
Master of Science in Physics and Mathematics
June 2011
Kristian Gjøsteen, MATH

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Mathematical Sciences

Decoding of Algebraic Geometry Codes

Anna Aarstrand Slaatsveen

”Shannon is one of the great men of the century. Without him, none
of the things we know today would exist.

The whole digital revolution started with him”
- Neil Sloane

i

Abstract

Codes derived from algebraic curves are called algebraic geometry (AG) codes. They
provide a way to correct errors which occur during transmission of information. This
paper will concentrate on the decoding of algebraic geometry codes, in other words, how
to find errors.

We begin with a brief overview of some classical result in algebra as well as the definition
of algebraic geometry codes. Then the theory of cyclic codes and BCH codes will be
presented. We discuss the problem of finding the shortest linear feedback shift register
(LFSR) which generates a given finite sequence. A decoding algorithm for BCH codes
is the Berlekamp-Massey algorithm. This algorithm has complexity O(n2) and provides
a general solution to the problem of finding the shortest LFSR that generates a given
sequence (which usually has running time O(n3)). This algorithm may also be used for
AG codes.

Further we proceed with algorithms for decoding AG codes. The first algorithm for de-
coding algebraic geometry codes which we discuss is the so called basic decoding algorithm.
This algorithm depends on the choice of a suitable divisor F . By creating a linear system
of equation from the bases of spaces with prescribed zeroes and allowed poles we can find
an error-locator function which contains all the error positions among its zeros. We find
that this algorithm can correct up to �(d∗ − 1 − g)/2� errors and have a running time of
O(n3). From this algorithm two other algorithms which improve on the error correcting
capability are developed.

The first algorithm developed from the basic algorithm is the modified algorithm. This
algorithm depends on a restriction on the divisors which are used to build the code and an
increasing sequence of divisors F1 ≤ . . . ≤ Fs. This gives rise to an algorithm which can
correct up to �(d∗ − 1)/2 − S(H)� errors and have a complexity of O(n4). The correction
rate of this algorithm is larger than the rate for the basic algorithm but it runs slower.

The extended modified algorithm is created by the use of what we refer to as special
divisors. We choose the divisors in the sequence of the modified algorithm to have certain
properties so that the algorithm runs faster. When σ(ε) is the Clifford’s defect of a set ε of
special divisor, the extended modified algorithm corrects up to �(d∗ − 1)/2 − σ(ε)� which
is an improvement from the basic algorithm. The running time of the algorithm is O(n3).

The last algorithm we present is the Sudan-Guruswami list decoding algorithm. This
algorithm searches for all possible code words within a certain distance from the received
word. We show that AG codes are (e, b)-decodable and that the algorithm in most cases
has a a higher correction rate than the other algorithms presented here.

iii

Acknowledgements

I would like to thank my supervisor Kristian Gjøsteen for all the support and valuable
advice during my studies in code theory and the preparation of this report.

Further I am grateful to Dr. Richard Mollin at the University of Calgary who during
my year abroad inspired me to choose code theory as my main subject and introduced me
to the intruding field of discrete mathematics and number theory.

I would also like to thank my mathematics teacher in Ungdomsskolen (8th-10th grade),
Eric Bisgaard Lien for inspiring me and making me promise to continue studying mathe-
matics. This promise has been a real motivator during my University years and in particular
when working on my Masters Thesis.

I am indebted to my fellow students at NTNU and University of Calgary for making
my five years at university enjoyable an manageable. The support and company of friends
have been very important for reaching my goals.

Last but not least I am grateful to my dad for taking the time and effort to read through
my paper.

v

Contents

1 Introduction 1

2 Algebraic Curves 3

2.1 Algebraic Curves . 3

2.2 Explicit Families of Curves . 6

2.2.1 Elliptic Curves . 6

2.2.2 Hyperelliptic Curves . 11

3 The Riemann-Roch Theorem 17

4 Algebraic Geometry Codes 22

5 Decoding of BCH Codes 28

5.1 Cyclic Codes and BCH Codes . 28

5.2 The Berlekamp-Massey Decoding Algorithm 29

5.2.1 Linear Feedback Shift Register . 29

5.2.2 Berlekamp-Massey . 33

6 The Basic Decoding Algorithm 35

7 The Modified Decoding Algorithm 44

8 The Extended Modified Decoding Algorithm 49

9 List Decoding of Algebraic Geometry Codes 54

vii

1 Introduction

The theory of error-correcting codes concerns the tools used to transmit information safely
over an unreliable channel. In other words coding theory is primarily concerned with
dealing with errors created by noise. An example from every day use is communication
by cellular phones. When using a cellular phone, signals are transmitted using the air as
a communication channel. Because of electromagnetic interference the receiving end pick
up noise as well as the message. In many areas of natural communication, error correction
is used. Technological communication would be difficult or even impossible without being
able to correct errors created by noise.

Claude Shannon published a paper which changed the way we look at communication
for ever and because of this, he is known as the father of information theory. He added the
effect of noise into the equation of communication. He constructed a way to encode data
so that it could be decoded to a specified degree of accuracy after transmission.

The following figure shows the steps of a coding-decoding cycle of an error-correcting
code.

Noisy Channel

Modulation Demodulation

Encoder

Information
source

Decoder

Information des-
tination

Figure 1: A canonical digital communication system

The information source transmits a block of k bits thorough a channel of some sort. This
k bit string is called the information word. Some codes are built on information streams of

1

arbitrary length (infinite length). But in this paper we will restrict to block codes defined
for some finite length n. To send more information than n bits we split the message into
several n-bit blocks and send them separately. Since each block is assumed independent
with respect to content and effect of noise, we only need to look at the case of transmitting
one block of information. Thus when taking about codes we actually mean block codes.
The information may be anything from a picture to data on a disk to sound. When
transmitting the desired information, some of the bits may be altered by noise and the
information which reach the destination may be corrupted. The difficult part of error-
correction codes is to retrieve the original information even though it has been altered by
noise.

To handle this problem we send more information than the original message. This is
done by adding redundancy to the information word. This expanded bit string is called
a code word. By adding redundancy, we make it possible to recover the original message
even though error have occurred during transmission. If we have an easy channel, we may
apply what is called repetition codes. This is as simple as for each bit we want to send, we
repeat it several times. Thus, if every bit of a message is repeated seven times the receiver
checks every group of seven bits to decode the message. If it contains more 0’s than 1’s, it
is assumed that a 0 was sent, and vice versa. (Of course this is a fairly simple way to add
redundancy and it will usually be as simple.)

Encoding is the process of adding redundancy to the information word. This is a
function denoted by enc and takes an k-bit string to an n-bit string. If Σ is the alphabet
the encoder function is as follows:

enc : Σk −→ Σn
, where n > k

A code word is the word output from the encoder and is the information which is transmit-
ted over the unreliable channel. Our code C is the set of such code words that is possible
to transmit. Hence

C = {y : y = enc(x), x ∈ Σn}

The length of the code is defined to be n and each code word in the code is an n-tuple
with entries from the alphabet Σ. The dimension of the code is referred to as k. In this
text, only linear codes are discussed and all codes are thus k-dimensional vector spaces.

The channel is the communication medium over which the transmission occurs. We
denote the received information by y

�, i. e. the output from the unreliable channel. Hence
y

� is the code word y effected by the noise in the communication medium. Decoding denotes
the process used on the receiving end to recover the original message. The decoder, denoted
dec, is the algorithm that the receiver use to recover the original information from y

�. Hence
x = dec(y�) and takes a n-bit string to a k-bit string.

2

2 Algebraic Curves

In this section the theory behind algebraic curves are presented. This includes an intro-
duction to affine and projective spaces, hypersurfaces, algebraic sets and function fields.
Two examples of families of curves which commonly is used to build algebraic geometry
codes will be given. For both the families of curves a group law on points of the curve will
be derived.

2.1 Algebraic Curves

Let An denote the n-dimensional affine space and An(F) the affine n-space over the field
F. The affine space over a field F is the cartesian product of F, n times. Hence elements
or points in the affine space are n-tuples of the form x = (x1, x2, . . . xn) where xi is in F
for all i. We say that x1, x2, . . . xn are the coordinates of the point x.

In the affine plane A2 most lines will intersect at a point. The only exception is parallel
lines which do not have a intersection point. In the projective plane, there will always
exists a intersection point between any two lines even when they are parallel. The points
in which parallel lines intersect are refereed to as the points at infinity.These intersection
points may be computed in the same way as other intersection points.

In the affine plane we identify a point (x, y) in A2 with the point (x, y, 1) ∈ A3. Every
point (x, y, 1) in A3 determines a line through (0, 0, 0) and (x, y, 1). All lines thorough
(0, 0, 0) in A3 will satisfy this except the lines in the z-plane (since z = 0). We say that
the points at infinity in A3 corresponds to the lines in the z-plane which intersect (0, 0, 0).
This can be adapted to fit in an affine n-space.

Definition 1. A projective n-space over a field F is defined to be all the lines through
(0, 0, . . . , 0) in An+1(F). We denote the projective n-space by Pn.

Hence, every point x = (x1, . . . , xn+1) in the affine (n + 1)-space, determine an element in
the projective n-space, namely the line through x. If two points x and y have the property
that for all coordinates xi and yi, xi = λyi, where λ is in the field F, we say that the two
points determine the same line and x and y are equivalent (i. e. the points are in the same
equivalence class). By this definition we say that all the lines {(λx1, . . . , λxn+1) | λ ∈ k}
which are determined by x = (x1, x2, . . . , xn+1) �= (0, 0, . . . , 0) are called the points of Pn.
Thus the projective n-space is the equivalence classes of points in An+1\(0, 0, . . . , 0). We
denote the equivalent class generated by x by [x1 : x2 : . . . : xn] and write

Pn = {[a1 : a2 : . . . : an+1] | ai ∈ F not all of the ai’s are zero }

Points of the form [a1 : a2 : . . . : an : 0] are called the points at infinity.
An equation like Y = X

2 is meaningful in the affine plane. But this is not the case for
the projective plane. An equality can only hold if it is unaffected when all the coordinates
of a point are multiplied by the same non-zero constant. Thus, for the projective plane one

3

needs homogeneous equations, equations where each term have the same degree. If we do
an homogenization of Y = X

2 we obtain Y Z = X
2 which hold in the projective plane.

Example 1. Let χ be a curve in the affine plane A2 given by the equation Y
2 = X

3+9X+4.
The homogenization of this curve is Y

2
Z = X

3+9XZ
2+4Z

3 and defines the corresponding
projective curve in the projective plane. Note that we can retrieve the affine curve from
the projective curve by choosing Z to be equal to 1, i. e. evaluate the homogenous curve
in (X, Y, 1).

Now, let F be a polynomial in F[X1, X2, . . . , Xn]. The set of zeros on F is called a
hypersurface of F . This set describes the zeros of the polynomial and is therefore also
called the set of zeros of F . We denote the hypersurface of F by

V (F) = {P = (a1, a2, . . . , an) | F (P) = 0, ai ∈ F, i = 1, 2, . . . , n}

Let S = {F1, F2, . . . , Fr} be a set of polynomials where Fi is in F[x1, x2, . . . xn] for i =
1, 2, . . . , r. In a similar manner the hypersurface of the set S is defined as

V (S) = {P ∈ An(F) | F (P) = 0 ∀ F ∈ S}

Algebraic sets or affine algebraic sets in An(F) are important in algebra. They emerge
from the concept of hypersurfaces. A set X in the affine n-space is an affine algebraic
set if it is equal to the set of zeros of some set S in An(F). Hence, a set in the affine
space is algebraic if it is equal to a hypersurface of any set in F[x1, . . . , xn]. The affine
n-space is itself algebraic since we can write An = V (0). Another example is the empty
set (V (1) = ∅). By writing (p1, p2, . . . , pn) = V (x1 − p1, x2 − p2, . . . , xn − pn) we clearly see
that any point in An is an algebraic set. For algebraic sets the following hold.

Proposition 1. Let X and Y be algebraic sets in An(F). Then the union of X and Y is
also an algebraic set. Furthermore, let {Zα} be any collection of algebraic sets in An(F).
The intersection of these sets is an algebraic set.

An affine algebraic set A is reducible if A can be written as the union of two algebraic
sets A1 and A2 neither equal to A.

Definition 2. An affine algebraic set A is irreducible if for any algebraic sets A1 and A2,
if A = A1 ∪ A2 then either A1 = A or A2 = A.

Any affine algebraic set can be written as a union of a finite number of irreducible affine
algebraic sets.

An irreducible algebraic set is called a variety. For a nonempty variety V we define its
coordinate ring as

Γ(V) = F[X1, X2, . . . , Xn]/I(V)

4

Since I(V) is a prime ideal an affine variety, Γ(V) is a domain. For Γ(V) we can form the
function field of V by

K(V) = {z | z = a

b
for a, b ∈ Γ(V) with }

This is the field of rational functions. The requirement that every element in K(V) must
be on the form a/b ensures that elements in the same equivalence class evaluates to the
same value. The local ring OP (V) is the set of all rational functions on V which are defined
on P .

For a rational function f on V we say that f is defined at a point P if for some
a, b ∈ Γ(v), f = a

b and b(P) �= 0. If a(P) = 0, f has a zero at P . If f is not defined for a
point P in V , we say that f has a pole at this point and P is a singular point. The set of
points P ∈ V where a rational function is not defined is called the pole set. Any rational
function has the same number of zeros and poles when counted properly which means that
we need to consider the multiplicity of the zeros and poles.
Example 2. Again we consider the equation Y

2 = X
3 + 9X + 4. Consider the rational

function 1/y. Since we can write
1
y

= Z

Y
(2.1)

Since for P∞ = (0 : 1 : 0), Z(P∞) = 0 and Y (P∞) = 1, 1/y has a zero at P∞.
In a similar manner, as for the affine space, a subset X in Pn(F) is a projective algebraic

set if there exists a set of homogeneous polynomials S in F[X1, X2, . . . , Xn+1] such that
X = V (S) = {P ∈ Pn(F) | F (P) = 0 ∀F ∈ S}

The same properties as for affine sets hold for projective algebraic sets. And in a similar
manner we can define the function field of projective variety.

We define algebraic curves as
Definition 3. An affine (projective) algebraic curve χ is defined to be the zero set of a
polynomial (homogenous polynomial) in A2 (P2), i. e.

χ : {f(X, Y) = 0} ∈ A2 (χ : {f(X, Y, Z) = 0} ∈ P2)
The F-rational points of χ are the solutions of F (X, Y) = 0 (F (X, Y, Z) = 0) with X, Y ∈ F.
The set of F-rational points is denoted χ(F).
Example 3. Consider the elliptic curve E given by Y

2 = X
3 +9X +4(mod 13). By finding

points so that the polynomial f(X, Y, 1) = Y
2 − (X3 + 9X + 4) evaluates to zero, we find

that this curve has 13 rational points in F13 plus a point a infinity P∞:
P∞ = (0 : 1 : 0) P4 = (1 : 12 : 1) P8 = (8 : 4 : 1) P12 = (11 : 11 : 1)
P1 = (0 : 2 : 1) P5 = (2 : 2 : 1) P9 = (6 : 12 : 1) P13 = (4 : 0 : 1)
P2 = (0 : 11 : 1) P6 = (2 : 11 : 1) P10 = (8 : 9 : 1)
P3 = (1 : 1 : 1) P7 = (6 : 1 : 1) P11 = (11 : 2 : 1)

5

To help count multiplicities of points at a rational curve we introduce the order function.
For a rational function f , the order function ordP (f) gives us the multiplicity of f at the
point P . For an element x = f �

g� in K(χ) = {f
g | f, g ∈ χ}, P in χ and a non-zero c ∈ F the

order function has the following properties:

ordP (x) = ordP (f �) − ordP (g�)
ordP (f � + g

�) ≥ min{ordP (f �), ordP (g�)}
ordP (c) = 0

The order function can also determine the poles and zeros of a function. Let x and P be
as above. Then, if the order of x at a point P is ordP (x) > 0 then f has a zero at P . On
the other hand, for x to have a pole at P , ordP (x) is negative. If ordP (x) ≥ 0 then x is
said to be regular or defined at P , and we can evaluate x(P). Otherwise x has a pole at P

and we write x(P) = ∞.

Example 4. We look at the curve E from Example 3. Consider the functions x and y in
the function field of E. These functions can be written

x = X

Z
and y = Y

Z
(2.2)

If we consider the points P1 = (0 : 2 : 1), P2 = (0 : 11 : 1), P13 = (4 : 0 : 1) and
P∞ = (0 : 1 : 0) we obtain that

ordP1(x) = 1 ordP2(x) = 1 ordP∞(x) = −2
ordP13(y) = 3 ordP∞(y) = −3

This implies that x has a zero of order 1 at P1 and P2 and a pole of order 2 at P∞ while
y has a zero of order 3 at P13 and a pole of order 3 at P∞.

2.2 Explicit Families of Curves

Error-correcting codes derived from algebraic curves are what we refer two as algebraic
geometry codes. Here two families of curves which are commonly used to build algebraic
geometric codes are defined. For both these families of curves we derive the group law on
their points.

2.2.1 Elliptic Curves

The first family of curves we will discuss are the elliptic curves. Elliptic curves are smooth
curves with a specific base point. These curves are important for algebraic geometry codes
because of the group law that exists on their points.

6

An elliptic curve denoted E over a finite field F with characteristic that are neither 2
nor 3 is defined as

y
2 = x

3 + ax
2 + bx + c

with coefficients a, b and c in F. The discriminant of E is ∆ = −16(4a
3 + 27b

2). For a
smooth curve the discriminant must be different from zero which means that a and b must
satisfy the condition that ∆ �= 0. By applying the Riemann-Roch theorem, the equation
for an elliptic curve with coefficients in any field can be represented as

E : y
2 + a1xy + a3y = x

3 + a2x
2 + a4x + a6 (2.3)

This is what we call the Wierstrass representation for elliptic curves. This is the non-
homogeneous representation of the Wierstrass equation. As well as containing all the
points satisfying the Wierstrass equation, elliptic curves also contain an extra point P∞ =
(0 : 1 : 0) at infinity. When E is defined over a finite field F, the coefficients a1, . . . , a6 are
in F. The homogeneous representation of the Weierstrass representation is

Y
2
Z + a1XY Z + a3Y Z

2 = X
3 + a2X

2
Z + a4XZ

2 + a6Z
3

This representation has the same base point as the non-homogeneous with coefficients
a1, . . . , a6 in F̄.

For a curve E ⊂ P2 given by the Wierstrass representation, E consist of all points which
satisfies F (x, y) = y

2 +a1xy +a3y −x
3 −a2x

2 −a4x−a6 = 0 and the point P∞ = (0 : 1 : 0)
at infinity. The set of points on an elliptic curve E over the field F is

E(F) = {(x, y, 1) | F (x, y) = 0} ∪ {(0 : 1 : 0)}

Any line L in the projective plane, L intersects E in exactly three points. If L is a tangent to
a point on the curve, this point counts twice. The fact that, when counting multiplicities,
the intersection number between E and L is exactly 3 is a special case of Bézout’s theorem
(see [1]).

When we are familiarized with the general equation for elliptic curves, an addition law
for points on the curve can be found. The decomposition law for elements in E is denoted
⊕ and defined as follows:

Definition 4. Let two points P and Q on an elliptic curve E lie on the line L. Denote the
third point in the intersection between L and E by R. Let the line L

� go through R and
P∞. The third intersection point between L

� and E is then defined to be P ⊕ Q.

The operator ⊕ have the following properties:

Proposition 2. Let E ⊂ P2 be an elliptic curve defined by the Weierstrass formula over a
finite field F. Then

7

1. If a line L ⊂ P2 intersects E in P, Q, R (not necessarily distinct points), then

(P ⊕ Q) ⊕ R = P∞

2. There exist an element P∞ so that for all points P on E, P ⊕ P∞ = P .

3. P ⊕ R = R ⊕ P for all points P, R ∈ E.

4. For all points P on E there is another point denoted �P so that

P ⊕ (�P) = 0 (2.4)

5. Let P, Q, R be points on E. Then

(P ⊕ Q) ⊕ R = P ⊕ (Q ⊕ R) (2.5)

For a proof see [25]. By checking the axioms that define an abelian group, it is easily seen
that the points on E is an abelian group with P∞ as the identity. As long as it is clear that
we use the group operations ⊕ and � we use + and − respectively for simplicity.

To make it easier to use points on an elliptic curve to construct algebraic geometry
codes, we develop equations for the operations in Proposition 2. First a formula for calcu-
lating the inverse of a point is found. Let P0 be a point on an elliptic curve E given by the
Weierstrass equation:

F (x, y) = y
2 + a1xy + a3y − x

3 − a2x
2 − a4x − a6 = 0 (2.6)

Let P0 = (x0, y0) be a point in E(F). This means that F (x0, y0) = 0. Let L be the line
which intersects in P0 and P∞. This line must intersect E in a third point which we denote
by R. By part 1) and 2) of Proposition 2 we have that

P∞ = (P0 + P∞) + R = P0 + R

Thus R must be equal to −P0 by (2.4). This implies that −P0 also lie on L. Clearly L

must be given by L : x − x0 = 0. By substituting x = x0 into (2.6) we obtain

y
2 = (x3

0 + a2x
2
0 + a4x0 + a6) − (a1x0 + a3)y (2.7)

Clearly y0 is a solution to this equation since P0 = (x0, y0) is a point on E . Since −P0 is
on L, the x-coordinate of −P0 must be x0. Thus another solution of the equation above is
y

�
0, where y

�
0 is the y-coordinate of −P0. To determine y

�
0 we write

F (x0, y) = c(y − y0)(y − y
�
0)

8

Figure 2: Addition of two distinct points on the elliptic curve E : {y
2 = x

3 − x + 1} �{P∞}
over the reals. The points P , Q and R lie on the same line which mean that they add up
to P∞. We see that −R is equal to P + Q.

The constant c must be equal to 1. Hence we have F (x0, y) = y
2 −y0y

�
0 +y

�2
0 . By comparing

this result with (2.7), we obtain that y
�
0 is equal to −(y0 + a1x0 + a3). Hence

−P0 = −(x0, y0) = (x0, −(y0 + a1x0 + a3)) (2.8)

Next, we want to calculate an equation for the addition of two points, say P1 = (x1, y1)
and P2 = (x2, y2) both on E . The case where x1 = x2 and P1 �= P2 is taken care of above,
and the relationship between the y-coordinate of P1 and P2 is y1 = −(y2 + a1x2 + a3). In
this case P1 + P2 must be the point at infinity.

If the x-coordinate of P1 and P2 are different, the line which intersects both P1 and P2
has the form L : y = λx + ν with slope λ = (y2 − y1)/(x2 − x1). By substituting λ, x1 and
x2 into the equation for L, the following expression for ν is obtained:

ν = y − y2 − y1
x2 − x1

x = y1(x2 − x1) − (y2 − y1)x1
x2 − x1

= y1x2 − y2x1
x2 − x1

9

What happens when x1 = x2 but P2 �= −P1? The only possible answer is that y1 and y2
must be equal, thus P1 is equal to P2. In this case L is the tangent line to E at the point
P1 with multiplicity two. When using the standard method for calculation the slope of a
tangent to a given curve at a certain point, the following is obtained

λ = 3x
2
1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3

Thus ν must be

ν = y1 − λx1 = 2y
2
1 + a1x1y1 + a3y1 − (3x

3
1 + 2a2x

2
1a4x1 − a1y1x1)

2y1 + a1x1 + a3

= (2y
2
1 + a1x1y1 + 2a3y1 − 2x

3
1 − 2a2x

2
1 − 2a2x

2
1) − (x3

1 + a3y1 + a4x1)
2y1 + a1x1 + a3

By realizing that 2a6 = 2y
2
1 + a1x1y1 + 2a3y1 − 2x

3
1 − 2a2x

2
1 − 2a2x

2
1 from F (x1, y1) = 0,

the following expression for the intersection between L and the y-axis forms

ν = 2a6 − x
3
1 + a4x1 − a3y1

2y1 + a1x1 + a3

By substitution for y = λx + ν in the polynomial F (x, y) = 0 we obtain

F (x, λx + ν) = −x
3 + (λ2 + a1λ − a2)x2 + (2λν + a3λ − a4)x + (a3ν + a6) (2.9)

The three roots of this third degree polynomial must be x1, x2 and x3 where P3 = (x3, y3)
is the third point in the intersection between L and E . Thus another representation of
F (x, λx + ν) is

F (x, λx + ν) = c(x − x1)(x − x2)(x − x3)
= c(x3 − (x1 + x2 + x3)x2 + (x1x2 + x1x3 + x2x3)x − x1x2x3) (2.10)

By comparing equation (2.9) and (2.10), the constant c must be equal to −1. Thus by
equating the coefficients in front of the second degree term the expression for x3 is

x3 = λ
2 + a1λ − (a2 + x1 + x2)

By substituting for x3 in the equation for L, we get an formula for y3

y3 = λx3 + ν

Hence we have found the three points in the intersection between the elliptic curve E and
L. Since P1, P2 and P3 add up to P∞ we obtain that

−P3 = (x3, −y3) = P1 + P2

which completes the formulas for adding points on an elliptic curve. Next we will look at
an example which uses some of the theory above.

10

Example 5. Consider the curve Y
2 = X

3 +9X +4 over F13. As seen in Example 11. This
curve has 13 rational points plus a point at infinity. P5 = (2 : 2 : 1) and P = (2 : 11 : 1) lie
on the line x = 2. Note that P6 = −P5.

Now, let us see what happens when we add two points with different x-coordinates.
Consider the points P3 = (x3, y3) = (1 : 1 : 1) and P9 = (x9, y9) = (6 : 12 : 1). Denote the
line which intersect the elliptic curve in P3 and P9 by L. We have seen that this line has
equation y = λx + ν an we get

λ = y9 − y3
x9 − x3

= 12 − 1
6 − 1 = 10(mod 13)

ν = y3x9 − y9x3
x9 − x3

= 2(mod 13)

Denote the third point in the intersection between L and the elliptic curve be P
� = (x�

, y
�).

From the formulas calculated earlier

x
� = λ

2 + a1λ − (a2 + x9 + x3) = 2(mod 13)
y

� = λx
� + ν = 11(mod 13)

Thus the third point on L is P
� = (2 : 11 : 1) = P6. Since −P6 = P5 we get

P5 = (2 : 2 : 1) = P3 + P9

2.2.2 Hyperelliptic Curves

Another family of curves often used in coding theory are the hyperelliptic curves. These
curves are nonsingular curves defined by

Definition 5. Let F be a field. Then for polynomials f and h in F[x] satisfying that f is
monic, deg(f) = 2n + 1 and deg(h) ≤ n for some n ∈ Z greater than or equal to 2, a curve
on the form

C : y
2 + h(x)y = f(x) (2.11)

is hyperelliptic over F if no point on the curve over the algebraic closure F̄ of F satisfies that
both the partial derivatives ∂

∂y (y2 + h(x)y − f(x)) = 2y + h and ∂
∂x(y2 + h(x)y − f(x)) =

h
�(x)y − f

�(x) are zero.

The conditions concerning the curve’s partial derivatives ensure that the curve is smooth,
i. e. the curve has no singularities. It is also a necessity that f has no multiple roots for
the curve to be hyperelliptic.

For hyperelliptic curves in P2(F) with coordinates (X : Y : Z)

C(F) = {(x, y) ∈ F
2 | y

2 + h(x)y = f(x)} ∪ {P∞} (2.12)

11

is the set of F-rational points on the curve. Here P∞ is equal to (0 : 1 : 0). Consider
a point P0 = (x0, y0) ∈ C(F) different from the point at infinity and another point, P =
(x0, −y0 − h(x0)). Since

(−y0 − h(x0))2 + h(x0)(−y0 − h(x0)) = y
2
0 − 2y0h(x0) + h(x0)2 − h(x0)y0 − h(x0)2

= y
2
0 − h(x0)y0

P is also a point on the hyperelliptic curve C. More specific, this point is called the opposite
of P0 and is denoted

−P0 = (x0, −y0 − h(x0))

If P0 = −P0 the point is called a Weierstrass point. Weierstrass points are points which
are fixed under the hyperelliptic involution. Clearly P0 and −P0 lie on the line x = x0.

By a change of variables and a restriction on the field F, Defintion 5. can be simplified.
We assume that the characteristic of the field F is not equal to 2 and consider the following
change in variables

x �→ x and y �→ y − h(x)
2

The change in y makes sense as long as char(F) �= 2. Under these changes

f(x) = (y − h(x)
2)2 + h(x)(y − h(x)

2) = y
2 − yh(x) + h(x)2

4 + h(x)y − h(x)2

2

= y
2 − h(x)2

4
By definition h(x) is a polynomial of degree less than or equal to n = (deg(f(x)) − 1)/2. It
follows that deg(h(x)2) = 2 deg(h(x)) ≤ 2n =. Since f(x) is a monic polynomial of degree
2n + 1 for some integer n, greater than or equal to 2, f(x) + h(x)2

/4 must also be monic
and of degree 2n+1. As long as the field which the curve is defined over have characteristic
different from 2, we can define an hyperelliptic curve as

C : y
2 = f(x) (2.13)

where f(x) is a monic polynomial of degree 2n + 1. As long as f(x) has no multiple roots,
C is non-singular.

To state the group law for hyperelliptic curves, we give a short overview of some impor-
tant results without proof. To obtain a more thorough understanding on how the group
law for this class of curves works see [26], in particular Chapter 4 and Chapter 14, or other
similar readings.

For elliptic curves, the points on the curve and a point at infinity defines an abelian
group. For the class of hyperelliptic curves, this is no longer true. Thus we need to define

12

a group on C so that we can apply the group law when adding elements on the curve. Let
C be a hyperelliptic curve over F with equation y

2 = f(x) where f(x) is a polynomial of
degree 5. By considering finite sums of points as group elements and perform addition
coefficientwise as

(P + Q) ⊕ (R + Q) = P + 2Q + R where P, R, Q ∈ C(F)

we have a solution to the problem. To prevent us from creating infinite groups and rep-
resentation of group elements which are to long, the quotient group including all sums of
points that lie on the curve is used. In other words, we build a group by taking the quotient
of the group of sums of points which lie in the intersection between the hyperelliptic curve
and a curve in the plane.

A cubic will intersects the hyperelliptic curve C : y
2 = f(x) in six points, say P1, P2,

Q1, Q2, −R1 and −R2. These points add up to the zero element, P∞, in the quotient
group. In this case we realize that each point can be represented by at most two points
that do not have the same x-coordinate and inverse y-coordinate.

Any m points on the curve gives rise to a polynomial of degree m − 1. Besides these m

points, there are max{5, 2(m−1)}−m other points of intersection between the hyperelliptic
curve and the polynomial of degree m − 1. Adding two elements are done in two steps.
First the formal sum of points is reduced. Consider the group elements P1 + P2 and
Q1 + Q2 consisting of 4 distinct points in the intersection between a cubic polynomial
and hyperelliptic curve. By the formula above, there are another 2 points of intersection
between these two curves. Denote these points by −R1 and −R2. We inflect these points
to obtain the result of the addition

(P1 + P2) ⊕ (Q1 + Q2) = (R1 + R2) (2.14)

Hence, as long as we have m > 2 points, the inverse of the sum of points obtained by
inflecting all points at the x-axis, contains fewer points. By repeating this process, a
reduced group element is found containing at most 2 points.

The general result is; for hyperelliptic curves where f(x) has degree equal to 2n + 1 for
some 2 ≤ n ∈ Z, each group element can be represented by at most n points. One might
have to apply the reduction step several times before reaching the minimal representation
of an element.

To generate the general algorithm for adding points on a hyperelliptic curve, the notion
of divisors and divisor classes are needed. Let χ be an algebraic curve over a field F. A
divisor of the curve χ is a finite linear combination of points on the curve with integer
coefficients.

Definition 6. A divisor on a curve χ is defined as a formal sum D = ΣP ∈χnP P where
nP ∈ Z and nP �= 0 for a finite number of points in χ. Here nP is the multiplicity of the
point P on the curve χ.

13

Figure 3: Example of the group law on a curve C : y
2 = f(x) over R with deg(f(x)) = 5.

Let R1 = (xR1 , yR1) and −R1 = (xR1 , −yR1). These points lie on the curve x = xR1 and
are the opposite of each other. There are 6 points in the intersection between C and a
cubic. These points add up to P∞, i. e. (P1 + P2) ⊕ (Q1 + Q2) = R1 + R2. Any line will
intersect C in 5 points.

The degree of a divisor D as in the definition above is defined to be ΣnP . In other
words the degree of a divisor is the sum of its coefficients. If all the non-zero coefficients
in D = ΣnP P are positive, the divisor is said to be effective or integral (nP ≥ 0).

Two divisors A and B of a rational curve χ are said to be equivalent or in the same
equivalence class if A = B + div(f) for some f in the function field of the curve. We write
A ≡ B when A and B are contained in the same equivalence class. Since the degree of the
divisor of a rational function is zero, the degree of all divisors in an equivalence class are
the same. A divisor D is only equivalent to zero if D = div(z) for some z ∈ K(χ).

Next we define what is called divisor class groups and semi-reduced divisors. To divisor
class group of a hyperelliptic curve is defined by the divisors of degree zero which are the
divisors on rational functions.

Definition 7. Let C be a hyperelliptic curve over F. Then the group of divisors of degree

14

0 is given by

Div0
C = {D =

�

P ∈C
nP P | nP ∈ Z,

�

P ∈C
nP = 0 such that σ(D) = D∀σ ∈ GF} (2.15)

where GF is the Galios group over F. Thus Div0
C denotes the F-rational divisors of C.

Definition 8. The divisor class group of C is the quotient group of Div0
C by the group of

principal divisors, that are divisors of degree zero resulting from rational functions. We
denote the divisor class group by Pic0

C .

Each divisor class can be uniquely defined by
�r

i=1 Pi − rP∞ where Pi is an element of
C(F) where none of the points in the sum are opposite of each other.

For curves of the form in Definition 5 the divisor class group is isomorphic to the group of
K-rational points of the Jacobian JC of C. The Mumford’s representation takes advantage
of this isomorphism. Before deriving Mumford’s Theorem we discuss the Jacobian JC of
an hyperelliptic curve C.

A semi-reduced divisor is a divisor in which no two points are the opposite of each
other. If such a divisor contains k points, the divisor is said to have weight k. If k is less
than or equal to the integer n in Definition 5, the devisor is reduced. The Jacobian of a
curve is the set of all reduced divisors on the curve. An addition operation can be defined
on a reduced divisor, which makes JC into a group (which is not possible on the curve). In
Mumford’s theorem a representation for reduced divisors is stated.

Theorem 1 (Mumford’s Theorem). Let C be a hyperelliptic curve as in Definition 5. Then
each non-trivial divisor class over F can be represented by a unique pair of polynomials u(x)
and v(x) where u, v ∈ F[x] so that

1. u is monic.

2. deg(v) < deg(u) ≤ n.

3. u | v
2 + vh − f .

Let D =
�r

i=1 Pi − rP∞, where r ≤ n, Pi �= P∞ and Pj is different from the opposite of Pi

when i �= j. Let Pi = (xi, yi). Then the divisor class of D is represented by

u(x) =
r�

i=1
(x − xi)

If Pi occurs ni times then
�

d

dx

�j

[v(x)2 + v(x)h(x) − f(x)]|x=xi
= 0 for 0 ≤ j < ni

15

The theorem tells us that each divisor class can be represented by a reduced divisor. The
second part of the theorem states that for each point Pi = (xi, yi) of D, u(xi) = 0. The last
condition gives that v(xi) = yi. A divisor class which is represented by the polynomials
u(x) and v(x) is denoted [u(x), v(x)].

Most reduced divisors have weight n. By Mumford’s Theorem, divisors containing only
a single point P = (xP , yP) is represented by [u(x), v(x)] = (x−xP , yP) . We also conclude
that there is a unique divisor of weight 0 represented by O = [u(x), v(x)] = [1, 0]. This
is the neutral element (identity element) of the addition law which will be defined on the
Jacobian. Scalar multiplication by an integer l is defined by

[l]D = D + D + . . . D� �� �
l times

If [l]D = O then D is an l-torsion divisor. For curves with deg(f(x)) = 5 and deg(h(x)) ≤ 2,
divisors in JC/Θ, where Θ is the reduced divisors of degree strictly less than 2, is of the
form

D = [x2 + u1x + u2, v0x + v1]

Cantor’s algorithm uses the representing polynomials and polynomial arithmetic over
a field F defined by Mumford’s Theorem to define the group law for hyperelliptic curves.
This is a sequence of composition and reduction, when taken into consideration that it
holds for curves defined over any field.

Algorithm (Cantor’s Addition Algorithm). INPUT: (D̄)1 = [u1, v1], (D̄)2 = [u2, v1],
which both are divisor classes of a hyperelliptic curve given by C : y

2 + h(x)y = f(x).
OUTPUT: A unique reduced divisor such that D̄ = ¯(D)1 ⊕ ¯(D)2.

1. d1 = gcd(u1, u2), i. e. d = e1u1 + e2u2

2. d = gcd(d1, v1 + v2 + h), i. e. d = c1d1 + c2(v1 + v2 + h)

3. s1 = c1e1, s2 = c1e2 and s3 = c2

4.

u = u1u2
d2 and x = s1u1v2 + s2u2v1 + s3(v1v2 + f)

d
mod u (2.16)

5.

u
� = f − vh − v

2

u
and v

� = (−h − v) mod u
� (2.17)

6. Update u = u
� and v = v

�

16

7. If deg(u) ≤ n proceed to the next step. Otherwise return to step 4.

8. Make u monic and return [u, v].

When applying this algorithm on elliptic curves, one see that it agrees with the addition
law for elliptic curves.

3 The Riemann-Roch Theorem

The main theorem of this section is the Riemann-Roch theorem. This theorem is important
for the computation of the dimension of the dimension of the space of functions with
prescribed zeros and allowed poles. The discussion of divisors will be continued here and
we define some important classes of divisors, among other the canonical divisors.

Recall that a divisor of a given curve is a formal sum of points on the curve. From
Definition 6 and the definition of the order function a divisor D can also be written as�

P ∈χ ordP P . If z is an element of the function field of χ in n variables, then the zero
divisor and the pole divisor of z is defined to be

(z)0 = ΣordP (z)>0ordP (z)
(z)∞ = ΣordP (z)<0ordP (z)

respectively . The divisor of z is defined as div(z) = (z)0 − (z)∞. As mentioned before a
rational function z has the same number of poles as zeros. Thus we obtain that the degree
of the zero divisor of z is equal to the degree of the pole divisor of z, i. e. deg((z)0) −
deg((z)∞) = 0. This implies that

deg(div(z)) = deg((z)0 − (z)∞) = 0

for a rational function z.

Example 6. Again we consider the elliptic curve Y
2 = X

3 + 9X + 4(mod 13). As seen
earlier, this curve has 13 rational points in F13, among others P1 = (0 : 2 : 1), P2 = (0 :
11 : 1) and P13 = (4 : 0 : 1) plus a point at infinity, P∞ = (0 : 1 : 0).

The intersection divisor of the elliptic curve and the curve with equation X = 0 is
P1 + P2 + P∞, with the curve Y = 0 being 3P13 and with the curve Z = 0 being 3P∞.
From Example 4, the zero and pole divisor of x and y is

(x)0 = P1 + P1 (x)∞ = 2P∞

(y)0 = 3P13 (y)∞ = 3P∞

17

Since x is the quotient between X and Z and y is the quotient between Y and Z we get
the following divisors

div(x) = P1 + P2 − P∞ div(y) = 3P13 − 3P∞
div(1

x) = −div(x) = P∞ − P1 − P2 div(1
y) = −div(y) = 3P∞ − 3P13

div(x2) = 2div(x) = 2P1 + 2P2 − 4P∞ div(xy) = P1 + P2 + 3P13 − 5P∞
div(x3) = 3P1 + 3P2 − 6P∞ div(x2

y) = 2P1 + 2P3 + 3P13 − 7P∞
div(x4) = 4P1 + 4P2 − 8P∞ div(xy

2) = P1 + P2 + 6P13 − 8P∞
div(y2) = 6P13 − 6P∞ div(1

x−4) = −div(x − 4) = 2P∞ − 2P13

Let χ be a curve over a field F and K the corresponding function field. A special
kind of divisors are the canonical divisors. These are important for the existence of the
Riemann-Roch theorem, which we will state later. A canonical divisor is defined using
derivations and differentials. All canonical divisors on a given curve are contained in the
same equivalence class, which means that all canonical divisors on a given curve have the
same degree. It can be derived that for a canonical divisor on an algebraic curve the degree
is 2g − 2. Here g is an integer called the genus. This is a notion which will be defined later
on in this section.

We want the definition of differentials and derivations on algebraic curves to be close
to the definitions in analysis. To make this happen, a derivation d is defined as a map from
a ring R to an R-module M by d(xy) = xd(y) = yd(x) for all x and y in R, here F ⊂ R.
By definition d is a F-linear map. The definition of a derivation d demands that for a ∈ F
d(a) = 0 and

d(zn) = nz
n−1

d(z)

d

�
x

y

�
= 1

y
d(x) + 1

x

−1
y2 d(y) = 1

y

�
d(x) − x

y
d(y)

�

This agrees with the well known definitions from analysis.
Let d be a derivation as above. Pick a z in the function field of the curve such that

for some f and g in the ring R, z = f/g. This implies that f = zg. The derivation of f

is d(zg) = zd(g) + gd̃(z). Hence d̃(z) = 1
g (d(f) − zd(g)). It can be shown that d̃ is a well

defined derivation.
For differentials of projective curves to behave like differentials from calculus we define

a differential of a ring R to be of the form
�

i xidyi, where both xi and yi are elements of
the ring and d is a derivation. Let F be a free R-module on the set {[x] | x ∈ R} and N a
submodule of F such that N is generated by the following elements where [x] is a symbol
for all elements x of the ring R.

(i) {[x + y] − [x] − [y] | x, y ∈ R}

(ii) {[λx] − λ[x] | λ ∈ k, x ∈ R}

18

(iii) {[xy] − x[y] − y[x] | y, x ∈ R}

Let F/N = ΩF(R) and dx the image of [x] in Ωk(R) such that the mapping

d : R −→ ΩF(R)

is defined by x �→ dx. This d is a derivation (i. e. a F-linear map). Since N ⊂ F , ΩF(R)
is also an R-module and it is called the module of differentials.

Let Ω = ΩF(K) be the space of differentials of K over F (the image of d where d : Ω −→
R). Pick an element ω �= 0 in the space of differentials. Then div(ω) =

�
ordP (ω)P .

To define the order function of ω at a place P ∈ χ, take an uniformizing parameter
t ∈ OP (χ) so that there exists an f ∈ K which satisfy ω = fdt. Then, define ordP (ω) =
ordP (f) + ordP (dt) = ordP (f). Hence, div(ω) =

�
P ∈χ ordP (f)P . Divisors of this form

are the canonical divisors. In other words, when w is a rational divisors then W = (w) are
canonical.

When working with algebraic geometry codes it is essential to be able to find functions
that only have poles at a certain set of points so the information about where things might
go ”wrong” is known. If D = ΣP ∈χnP P is a divisor of a projective curve χ, we want to
find a rational function with poles of degree no worse than nP . With this in mind, define

L(D) = {f ∈ K | ordP (f) ≥ −nP ∀P ∈ χ}

This space is often called the Riemann-Roch space. Note that the constant functions
only are contained in L(D) when D is effective. For two equivalent divisors A and B the
Riemann-Roch spaces L(A) and L(B) are isomorphic as vectorspaces.

The definition of the Riemann-Roch space is central in the main theorem of this section,
the Riemann-Roch theorem. This theorem depends on knowledge about the dimension of
the Riemann-Roch space. Denote the dimension of L(D) by l(D). To help determine the
size of the basis of L(D) we introduce Riemann’s theorem which gives a lower bound for
l(D).

Theorem 2 (Riemann’s). For all divisors D on an algebraic curve χ there exists a g ∈ Z
such that l(D) ≥ deg(D) + 1 − g. The smallest such integer g is called the genus of χ.

The boundary on l(D) depends on an integer g which is called the genus of an algebraic
curve. The genus is a topological invariant which is defined for each curve F (x, y) = 0.
When we see the curve as a Riemann surface, the genus represents the number of holes in
the curve. For lines, conics and singular cubics the genus is zero. While non-singular cubics
have genus 1. To determine the genus of a non-singular curve the following proposition
may be applied

Proposition 3. For a non-singular plane curve of degree d the genus is

g = (d − 1)(d − 2)
2

19

Thus, for non-singular curves the genus increases with the degree of the defining polynomial.

Example 7. The elliptic curve E : Y
2 = X

3 + 9X + 4 is nonsingular with defining
polynomial of degree 3. Thus we can apply Proposition 3 and get that g = ((3 − 1)(3 −
2))/2 = 1. Hence E has genus 1.

When we know have defined the invariant g, we can adapt Definition 5 to depend on
the genus.

Example 8. Hyperelliptic curves are nonsingular curves of genus greater than or equal to
2 defined as follows: For polynomials f and h in F [x] satisfying that f is monic, deg(f) =
2g + 1 and deg(h) ≤ g a curve

C : y
2 + h(x)y = f(x)

is called a hyperelliptic curve of genus g over F if no point on the curve over the algebraic
closure F̄ of F satisfies both the partial derivatives ∂

∂y (y2 + h(x)y − f(x)) = 2y + h = 0
and ∂

∂x(y2 + h(x)y − f(x)) = h
�(x)y − f

�(x) = 0. Note that if g = 1, this also agree with
the definition for elliptic curves.

All curves of genus 2 are hyperelliptic curves. These are the curves where h(x) has
degree at most 2 and f(x) is monic and has degree 5. For curves with genus strictly larger
than 2 we can not necessarily draw the conclusion that the curve is hyperelliptic.

The next theorem gives a formula for the dimension of the Riemann-Roch space of a
divisor on a given curve.

Theorem 3 (Riemann-Roch). Let W be a canonical divisor on an algebraic curve χ with
genus g. Then for any divisor D on the same curve, the following holds

l(D) − l(W − D) = deg(D) + 1 − g (3.1)

This result was used to develop some of the new aspects in coding theory.
In the next example we will use some of the theory discussed above

Example 9. Let E be the elliptic curve from Example 3. This curve has genus 1 and 13
rational points in F13, among others P1 = (0 : 2 : 1), P2 = (0 : 11 : 1) and P13 = (4 : 0 : 1),
and a point at infinity, P∞ = (0 : 1 : 0). We look at the divisor G = 8P∞ and find the
basis of the Riemann-Roch space L(G). By definition the degree of G is 8. The Riemann
theorem tells us that l(D) = 8.
Since functions in L(G) must have a pole at P∞ with order less than or equal to 8 we get
the following basis:

L(G) = {1, x, x
2
, x

4
, y, y

2
, xy, x

2
y}

20

Note that the functions x
3 and xy

2 also are elements in L(G). But since x
3 can be written

as y
2 − (9x + 4) and xy

2 can be written as x
4 + 9x

2 + 4x they are linear combinations of
other elements in L(G) and hence not elements of the basis of L(G).

Now consider the divisor F = 3P13. Since the curve E has genus 1 Riemann’s theorem
tell us that l(F) is 3. The vector space L(F) contains functions which have a pole at P13
of order 1, 2 or 3. From Example 6 we thus have that a basis for this vector space is

L(F) =
�

1,
1
y

,
1

x − 4

�

Note that 1 is an element of L(G) and L(F) since both G and F are integral divisors.
The third and last divisor we look at is G−F = 8P∞ −3P13. The degree of this divisor

is 8 − 3 = 5. Again we apply the Riemann theorem and get that l(G − F) = 5. Hence we
search for a basis of L(G − F) with 5 elements. Since G − F is not effective the constant
functions are not in the basis of L(G − F) since functions f ∈ L(G − F) have to satisfy
ordP∞(f) ≥ −8 and ordP13(f) ≥ 3. With the information from Example 6, we obtain that

L(G − F) = {y, y
2
, xy, xy

2
, x

2
y}

As before, the set of all rational differential forms on some curve χ is denoted by Ω(χ).
For a divisor D we define

Ω(D) = {w ∈ Ω(χ) | (w) − D ≥ 0}

The dimension of Ω(D) is denoted δ(D) and called the index of speciality. The dimension
of Ω(D) is always δ(D) = l(W − D) where W is a representative of the equivalence class of
canonical divisors. From the definitions above we can derive that Ω(X) is always non-zero
for a canonical divisor.

Another important class of divisors in the search for decoding algorithms for algebraic
geometry codes is what we call special divisors. Let χ be an algebraic curve and W its
equivalence class of canonical divisors, then a special divisor is defined as follows

Definition 9. A divisor E on χ is called special if it is effective and l(W − E) is non zero.

It follows from this definition that a special divisor is linearly equivalent to W − D as long
as D is any other effective divisor of χ. The next theorem gives an upper bound for a
special divisor

Theorem 4 (Clifford’s Theorem). For a special divisor E on the curve χ the following
hold

deg(E)
2 − (l(E) − 1) ≥ 0 (3.2)

To find a lower bound on the dimension of a special divisor on a curve we define Clifford’s
defect

21

Definition 10. For a curve χ, let ε define a finite set of divisors on this curve. The
Clifford’s defect σ(ε) of the set ε is defined as

σ(ε) = max
E∈ε

{deg(E)
2 − (l(E) − 1)} (3.3)

In this text we will consider sets ε = {E0, E1, . . . , E2g−2} where Ei is a special divisor with
deg(Ei) = i for i = 0, 1, . . . , 2g − 2. In the following way we define two subsets of ε

E ∈ ε0 ⇐⇒ deg(E) ≡ 0(mod 2)
E ∈ ε1 ⇐⇒ deg(E) ≡ 1(mod 2)

Hence we can write σ0 = σ(ε0) and σ1 = σ(ε1).

4 Algebraic Geometry Codes

Coding theory is primarily concerned with dealing with errors introduced by noise. Here
we will discuss some basic notions in coding theory and define algebraic geometry codes.

A block code C is defined to be a linear subspace of Fn
q for a field F. An element x ∈ C

is called a code word and the size of the block code is the number of code words. A code
word of length n over the alphabet Fn

q is a vector or n-tuple (x1, x2, . . . , xn) where xi ∈ F
for 1 ≤ i ≤ n. If C is a code of length n and dimension k as a Fq-vector space we say that
C is an [n, k]-code.

The minimum distance d(C) of a code is an important parameter in coding theory. The
minimum distance is defined as the smallest distance between two distinct code words. By
finding d(C) we obtain a measure of how good the code is at detecting and correcting
errors. A code with d(C) = d can find d − 1 errors and correct up to

t = �(d − 1)/2� (4.1)

errors. Thus the error correcting capability of a code is determined by its minimal distance
and we say that C is t-error correcting when t is defined as above, i. e. t is the error-
correcting rate of the code. To create good codes this rate should be as large as possible.
Hence we search for codes with minimum distance as large as possible. In other words, we
search for codes where the code words differ as much as possible.

To calculate d(C) we use the Hamming distance on Fn
q . Let x = (x1, . . . , xn) and

y = (y1, . . . , yn) be elements in Fn
q . The Hamming distance between x and y is defined as

d(x, y) =| {i | xi �= yi} |. Hence the distance between two words in Fn
q is defined as the

number of positions in which the elements differ. The minimum distance is the smallest
Hamming distance between any two distinct elements of the code. Thus,

d(C) = min{| {i | xi �= yi} |}

22

The space of which all code words of some given length are situated is the so called
Hamming space. The dimension of this space is the number of digits in the code words
contained in the space. The separation of the points is measured by the Hamming distance.
The Hamming sphere is the set of all words in the Hamming space whose Hamming distance
from some given word (then center of the sphere) does not exceed some given value (the
Hamming radius).

Another notion commonly used in coding theory is the weight of an element in Fn
q . This

size is defined as the distance between a code word and the zero-element, i. e. the number of
non-zero coordinates. Let x ∈ Fn

q , then the weight of x is wt(x) = d(x, 0) =| {i | xi �= 0} |.
From this definition we can also define the minimum distance of C to be the smallest
non-zero weight.

d(C) = wt(C) = min{d(x, y) | x �= y, x, y ∈ C}

Since C is a vector space, we can assign a basis of size k to the code. If C ⊂ Fn
q is an

[n, k, d]-code, the generator matrix G of C is a k × n-matrix whose rows are elements in
the basis of C. The generator matrix is a matrix whose rows are independent and span
the code. For each generator matrix there exists an (n − k) × n matrix H, called a parity
check matrix. This matrix is defined by

C = {x ∈ Fn
q | Hx

T = 0}

Clearly the parity check matrix checks whether an n-tuple in Fn
q is a code word of C or

not. The rows of H is independent which means that the parity check matrix must be a
generator matrix for another code. This code is called the dual of C and defined as

CΩ = {u ∈ Fn
q | �u, c� = 0 ∀ c ∈ C}

where �u, c� =
�n

i=1 uici is the canonical inner product of u and c in Fn
q . The dual of C is

the space of all vectors orthogonal to C. A dual of an [n, k]-code with generator matrix G

and parity check matrix H is an [n, n − k]-code with generator matrix H and parity check
matrix G. If the generator matrix can be written as G = [Ik | P], the parity check matrix
is H = [−P

T | In−k]. The dimension of a code and the dimension of its dual always add
up to the length n and (CΩ)Ω = C. If C = CΩ then C is called a self-dual code.

A problem when constructing codes is to find codes whose dimension and minimum
distance are large compared with the length of the code. If the dimension of a code is
large, the minimum distance should be small. Consider a [n, k, d]-code C. Define

L = {(x1, . . . , xn) ∈ Fn
q | xi = 0 for all i ≥ d}

This is a linear subspace of Fn
q . This means that every element in L has weight less than

or equal to d − 1 and it follows that L ∩ C = 0. Since dim(C) = k and dim(L) = d − 1 we

23

get that

k + (d − 1) = dim(C) + dim(L) = dim(C + L) + dim(C ∩ L)
= dim(C + L) ≤ n

which implies

d ≤ n + 1 − k

This is what we call the singleton bound for the minimal distance and it provides an upper
bound for the dimension of the code and the minimum distance. With this bound we
have confirmed the relationship between the minimum distance and dimension of a code
as discussed above. In general this is a weak bound. But codes satisfying k + d = n + 1 are
optimal codes and called maximum distance separable (MDS) codes. Usually it is much
harder to find a lower bound for d and k than obtaining the upper bound. This leads to
a discussion of algebraic geometry codes or what we also call Goppa codes. What makes
Goppa codes so interesting is the fact that there exists a good lower bound for the minimum
distance (and the dimension of the code).

We denote an algebraic geometry code by CL(D, G) with respect to an algebraic curve
χ with divisors D and G. CL(D, G) is a set of n-tuples from the projective space of the
form (f(P1), f(P2), . . . , f(Pn)). Here {P1, . . . , Pn} is a set of n fixed points, where Pi ∈ Fn

q

for i = 1, . . . , n and f are functions with given poles and zeros. This is shown in the
following definition:

Definition 11. Let G and D = P1 + . . . + Pn be divisors of a curve χ where Pi are n

distinct places of degree 1 such that supp(G) ∩ D = ∅. Let L(D) be the k-dimensional
vector space which contains elements of the set {f ∈ Fk

q | div(f) ≤ D}.Then the algebraic
geometry code CL(D, G) ∈ Fn

q is defined as follows:

CL(D, G) = {(x(P1), . . . , x(Pn)) | x ∈ L(G)} (4.2)

Theorem 5. Let G and D = P1 + . . . + Pn be divisors on a nonsingular curve χ over
Fk

q where the Pi’s are distinct Fq-rational points such that D ∩ supp(G) = ∅. Assume that
deg(G) < n so that the evaluation map evP from L(G) to CL(D, G) is injective. Then

1. CL(D, G) is an [n, k, d] code with d ≥ n − deg(G) and k = l(G) ≥ deg(G) + 1 − g

which implies k + d ≥ n + 1 − g.

2. If we also assume that 2g − g < deg(G) < n, then k = deg(G) + 1 − g.

24

3. If {f1, . . . , fk} is a basis for L(G) then

A =





f1(P1) f1(P2) · · · f1(Pn)
f2(P1) f2(P2) · · · f2(Pn)

.

.

.
.
.
.

.

.

.

fk(P1) fk(Pn) · · · fk(Pn)





is a generator matrix for the algebraic geometry code CL(D, G)

Proof. (Theorem 5) To prove the first part of the theorem note that evD is an surjective
linear map from L(G) to CL(D, G). Hence

Ker(evD) = {f ∈ L(G) | ordPi(f) > 0 , i = 1, 2, . . . , n} = L(G − D)

Thus it follows that

k = dim(CL(D, G)) − dim(L(G − D)) = l(G) − l(G − D)

Assume that CL(D, G) is non-zero. Choose any f ∈ L(G) with wt(evD(f)) = d. Then,
exactly n − d places, say Pi1 , . . . , Pin−d in supp(G) are zeros of f and 0 �= f ∈ L(G −
(Pi1 , . . . , Pin−d)). Since this Riemann-Roch space is non-empty the degree of the divisor
must be positive:

0 ≤ deg(G − (Pi1 , . . . , Pin−d)) = deg(G) − (deg(Pi1) + . . . + deg(Pin−d))
= deg(G) − n + d

Which leads to d ≥ n − deg(G).
Now, assume that 2g − 2 < deg(G) < n. For a canonical divisor W of χ, deg(W) =

2g − 2. Since deg(G) > 2g − 2

deg(W − G) = deg(W) − deg(G) = 2g − 2 − deg(G) < 0

By the definition of the Riemann-Roch space L(W − G) = 0 and l(W − G) = 0. Hence the
Riemann-Roch theorem implies

l(G) = deg(G) + 1 − g + l(W − G) = deg(G) + 1 − g

We need the evaluation map evP to have a trivial kernel. Choose any f ∈ L(G) so that
evD = 0. It follows thatf(Pi) = 0 for i = 1, . . . , n. Thus Pi is a zero of f and the coefficient
in front of Pi is non-zero in div(f). Since Pi is not an element in the support of G

div(f) + G − P1 + . . . − Pn ≥ 0

By the definition of the Riemann-Roch space we have f ∈ L(G − P1 + . . . − Pn). However,
the degree of G is less than n and deg(D−P1 + . . .−Pn) = deg(D)−deg(P1 + . . .+Pn) < 0.

25

It follows that L(G − P1 + . . . − Pn) = {0} and f must be the zero element. Hence the
kernel of the evaluation map evD is zero.

Since the only the zero element is mapped to zero, the dimension of L(G) is equal to
the dimension of CL(D, G) and k = deg(G) + 1 − g which proves the second part of the
theorem.

By definition a generator matrix of an [n, k]-code C is an k ×n-matrix whose rows form
a basis for C. Since the kernel of the map evP is zero we get

evD(L(G)) = CL(D, G) � L(G)/Ker(evD) = L(G)

An isomorphism between two vector spaces maps the basis in one vector space to the basis
of the other vector space. Since {f1, f2, . . . , fk} is a basis for L(G),

{evD(f1), evD(f2), . . . , evD(fk)}
={(f1(P1), f1(P2), . . . , f1(Pn)), . . . , (fk(P1), fk(P2), . . . , fk(Pn))}

is a basis for CL(D, G). And the matrix A is a generator matrix for CL(D, G) and we have
proved the last part.

Remark. We call d
∗ = n − deg(G) the designated minimum distance of CL(D, G). Hence

we say that the designed error correction bound is �(d∗ − 1)/2�.

A nice example of algebraic geometry codes are the Reed-Solomon codes. These error-
correcting codes were invented by Irving S. Reed and Gustave Solomon. These codes are
widely used in coding theory mainly due to their ”good” parameters (good lower minimal
distance) and easy decoding process. What is called a Cross Interleaved Reed-Solomon
code is used in CD’s to make the sound perfect even though the surface may be partly
destroyed or affected. The code protect against scratches, cracks and dirt. This code is
quite effective and may correct up to four thousand errors which corresponds to a crack of
size about two and a half millimeter. The next example shows how to build such codes.

Example 10. Let n = q − 1 and t ∈ Fq be a primitive element in the multiplicative group
F×

q . This means that F×
q = {t, t

2
, t

3
, . . . , t

n = 1}. Let k ∈ Z be such that 1 ≤ k ≤ n. We
then define the k-dimensional vector space Lk by {f ∈ Fq[X] | degf ≤ k − 1}. Define the
evaluation map ev by

ev : Lk −→ Fn
q

ev(f) �→ (f(t), f(t2), . . . , f(tn))

This map is both Fq linear and injective. Hence

Ck = {f(t), f(t2), . . . , f(tn) | f ∈ Lk} (4.3)

26

is an [n, k]-code over Fq and is what we call a Reed-Solomon code. The weight of a code
word in the Reed-Solomon code is

wt(c) = n− | {i ∈ {1, . . . , n} | f(ti) = 0} |≤ n − deg(f) ≤ n − (k − 1)

Which implies that

d ≤ n − k + 1

By the singleton bound another restriction on d is d ≥ n + 1 − k. Hence d = n + 1 − k for
Reed-Solomon codes which implies that all Reed-Solomon codes are MDS codes.

We denote a Reed-Solomon code by RS(n, k). Each such code can correct up to t errors
where t depends on n and k in the following way:

t = 1
2(n − k)

These linear block codes are based on finite field arithmetic where each code word is
generated using a generator polynomial, g(x). This means that all valid code words c(x)
can be divided by the generator polynomial, i. e. c(x) = j(x)g(x) where j(x) is a polynomial
called the information block. The encoder in these codes takes a block of digital data and
adds some redundancy by adding extra bits to the information word. In other words the
encoder takes k data symbols and adds some parity symbols to make a code word of n

symbols.

Elliptic curves are well classified in terms of their isomorphism classes and structures.
This make them useful when constructing algebraic geometry codes. Say E(Fq) is an
elliptic curve over a finite field Fq. Let P1, P2, . . . , Pn be Fq-rational points and P∞ the
point at infinity. For some positive integer m we choose a divisor G = mP∞. Another
divisor chosen is D = P1 + . . . + Pn. From these divisors we can build the code CL(D, G)
over Fq. This code have parameters [n, m, d ≥ n − 1] where | n − (q + 1) |≤ �2√

q�. In the
next example we build an algebraic geometric code over an elliptic curve over the field F13

Example 11. Again we consider the the elliptic curve give by E : {Y
2 = X

3+9X+4}∪{(0 :
1 : 0)} over the finite field with 13 elements. As we saw in Example 9 this curve has 13
rational points in F13 and a point a infinity P∞. To build a code over this curve, choose
the divisor G = 8P∞ and D = P1 + P2 + . . . P12. As seen before the basis of L(G) is
{1, x, x

2
, x

4
, y, y

2
, xy, x

2
y}. Thus the code CL(D, G) is constructed by the evaluation map

evD : L(G) −→ Fn
q

x ∈ L(G) �→ (x(P1), x(P2), . . . , x(P12))

27

From this we can calculate generator matrix A for the code:

A =





1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 2 2 6 8 6 8 11 11
0 0 1 1 4 4 10 12 10 12 4 4
0 0 1 1 3 3 9 1 9 1 3 3
2 11 1 12 2 11 1 4 12 9 2 11
4 4 1 1 4 4 1 3 1 3 4 4
0 0 1 12 4 9 6 6 7 7 9 4
0 0 1 12 8 5 10 9 3 4 8 5





Here the first row of the matrix is 1 (first element of the basis of L(G)) evaluated in
P1, . . . , Pn, the second row is x (second element of the basis of L(G)) evaluated in P1, . . . , Pn,
the third row is x

2 (third element of the basis of L(G)) evaluated in P1, . . . , Pn etc.
The length of CL(D, G) is n = 12, the dimension is k = 8 and designed minimum

distance d
∗ = 4. By calculating the Gauss-Jordan form of A, A can be written on the form

[Ik | P]. It follows that the parity check matrix of CL(D, G) is

H = [−P
T | In−k] =





5 8 2 11 1 12 12 0 1 0 0 0
3 10 3 10 4 9 0 12 0 1 0 0
2 1 11 11 1 2 1 9 0 0 1 0
8 8 8 1 4 12 1 9 0 0 0 1





It is easy to verify that A · H
T = 0.

5 Decoding of BCH Codes

In this we give section a short discussion of cyclic codes. An example of such codes are the
BCH codes. One of the advantages with BCH codes is that they are easy to decode. This
is done by a method called syndrome decoding. There exist several different algorithm for
decoding BCH codes which use syndrome decoding. Here we show how to decode BCH
codes by using the theory of linear feedback shift registers (LFSR).

5.1 Cyclic Codes and BCH Codes

A code C of length n over Fq is cyclic if for each code word c = c0c1 . . . cn−2cn−1 in C,
cn−1c0c1 . . . cn−2 is also a code word of the same code. This means that all cyclic shifts of
a code word are elements in the same cyclic code. The vector cn−1c0c1 . . . cn−2 is obtained
from c by shifting the coordinates i �→ i + 1(mod n). Usually we identify the vector space
Fn

q with the polynomial vector space Fn
q [x] since there is an isomorphic correspondence

between vectors in Fq and polynomials in Fq[x]. Thus

c = c0c1 . . . cn−2cn−1 ←→ c(x) = c0 + c1x + . . . + cn−2c
n−2 + cn−1c

n−1

28

The cyclic shifts in Fq[x] are defined with multiplication by modulo (xn − 1). By

xc(x) = c0x + c1x
2 + . . . + cn−2x

n−1 + cn−1x
nmod(xn − 1)

= cn−1 + c0x + c1x
2 + . . . + cn−2x

n−1

xc(x) is also in C. This leads to the study of codes in the residue class Fq[x]/(xn −1). Since
the finite field Fq is a PID (principal ideal domain), ideals in Fq[x]/(xn − 1) are principal.
Thus cyclic codes can be seen as principal ideals in Fq[x]/(xn − 1).

BCH codes or Bose-Ray-Chaudhuri-Hocquenghem codes are cyclic codes which still (to
a certain degree) are used in practice. The motivation for the discovery of BCH was the
need to construct a cyclic code C over Fq of length n with similarly high minimum distance
and high dimension. These codes have a reliable lower bound on the minimum distance
called the BCH bound (which also provide us with a lower bound for other cyclic codes).

Proposition 4. Let C be a cyclic code over Fq of length n and suppose that the minimum
distance of the code is d. Let T be the defining set of C containing δ −1 elements for δ ∈ Z.
Then d ≥ δ

For proof and existence of the BCH bound see Section 5 of Chapter 4 in [4].
A BCH code with designed distance δ is defined to be the cyclic code of length n

over Fq where the generator polynomial g(x) is the least common multiple of the minimal
polynomials α

l
, α

l+1
, . . . , α

l+δ−2 for some l ∈ Z where α is a n
th root of unity. A cyclic

code with l equal to 1 is called a narrow-sense BCH code . The minimum distance of a
BCH code with designed distance δ is at least δ.

5.2 The Berlekamp-Massey Decoding Algorithm

BCH codes are simple cyclic codes over a finite field Fq, easily constructed by help the of a
generator polynomial as shown in Section 5.1. Several algorithms for decoding these codes
exist. For example the Euclidean algorithm discovered by Sugiyama. For an overview of
this algorithm see [23]. We derive the Berlekamp-Massey algorithm for decoding BCH
codes using the theory of linear feedback shift registers.

The standard Berlekamp-Massey algorithm computes a minimal polynomial P (x) of a
linearly recurrent sequence, S(x) =

�∞
i=0 aix

i where ai is an element of an arbitrary field.
If the minimal polynomial is P (x) =

�d
i=0 pix

i then P (x) is the smallest polynomial such
that

�d
i=0 pjx

j+i is zero for all j ∈ N. To find the smallest such polynomial we use some
of the theory behind LFSR’s.

5.2.1 Linear Feedback Shift Register

Before deriving the Berlekamp-Massey decoding algorithm we look into linear feedback
shift register (LFSR). The problem of finding the shortest LFSR that generates a given
finite sequence is studied.

29

An LSFR consists of several parts or steps. First we have the shift register of length,
say l. This consists of a row of l registers or what we call memory cells. We label them
from left to right by Rl, Rl−1, . . . , R2, R1. Each cell is capable of storing one bit. Let σi be
the value in the i

th cell (from the right). To control movement between the memory cells,
an electronic clock is used. The first pulse of the clock moves the value σl in the left-most
entry Rl to Rl−1. The value from this register is then moved to Rl−2 and so on. It stops
when σ2 is moved to the register currently holding σ1 and σ1 gets tapped to the output
sequence. The cell Rl is thus left empty. For a value to fill this register we require that
this value is a linear combination of the values σj for j = 1, 2, . . . , l.

For this to work, we need what is called a tap sequence. This is an l-tuple of bits which
will be denoted (al, al−1, . . . , a2, a1). We let a1 = 1 and form

σl+1 =
l�

j=1
ajσj

This is what we call the linear feedback. When calculated, σl+1 is placed in the memory
cell Rj . The initial state σl, σl−1, . . . , σ2, σ1 is transformed to σl+1, σl, . . . , σ3, σ2. In this
step our input is σl+1 and output is σ1

An LFSR’s m
th state is denoted by sm. This is the bit string containing the values of

all registers Rj for j = 1, 2, . . . , l after m clock pulses. The initial state, or the seed, (which
is always different from the zero vector) is given by the following l-tuple:

s0 = (σlσl−1 . . . σ2σ1)

The state after one clock pulse is s1 = (σl+1σl . . . σ3σ2). In general a state m ∈ N is given
by

sm = (σm+lσm+l−1 . . . σm+1σm)

with linear feedback

σm+l+1 =
l�

j=1
ajσm+j

The above is what we call a binary recurrence relation of length l.
The method above can be translated into matrix operations. Let C be what we call a

”tap matrix” and Sm denote the ”state matrix” defined in the following way:

C =





a1 a2 a3 . . . al−1 al

1 0 0 . . . 0 0
0 1 0 . . . 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 . . . 1 0




and Sm =





σm+l−1
σm+l−2

.

.

.

σm+1
σm




(5.1)

30

Thus we can calculate the state sm+1 from sm by the equality CSm = Sm+1.
After introducing the reader to the steps of an LFSR, we now show how to find the

shortest LFSR which generates a given sequence. Let a1, . . . , aN be a sequence of length
N . We are seeking a LFSR of length L such that the first N outputs of the LFSR starting
from the initial state aL, . . . , a1 are exactly the sequence given above and L is as small as
possible. Let (L, σ(x)) denote the LFSR of length L with connection polynomial

σ(x) = 1 + σ1x + σ2x
2 + . . . + σLx

L (5.2)

Let a1, . . . , an with n ≤ N be the first n entries of the sequence of length N . Then the
shortest LFSR which generates a1, . . . , an is (L(n), σ

(n)(x)) . In this section, a technique for
finding the LFRS (L(n+1), σ

(n+1)(x)) from the LFRS (L(i), σ
(i)(x) for i ≤ n is developed.

For further use let us write σ
(n) as

σ
(n)(x) = 1 + σ

(n)
1 x + . . . + σ

(n)
l x

l where l = L(n)

The parameters l = L(n) and σ
(n)
1 , . . ., σ

(n)
l are unknown. These are determined by solving

the following set of equations such that l is as small as possible.




a1 a2 . . . al+1
a2 a3 . . . al+2
.
.
.

.

.

.
.
.
.

an−l an−l+1 . . . an




·





σ
(n)
l
.
.
.

σ
(n)
1
1




= 0 (5.3)

We denote the coefficient matrix above as A(n − l, l + 1). This is an (n − l) × (l + 1) Hankel
matrix. To choose such an l may not always be straight forward and we need to work out
the steps on how to proceed.

First we prove the following result.

Lemma 1. A(n/2, n/2) is nonsingular if and only if L(n) = n/2

Proof. Let n = 2l. We will prove that A(l, l) is nonsingular if L(2l) = l by a contradiction.
Assume that the (m+1)th row of A(l, l) is a linear combination of the first m rows (m < l),
i. e. A(l, l) is singular. By using that n = 2l in (5.3) we get





a1 a2 . . . al+1
a2 a3 . . . al+2
.
.
.

.

.

.
.
.
.

al al+1 . . . a2l




·





σ
(2l)
l
.
.
.

σ
(2l)
1
1




= 0

Since the (m + 1)th row is a linear combination of the previous rows, L(2l) ≤ m < l. This
contradicts the fact that L(2l) = l and hence A(l, l) must be non-singular.

31

For the other direction, assume that A(l, l) is non-singular. Hence all rows of A(l, l) are
linear independent of each other. If n = 2l and A(l, l) is non-singular we can solve (5.3)
uniquely for σ

(n)
1 , . . . , σ

(n)
l . Hence, it is obvious that L(2l) ≤ l. This must be an equality

since L(2l) = m < l implies that the (m + 1)th row can be written as a linear combination
of the m first rows of the l × l-matrix. Thus we have proved the lemma.

The next result is derived from Lemma 1 and states the uniqueness of an LFSR.

Corollary 1. If L(n) is less than or equal to n/2 then the LFSR (L(n), σ
(n)(x)) is unique,

i. e. if L(n) = m < n/2 then (L(n), σ
(n)(x)) = (m, σ

(2m)(x))

Note that for L(n) > n/2 the LFSR (L(n), σ
(n)(x)) is no longer unique. It can be shown

that it has a freedom 2L(n) − 1.
The function L(n) is a non-decreasing stepwise function of n. Thus it may be helpful

to know at which points this function jumps. Assume that A(l, l) is a nonsingular matrix
and increase n from 2l. Assume that L(n) = l for 2l ≤ n ≤ 2l + k − 1 and L(2l + k) > l

for k ≥ 1. With these assumptions in mind we derive that

A(l + k, l + 1)[σl, . . . , σ1, 1]T = [0, . . . , 0, d]T for d �= 0

We want to show that L(2k + 2l) = k + l. From Lemma 1 this holds when the matrix
A(l + k, l + k) is non-singular. We have that

A(l + k, l + k)





1 0 . . . 0 σl 0 . . . 0

0 . . . 0
.
.
. σl

.

.

.

0 . . . 0
.
.
.

.

.

.
. . . 0

0 . . . 0 1 σ1
.
.
.

. . . σl

0 0 1 σ1
. . .

.

.

.

.

.

.
. . . 0 0 1 . . .

.

.

.

.

.

.
. . . 0 0 0 . . . σ1

0 0 0 0 0 1





=





0 . . . 0

A(l, l)
.
.
.

. . .
.
.
.

0 . . . 0
0 . . . d

.

.

. . .
.

d





which implies that A(l +k, l +k) is non-singular and by Lemma 1 L(2l +2k) must be l +k.
Next we prove that L(2l + k) = l + k. Since L(2l + 2k) = l + k, L(2l + k) must be less

than or equal to l + k (this follows from the fact that L is an increasing function). Assume
that l < L(2l + k) = m < l + k. We then have that

A(2l + k − m, m + 1)[σ̂m, . . . , σ̂1, 1]T = 0 (5.4)

32

By multiplying (5.4) from the left by [0, . . . , 0, σl, . . . , σ1, 1] we get that

d = [0, . . . , 0, d][σ̂m, σ̂1, 1]T = 0

which contradicts the fact that d is non-zero. Thus L(2l + k) = l + k and

L(n) = l + k for 2l + k ≤ n ≤ 2l + 2k

By the above discussion we obtain then next lemma.

Lemma 2. Let n = 2l’ and n = 2l under the condition that l’ < l be the two points where
the function L(n) becomes n/2. Thus, the point l + l’ is the only point in the interval
2l’ ≤ n ≤ 2l where L(n) jumps. At this point the length jumps with l − l’ which is the same
as half of the length of the interval.

Remark. The stepwise function L(n) is not to be confused with L(D), the Riemann-Roch
space of a divisor D.

5.2.2 Berlekamp-Massey

The algorithm derived in this section is an effective method of finding the shortest linear
feedback shift register of a given sequence. We find an algorithm that calculates the LFSR
(L(n + 1), σ

(n+1)(x)) from LFSR’s (L(i), σ
(i)(x)) when σ

(n+1)(x) �= σ
(n)(x).

From Corollary 1 the above can only happen when L(n+1) > (n+1)/2. Thus, consider
an n in N such that l + l’ − 1 ≤ n < 2l. Let d(n) be the difference between an+1 and the
(n + 1)th output of the LFSR (L(n), σ

(n)(x)). Denote the most recent point where there
was an length change prior to n by k(n).

Algorithm 1 (Standard Berlekamp-Massey Algorithm). Initial conditions: If a1 �= 0 then
L(0) = 0 and L(1) = 1. In this case k(1) = 0, d(0) = a1, σ

(0)(x) = 1 and σ
(1)(x) = 1. On

the contrary, if a1 = . . . = am−1 = 0 and am �= 0 then L(0) = L(1) = . . . = L(m − 1) = 0
while L(m) = m. Other conditions in this case are k(m) = m − 1, d(m − 1) = am,
σ

(0)(x) = . . . = σ
(m−1)(x) = 1 and σ

(m)(x) = 1.

1. Compute d(n) by d(n) = an+1 + σ
(n)
1 an + . . . + σ

(n)
L(n)an+1−L(n).

2. If d(n) is 0 let L(n) = L(n + 1) , k(n + 1) = k(n) and σ
(n+1)(x) = σ

(n)(x).

3. If d(n) �= 0 calculate ∆L = n + 1 − 2L(n).

4. If ∆L > 0 then L(n + 1) = L(n) + ∆L and k(n + 1) = n.

5. If ∆L ≤ 0 then L(n + 1) = L(n) and k(n + 1) = k(n).

33

6. Update the connection polynomial by

σ
(n+1)(x) = σ

(n)(x) − (d(n)/d(k(n)))x(n−k(n))
σ

(k(n))(x)

To show the existence of the Berlekamp-Massey algorithm let n = l + l’ − 1. Since L(n) =
l’ < l = L(n + 1) it is possible that σ

(l+l’)(x) �= σ
(l+l’+1)(x). Let

σ
(l+l�)(x) = 1 + σ1x + . . . + σlx

l and σ
(l+l�−1)(x) = 1 + σ̂1x + . . . + σ̂lx

l

The above equations are solved by calculating

A(l’, l + 1)[σl, . . . , σ1, 1]T = 0 (5.5)

and

A(l, l’)[σ̂l’, . . . , σ̂1, 1]T = [0, . . . , 0, d’] for d’ �= 0 (5.6)

By considering only the last l’ equations this system of equations can be rewritten as:

A(l’, l + 1)[0, . . . , 0, σ̂l’, . . . , σ̂1, 1]T = [0, . . . , 0, d]T (5.7)

Let l” ≤ l
� be so that in the interval [2l”, 2l”], L(n) jumps at l

�� + l
�. The points in the

interval where L(n) becomes n/2 is 2l” and 2l’. By comparing (5.5) and (5.7) we derive
the following equation

σ
(l”+l’−1)(x) = 1 + σ̃1x + . . . + σ̃l”x

l”

which implies

A(l’, l” + 1)[σ̃l”, . . . , σ̃1, 1]T = [0, . . . , 0, d”]T

These set of equations can be rewritten as

A(l’, l + 1)[σ̃l”, . . . , σ̃1, 1, 0, . . . , 0]T = [0, . . . , 0, d”]T for d” �= 0

From the equations above and (5.7) we obtain the following vector, which satisfies (5.5):

[σl, . . . , σ1, 1]T = [0, . . . , 0, σ̂l’, . . . , σ̂1, 1]T − (d’/d”)[σ̃l”, . . . , σ̃1, 0, . . . , 0]T

By transforming this vector into a connection polynomial we get

σ
(l+l’)(x) = σ

(l+l’−1)(x) − (d’/d”)xl−l”
σ

(l”+l’−1)(x) (5.8)

34

Let us consider the assumption that n = l + l’ + k − 1 (or n + 1 = l + l’ + k) where k

is in the interval [1, l − l’]. We know that L(n) = L(n + 1). But there is no guarantee that
σ

(n) = σ
(n+1). To find the relation ship between these two connection polynomials write

σ
(l+l’+k)(x) = 1 + σ1x + . . . + σlx

l (5.9)
σ

(l+l’+k−1)(x) = 1 + σ
0
1x + . . . + σ

0
l x

l (5.10)

The connection polynomial in (5.9) must satisfy A(l’ + k, l + 1)[σl, . . . , σ1, 1]T = 0. In a
similar way (5.10) must satisfy A(l’ + k, l + 1)[σ0

l , . . . , σ
0
1, 1]T = [0, . . . , 0, d]T . In this case

d may or may not be equal to zero. If d is zero then the two connection polynomials are
equal. If d �= 0 then σ

(l+l’+k)(x) �= σ
(l+l’+k−1)(x) and we need a formula to determine

σ
(l+l’+k)(x).

Since l > l’ + k, we write the lower l’ + k equations of (5.6)

A(l’ + k, l + 1)[0, . . . , 0, σ̂l, . . . , σ̂1, 1, 0, . . . , 0]T = [0, . . . , 0, d]T

Thus we can find σ
(l+l’+k) by

σ
(l+l’+k) = σ

(l+l’+k−1)(x) − (d/d’)xk
σ

(l+l’−1) (5.11)

From the discussion in this section we have two formulas for updating the LFSR,
equation (5.8) and (5.11). These formulas leads to the existence of Algorithm 1.

Remark. The running time for the Berlekamp-Massey algorithm for determining the lin-
ear complexity of a length n sequence is O(n2). The algorithm delivers a unique connection
polynomial if and only if the length L of the LFSR is less than or equal to n/2. This decod-
ing algorithm can be adapted to decode algebraic geometry codes. For more information
on the subject see [28].

6 The Basic Decoding Algorithm

In this section a decoding algorithm for AG codes will be constructed. This is done by
choosing a suitable divisor so that an error-locator function can be found. We find that
the positions of the errors which occur during transmission are among the zeros of this
function. As long as the error function does not have to many zeros, the error vector can
be determined, and it is possible to decode the received word.

For simplicity we assume there are no erasures (errors with know position). Consider
a nonsingular curve of genus g with divisors D = P1 + P2 + . . . + Pn and G such that
supp(G) ∩ D = ∅. From these divisors we build a code CL(D, G) with the evaluation map

evD : L(G) −→ Fn
q

x ∈ L(G) �→ (x(P1), x(P2), . . . , x(Pn))

35

The image of evD is CL(D, G). This is a Fq-linear [n, k, d]-code with length n (the number
of places in D), minimum distance d equal to or greater than n − deg(G) and dimension
k ≥ deg(G) + 1 − g. Thus the designed minimum distance is d

∗ = n − deg(G). Recall that
the dual of CL(D, G) is itself a Fq-linear code defined by

CΩ(D, G) = CΩ(D, G) = {b ∈ Fn
q | (b · h) = 0 ∀ h ∈ L(G)}

The syndrome (b · h) is defined as
�n

ν=1 bνh(Pν) where b = (b1, . . . , bn) is an element of Fn
q

and h is an element of L(G) (the Riemann-Roch space of G). The dual code has parameters
[nΩ, kΩ, dΩ] satisfying nΩ = n, dΩ ≥ deg(G) − 2g + 2 and kΩ = n − k ≥ n − deg(G) − 1 + g.

Assume that a ∈ Fn
q is a received word so that a = c + e. Here c is a code word

contained in CΩ(D, G) and e is an element of Fn
q called the error vector. The error vector

contains t errors such that

wt(e) = t ≤ 1
2(d − 1)

The set of error positions is defined as

I = {ν | 1 ≤ ν ≤ n and eν �= 0}

It follows that the cardinality of I is equal to the weight of e and hence have an upper
bound of t.

To construct the decoding algorithm the first step is to choose a divisor F disjoint from
G satisfying the three conditions below

supp(F) ∩ supp(D) = ∅ (6.1)

deg(F) < deg(G) − (2g − 2) − t (6.2)

l(F) > t (6.3)

The vector spaces L(F), L(G − F) and L(G) are important for the existence of the basic
decoding algorithm. Denote the bases of the vector spaces {f1, . . . , fl}, {g1, . . . , gk} and
{h1, . . . , hm} respectively.

From the definition of Riemann-Roch spaces we show that fλgρ for 1 ≤ λ ≤ l and
1 ≤ ρ ≤ k must be elements of L(G). Let F =

�
nP P and G =

�
mP P , then

L(F) = {f | ordP (f) ≥ −np} and L(G − F) = {g | ordP (g) ≥ −(mP − nP)}

It follows that

ordP (fλgρ) = ordP (fλ) + ordP (gρ) ≥ −nP − (mP − nP) = −mP

36

which shows that fλgρ is an element of L(G). Hence evD(fλgρ) for 1 ≤ λ ≤ l and 1 ≤ ρ ≤ k

is an element of CL(D, G). Since all elements of CL(D, G) are orthogonal to elements of
its dual, evD(fλgρ)xT = 0 for x in CΩ(D, G). Moreover, if f is an element of the basis of
L(G) and zero at all error positions and g is an element of L(G − F) then

�
aif(Pi)g(Pi) =

�
eif(Pi)g(Pi) =

�

i∈I

eif(Pi)g(Pi) = 0

Define the kernel of a received word a and a divisor F as

K(F, a) = {f ∈ L(F) |
�

aif(Pi)g(Pi) = 0 ∀g ∈ L(G − F)}

By definition the kernel contains all error locator functions of L(F). Let
�

ν∈I Pν be the
divisor of error positions. Thus L(F −�

ν∈I Pν) is the vector space of error locator functions
which implies

L(F −
�

ν∈I

Pν) ⊆ K(F, a)

Since | I |≤ t and l(F) > t, F is more effective than
�

ν∈I Pν , which implies that l(F −�
ν∈I Pν) �= 0. Hence L(F − �

ν∈I Pν) �= 0 as long as l(F) ≥ t + 1 which again hold when
deg(F) ≥ t + g.

Moreover, we use the assumption that deg(G − F) > t + 2g − 2. With this lower bound
on the degree of G − F , it can be shown that CΩ(

�
ν∈I Pν , G − F) = 0. For an f in the

kernel of F and a received word a,

0 =
�

aνf(Pν)g(Pν) =
�

ν∈I

eνf(Pν)g(Pν) ∀g ∈ L(G − F)

Let the word wν = eνf(Pν) be in the dual of CL(
�

ν∈I Pν , G − F). Since this code is zero,
eν∈If(Pν) is zero for all elements in I. Hence f is zero for all error positions which implies
that L(F − �

ν∈I Pν) = K(F, a).
To obtain that L(F −�

ν∈I Pν) is equal to the kernel of F and a we used the assumptions
that deg(F) ≥ t+g and deg(G−F) > t−2g +2. These assumptions contradict each other
when t is too large. By comparing the inequalities we obtain that the largest possible value
for t must be

t =
�

d
∗ − 1 − g

2

�

The first step of the basic decoding algorithm is to calculate what is called an error
locator function. This is a non-zero function γ in L(F) with the property γ(Pν) = 0 for all
ν in I. We define the set of zeros of the function γ as

N(γ) = {ν | 1 ≤ ν ≤ n and γ(Pν) = 0} (6.4)

37

Thus the error positions are contained in N(γ). In other words, the error positions are
among the zeros of the error locator function γ. As eν = 0 for ν /∈ N(γ), the error vector
e can be calculated when the error locator function is known.

To find the error locator function we study the following system of linear equations

l�

λ=1
(a · fλgρ)xλ =

l�

λ=1

n�

ν=1
(aνfλ(Pν)gρ(Pν))xλ = 0 for ρ = 1, . . . , k (6.5)

With the knowledge of the error positions ν ∈ I and the solution of the above system we
can create the error locator functions. This is shown in the next proposition.

Proposition. Assume that the conditions on the divisors F , G and G − F are as before
and equation (6.5) has a non-trivial solution α = (α1, . . . , αl). Define

γ =
l�

λ=1
αλfλ ∈ L(F) (6.6)

Then γ(Pν) is zero for all ν in I. In other words, γ is an error locator function.

Proof. Choose an element γ of L(F − �
ν∈I Pν) and define γ =

�l
λ=1 αλfλ for αλ in Fq.

Clearly γgρ is an element of L(G) for 1 ≤ ρ ≤ k. Thus we obtain the syndom

(a · zgρ) =
l�

λ=1
(a · fλgρ)αλ (6.7)

Since a = c + e where c is an element of the dual code of CL(D, G), (c · f) = 0 for all
f ∈ L(G). This implies that (c · γgρ) = 0. Since γ is an element of L(F − �

ν∈I Pν), γ

evaluates to zero at Pν for ν ∈ I, i. e. γ(Pν) = 0 for all ν ∈ I. If we add the fact that
eν = 0 for ν /∈ I it follows that

(a · γgρ) = (c + e · γgρ) = (e · γgρ) =
n�

ν=1
eνγ(Pν)gρ(Pν) = 0 (6.8)

Form equation (6.7) and equation (6.8), it follows that (α1, . . . , αl) is a non-trivial solution
of (6.5).

Now, assume that (z1, . . . , zl) is an arbitrary, non-trivial solution of (6.5) and de-
fine γ =

�l
λ=1 zλfλ. Suppose there exists an error position ν0 ∈ I such that γ(Pν0) =�l

λ=1 zλfλ(Pν0) �= 0. By our original assumptions

deg(G − F −
�

ν∈I

Pν) ≥ deg(G) − deg(F) − t > 2g − 2

38

Hence L(G − F − �
ν∈I Pν) � L(G − F − �

ν∈I\ν0 Pν). Thus we can find an element
q ∈ L(G − F) such that q(Pν0) �= 0 and q(Pν) = 0 for all ν ∈ I\ν0. From this we obtain
that

(a · γq) = (e · γq) =
n�

ν=1
eνγ(Pν)q(Pν) = eν0γ(Pν0)q(Pν0) �= 0 (6.9)

Here q is a linear combination of g1, . . . gk and (a · γgρ) =
�

(a · fλgρ)αλ = 0. Hence
(α1, . . . , αl) is a solution of (6.5) which contradicts (6.9) and no such ν0 exists.

Next we determine the error values. This is done by considering the syndrome
�

ν∈N(γ)
hµ(Pν)eν = (a · hµ) (6.10)

How the error vector is retrived from the linear system above is proven in the following
proposition.

Proposition. The error vector (eν)ν∈N(γ) is the unique solution of equation (6.10)

Proof. Let hµ ∈ L(G). We then get that

(a · hµ) = (c + e · hµ) = (e · hµ) =
n�

ν=1
eνhµ(Pν) =

�

ν∈N(f)
hµ(Pν)eν

As mentioned before, eν is equal to zero for ν not contained in the set N(γ). Hence
(eν)ν∈N(γ) is a solution of (6.10). To see that this is an unique solution, assume that
(bν)ν∈N(γ) is another such solution of (6.10). Define b = (b1, . . . , bn) ∈ Fn

q such that bν = 0
for ν /∈ N(γ). Thus,

(b · hµ) =
�

ν∈N(γ)
hµ(Pν)bν = (a · hµ) = (e · hµ) for µ = 1, . . . , m

since {h1, . . . , hm} is a basis for L(G). Thus the syndrome (b−e ·hµ) is zero. Since the dual
of C is defined as the set of all elements x in Fn

q which satisfy (x · γ) = 0 for all γ ∈ L(G),
b − e must be an element of this set. We have that

wt(b − e) ≤| N(γ) |≤ deg(F) < deg(G) − (2g − 2) = d
∗

Since the minimum distance of CΩ is greater than or equal to d
∗ we conclude that b = e

and (eν)ν∈N(γ) is an unique solution of (6.10).

To sum up the discussion above we create the following algorithm:

39

Algorithm 2. Let the divisors D, G, F be given. Let {f1, . . . , fl}, {g1, . . . , gk} and
{h1, . . . , hm} be the basis for L(F), L(G − F) and L(G) respectively. Let a be a received
word in Fn

q such that a = c + e for c ∈ CΩ(D, G).

1. Find a solution (α1, . . . , αl) �= 0 of the linear system

l�

λ=1
(a · fλgρ)αλ = 0 for ρ = 1, . . . k (6.11)

Define γ =
�l

λ=1 αλfλ. If there is no such solution for the system of equations above,
a can not be decoded.

2. Compute the error positions by calculating the zeros of γ by computing

N(γ) = {ν | 1 ≤ ν ≤ n and γ(Pν) = 0}

This is done by evaluating γ(Pν) =
�l

λ=1 αλfλ(Pν) for ν = 1, . . . , n.

3. If
�

ν∈N(γ)
hµ(Pν)zν = (a · hµ) for µ = 1, . . . , m (6.12)

has a unique solution (eν)ν∈N(γ), we set e = (e1, . . . , en) with eν = 0 for all ν /∈ N(γ).
If there is no such solution of (7.3), we can not decode a.

4. Calculate (c · hµ) for µ = 1, . . . , m to check if c = a − e is an element of CΩ and if
wt(e) ≤ t. If this is the case, a is decoded to c. Otherwise we can not decode a.

This algorithm can be adapted to concider erasures as well as errors.
Next we will show an example of how to correct errors using the algorithm above.

Example 12. Again we look at the elliptic curve

E : {y
2 = x

3 + 9x + 4} ∪ {(0 : 1 : 0)}

over the finite field F13. By choosing divisors G = 8P∞ and D = P1 + P2 + . . . + P12 we
can build the code CL(D, G) with the knowledge of the basis of the Riemann-Roch space
of G which we recall from Example 9 is {1, x, x

2
, x

4
, y, y

2
, xy, x

2
y}. In Example 11 both

the generator matrix A and parity check matrix H was calculated. Since we know that
the parity check matrix of CL(D, G) is generator matrix for the dual of this code, we can
choose a code word c ∈ CΩ(D, G) among the rows of the matrix H.

Choose the code word

c = (5, 8, 2, 11, 1, 12, 12, 0, 0, 1, 0, 0, 0) ∈ CΩ(D, G)

40

which is to be sent over an unreliable channel. Assume that an error has occurred at the
7th entry of c and the received word is

a = (5, 8, 2, 11, 1, 12, 0, 0, 0, 1, 0, 0, 0)

This implies that the error vector is e = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0).
To continue we need to find a divisor F which satisfies equations (6.1), (6.2) and (6.3)

as well as deg(F) ≥ t + g = t + 1 and deg(G − F) > t − 2g − 2 = t. Considering these
assumptions, let F = 3P13. By the definition of the Riemann-Roch space L(F) contains
functions satisfying ordP13(f) ≥ −3. This basis was also found in Example 9:

L(F) =
�

1,
1
y

,
1

x − 4

�

Note, by choosing F = 3P13 we are able to correct at most 2 errors. We also need the basis
for L(G − F), which was calculated to be

L(G − F) = {y, y
2
, xy, xy

2
, x

2
y}

When all the divisors and their corresponding Riemann-Roch spaces are found, the
error-locator function can be calculated. This is done by computing the syndromes

�3
λ=1(a·

gρfλ)αλ. This can be done by matrix multiplication. Let F be the matrix where entries are
the basis elements of L(F) evaluated in the points of the divisor D, F = [fλ(Pi)]3,12

λ=1,i=1.
Thus

F =




f1(P1) f1(P2) . . . f1(P12)
f2(P1) f2(P2) . . . f2(P12)
f3(P1) f3(P2) . . . f3(P12)



 =




1 1 1 1 1 1 1 1 1 1 1 1
7 6 1 12 7 6 1 10 12 3 7 6
3 3 4 4 6 6 7 10 7 10 2 2





In a similar way we define the matrix G−F with entries gρ(Pi) for 1 ≤ ρ ≤ 5 and 1 ≤ i ≤ 12:

(G − F) =





g1(P1) g1(P2) . . . g1(P12)
g2(P1) g2(P2) . . . g2(P12)

.

.

.
.
.
.

g5(P1) g5(P2) . . . g5(P12)





=





2 11 1 12 2 11 1 4 12 9 2 11
4 4 1 1 4 4 1 3 1 3 4 4
0 0 1 12 4 9 6 6 7 7 9 4
0 0 1 1 8 8 6 11 6 11 5 5
0 0 1 12 8 5 10 9 3 4 8 5





41

Let d be a diagonal matrix with the received word a as the entries on the diagonal and
α = [α1, α2, α3]. Thus we obtain

5�

ρ=1

3�

λ=1
(a · fλgρ)αλ = (G − F)(Fd)T

α
T =





1 1 2
1 1 7
6 6 9
6 6 9
6 6 3
10 10 3








α1
α2
α3



 = 0

Hence we have a system of equations with 3 unknowns and 5 equations. By choosing 3
linearly independent equations we obtain that α1 = 12, α2 = 1 and α3 = 0. When we
have found a solution to the syndromes, we calculate the error locator function γ = 12+ 1

y .
Since γ(P3) = γ(P4) = γ(P7) = γ(P9). This implies that

N(γ) = {3, 4, 7, 9}

Hence we can expect an error to have occurred at place 3, 4, 7 and 9 in c.
Next we calculate the error values (eν)ν∈N(γ).This is done by solving the system

�

ν∈N(γ)
hµ(Pν)eν = (a · hµ) for hµ ∈ L(G) and µ = 1, . . . , 8

We get 8 equations with 4 unknowns. By choosing the following 4 linearly independent
equations

e3 + e4 + e8 + e10 = 1
e3 + e4 + 6x8 + 6x10 = 6

e3 + 12e4 + e8 + 12e10 = 4
e3 + 12e4 + 6e8 + 7e10 = 9

we obtain (eν∈N(γ)) = (0, 0, 1, 0) which yields error vector e = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0).
By calculating a − e we get (5, 8, 2, 11, 1, 12, 12, 0, 1, 0, 0, 0) which is the code word c we
were searching for.

Next we show to what extend the algorithm is able to correct errors and erasures. Let
a = c+e+r be a received word with e = (e1, . . . , et) ∈ Fn

q the vector of errors with Hamming
weight t and r = (r1, . . . , rτ) ∈ Fn

q the vector of erasures of Hamming weight τ . Considering
this, denote E = {E1, . . . , Et} to be the set of error locators and R = {R1, . . . , Rτ } to be
the set of erasure locators. Let {k1, . . . , ks} be the basis for L(F − �

Rj).

Theorem 6. Let CΩ(D, G) be a algebraic geometry code associated with the curve χ of
genus g such that deg(G) = a and 2g − 2 < a ≤ n + g − 1. Let t and τ be nonnegative

42

integers satisfying

l(F) > t + τ

a − b > t + 2g − 2

for a divisor F of degree b ≤ a. Then the basic algorithm can correct t errors and τ

erasures.

To prove this theorem, we rewrite it as the following proposition and give a proof of this
instead.

Proposition 5. For divisors D, G and F of the curve χ and the code CΩ(D, G):
(a) Assume that l(F �) > t + τ holds, then there is at least one non-trivial solution of�s

i=1(a, kigj)xi = 0 for j = 1, . . . , k.
(b) Assume that a−b > t+2g−2 holds, then for any solution (y1, . . . , ys) of

�s
i=1(a, kigj)xi =

0 for j = 1, . . . , k we have ky(Ei) = 0 for any i = 1, . . . , t where ky = y1k1 + . . . + ysks ∈
L(F − �

Rj). This means that ky has all the errors and erasure locators among its zeros.

Proof. For the first part, let a = e + r + c as before. From the starting assumption,
l(F − E1 − . . . − Et − R1 − . . . − Rτ) > 0. Thus there exists at least one non-zero element,
g in the space L(F − �

Rj) such that g(Ei) = 0 for i = 1, . . . , t. Let y1k1 + . . . + ysks be
the decomposition of k with respect to the basis of L(F − �

Ri). To proceed we claim the
following

Claim. y = (y1, . . . , ys) is a solution of
�s

i=1(a · kigj)xi = 0

Since (c · kigj) is zero and ki(Rj)

s�

i=1
(a · kigj)yi =

s�

i=1
(e + r · kigj)yi =

s�

i=1

t�

m=1
emki(Em)gj(Em)yi

=
t�

m=1
emgj(Em)k(Em) = 0

Thus y = (y1, . . . , ys) is a solution of
�s

i=1(a · kigj)xi = 0.
For the last part of the theorem note that for a canonical divisor W the Riemann-Roch

theorem implies

l(G − F −
�

Ei) − l(W − (G − F −
�

Ei)) = deg(G − F −
�

Ei) + 1 − g

Then by the assumption a − b > t + 2g − 2

deg(G − F −
�

Ei) = a − b − t > 2g − 2

43

Since deg W = 2g − 2 it follows that l(W − (G − F − �
Ei)) = 0 and l(G − F − �

Ei) =
a − b − t + 1 − g. In a similar way, since deg(G − F) = a − b > 2g − 2 + t > 2g − 2,
l(G − F) = a − b − g + 1.

Define E = {E1, . . . , Et} and consider the evaluation map

evE : L(G − F) → Ft
q

z ∈ L(G − F) �→ (z(E1), . . . , z(Et))

It is easy to show that the kernel of this map is L(G − F − �
Ei) and it can also be shown

that it is surjective.
Fix any j = {1, . . . , n}. Then it is possible to find a element g in L(G − F) so that

g(Ej) = 1 and g(Em) = 0 for Em �= Ej . In this case the linear combination of equations is

s�

i=1
(a · kig)xi = 0

Let (y1, . . . , ys) be a non-trivial solution to the above set of equations. We then obtain

0 =
s�

i=1
(a · kig)yi =

s�

i=1

t�

m=1
emki(Em)g(Em)yi = ejky(Ej)

Since ej �= 0, ky(Ej) must be equal to zero.

The basic algorithm can correct up to �(d∗ − 1 − g)/2�. Hence it fails to correct all
errors (included erasures) of weight (d∗ − 1)/2. This follows from the fact that the set of
zeros of an error-locator function is not assumed to be equal to the set of error positions.
When a error-locator function has zeros at t prescribed points, in general it also have g

other zeros. Hence the deficiency of the algorithm depends on the genus of the curve. By
studying Algorithm 2 the complexity of the basic algorithm is O(n3) where n is the length
of the code.

7 The Modified Decoding Algorithm

In this section some modifications are applied to the basic algorithm to improve the number
of errors corrected. By applying the basic algorithm with an increasing sequence of divisors
F1, . . . , Fs we get the so called modified decoding algorithm. This algorithm has a higher
correcting rate than the basic decoding algorithm which can correct up to [(d∗ − 1 − g)/2]
errors but has a slower running time.

As for the basic algorithm we look at divisors D = P1 + P2 + . . . + Pn and G of a
rational curve of genus g ≥ 1 with the assumption that supp(G) ∩ D = ∅. As an additional
assumption on G we demand that this divisor is a multiple of an effective divisor H, i.

44

e. G = a1H. Say H is a divisor of degree h, then deg(G) = a1h := a. In the modified
basic decoding algorithm F is chosen to be the set {iH}b1

i=1 where b1 is the least integer
for which the set of equations in (6.11) has a non-trivial solution.

Remark. By demanding that the divisor G is a multiple of an effective divisor there is a
restriction on the codes which the modified algorithm can decode. Hence not all algebraic
geometry codes can be decoded by the modified algorithm.

Let {fb1, . . . , fblb} be the basis of L(G) = L(a1H), {gb1, . . . , gbkb
} the basis of L(G−F) =

L((a1 − b)H) and {h1, . . . , hm} the basis for L(G). For simplicity we define the following
matrices F =| fbi(Pν) |lb,n

i=1,ν=1, G =| gbi(Pν) |kb,n
i=1,ν=1 and H =| hi(Pν) |m,n

i=1,ν=1.
As in the discussion for the basic decoding algorithm, fbλggρ is an element in L(G) =

L(a1H) for 1 ≤ λ ≤ lb and 1 ≤ ρ ≤ kb and hence evD(fbλggρ) is in CL(D, G) which implies
that evD(fbλggρ)x = 0 for x in the dual of CL(D, G). With this information, the modified
algorithm is constructed as follows

Algorithm 3 (Modified Decoding Algorithm). Let a = c + e be a received word so that
c ∈ CΩ(D, G) and b = 1.

1. Find a non-trivial solution α = (α1, . . . , αlb) of

lb�

λ=1
(a · fλgρ)αλ =

lb�

λ=1

n�

ν=1
aνfλ(Pν)gρ(Pν)αλ = 0 for ρ = 1, . . . , kb (7.1)

If no such solution exist update b by b = b + 1 and return to Step 1. If there exists a
nontrivial solution of the system put F = bH and proceed to Step 2.

2. Define

γ =
lb�

λ=1
αλfλ for fλ ∈ L(bH) (7.2)

and calculate the zeros of γ by finding the N(γ) = {ν | 1 ≤ ν ≤ n and γ(Pν = 0)}.

3. If
�

ν∈N(γ)
hµ(Pν)eν = (a · hµ) for µ = 1, . . . , m (7.3)

has a unique solution (eν)ν∈N(γ), we set e = (e1, . . . , en) with eν = 0 for all ν /∈ N(γ).
If there is no such solution of (7.3), we can not decode a.

4. Calculate (c · hµ) for µ = 1, . . . , m to check if c = a − e is an element of CΩ and if
wt(e) ≤ t. If this is the case, a is decoded to c. Otherwise we can not decode a.

45

In the next example we show how the modified decoding algorithm is used to decode
algebraic geometry codes.

Example 13. Consider the elliptic curve E : {y
2 = x

3 + 9x + 4} ∪ {(0 : 1 : 0)} over F13.
Let D = P1 + P2 + . . . + P13 and G = 8P∞ and CΩ(D, G) has generator matrix H as in
Example 11. Choose a = (5, 8, 2, 11, 1, 12, 0, 0, 0, 1, 0, 0, 0) to be a received word equal to
c + e for some c in CΩ(D, G). Let F = {iP∞}b

i=1 and {1, x, x
2
, x

4
, y, y

2
, xy, x

2
y} be the

basis for L(G).
First we search for a b which give a non-trivial solution to the system in (7.1). Let

b = 1. Then F = P∞ and L(P∞) only contain the constant functions. It follows that
L(G − F) = L(7P∞) = {1, x, x

2
, y, y

2
, xy, x

2
y}. If d is the diagonal matrix with the vector

a on its diagonal we get
1�

λ=1

8�

ν=1
aνfλ(Pν)gρ(Pν)αλ = G(Fd)T

α
T = 0 for ρ = 1, . . . , 7

This gives 7 equations with one unknown, α = (α1) = 0. Since the system only has a
non-trivial solution, b is updated to b + 1.

For b = 2, F = 2P∞ and G−F = 6P∞. In this case L(F) and L(G−F) has basis {1, x}
and {1, x, x

2
, y, y

2
, xy} respectively. Also this case gives the trivial solution for equation

(7.1). Again we update b by b + 1 and try to find a non-trivial solution to the syndromes.
When b = 3, the divisors F and G − F are 3P∞ and 5P∞ respectively. The Riemann-

Roch spaces of these divisors are

L(F) = {1, x, y} and L(G − F) = {1, x, x
2
, y, xy}

The syndromes
�lb

λ=1(a · fλgρ)αλ are

G(Fd)T
α

T =





1 6 1
6 10 6
10 8 10
1 6 1
6 10 6








α1
α2
α3



 = 0

This system of equations gives a non-trivial solution α = (12, 0, 1). Thus we can calculate
the error locator function γ =

�3
λ=1 αλfλ = 12 + y. This implies that N(γ) = {3, 7} which

means that an error may have occurred in entry 3 and 7 of a.
To find the error vector we calculate

�
ν∈N(γ) hµ(Pν)eν = (a · hµ) for µ = 1, . . . , 5.

We obtain that e3 = 0 and e7 = 1 which implies that the error vector e = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0).
Thus

c = a − e = (5, 8, 2, 11, 1, 12, 12, 0, 0, 1, 0, 0, 0)

The code word c is an element of CΩ(D, G) since (c · hµ) = 0 for µ = 1, . . . , 8. Hence a is
decoded to c.

46

The next theorem shows that the modified algorithm is an improvement on the basic
algorithm:

Theorem 7. Algorithm 3 corrects up to [(d(C) − 1)/2] − S(H), where S(H) is the char-
acteristic of H defined by

S(H) = max
i∈Z

{[(ih + h + 1)/2 − l(ih)]} (7.4)

Proof. Consider a system of linear equations as

s�

i=1
(a · kigj)xi = 0 (7.5)

and consider the code CΩ(D, G) where D = P1 + . . . + Pn and G are divisors of a rational
curve χ. Consider another divisor F of chi so that F = H, 2H, . . . , bH where b is the least
integer so that the set of the equations in (7.5) has a solution not equal to zero. From
Proposition 5 we can derive that l((b − 1)H − �

Ei) = 0.
We claim the following

Claim. The divisor (a1 − b)H − �
Ei is not special.

Assume that (a1 − b)H − �
Ei is special. This means that the divisor is linearly equivalent

to W −J for a canonical divisor W and a divisor J ≥ 0 with deg(J) = 2g −2−a1h+ bh+ t

of χ. In this case

(a1 − b)H −
�

Ei ∼ W − J

which by a simple rearrangement can be written as

−bH −
�

Ei ∼ W − J − a1H

Hence

bH −
�

Ei ∼ W − J − a1 + 2bH

By gathering terms we obtain that

(b − 1)H −
�

Ei ∼ W − J − (a1 − 2b + 1)H

Hence l(W − J − (a1 − 2b + 1)H) = 0 and l(W − J − (a1 − 2b + 1)H) ≤ deg(J). On the
contrary, by the Riemann-Roch theorem

l((a1 − 2b + 1)H) − l(W − (a1 − 2b + 1)H) = deg((a1 − 2b + 1)H) − g + 1

47

Hence l(W − (a1 − 2b + 1)H) = l((a1 − 2b + 1)H) − a1 + 2bh − h + g − 1. Then, from the
definition of the characteristic of H we obtain

l((a1 − 2b + 1)H) ≥ [((a1 − 2b + 1)h + h + 1)/2] − S(H)
= [(a1h − 2g + 1)/2] + g − bh + h − S(H)

Therefore l(W − (a1 − 2b + 1)H) ≥ [(d∗ − 1)/2] + 2g − 1 − a1h + bh − S(H) ≥ deg(J) + 1
which contradicts the fact that the divisor (a1 − b)H − �

Ei is special and hence the claim
is proven.

This means that (a1 − b)H is also non-special. Thus

l((a1 − b)H) − l((a1 − b)H −
�

Ei) = 1

It follows from Proposition 5 part (b) that for any non-zero solution y = (y1, . . . , ylb),
ky(Ei) = 0 for all i = 1, . . . , t. Here ky = y1k1 + . . . + yiklb ∈ L(bH). This implies that all
the error locations are among the zeros of ky.

To proceed, let {Q1, . . . , Qu} be the set of the zeros of ky in D. For i = 1, . . . , t we may
assume that Qi = Ei. The values of the errors may be found from

(a · hi) =
u�

i=1
hj(Qi)zi for j = 1, . . . , m

We need to show that (e1, . . . , et, 0, . . . , 0) is a solution of the set of linear equations above.
By following the same steps as in proof of the proposition which shows how to find the
error values, we see that as long as deg(bH) = bh is less than the designed distance,
(e1, . . . , et, 0, . . . , 0) is the solution to our system. Thus, since l((b − 1)H − �

Ei) is zero,
l((b−1)H) ≤ t. By the definition of S(H), [(bh+1)/2] ≤ l((b−1)H)+S(H) and it follows
that

[(bh + 1)/2] ≤ t + S(H) ≤ [(d∗ − 1)/2]

hence deg(bH) = bh ≤ d
∗.

Hence we can conclude that the modified basic algorithm corrects up to [(d∗ − 1)/2] −
S(H) errors.

From the discussion above we have proved that by modifying the basic algorithm by
adding some extra restrictions to the divisors G and F we can correct up to [(d ∗ −1)/2] −
S(H) errors where S(H) is the characteristic of a divisor H. There are two cases where
S(H) = 0 and the algorithm can correct up to half the designed minimum distance. If
deg H = h and the code is build from the curve χ, S(H) is zero if

1. χ is an elliptic curve, and h is equal to 1 or 2.

48

2. χ is a hyperelliptic curve, and the divisor H is a Weierstrass point of a hyperelliptic
divisor.

For proof of this fact see [21]. Here you can also find the proof of the fact that S(H) ≤ g/2
which is essential for the modified basic algorithm to correct more errors and erasures than
the basic algorithm. This algorithm requires at most O(n4) elementary operations when n

is the length of the code.

8 The Extended Modified Decoding Algorithm

When modifying the basic decoding algorithm, we get an algorithm which restricts to a
certain class of codes. In this section we search for an algorithm which can decode all types
of codes. The modified algorithm is extended by applying the theory of special divisors in
the decoding process, i. e. we apply the basic algorithm to a sequence of special divisors.
This algorithm shows a defect on the curve connected to the code instead of the code
directly. In other words, the success of the algorithm depends on the curve which the code
is build on.

In this section the code CΩ(D, G) is considered, where D = P1 + P2 + . . . + Pn and G

are divisors on the same curve of genus g such that supp(G) ∩ D = ∅. Let a = c + e be
a received word where c is a code word of CΩ(D, G) and e is an error vector. The set of
error positions are denoted I = {ν | 1 ≤ ν ≤ n, eν �= 0}. The zeros of the error locator
function γ are contained in the set N(γ) = {ν | 1 ≤ ν ≤ n, γ(Pν) = 0}. Thus the error
divisor is P =

�
ν∈N(γ) Pν . The next theorem shows the existence of the extended modified

algorithm
Theorem 8 (The Extended Modified Algorithm). Let D and G be divisors as above.
Let C = CΩ(D, G) be a residue code, defined on a curve χ of genus g. Let the designed
minimum distance be odd and defined by d

∗ = 2e + 1. Let ε = {E0, E1, . . . , E2g−2} be a set
of special divisors on the curve χ as in Definition 10 and let ε0 be the subset of ε containing
divisors of even degree, say

ε0 = {E0, E1, . . . , Eg−1} and σ0 = σ(ε0) (8.1)

where σ0 = σ(ε0) is the Clifford’s defect of the set ε0. Then

deg(Ei) = 2g − 2 − 2i and deg(Ei)/2 − (l(Ei) − 1) ≤ σ0 (8.2)

for i = 0, 1, . . . , g − 1.

Let F = F0, F1, . . . , Fg be a set of divisors on our curve satisfying

deg(F0) = e

Fi ∩ D = ∅ for = 0, 1, . . . , g

Fi ∼ G − Fi−1 − Ei−1 for i = 1, 2, . . . , g (8.3)

49

Then a received word with t ≤ (d∗ − 1)/2 − σ0 errors, can be corrected by successive
applications of the basic algorithm with F = Fi of lowest possible degree so that both
L(F − P) �= 0 and Ω(G − F − P) = 0 are satisfied.

The fact that L(F − P) �= 0 and Ω(G − F − P) = 0 are satisfied ensures that a non-zero
error locator function γ can be found. But these two conditions conflict since L(F −P) �= 0
holds for sufficiently large degree of F while Ω(G − F − P) = 0 hold for a divisor F of
sufficiently low degree. The next lemma will prove helpful when we want to show that
there is possible to choose a set of divisors such that the conditions above are satisfied for
at least one element of the set.

Lemma 3. Let G, F and P =
�

ν∈N(γ) Pν be divisors on a curve with genus g. Assume
E and F* are divisors which satisfy

l(E) ≥ g − deg(F − P) and F* ∼ G − F − E (8.4)

Then

L(F − P) = 0 implies that Ω(G − F* − P) = 0 (8.5)

Proof. Let χ be a given curve of genus g with divisors G, F* and P =
�

ν∈N(γ) Pν . Assume
that Ω(G − F* − P) �= 0. Let w be a non-zero element in Ω(G − F

∗ − P). When this is
the case, we will prove that L(F − P) �= 0.

Let (w) = G − F* − P − E* for an integral divisor E*. Since F* is in the same
equivalence class as G − F − E we obtain

(w) ∼ G − (G − F − E) − P + E* = F + E − P + E*

Since w is defined as a non-zero element of Ω(G − F* − P), (w) is a canonical divisor and
equivalent to all other canonical divisors on the curve χ. When W is an element of this
class we obtain that

F − P ∼ W − E − E*

Since E* ≥ 0 by assumption, it suffices to prove that deg(E∗) < l(W −E) for L(F −P) �= 0.
This follows from the fact that

W − E ∼ G − F* − P − E ∼ G − (G − F − E) − P − E = F − P

where W ∼ G − F* − P is used in the first equivalence relation and F* ∼ G − F − E in the
second. It is a known fact that when two divisors are in the same equivalence class then the
corresponding Riemann-Roch spaces are isomorphic as vector spaces. Since L(W − E) is
isomorphic to L(F − P) the dimension of these Riemann-Roch spaces are the same. Hence
l(W − E) = l(F − P). For L(F − P) to be non-zero, the dimension of the Riemann-Roch

50

space has to be greater than zero, i.e. l(W − E) = l(F − P) > 0. This is definitely satisfied
if l(W − E) > deg(E*), since E* is defined to be an effective divisor, which implies that
deg(E*) is greater than or equal to zero.

By assumption

l(E) ≤ g − deg(F − P)

By substituting F − P ∼ W − E − E* in the equation above we obtain

l(E) + 1 > l(E) ≥ g − deg(W − E − E*) = g − deg(W) + deg(E) + deg(E*)
= g − 2g + 2 + deg(E) + deg(E*)

In the last step we have used that the degree of a canonical divisor is 2g − 2 and we obtain
that

deg(E*) < l(E) + g − 1 − deg(E)

From the Riemann-Roch theorem we have the following relationship between E and K:

l(E) = l(K − E) + deg(E) + 1 − g

Thus

deg(E*) < (l(W − E) + deg(E) + 1 − g) + g − 1 − deg(E) = l(W − E) (8.6)

This implies that deg(E∗) < l(F − P). Hence we have proven that when Ω(G − F* − P)
is zero then L(F − P) is zero.

The next lemma gives a bound on the error correction t.

Lemma 4. Let C = CΩ(D, G) be a code as before, hence it has designed minimum distance
d

∗ = deg(G − W). Also let P =
�

ν∈N(γ) Pν so that t = deg(P). Then the inequality
l(E) ≥ g − deg(F − P) from the previous lemma is equivalent to

t ≤
�

d
∗ − 1

2

�
+ (l(E) − 1) −

�deg(E)
2

�
−

�deg(F* − F) − 1
2

�
(8.7)

Proof. We start by multiplying equation (8.7) with 2 to obtain

2t ≤ 2 ·
�

d
∗ − 1

2

�
+ 2 · (l(E) − 1) − 2 ·

�deg(E)
2

�
− 2 ·

�deg(F* − F) − 1
2

�

The fact that t = deg(P) and d
∗ = deg(G − W) implies that

2 deg(P) ≤ deg(G − W) − 1 + 2(l(E) − 1) − deg(E) − deg(F* − F) + 1

51

By applying the equivalence relation F* ∼ G − F − E we obtain that

2 deg(P) ≤ deg(G − W) + 2(l(E) − 1) − deg(E) − deg(G − 2F − E)
= − deg(W) + 2(l(E) − 1) − deg(G) + deg(2F)

Which again implies that deg(W) − 2 deg(F − P) ≤ 2(l(E) − 1) and thus

(g − 1) − deg(F − P) ≤ l(E) − 1 which implies l(E) ≤ g − deg(F − P)

When we now have established the facts above we are ready to prove the existence of the
extended modified algorithm.

Proof. (Extended Modified Algorithm) Let P be the divisor of all error locations. When
eP is the set of error positions , P =

�
eP �=0 P . This divisors has degree t which is the

weight of the received word. Assume that W is a canonical divisor of the curve. Consider
divisors G, Fi−1 , Ei−1 and Fi−1 of the same curve satisfying

deg(Fi+1 − Fi) = 1
deg(Ei)

2 − (l(Ei) − 1) ≤ σ0

deg(P) ≤ e − σ0 (8.8)

From our assumption we have Fi ∼ G − Fi−1 − Ei−1 where Fi ∩ D = ∅ for i = 1, 2, . . . , g.
Hence

deg(Fi + Ei−1) = deg((G − Fi−1 − Ei−1) + Ei−1) = deg(G − Fi−1)

By Fi−1 ∼ G − Fi−2 − Ei−2

deg(Fi + Ei−1) = deg((Fi−1 + Fi−2 + Ei−2) − Fi−1) = deg(Fi−2 + Ei−2)

By moving terms in the above assumption and applying that deg(Ei) = 2g − 2 − 2i

deg(Fi − Fi−2) = deg((G − Fi−1 − Ei−1) − (G − Fi−1 − Ei−2))
= deg(Ei−2 − Ei−1) = (2g − 2 − 2(i − 2)) − (2g − 2 − 2(i − 1))
= (−2i + 4) + (2i − 2) = 2

Since deg(F0) = e , deg(F1) = e + 1 and deg(Fi − Fi−2) = 2 we obtain the following by
applying a simple induction algorithm

deg(Fi) = e + i for i = 0, 1, . . . , g.

52

By assumption deg(P) = t ≤ e − σ0 for σ0 ≥ 0 where σ0 is the same as in Definition 10.
Since deg(F0) = e, deg(P) ≤ e − σ0, d

∗ = deg(G − W) and d
∗ = 2e + 1 it follows that

deg(G − F0 − P) ≥ (deg(W) + 2e + 1) + (−e) − (e − σ0)
= deg(W) + 1 + σ0 ≥ deg(W) + 1

Hence deg(G − F0 − P) > deg(W) which implies that G − F0 − P can not be a canonical
divisor. Hence the corresponding set of rational differential forms must be zero, i. e.
Ω(G − F0 − P) = 0.

To finish this proof, our next step is to prove that L(Fi − P) = 0 implies that Ω(G −
Fi+1−P) = 0 for i = 0, 1, . . . , g−1. Since Fi ∼ G−Fi−1−Ei−1 and deg(Ei)/2−(l(Ei)−1) ≤
σ0 by assumption, we obtain

l(Ei) ≥ deg(Ei)/2 + 1 − σ0

By applying that deg(Ei) = 2g − 2 − 2i and deg(P) ≤ e − σ0 in the equation above we get

deg(Ei)/2 + 1 − σ0 = g − i − σ0 ≥ g + deg(P) − (i + e)
= g + deg(P) − deg(Fi) = g − deg(Fi − P)

Thus l(Ei) ≥ g−deg(Fi−P) and all conditions in Lemma 3 are satisfied. Hence L(Fi−P) =
0 implies that Ω(G − Fi+1 − P) = 0. To prove that this only holds for values of i less than
g consider Fg and note that

deg(Fg − P) ≥ (e − g) − (e − σ0) ≥ g

Since the genus is a non-negative integer, the Riemann-Roch space of the divisor Fg − P

can not be zero. This implies that there is possible to find a set of special divisors where
at least one divisor satisfy that Ω(G − Fi+1 − P) = 0 and L(F − P) �= 0, i. e the divisor
Fg.

Considering that the minimum distance is 2e + 1 we have that e = (d∗ − 1)/2 and

t = deg(P) ≤ e − σ0 = d
∗ − 1

2 − σ0

holds for all choices of F .

Consider a code CΩ(D, G) of even designed minimum distance d
∗ = 2e + 2 and the

set of special divisors of odd degree ε1 = {E1, . . . Eg−1} instead of ε0 so that σ1 = σ(ε1).
Let the divisors in the set ε satisfy deg(Ei) = 2g − 1 − 2i and deg(Ei)/2 − (l(Ei) − 1)
for i = 1, 2, . . . , g − 1. Let F be a set of divisors which satisfies the same conditions as
in Theorem 8. With a similar procedure as in the proof of the existence of the extended
modified algorithm for codes with odd designed minimum distance, we can prove that in
the case of even designed minimum distance, the extended modified algorithm corrects up
to ((d∗ − 1)/2) − σ1 errors.

53

Remark. It can be proven that 0 ≤ σ ≤ (g − 1)/2 for all curves of genus g greater than
or equal to 1. This implies that the extended modified decoding algorithm has a higher
correction rate than the basic decoding algorithm. (For a proof see [20].)

We summarize the extended modified algorithm in

Algorithm 4 (Extended Modified Algorithm). Let a ∈ Fn
q be given.

1. Set i = 1 and let F = Fi.

2. Calculate L(F − P). If this is equal to zero, update i = i + 1 and set F = Fi and go
to step 2. Otherwise proceed to step 3.

3. Put F = Fi and apply Algorithm 2.

The success of the extended modified decoding algorithm depends on the curve which
the codes is build from. Let χ be a curve. For elliptic curves σ(χ) = 0 with ε = {0}. In this
case, decoding up to half the designed minimum distance is possible. The same hold for
curves with σ(χ) = 1/2. This is the case when σ0 = 0 and σ1 = 1/2. The next proposition
states for which curves the extended decoding algorithm decodes up to the designed error
correction bound t = �(d∗ − 1)/g�.

Proposition 6. A curve χ satisfying σ(χ) ≤ 1/2, is either a curve of genus genus zero or
one or a hyperelliptic curve.

Hence the codes which allow decoding up to half the designed minimum distance are curves
build from lines, conics, singular cubics, elliptic curves and hyperelliptic curves. Thus for
rational, elliptic and hyperelliptic curves the extended algorithm is t error correcting for
t ≤ �(d∗ − 1)/2�. For a proof of this proposition see [20]. There are also certain curves
with σ(χ) = 1 which decode up to half the designed minimum distance, but these will not
be mention in this paper. In [20] Clifford’s defect is calculated for several other curves.

The next theorem tells us how fast the extended modified algorithm is.

Theorem 9. When n is the length of the code, the complexity of Algorithm 4 is at most
O(n3).

9 List Decoding of Algebraic Geometry Codes

When decoding algebraic geometry codes, unique decoding is usually impossible as long as
the number of errors is larger than (d − 1)/2, where d is the code’s minimum distance. In
this section a method for decoding algebraic geometry codes even when the errors exceed
this limit is derived. This is the list decoding algorithm for AG codes. It requires as input a
received word a and an error bound e. The output is a list of all code words c1, . . . , cm ∈ C

54

which differ from a in at most t coordinates. This list decoding algorithm is also known as
the Sudan-Guruswami algorithm.

Consider an [n, k, d]-code C = CL(D, G) where D = P1 + . . . + Pn and G are divisors of
a curve χ of genus g as in previous sections. Let K be the curve’s function field. Assume
that deg(G) = α < n where n is the length of the code. The code C is defined to be the
image of an evaluation map evD given by

evD :L(G) → Fn
q (9.1)

f �→ (f(P1), . . . , (Pn))

The parameters of the code satisfy k ≥ α − g + 1 and d ≥ n − α. Recall that the designed
minimum distance is d

∗ = n − α.
By the following definition what is called an (e, b)-decodable code can allow an algorithm

with a list of at most b elements.

Definition 12. A linear block code C of length n over Fq is called (e, b)-decodable if every
Hamming sphere of radius e in Fn

q contains at most b code words.

The list decoding algorithm finds all these code words. In the next theorem the existence
of the list decoding algorithm is stated.

Theorem 10. Let C = CL(D, G) be an algebraic geometry [n, k, d]-code where D and
G are divisors of a curve χ of genus g over Fq. Then, for any positive integer b, C is
(n − β − 1, b)-decodable with

β =
�(n + 1)

(b + 1) + bα

2 + g − 1
�

(9.2)

and

α = k + g + 1 (9.3)

Before we prove the above theorem, we state the algorithm which is known as Sudan-
Guruswami list decoding algorithm for algebraic geometry codes. As we will see later, the
output from the algorithm is a list of at most b code words which is within a distance e

from a received word a.

Algorithm 5 (List Decoding Algorithm). Let divisors G and F and a vector a = (a1, . . . , an)
be given.

1. Find a non-zero polynomial

H(X) = ubXT
b + . . . + u1X + u0 ∈ K[X] where uj ∈ L(F + (b − j)G) (9.4)

such that H(Pi, aj) =
�b

j=0 uj(Pi)aj
i is zero for i = 0, . . . , n.

55

2. Find all roots ρ of H(X) in K and calculate

xρ = (ρ(P1), . . . , ρ(Pn))

If xρ is not defined or if xρ differs from a in more than n − β − 1 coordinates, then
this xρ is not accepted.

Proof. (Theorem 10) Let C = CL(D, G) be an algebraic geometry code defined by the
curve χ and the evaluation map evD as in (9.1).

Let deg(G) = α < k + g − 1 and D = P1 + . . . + Pn. Define a divisor F on χ so that

deg(F) = β − bα = �(n + 1)/(b + 1) − bα/2 + g − 1�

and the support of F is disjoint from D. Choose an element h in L(G) so that x =
(h(P1), . . . , h(Pn)) is the image of h under the evaluation map evD. Let a vector a =
(a1, . . . , an) in Fn

q be given so that d(x, a) ≥ β + 1, i. e. the vectors a and x agree in at
least β + 1 coordinates.

To complete the proof we look at Algorithm 5 and prove that the output in fact is a
list of at most b code words including x. For the algorithm to exist, there must exist a
polynomial as in (9.4) satisfying all conditions of step 1. Assume that a basis function is
given for each L(F +(b−j)G) where j = 0, . . . , b. The coefficients of uj with respect to the
bases of L(F +(b− j)G) are the unknowns. Hence H(Pi, ai) is a system of linear equations
with

�

j

dim(F + (b − j)G) =
�

j

dim(F + jG)

unknowns. From Riemann’s theorem it follows that

dim(F + jG) ≥ deg(F + jG) − g + 1 = deg(F) + jα − g + 1 = β − bα + jα − g + 1
= �(n + 1)/(b + 1) − bα/2 + g − 1� + jα − g + 1
= �(n + 1)/(b + 1) − bα/2� + jα

which implies that

b�

j=0
dim(F + jG) ≥

b�

j=0
(�(n + 1)/(b + 1) − bα/2� + jα)

= (b + 1) (�(n + 1)/(b + 1) − bα/2�) +
b�

j=1
jα

= (n + 1) − �(b + 1)bα/2� + (1 + . . . b)α

56

Since (b + 1)b/2 is less than or equal to (1 + . . . + b) for all b we obtain

b�

j=0
dim(F + jG) > n

This implies that there are more unknowns than equations, which shows that the set
of linear equations has a non-zero solution. Hence there exist a polynomial of the form
H(X) = ubX

b + . . . + u1X + u0. Since the degree of H(X) is b, there exists at most b

non-zero roots of the polynomial.
For all roots ρ of H(X), xρ is equal to (ρ(P1), . . . , ρ(Pn)). We want to prove that x

is among the set of xρ’s. Define a set J which contains all values of j which satisfy the
condition that aj = h(Pj). By definition the vector x is (h(P1), . . . , h(Pn)) and the vector a

was constructed under the condition that it agrees with x it at least β +1 coordinates, thus
the size of J is at least β +1. Hence, H(h) = ubh

b + . . . u1h+u0 is in L(F +bG−�
j∈J Pj).

But then

deg(F + bG −
�

j∈J

Pj) = deg(F) + bα− | J |= (β − bα) + bα− | J |

= β− | J |≤ β − (β + 1) = −1 < 0

Thus, H(h) is equal to zero which implies that h is a root of the polynomial H over K

which shows that x is among the xρ’s.
Hence we have proven that for a received word a the Sudan-Guruswami list decoding

algorithm returns a list of at most b code words.

The list decoding algorithm depends on an algorithm for finding the roots of an uni-
variate polynomial over the algebraic function field. This paper will not give an example
of such algorithms. For information on how this can be solved see [27].

Remark. When the integer b is equal to 1 the list decoding algorithm can correct �(d∗ −
1)/2 − g� with complexity O(n3). In this case the algorithm falls short of the designed
error-correction bound by g. This is quite similar to the result of the basic algorithm. In
fact, for b = 1 (when the algorithm returns a list of length one) the Sudan-Guruswami
algorithm is essentially equal to the basic algorithm. It is possible to modify the algorithm
to correct �(d∗ − 1 − g)/2� so that the error correction bound agrees with the bound for
the basic algorithm.

In general (for other values of b) algebraic geometric codes are (e, b)-decodable for small
b and large e. In other words, the error bound for the list decoding algorithm is larger than
the designed error bound even when the returned list is quite small.

57

References

[1] William Fulton, Algebraic Curves, An Introduction To Algebraic Geometry, Addison
Wesley Publishing Company, 1st Edition, 1969.

[2] David M. Goldschmidt, Algebraic Functions and Projective Curves, Springer-Verlag
New York, 1st Edition, 2002.

[3] David Cox, John Little, Donald O’Shea, Using Algebraic Geometry, Springer-Verlag
New York, 1st Edition, 1998.

[4] W. Cary Huffman, Vera Pless, Fundamentals of Error-Correcting Codes, Cambridge
University Press, 2003.

[5] Robert H. Morelos-Zaragoza, The Art of Error Correcting Coding, WILEY, 2002.

[6] J. H. van Lint, Introduction to Coding Theory, Springer - Verlag Berlin Heidelberg, 3rd
Edition, 1999.

[7] H. Stichtenoth, Algebraic Function Fields and Codes, Springer - Verlag Berlin Heidel-
berg, 1st Edition, 2009.

[8] W. Keith Nicholson, Introduction To Abstract Algebra, WILEY, 3rd Edition, 2007.

[9] Zhuo Jia Dai, Algebraic Geometric Coding Theory,
http://upload.wikimedia.org/wikipedia/commons/7/71/Algebraic Geometric Coding Theory.pdf,
2006.

[10] Ernst Kunz, Introduction To Plane Algebraic Curves, Birkhäuser Boston, 1991.

[11] Daniel Perrin, Algebraic Geometry: An Introduction, Springer - Verlag London, 2008.

[12] I. R. Shafarevich, Basic Algebraic Geometry, Springer - Verlag Berlin Heidelberg New
York, 1974.

[13] Paulo Ribenboim, The Riemann-Roch Theorem for Algebraic Curves, Kingston, Ont.
: Queen’s University, 2nd Edition, 1965.

[14] Peter Sweeney, Error Control Coding: From Theory to Practice, John Wiley & Sons,
Ltd., Baffins Lane, England, 2002.

[15] John Baylis, Error-Correcting Codes: A Mathematical Inroduction Chapman & Hall,
London, 1st Edition, 1998.

[16] Jørn Justesen and Tom Høholdt, A Course In Error-Correction Codes, European
Mathematical Society, Switzerland, 2004.

58

[17] Ralf Kötter, On Algebraic Decoding of Algebraic-Geometry and Cyclic Codes, Depart-
ment of Electrical Engeneering, Linköping University, Sweeden, 1996.

[18] Richard A. Mollin, An Introduction to Cryptography, Chapman & Hall/CRC, 2nd
Edition, 2007.

[19] Tom Høholt and Ruud Pellikaan, On the Decoding of Algebraic-Geometric Codes IEEE
Transaction of Information Theory, Volume 41, 1995.

[20] Iwan M. Duursma, Algebraic Decoding Using Special Divisors, IEEE Transaction of
Information Theory, Volume 32, 1993.

[21] Alexei N. Skorobogatov and Sergei G. Vladut, On the Decoding of Algebraic-Geometric
Codes, IEEE Transaction of Information Theory, Volume 36, 1990.

[22] Kyoki Imamura and Wataru Yoshida, A Simple Derivation of the Berlekamp-Massey
Algorithm, IEEE Transaction of Information Theory, Volume 33, 1987.

[23] Y. Sudiyama, M. Kasahara, S. Hirasawa and T. Namekawa, A Method for Solving Key
Equation for Decoding Goppa Codes, IEEE Transaction of Information Theory, Volume
27, 1975.

[24] Doug Ierardi and Ming-Deh Huang, Efficient Algorithm for the Riemann-Roch Prob-
lem and for Addition in the Jacobian of a curve, Journal of Symbolic Computaion,
18:519-539, 1994.

[25] Joseph H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag New York,
2nd Edition, 2009.

[26] Henri Cohen and Gerhard Frey, Handbook of Elliptic and Hyperelliptic Curve Cryp-
tography, Chapman & Hall/CRC, 2006.

[27] M. Amin Shokrollahi and H. Wasserman, List Decoding of Algebraic-Geometric Codes,
IEEE Transaction of Information Theory, Volume 45, No. 2, 1999.

[28] Ralf KŽtter, A Fats Parallel Implementation of a Berlekamp-Massey Algorithm for
Algebraic-Geometric Codes, IEEE Transaction of Information Theory, Volume 44, No.
4, 1998.

59

	Title Page
	

