2011. Avail-
able from: www.nordpoolspot.com.

[5] Allen WB, Weigelt K, Doherty N, Mansfield E. Managerial Economics:
Theory, Applications, and Cases, 7th edition. New York: W. W. Norton
& Company; 2009.

[6] Simonsen I, Weron R, Mo B. Structure and stylized facts of a deregulated
power market. Unpublished paper. Available from: http://mpra.ub.
uni-muenchen.de/1443/.

[7] Web pages of Compania Operadora del Mercado Español de Electricidad
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Appendix A

Basic Statistics and Probability
Theory

A.1 The Probability Density Function
The probability density function (PDF) f(x), also termed probability distri-
bution or simply distribution of a continuous random variable X, is implicitly
defined through the integral

F (x) = P (X ≤ x) =
∫ x

−∞
f(x∗)dx∗. (A.1)

Here, P denotes the probability of realizing whatever is inside the brack-
ets. The PDF can explicitly be defined as the derivative of the cumulative
distribution function F (x)

f(x) = dF (x)
dx . (A.2)

A.2 The Normal Distribution
A random variable X is said to be normally distributed or Gauss distributed
if its PDF are given by

f(x) = 1
σ
√

2π
exp

− 1
2

(
x− µ
σ

)2
. (A.3)

Here, µ is the mean and σ is the standard deviation of the process.
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A.3 The Chi-square Distribution
If {Xt : t = 1, 2, ..., n} is a sequence of independent and identical normally
distributed random variables with mean µ and standard deviation σ, then
the random variable

Y =
∑n
t=1

(
Xt −X

)2

σ2 (A.4)

is chi-square distributed with n − 1 degrees of freedom. Here, X denotes
the sample mean of the sequence {Xt}, i.e. X = 1

n

∑n
t=1 Xt. The PDF of a

chi-square distribution is given by [48]

fm(y) =


y(m−2)/2 exp[−y/2]

[2m/2Γ( m
2 )] if y ≥ 0

0 if y < 0,
(A.5)

where Γ(m2 ) is the gamma function [49] and m is the number of degrees of
freedom.

A.4 The Chi distribution
If {Xt : t = 1, 2, ..., n} is a sequence of independent and identical normally
distributed random variables with mean µ and standard deviation σ, then
the random variable

Z =

√√√√∑n
t=1

(
Xt −X

)2

σ2 (A.6)

is chi distributed with n−1 degrees of freedom. The PDF of a chi distribution
is given by [48]

fm(z) =


z(m−1) exp[−z2/2]

[2(m−2)/2Γ( m
2 )] if z ≥ 0

0 if z < 0,
(A.7)

where Γ(m2 ) is the gamma function [49] and m is the number of degrees of
freedom.

If Z is chi distributed with m degrees of freedom, then Y = Z2 is chi-
square distributed with m degrees of freedom.
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A.5. KURTOSIS

A.5 Kurtosis
The “peakedness” of a PDF of a real-valued random variable X may be
measured by the kurtosis, defined as

Kurt
[
X
]

= γ2 =
E
[
(X − µ)4

]
E
[
(X − µ)2

]2 − 3 = µ4

σ4 − 3. (A.8)

Here, µ4 denotes the fourth order moment about the mean, while σ denotes
the standard deviation. The subtraction of 3 is a convenient correction that
makes it simpler to calculate the kurtosis of a sum of random variables. With
this definition, the kurtosis of the normal distribution is 0.

Distributions with negative valued kurtosis are called platykurtic, distri-
butions with zero kurtisos are called mesokurtic and positive valued kurtosis
are referred to as leptokurtic.

A.6 Skewness
The skewness is a quantification of the asymmetry of a PDF. A skewness
greater than zero signifies that the tail at the right hand side of the mean
of the PDF is more pronounced (longer) than the left tail, while a negative-
valued skewness signifies the opposite. The definition of skewness is given in
terms of the third standardized moment and the standard deviation of the
distribution:

γ1 =
E
[
(X − µ)3

]
E
[
(X − µ)2

]3/2 = µ3

σ3 . (A.9)

A.7 The Least Squares Principle
When a line y = α + βx is fitted to a sample of n paired observations
(x1, y1), ...(xn, yn), α and β should be chosen such that the sum of the squared,
vertical distances from the points to the line is minimized, i.e.

argmin
α,β

( n∑
i=1

∣∣∣yi − α− βxi∣∣∣2). (A.10)

Furthermore, if the uncertainties associated with the different observations
are not equal, each observation could be attributed a weight wi. Then, the
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optimization problem reads

argmin
α,β

( n∑
i=1

wi
∣∣∣yi − α− βxi∣∣∣2). (A.11)

This minimization problem could be solved numerically by means of the
Levenberg-Marquardt algorithm [50].
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Appendix B

Smoothing by Means of the
Wavelet Transform

When smoothing a time series, the aim is to obtain a time series where rapid
fluctuations below a certain time scale are removed. As already mentioned,
there exist several smoothing algorithms. In this chapter, a simple smooth-
ing algorithm based on the wavelet transform, introduced in Section 2.5, is
described. As an example, the time series of daily mean prices in OMEL will
be employed.

Recall from Section 2.5 that the discrete wavelet transform (DWT) de-
composes the data into a new basis of functions, namely the wavelet basis.
Since these functions are defined at characteristic dyadic time scales, the
fluctuations of the original time series will be decomposed into dyadic time
scales. The underlying idea of using wavelets as a smoothing tool is to first
transform the series into the wavelet domain, then set all wavelet coefficients
corresponding to a certain time scales lower than asmooth to zero, and finally
transform the coefficients back to the time domain. This will result in a
smooth time series where fluctuations at time scales smaller than asmooth are
averaged out over larger time scales.

Employing the DWT, problems may arise at the boundaries of the time
series. In order to overcome any problems, a certain number of zero valued
data points should be added at each end of the series. The only punishment
associated with adding many zero values are longer calculation time. Since
the calculation time for the purposes of this report are short anyway, at least
a couple of hundred zero values are added. It should also be kept in mind
that in order to employ the DWT with the pyramidal algorithm, the number
of data points must be 2n, for integer n.

The smoothing algorithm for averaging out fluctuations corresponding to
time scales smaller than asmooth = 2S could be summarized as follows:
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TRANSFORM

1. Add zero valued data points to the beginning and the end of the time
series, until the length of the time series is a power of two, see Fig. B.1
(a). At least 100 zero valued points should be added at each end.

2. Employ the DWT to the time series.

3. Set all wavelet coefficients corresponding to time scales smaller than
asmooth to zero.

4. Employ the inverse DWT to transform the series back to the time
domain, see Fig. B.1 (b).

5. Cut off the values corresponding to the zero valued data points that
were added at step 1, see Fig. B.1 (c).

This smoothing procedure is employed in Section 5.1.1 in order to extract
the weekly fluctuations of the time series (which is achieved by subtracting
the smoothed time series from the original time series). In such a case, asmooth
should be chosen such that at least in the time scales in the order of a week
are smoothed. For the results given in this report, asmooth = 25 days, mean-
ing that fluctuations at time scales a = 24 days = 16 days and below are
averaged out.

Finally, it should be mentioned that another way of extracting the weekly
fluctuations could be to set the wavelet coefficients corresponding to scales
larger than asmooth to zero in step 3. This illustrates the fact that there are
many ways of obtaining the small scale fluctuations, and it is difficult to
measure which methods that give the best results. Furthermore, the effect of
employing different wavelet bases, is not investigated here. The results given
here are based on the Daubechies wavelet of fourth order.
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(a) Step 1: Adding zeroes.

(b) Step 4: Transforming back to the time domain.

(c) Step 5: Cutting off the artificial parts.

Figure B.1: Step 1, 3 and 4 of the smoothing procedure with asmooth = 25

days. The time series is the OMEL daily mean prices.
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