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Abstract

We describe a new post-acquisition quality assessment method for brain MRI images. It is based on Bayesian
theory. Entropy is the event of interest. The low and the high entropy regions of a slice are partitions of image
quality sample space. Three separate observations of image quality are contrast, standard deviation and details
feature images of the original slice. Two separate quality measures are defined as the posterior probability of an
entropy region given corresponding region in an observation of image quality. Prior belief in each entropy region is
determined by the normalized total clique potential (TCP) energy of the slice. For TCP below predefined threshold
the prior probability is determined from a quality model described by normal distribution of percentage composition
of low and high entropy regions. The quality model was built from 250 MRI volume data. The data was made
available by the Alzheimers disease neuroimaging initiative (ADNI). For TCP above threshold the prior is computed
using a TCP-Noise level model. Total and global quality measures are weighted sums of quality measures from each
regions and observations, respectively. Experimental results demonstrate good correlation with subjective opinions
of radiologists for different types and levels of quality distortion.

Index Terms

Magnetic Resonance Imaging (MRI), Image Quality, Entropy, Contrast, Standard deviation, Total Clique
Potential (TCP) and Bayes Formula

I. INTRODUCTION

V IRTUALLY all spheres of medicine need information contained in medical images. Structural infor-
mation based on the chemical and physical properties that distinguish different anatomical structures

are highly desired in medical images. This requirement makes magnetic resonance imaging (MRI) system
a popular imaging modality for the study of human anatomy, diagnosis of diseases and the clinical trials
of drugs for the treatment of neurological diseases [1], [2], [3]. MRI can display images in three different
perpendicular planes and has the potential to discriminate the constituent soft anatomical structures with
high spatial and contrast resolution.

The quality of a medical image is strongly dependent on the acquisition procedures [4]. During
acquisition there are several factors relating to the imaging system, the actions of the operator and the
subject under investigation that limit the attainment of an ideal quality image. Image quality in radiation-
based imaging systems is dependent on radiation dose [5]. There is trade-off between image quality and
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patient safety [6]. The antiscatter grids determines the level of contrast in digital mammography images
[7]. Quality of reconstructed SPECT images are influenced by the number of projection angles [8]. In
breast ultrasound images artifacts are caused by improper positioning of the nipple relative to the breast
mass and loose contact between the breast mass and the transducer [4]. In MRI images noise is the result
of trade-off between signal-to-noise-ratio, image resolution and length of scan time [9]. Bias fields is the
combined effects of non-uniform sensitivity of radio-frequency coils and non-uniform sensitivity of static
fields [10]. Motion of patient, respiration, blood flow and patient position relative to the iso-center of the
magnetic bore introduces blur and extraneous features into the image [11], [12]. Chemical shift and partial
volume artifacts are the result of improper parameter settings [13]. The numerous factors that influence
the acquisition procedures makes quality evaluation a non-trivial and complex task [14], [15].

Quality evaluation of medical images is integrated into the imaging workflows of routine clinical
practice and research. Quality measure evaluates the integrity of the anatomical information contained
in a scan. Optimal transmission of information from a medical image, the discernment and the confidence
in the interpretation of an image by a physician, radiologist or a trained reader and the efficacy of
post-acquisition processing tools is dependent on the outcome of image quality evaluation. Recently, the
European collaborative research network that studies MRI in multiple sclerosis (MS) recommend high
quality brain MRI images for clinical research [16]. The recommendation will prevent inaccurate diagnosis
by enforcing the use of only MRI data of acceptable quality for clinical research. The recommendation
also outlined the criteria for establishing multiple sclerosis dissemination in space and time. They are
the presence of at least one lesion in at least two of four different regions of T2 brain MRI images
[16]. The regions are juxtacortical, periventricular, infrantentorial and the spinal cord [16]. MRI system
is also a strong biomarker for the diagnosis of Alzheimer’s disease (AD) [17]. In response to these
recommendations MRI-based metrics such as [18], [19], [20] have been formulated to extract information
from different structural regions of the brain. The metrics include atrophy measurements of the brain
parenchyma, cortical gray matter, white mater, ventricle and the thalamus.

Popular objective quality evaluation methods such as root-mean-square error (RMSE), signal-to-noise
ratio (SNR) and structural similarity index (SSIM) [21] were designed to solve research problems that
were not related to image interpretation but on efficient compression, storage and transmission of images.
Their formulation assume that all classes of medical images and all other natural images have same
descriptive features. Medical images exhibit characteristics such as texture, gray-scale color, noise and
homogeneity which distinguish them from each other and other classes of natural images. There are many
definitions of PSNR, SNR and MSE which makes it difficult to compare quality measures from different
imaging system, modalities and researchers [8]. Quality indices derived from these popular methods does
not always correlate with the performance of observers using the imaging system on the task for which
they are intended [8].

Some of the problems associated with the popular quality assessment methods were addressed when
task-based quality assessment methods was introduced to the medical imaging and computer vision
community [22], [23], [24]. The philosophy behind task-based quality assessment is the believe that
a rigorous quantification of image quality should be defined by specifying a clearly defined task and the
observer who will be performing the task. In medical imaging the task can be classification or estimation
task. An example of classification task is the detection of lesions in brain MRI images of patients diagnosed
with multiple sclerosis disease. Quantification of brain atrophy in patients diagnosed with Alzheimer’s
disease is an example of estimation task. The observer can be human, human model or Bayesian ideal
observer [25], [26]. The efficacy of task-based quality assessment reported in [27], [25], [28] is the
motivation behind pioneering research in the field of task-based adaptive imaging. Task-based adaptive
imaging has been applied for the optimization of imaging systems parameters [29], [8], [5], optimization
of image quality in imaging systems [26], [30], [31], evaluation of cardiac ejection fraction estimation
algorithms [32] and the evaluation of diffusion weighted MRI segmentation algorithms [33].

The mainstream approach to quality evaluation methods for brain MRI images focus on the acquisition
stage. The several parameters associated with MRI system acquisition process are exploited to evaluate and
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optimize image quality. Proposed methods in this category include [34], [35], [36], [37], [38], [39], [40].
There are few contributions on post-acquisition quality assessment of brain MRI images. Post-acquisition
quality evaluation is an important step in the quality control procedures of clinical research organizations
(CRO). Quality evaluation ensures that the variations in the quality of MRI images from different MRI
system manufacturers, different clinical trial sites and different acquisition protocols are assessed and
standardized before they are fed to automated image analysis systems.

We identified and reviewed five contributions in the literature on post-acquisition quality evaluation
of brain MRI images. The report in [41] apply analysis of variance (ANOVA) algorithm to assess the
variation of several quality measures with different levels of distortions. The authors in [42] combine the
detection of artifacts and estimation of noise level to measure image quality. In [43] null space analysis
and just noticeable difference scanning method was proposed as a better quality metric compared to root
mean square error. The popular signal-to-noise ratio is the quality metric adopted in [44]. Subjective
quality assessment was reported in [45].

The contribution by [44] which adopt signal-to-noise ratio cannot discriminate the quality of two images
that are perceptually dissimilar [43], [46]. A significant contribution by [42] is the adoption of artifacts as
quality attributes. Several types of distortions combine with ideal features to manifest as an image attribute
[47]. Thus the adoption of only artifacts and noise in [42] are too few attributes to evaluate the quality
of an image. There is risk of ambiguity in quality measures that are based on the use of ANOVA models
[48]. ANOVA limits the performance of the technique proposed in [41] to the detection of distortion. It
cannot transform the different levels of distortion into a quality index. Quality evaluation by a trained
MRI reader which requires negotiation around several types and levels of distortion [39] and the need
for consensus with other readers makes the subjective method proposed in [45] inefficient to manage the
large volume of MRI data in clinical research organizations [49].

The different distortion processes have different effects on the different homogeneous regions of the
brain. Noise introduce excessive and possibly spurious details into the smoothly varying white matter and
ventricle regions. It lowers the density of edges that characterize the cortical gray matter region and blur
the boundaries between the different homogeneous regions. The smoothen effect of motion blur result in
loss of texture features that distinguish the white matter and the thalamus regions. Motion blur reduce
the contrast between the white matter and other homogeneous regions. Bias fields corrupt the natural
homogeneity of the major anatomical structures by introducing new smoothly varying intensity levels.

Current post-acquisition quality assessment for brain MRI images have rigid designs. Their techniques
regard the brain as a single homogeneous region. They are not flexible and rigorous enough to account
for the effect of all possible distortions on the different homogeneous regions. Few or most relevant
quality attributes are applied across the entire image to predict image quality [50]. They will be inefficient
for quality assessments in region-based measurements such as normalized cortical gray matter volume,
normalized white matter volume, cortical gray matter atrophy, white matter atrophy and thalamus atrophy.
In the study of disease progression in MS and AD the focus of the physician, radiologist, a trained reader
and automated image analysis systems varies with the type of MRI-based metric. The white matter region
is the focus for T2 lesion count. The focus shift to the cortical gray matter region during gray matter
atrophy measurement, to the ventricle in ventricular volume measurement and to the global view of the
image in whole brain atrophy measurement. Thus global quality measure increase the risk of non-optimal
quality measure in specific region-of-interest.

This report describe a new post-acquisition no-reference, region-of-interest objective quality assessment
method for brain MRI images. The proposed method is inspired by Bayesian theory of probability and
statistics [51]. There are two separate events of interest. They are the low and the high entropy regions of a
MRI slice. These entropy regions are regarded as partitions of image quality sample space. There are three
separate observations for each partition of the sample space. They are the local contrast, local standard
deviation and local details feature images. The feature images are extracted from the original slice using
appropriate local filters. Quality score for each entropy region is defined as the posterior probability of a
region in the local entropy feature image given corresponding region in the feature image that describes the
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observation of image quality. Thus there are three quality measures for each entropy region. Each quality
measure is regarded as a quality attribute. The total quality score of an entropy region is the weighted
sum of each quality attribute. The global quality score is the wighted sum of the quality scores from
each entropy region. The prior probability of each entropy region is determined by the normalized total
clique potential (TCP) energy of the image. When TCP is below a predefined threshold the prior belief
is computed from a quality model. The quality model is based on the philosophy adopted in [52], [53].
We adopt the principle of similarity in the geometry of human brain across age, gender and race [52].
Furthermore we invoke the central limit theorem on the random variables generated from MRI volume
data of 250 subjects [53]. The data was made available by the Alzheimer’s disease neuroimaging initiative
(ADNI). For TCP above the threshold the prior is computed using a TCP-Noise level model.

This paper is organized as follows. The next section describe the theory behind our proposed method.
Materials and methods are described in Section 3. Results from quality measure experiments are displayed
in Section 4 and discussed in Section 5. Section 6 introduces future research direction. Section 7 concludes
this report.

II. THEORY

A. Local Entropy and Classical Quality Attributes
Let I(x, y) denote an image cast on a 2D grid of size N × N . The spacing between pixel locations

(x, y) is h and there are Q number of gray levels in the image. A local region i(x, y) has size h× h and
nq is the number of each gray level q within the region. The local Shannon entropy s(x, y) [54]:

s(x, y) = −
Q−1∑
q=0

pq log pq (1)

where pq, the probability of a gray level is:

pq =
nq

h2
(2)

Thus the local entropy s(x, y) express the diversity G of pixel gray levels

s(x, y) = G(pq), q = {0, 1, · · · , Q} (3)

In the following sections we will show the relationship between local entropy and the classical image
quality attributes.

1) Brightness: The mean µi(x,y) of the gray levels [55]:

µi(x,y) =

Q−1∑
q=0

qpq (4)

is a measure of the local brightness attribute. The mean brightness can also be expressed as functions Y11,
Y1 of gray level probability and entropy ;

µi(x,y) = Y11(pq)
µi(x,y) = Y1(s(x, y))

(5)
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2) Noise: Given that the deviation dq of any pixel q from the mean is:

dq = ∥q − µi(x,y)∥ (6)

the local variance σ2 [56]:

σ2 =

Q−1∑
q=0

pqd
2
q (7)

is one of the variables considered in the estimation of noise level in the local region. The local variance
can also be expressed as functions Y22, Y2 of gray level probability and entropy:

σ2 = Y22(pq)
σ2 = Y2(s(x, y))

(8)

3) Contrast: For a local region dominated by single gray level dq = 0. Thus intuitively the deviation
expressed in Eq. 6 is a measure of the local contrast attribute t [57]:

t =
1

(N2 − 1)

Q∑
q=0

d2q (9)

The local contrast can also be expressed as functions Y33, Y3 of gray level probability and entropy:

t = Y3(pq)
t = Y3(s(x, y))

(10)

4) Details: The deviations dx, dy of any pixel from the center pixel in the x and y directions are:

dqx = ∥i(x+ h, y)− i(x, y)∥
dqy = ∥i(x, y + h)− i(x, y)∥ (11)

The local gradient is expressed by the forward difference in the x and y:

∇iqx =
dqx
h

(12)

∇iqy =
dqy
h

(13)

The gradients determines the sharpness [58]

1

N2

∑
x

∑
y

∣∣∣∣∇I(x, y)

I(x, y)

∣∣∣∣2 I(x, y) (14)

and sharpness determines the amount of details in an image. For a local region dominated by single gray
level ∇iqx = 0 and ∇iqy = 0 . Thus intuitively the gradients expressed in Eq. 12 and Eq. 13 are measures
of the local details attribute. The local details attribute g can be expressed as functions Y44 , Y4 of gray
level probability and entropy:

gqx = Y4x(pq)
gqy = Y4y(pq)
g(x,y)q = Y4(s(x, y))

(15)

5) Local Entropy: Combining the expressions in Eq. 3, Eq. 5, Eq. 8, Eq. 10 and Eq. 15 we can now
express the local entropy as a multivariate function Y where the variables describe the quality attributes:

s(x, y) = Y (µµ(x,y), σ
2
(x,y), t(x,y), g(x,y)) (16)

Our conclusion is in agreement with the contributions in [59], [58] that demonstrate entropy as the
aggregate of image attributes. Furthermore, entropy maximization has been adopted in [60], [61] to improve
the quality of tomographic images.
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B. The Central Limit Theorem
The central limit theorem says that, as the number n of independent and identically distributed random

variables X tend towards infinity, the probability distribution of their sum or their average will be
approximately normal with mean µX and variance σ2

X regardless of the underlying condition [62]:

lim
n→∞

P (X ) =
1

σX
√
2π

exp−

(
(X − µX )

2

2σ2
X

)
(17)

There is no closed form expression for the normal cumulative density function. Thus, all continuous
distributions probabilities cannot be computed from the area under the curve. A method to overcome
this setback is to standardize the random variable. The standard value of a normally distributed random
variable is called a z score;

z =
X − µX

σX
(18)

The standard normal distribution P (z) is:

P (z) =

∫ z

−∞

1√
2π

exp−
(
z2

2

)
(19)

The probability is calculated from the table of cumulative standard normal distribution function P (Z ≤
z) = Φ(z):

Φ(z) =

∫ z

−∞

1√
2π

exp−
(
y2

2

)
dy (20)

Since the standard normal distribution is symmetric about µ = 0,

Φ(−z) = 1− Φ(z) (21)

C. Markov Random Field Energy - Noise Level Relationship
The Markov random field energy U of an image I is dependent on pixel configuration f . The pixel

configuration is quantized into local cliques c in a clique system S that describes spatial coherence or
clusters of similar pixels. The Markov random field energy is the sum of local clique potentials Vc [63]:

U(f) =
∑
c∈C

Vc(f) (22)

For the clique system we adopt second order neighborhood of size two with neighboring pixels indexed
as (i, i

′
). In this system the Markov random field energy is the sum of potential function contributions

from single site and pair-site cliques, [64]:

U(f) =
∑
i∈S

α1V1(fi) +
∑
i∈S

∑
i′∈N

α2V2(fi, fi′ ) (23)

where α1 and α2 are interaction coefficients. For computational convenience we set α1 = α2 = 1. At
each local clique the contribution of each neighboring pixel to the clique potential energy is determined
according to the expression [64];

Vci(fi) =

{
ξr if fi = fi′

ξp otherwise
(24)

in such a way as to reward ξr conformity (fi = fi′ ) with the smoothness constraint and penalize ξp
violations (fi ̸= fi′ ) of the smoothness constraint.
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D. Bayes Theorem
Bayes theorem is a rule applied in a random experiment where the event of interest A forms m =

{1, 2, · · · ,M} partitions of the sample space. Bayes rule expresses the probability of the event A as
posterior probability based on condition B that is related to event A. The posterior probability of event
Aj given that event B has occurred is [51]:

P (Aj|B) =
P (B|Aj)P (Aj)∑M

m=1 P (B|Am)P (Am)
(25)

where P (Aj) is the prior probability and P (B|Aj) is the observation. The prior probability is the belief in
the event Aj before the actual observation B derived from performing the experiment. The term P (B|Aj)
is the probability of observing event B given that event Aj is true. The posterior probability P (Aj|B) is
the probability that the event Aj is true supposing that our new piece of evidence B is true. Given that
there are k = {1, 2, · · · , K} separate observations for each partition of the sample space, the posterior
probability of event Aj given that event Bk has occurred is:

P (Aj|Bk) =
P (Bk|Aj)P (Aj)∑M

m=1 P (Bk|Am)P (Am)
(26)

The denominator in Eq. 25 and Eq. 26 is referred to as the the total probability or normalizing constant.
Disregarding the normalizing constant the posterior probability can be expressed as proportional to the
product of the prior and the likelihood [65]:

P (Aj|Bk) ∝ P (Bk|Aj)P (Aj) (27)

We consider an experiment where the event of interest is the entropy of an image. In the experiment
the local entropy A of the image represent the image quality. The local entropy image is partitioned into
M = 2 separate regions m = {1, 2}, the low entropy region A1 and the high entropy region A2. For each
local region there are K = 3 possible tests or observations k = {1, 2, 3} of image quality. They are the
local contrast B1, the local standard deviation B2 and the local details B3. The likelihood is defined as
matching the structural information of an entropy region to corresponding region in an observation image:

P (B1|Am) =
P (B1

∩
Am)

P (Am)
=

(
(
nB1,Am

nfg
)

(
nAm

nfg
)

)
=

nB1,Am

nAm

(28)

P (B2|Am) =
P (B2

∩
Am)

P (Am)

(
(
nB2,Am

nfg
)

(
nAm

nfg
)

)
=

nB2,Am

nAm

(29)

P (B3|Am) =
P (B3

∩
Am)

P (Am)

(
(
nB3,Am

nfg
)

(
nAm

nfg
)

)
=

nB3,Am

nAm

(30)

where nBk,Am are the number of pixels derived from matching the local entropy image to each observation
image and nfg is the number of foreground pixels.

An image quality attribute is defined as the posterior probability of a local entropy region given any of
local contrast, local standard deviation and local details. The three image quality attributes are:

contrast quality attribute
P (Am|B1) (31)

standard deviation quality attribute
P (Am|B2) (32)

details quality attribute
P (Am|B3) (33)
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Accurate measurement of entropy is limited by the presence of noise [66]. Analytically entropy increases
with sharpness but there is no fair correlation between entropy and noise [59]. The report in [59] suggest
that entropy can be considered as a quality index only if noise can be considered a unique type of
information which can be distinguished from Shannon entropy. We adopt this suggestion in order to find
the best estimate of the prior probability P (Aj). We define a global threshold Et = Tr to classify an
image into energy bands. Lower energy band is below the threshold. In the lower energy band there is a
general increase of entropy with sharpness. Noise is significant above the threshold. Given a normalized
total clique potential Et measured from the test image and a pre-defined global threshold Tr, the prior
belief for both partitions of the sample space is defined as:

P (Aj) =

{(
Φ(zj)

0.5

)
if Et ≤ Tr

P (E) otherwise
(34)

where zj is the z score for Aj and 0.5 is the maximum possible z score.
There are two methods to determined P (E). The first method requires an estimate of the noise level

in the slice. The contribution in [67] adopt the theoretical principles stated in Eq. 22, Eq. 23 and Eq. 24
to propose a power model that express the relationship between the normalized total clique potential Et

and the standard deviation σ̂ of Gaussian noise for brain MRI images:

P (E) = aσ̂b + c, {Et : 0 ≤ E ≤ 1} (35)

abg = −1.67, afg = −0.6863 (36)

bbg = −0.6764, bfg = −0.3663 (37)

cbg = 1.053, cfg = 1.105 (38)

where abg , afg , bbg , bfg , cbg , cfg are the model parameters for the foreground (fg) and background (bg) modes.
Plots of the power models are shown in Fig. 1a for the foreground mode and Fig. 1b for the background
mode.

In the second method to determine P (E) we define Dr as the distance between Tr and the maximum
possible total clique potential Emax = 1. Furthermore let Dr be linearly spaced into d number of points
where d correspond to the operating range of noise level for the model.

Dr =

(
Emax − Tr

d

)
(39)

The probability P (E) of the total clique potential energy:

P (E) = Et −
(
1

d

)(
Et − Tr

Dr

)
+

(
Et − Tr

1− Tr

)
TL (40)

where TL is a user defined lower limit of the probability scale. The default value of TL = 0. In Eq. 40, for
increasing total clique potential energy, the first term Et → Emax = 1, the second term

(
1
d

) (
Et−Tr

Dr

)
→(

1
d

) (
Emax−Tr

Dr

)
→ 1, the third term

(
Et−Tr

1−Tr

)
TL →

(
Emax−Tr

1−Tr

)
TL → TL. Thus with increasing MRF

energy the degree of spatial coherence approaches the lower limit of the probability scale.
The total conditional probability Pm for each m partition of the sample space is:

Pm =
K∑
k=1

(P (Am|Bk))wk (41)

where wk are weights assigned to conditional probability derived from each observation, such that:
K∑
k=1

wk = 1 (42)
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We define the global conditional probability P as the total conditional probability of all the partitions in
the sample space:

P =
M∑

m=1

(Pm)λm (43)

where λm are weights assigned to conditional probability derived from each partition of the sample space,
such that:

M∑
m=1

λm = 1 (44)

III. MATERIALS AND METHODS

A. Sources of Data
Data used for the performance evaluation of our proposed method were obtained from three sources.

They are from NeuroRx research Inc. (https://www.neurorx.com), BrainCare Oy. (http://braincare.fi/) and
the Alzheimer’s disease neuroimaging initiative (ADNI) database (www.adni.loni.usc.edu).

NeuroRx research Inc. is an international clinical research organization dedicated to working with the
pharmaceutical industry to facilitate clinical trials of new drugs for multiple sclerosis (MS) and other
neurological diseases. BrainCare Oy (http://braincare.fi/) is a Tampere University of Technology spin-off
company founded in 2013 to deliver personalized solutions to improve the quality of life of epilepsy
patients. The organization recently concluded clinical trials for a novel mobile application and supporting
solutions for long-term monitoring for epileptic patients. The (ADNI) was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI
has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and early Alzheimers disease (AD).

B. Setup of Experiment
1) Quality Model: We build an image quality model from 250 MRI volume data. The quality model is

a normal probability distribution of random variables. The data was obtained from ADNI database. The
random variable is the percentage composition of the low and the high entropy region in each volume
data. Each volume data was acquired using high resolution T1 magnetization-prepared rapid gradient echo
(MPRAGE) pulse sequence. Images acquired using MPRAGE pulse sequence was our choice to build a
quality model because they exhibit superior gray-white matter contrast compared to the conventional T1
and other structural brain MRI images [68], [69], [70]. Each slice in a volume data has thickness of 1.2
mm and dimension of 190× 160 pixels. Details of ADNI acquisition protocol and the initial processing
steps is available in [71]. We seek the opinion of radiologists in the selection of MRI volume data on
ADNI website. This is to ensure that only MPRAGE MRI volume data that meets the expected high
quality attributes are selected for the quality model. Furthermore we seek MRI data of patients with
healthy and normal brains that were without lesions or with very mild lesions. For each MRI data, slices
towards the most inferior and most superior sections are discarded because they highlight more of scalp
and bone structures than brain structures. The number of useful slices for each subject vary between 50
and 85. A total of 12005 slices were derived from the 250 MRI volume data. For each patient data the
index of useful slices were coded in a special function which can be called up by the algorithm during
the modeling experiment.
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2) Test Data: The performance of our proposed method was evaluated on 350 MRI slices extracted
from 31 MRI volume data. The test data were from two sources; 20 from NeuroRx and 11 from BrainCare.
Each slice from NeuroRx has 2.4 mm thickness with dimension of 256× 256 pixels in a 60-slice volume
data. BrainCare data has thickness of 7.4 mm with dimension of 448 × 390 pixels in a 24-slice volume
data. NeuroRx data consist of 10 conventional T1 images that were originally acquired with bias fields.
The remaining data from NeuroRx were without any perceived distortion. They are 3 T2, 3 T1, 3 PD and
2 fluid attenuation inversion recovery (FLAIR) images. All the 11 MRI volume data from BrainCare had
no perceived distortion. They are 3 T2, 3 T1, 2 PD and 2 FLAIR images. Description of the test data are
displayed in Table I.

The test data were evaluated in their original state of acquisition. Different levels of motion blur and
Rician noise were artificially induced on 2 T2 and 2 T1 images that are without perceived distortion.
Motion blur was induced on a slice by convolving it with a special filter which approximates the linear
motion of a camera. The linear motion is described by two parameters of the motion blur point spread
function H(x, y : L, θ) [72]:

H(x, y : L, θ) =

{
1
L

if
√
x2 + y2 ≤ L

2
and x

y
= − tan θ

0 otherwise
(45)

where L is the linear distance in pixels and θ is the angular distance in degrees. The range of the linear
and angular distances are {1 ≤ L ≤ 30} and {1 ≤ θ ≤ 60}, respectively. Both linear and angular distances
were linearly spaced into 20 data points so that the filter generated 20 increasing levels of motion blur.
Rician noise was generated in a three-step process. In the first step we generate Gaussian noise. The noise
level is quantified as a percentage of the maximum pixel intensity level in the test image. For a m percent
Rician noise level the standard deviation of the equivalent normal distribution is given by

σ ≈ N
(
0,

τm

100

)
(46)

where τ is the maximum pixel intensity [73]. In the second step we simulate the real and imaginary
components in the complex plane of MRI acquisition process by adding two separate and identical
Gaussian noise levels to the test image. The third step computes the magnitude of the complex data.
The Rician noise level was scaled from 1 percent to 20 percent in steps of 1 percent.

C. Modeling Experiment
The foreground is segmented from the background region of each slice. Foreground are the pixels

representing the anatomical structures. Local entropy image of each slice is computed using a 3 × 3
local entropy filter defined according to Eq. 1. The mean of the local entropy image is determined
and used as a global threshold for transformation to the binary domain. Binary transformation allows
classification into low and high entropy regions. The low energy and the high energy regions contain
the zero pixels and ones pixels, respectively within the region enclosed by the foreground of the slice.
The number of pixels in the low and high entropy regions are calculated and divided by the number of
pixels in the foreground to determine the percentage composition of each region in a slice. The percentage
composition of each region in all the slices in a volume data are summed and averaged to obtain the first
random variable for the low Xlow,1 and the high entropy region Xhigh,1. From the 250 MRI volume data
we generate 250 random variables for the low entropy region {Xlow,1, · · · ,Xlow,250} and the high entropy
region {Xhigh,1, · · · ,Xhigh,250} . The mean derived by averaging the percentage composition of each region
in all the slices of a volume data are finite. According to the central limit theorem, Xlow and Xhigh will
tend to a Gaussian distribution [74],[62],[75]. The mean of the normally distributed random variable for
the low entropy region µlow = 0.4734 and the high entropy region µhigh = 0.5471 are in agreement with
the results reported in [76] on the percentage volume of white matter, gray matter and cerebrospinal fluids
in a healthy adult brain. We build two normally distributed quality models for each normally distributed
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random variables. Each quality model is symmetrical about µlow = 0.4734 and µhigh = 0.5471. The
standard deviation σlow, σhigh for each quality model was computed from the principle of three-sigma
rule [77].

P (µlow − 3σlow ≤ X ≤ µlow + 3σlow) ≈ 0.9973

P (µhigh − 3σhigh ≤ X ≤ µhigh + 3σhigh) ≈ 0.9973
(47)

D. How the Algorithm Works
The algorithm was implemented in the Matlab computing environment. The flow chart in Fig. 2 and

the images in Fig. 3 explains how our proposed method works. Foreground extractor FRX segments the
test image TIM shown in Fig. 3a into two regions; the foreground FRG region and the background
region. The foreground region contain only the pixels that describe the anatomical structures in the slice.
The foreground extractor is based on Otsu method for global image threshold [78]. Otsu method is
computationally efficient and fully automated. It operates directly on the gray level pixels and automatically
chooses the threshold that minimizes the weighted within-class variance. The foreground extractor also
incorporates image filling operation and region property analysis. The image filling operation improve
the accuracy of the extracted foreground by filling holes which mimic background pixels within the
foreground region. Area threshold eliminate small regions such as extraneous and ghosting artifacts that
mimic foreground pixels in the background region.

Feature extractor FEX consist of four separate local filters; entropy, contrast, standard deviation and
details. These local filters extracts four image features from the original slice. They are local entropy
ENT in Fig. 3b, local contrast CON shown in Fig. 3c and local standard deviation STD in Fig. 3d. The
choice of filter size is determined by trade-off between spatial accuracy and computational efficiency.
Generally, efficient performance of a filter is determined by the number of neighbouring pixels enclosed
by its window. Larger filter size tend to dilate the original edge thickness that demarcates boundaries.
This will cause loss of fine details in the image during the filtering process [79]. Filter size that is too
small relative to the image dimension will result in loss of spatial coherence in the filtered image. Loss
of spatial coherence manifest as discontinuous edges in the filtered image. For this reasons and based
on our experience during the performance evaluation we recommend filter sizes of 3 × 3 and 5 × 5 for
images with dimensions comparable to 256 × 256 and 512 × 512, respectively. Haar wavelet transform
was applied [51] to extract the local details feature image shown in Fig. 3e.

A binary image transformer BIT computes the mean of each feature image. The mean is adopted as
global threshold to transform the feature image into a binary image. The binary image is a cluster of each
feature image into low energy region labeled with dark pixels and high energy region labeled with the
bright pixels.

The operation of the algorithm is based on Bayes theory. Image quality is the event of interest. Entropy
represents the event. The low entropy region (EL) and the high entropy region (EH) are regarded as
the partitions of image quality sample space. Three separate tests or observations of each partitions of
the sample space are the corresponding regions in the local contrast (CL, CH), local standard deviation
(SL, SH) and local details (DL, DH) feature images. The feature images are extracted from the original
slice. Thus the postprocessing of these feature images does not require additional resources such as
computationally intensive image registration algorithm.

The first step in the execution of Bayes rule is the computation of the prior belief (PBL) in the low
entropy region and the prior belief (PBH) in the high entropy region). The normalized total clique potential
of the image is computed. We set a threshold of Tr = 0.5 for the normalized total clique potential energy
of the image. The threshold separates noise from entropy so that entropy can be regarded as the aggregate
of image quality attributes [59]. The threshold classifies an image into the low and the high energy bands.
It is expected that good quality images, images with insignificant level of noise, blurry images and images
degraded with bias fields will fall into the category of lower energy band. Images with significant level
of noise will fall into the higher energy band.
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For Tr < 0.5 the algorithm counts the number nAm of bright pixels in each entropy region. The ratio
of the number of bright pixels in each region to the number nfg of foreground pixels is the percentage
composition P (Am) of each region. The percentage composition is inserted into Eq. 18 to standardize the
quality model and determine the z score. The probability from the standard normal table is determined
according to Eq. 21. The prior belief in each region is computed according to Eq. 34.

When Tr ≥ 0.5 there are two methods to compute the prior belief. Where a noise estimation algorithm
is available the prior belief is computed according to Eq. 35, otherwise the prior belief is computed
according to Eq. 40.

The likelihood is computed for each entropy region. The bright pixels in each of the low contrast
(CL), low standard deviation (SL) and low details (DL) feature images are separately matched, without
registration, with the pixels in the low entropy region (EL). The ratio of the number nBk,Am of their
common elements to the number nfg of foreground pixels is expressed by P (Bk

∩
Am). The ratio of the

number of bright pixels in the low entropy region to the number of foreground pixel gives P (Am). Both
P (Bk

∩
Am) and P (Am) are inserted into Eq. 28, Eq. 29 and Eq. 30. to derive three separate likelihood

(LL) for the low entropy region. Three posterior probabilities corresponding to each likelihood are defined
as the contrast, standard deviation and details attributes quality scores are computed according to Eq. 31,
Eq. 32 and Eq. 33, respectively. The total quality score (PTL) for the low entropy region is the weighted
sum of quality scores for quality attributes computed according to Eq. 41. Each quality attribute had equal
weight. For the high entropy region (EH), similar steps are followed to compute three separate likelihood
(LH), corresponding posterior probabilities and total quality score (PTH). The global quality score (PG)
for the slice is the weighted sum of quality scores for each region according to Eq. 43.

E. Validation of Results
Our proposed method was validated with subjective experiments conducted with a group of human

observers. The group consist of four radiologists and one MRI reader. MRI reader is a trained professional
with experience working on MRI images that are affected by pathology [44]. The experiment was
conducted with the aid of QuickEval, a web-based tool for psychometric image evaluation provided by
the Norwegian Colour and Visual Computing Laboratory (www.colourlab.no/quickeval)at the Norwegian
University of Science and Technology, Gjøvik, Norway. We choose the mean opinion score (MOS)
subjective experiment method because of its popularity and simplicity. Mean opinion score is the average
of the quality scores assigned to an image by multiple viewers [80]. There are four categories of the
experiment. They are MRI volume data without perceived distortion, MRI volume data originally acquired
with bias fields, MRI volume data artificially degraded with motion blur and MRI volume data artificially
degraded by Rician noise. Table 1 display the categories of the experiment and the description of the MRI
volume data utilized for the experiment. The observer assigns a score from 101 possible quality scores
to each low and high energy regions of a slice. The possible scores are between 0 and 100, in steps of 1.
Each region have equal weights, thus the global quality score is the average of the low and high entropy
regions. In the category of MRI volume data with artificially induced distortion, each observer was first
presented with an undistorted version of an MRI slice. This was followed by four different increasing
levels of distortion of the original slice. The distorted levels are 5, 10, 15 and 20. The relationship between
our objective results and the score assigned by human observers was determined using the spearman’s
rank correlation coefficient ρ [81]:

ρ = 1− 6
∑

d2

n3 − n
(48)

where n, the number of observations is the total number of slices contained in all the volume data in each
category of the experiment, d is the difference between the two ranks of each observation.
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IV. RESULTS

In this section we provide results of the experiments on five MRI volume data. One T2 and a conven-
tional T1 volume data are from NeuroRx Inc. The T1 data was originally degraded by bias fields during
acquisition. The data from BrainCare Oy are two T2 and a conventional T1 volume data.

1) MRI Volume Data Without Perceived Distortion: Two slices in a T2 volume data from BrainCare
are shown in Fig. 4a, and Fig. 4b. The slices are without perceived distortion. The plots of the posterior
probability for the low energy region, high energy region and total probability of the contrast, standard
deviation and details quality attributes are displayed in Fig. 4c, Fig. 4d and Fig. 4e, respectively. Each
quality attribute had average low energy quality score of 0.85. The high energy region of the contrast and
standard deviation quality attribute had average of 0.8 compared to corresponding details quality score of
0.7. The global quality score for ten successive slices in the volume data is in Fig. 4f

Another two slices are shown in Fig. 5a and 5b. They are in a T1 volume data from BrainCare and
are without perceived distortion. The plots of the posterior probability displayed in Fig. 5c, Fig. 5d and
Fig. 5e have average of 0.7 and 0.6 for the low and the high energy regions of the contrast, standard
deviation and details quality attributes, respectively. The average total score for each quality attribute is
0.55. Global quality scores for 10 successive slices in the volume data is displayed in Fig. 5f.

Figure 6a and Fig. 6b are two slices in a NeuroRx T2 volume data considered to be without perceived
distortion. The average of the quality scores displayed in Fig. 6c, Fig. 6d and Fig. 6e for the low and
high entropy regions is 0.9. The average quality score for 14 successive slices in the volume data (see
Fig. 6f) is 0.8.

2) MRI Volume Data Degraded by Motion Blur: The image in Fig. 7a was degraded by 20 different
levels of motion blur. Figure 7b is the degraded version of the image in Fig. 7a with motion bur level of
20. The plots of the posterior probability corresponding to the low and the high entropy regions for each
quality attributes are shown for Fig. 7c, Fig. 7d and Fig. 7e. These plots and the plot in Fig. 7f show
decrease in quality scores for different levels of degradation by motion blur. At insignificant level of blur
the quality score for the low entropy region is close to 0.9 for the three quality attributes. The quality
scores decreases in proportion to the successive increase in blur level to quality score of 0.4 for motion
blur level of 20. In the high entropy region the three quality attributes exhibit different profiles. Contrast
and standard deviation decrease from 0.6 to 0.4 and 0.6 to 0.35, respectively. There is slight increase from
0.5 to 0.55 in the level of details for motion blur increase from 1 to 5. Subsequently there is progressive
decrease in quality score from 0.55 to 0.3 for motion blur level decrease from 6 to 20. The plot in Fig.
7f show a general decrease in image quality with increasing levels of motion blur.

3) MRI Volume Data Degraded by Noise: Figure 8a and Fig. 8b are the original image and its degraded
version, respectively. The Rician noise level varies from 1 percent to 20 percent. The image on Fig. 8b
is degraded by 20 percent Rician noise. Plots of the posterior probabilities of the three quality attributes
for the low and the high entropy regions are displayed in Fig. 8c, Fig. 8d and Fig. 8e. The global quality
score is shown in Fig. 8f. The plots of the contrast and standard deviation quality attributes shown in Fig.
8c and Fig. 8d have very close corresponding quality scores. The zero distortion level quality score for
the high entropy region of the details quality attribute is a lower value of 0.5 compared to 0.6 for the
other quality attributes. Corresponding maximum distortion level quality score is 0.3 compared to 0.35
for the other quality attributes. Loss of details is clearly evident when the visual quality of the original
image in Fig. 8a is compared to its degraded version in Fig. 8b. Figure 8f shows a general decrease of
image quality with increasing noise level.

4) MRI Volume Data Degraded by Bias Fields: Figure 9a, Fig. 9b, Fig. 9c, Fig. 9d and Fig. 9e are
five slices in a 60-slice T1 MRI volume data. The volume data was degraded by bias fields during its
acquisition and the slices exhibit different configurations of bias fields. The three quality attributes of 21
successive slices in the volume data are displayed in Fig. 9f , Fig. 9g and Fig. 9h. There are variations
in the quality scores for the different slices. The global quality scores of slice numbers 1, 6, 8, 14 and
19 displayed in Fig. 9 are 0.2, 0.2, 0.25, 0.3 and 0.5, respectively.
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5) Validation of Results: The plots in Fig. 10 show the results of the validation experiments on MRI
volume data with no perceived distortion. The objective scores recorded by our proposed method and the
scores recorded by human observers for T2, T1, FLAIR and PD images are displayed in Fig. 10a, Fig.
10b, Fig. 10c and Fig. 10d, respectively. In the T2 volume data shown in Fig. 10a our proposed method
recorded 0.85, 0.7 and 0.8 for the low, high and global quality scores. The scores recorded by human
observers are lower by an average of 30 percent. The corresponding scores are 0.7, 0.6 and 0.65. For
conventional T1 MRI volume data shown in Fig. 10b there is an overage of 20 percentage difference
between our proposed method and human observers. Our proposed method recorded 0.7, 0.65 and 0.6 for
the low, high and global quality scores compared to 0.60, 0.55 and 0.6, the corresponding quality scores
recorded by the human observers. The objective quality scores are 0.85, 0.7 and 0.8 for the low, high
and global regions, respectively for FLAIR images (see Fig. 10c). The scores corresponding to human
observers are lower by 30 percent; 0.75, 0.55 and 0.6. The plot in Fig. 10d shows that there is 30 percent
difference in the quality scores recorded by our proposed method and human observers. The low, high and
global quality scores recorded by our proposed method on PD images are 0.9, 0.6 and 0.8, respectively
compared to 0.7, 0.6 and 0.6, the corresponding scores recorded by human observers.

In Fig. 11a, Fig 11b and Fig. 11c we compare the quality scores recorded by our proposed method on T2
images degraded by motion blur with the scores assigned by human observers. In the absence of motion
blur (zero level) our proposed method recorded 0.9, 0.7 and 0.8 for the low, high and global regions.
Human observers recorded 0.8 for the low energy region. This is 10 percent lower than corresponding
region recorded by our proposed method. The scores recorded by our proposed method and human
observers for the high energy and global regions are very close to each other. The scores are 0.7 and
0.65 for the high entropy region and 0.8 and 0.75 for the global region. The plots show that our proposed
method and human observers recorded gradual decrease in quality scores for increasing level of motion
blur. At motion blur level of 20 our proposed method recorded 0.3, 0.2 and 0.25 for the low, high and
global regions, respectively. Quality scores corresponding to human observers are 0.2, 0.1 and 0.2.

The plots in Fig. 11d, Fig. 11e and Fig. 11f show that our proposed method is comparable to quality
scores recorded by human observers on T2 images degraded by different levels of Rician noise. In the
absence of noise our proposed method and human observers predicted quality scores of 0.6 for the high
energy region. In the low energy region our proposed method recorded 0.9 compared to 0.75, a 20 percent
decrease with respect to the score recorded by human observers. Comparable quality scores of 0.75 and
0.7 were recorded by our proposed method and human observers, respectively for the global region. For
increasing level of Rician noise there is a general decrease in the quality score recorded by our proposed
method and human observers. At Rician noise level of 20 percent our proposed method predict quality
scores of 0.3, 0.2 and 0.25 for the low, high and global regions. Corresponding quality scores by human
observers were lower by 30 percent; 0.3, 0.25 and 0.25.

Validation of our proposed method by human observers on conventional T1 images degraded by bias
fields is displayed in Fig. 11g. Our proposed method recorded 0.45, 0.4 and 0.4 for the low, high and
global regions. Quality scores of 0.4, 0.3 and 0.35 assigned by human observers for the low, high and
global regions are lower by 10 percent, 30 percent and 15 percent, respectively.

6) Comparative Performance Evaluation: It is difficult to carry out comparative performance evaluation
on current methods for post-acquisition quality evaluation of brain MRI images. Existing methods adopt
different distortion models. There is currently no ground truth data available for clinical brain MRI images.
Evaluation results reported are data dependent because the different techniques are evaluated on different
types of image data. The use of phantom is not an effective approach for comparative performance
evaluation because it lacks the natural anatomical variability and image acquisition artifacts that are
usually encountered in real images [82]. Furthermore the algorithms for these proposed methods are not
readily available from the authors and it is difficult to faithfully implement the techniques without direct
interaction with the authors [41]. Having regard to these shortcomings we describe three characteristics that
distinguish our proposed methods from existing post-quality assessment methods for brain MRI images.
The comparative performance evaluation is based on sharpness and noise levels quality measures. The
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global sharpness was defined in [58] and implemented as a quality measure in [41]. Noise level estimation
was according to [83].

The image in Fig. 12a is a slice in a T1 MRI volume data. The data was originally acquired as degraded
with bias fields. The plots in Fig. 12d and Fig. 12g are the measures of global sharpness and noise levels
from successive 21 slices in the volume data. The image in Fig. 12b is a slice from a T2 volume data.
The variation of global sharpness measured from the image and the estimated noise levels for 20 different
levels of artificially induced noise are displayed in Fig. 12e and Fig. 12h, respectively. The image in
Fig. 12c is another slice in a T2 MRI volume data. It is degraded by 20 different levels of motion blur.
Variation of sharpness and estimated noise levels for the different levels of motion blur are shown in Fig.
12f and Fig. 12i, respectively. Below we describe the three characteristics that distinguish our proposed
method from existing post-acquisition quality evaluation methods.

1) Identification and Management of Quality Attributes
In real-world scenarios it is not always possible to have prior knowledge of the specific type
of distortion that degrades an image [84]. The most important step to achieve an efficient and
manageable evaluation of image quality is to identify the attributes that essentially captures all
the possible distortions in an image [15]. The plots in Fig. 12e demonstrate how global sharpness
attribute of an image can efficiently discriminate between the different levels of noise in an image.
The plot in Fig. 12h demonstrate accurate estimation of the different levels of noise in an image.
The global sharpness in Fig. 12d and the estimated noise levels in Fig. 12g for the 21 successive
slices degraded by bias fields are accurate estimates of quality attributes but are erroneous quality
indicators for the image degraded by bias fields (see Fig. 12a). Single quality attribute or too few
relevant attributes such as the combination of global sharpness and noise level cannot account for
all the possible distortions present in brain MRI images [50].

2) Transformation of Distortion Levels to Quality Indices
Image quality evaluation is the transformation of the different distortion levels into quality indices
that correlates with the characteristics of human visual system. The plot in Fig. 12e shows how
sharpness attribute decrease with increasing levels of noise. In the absence of noise the image
sharpness is 700. With increasing levels of noise the image sharpness gradually decrease to 400 for
noise level of 20 percent. Detection of distortion is the sharpness-noise level variations recorded for
different brain MRI images as shown in Fig12d, Fig. 12e and Fig. 12f. There is no fixed scale that
defines the lower and upper limit for the different levels of distortion recorded for different images.
This makes detection of distortion useless quality index. The absence of a quality index makes it
impossible to compare image quality from the different plots of sharpness-noise level variations.
Quality measures such as global sharpness will be a useful quality indicator when it is transformed
to a quality index.

3) Globalization
The frontal and posterior regions of white matter structure of the T1 MRI image in Fig. 12a is
demarcated by bias fields into two different homogeneous intensity levels. The pixel intensity levels
of the posterior peripheral cortex is comparable to the intensity levels of the surrounding white
matter. The presence of bias fields makes it difficult to visually distinguish the posterior peripheral
cortex from its surrounding white matter. This form of distortion can cause even robust automated
image analysis systems to give erroneous results. Sharpness and the estimated noise levels (Fig.
12d and Fig. 12g) in the image are global quality measures. They were computed by summing
and averaging through the entire image. The average global sharpness of 6 × 104 and the average
global estimate of noise level σ ≈ 7 recorded for the slices in the volume data are erroneous quality
indicators which does not reflect the perceived distortions in specific regions of the brain.

V. DISCUSSION

In the experiment we evaluate the performance of our proposed method on different types of original
brain MRI volume data. The proposed method compute image quality index for the low energy region, high
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energy region and the whole-brain. The low energy region is dominated by the white matter structure. The
high energy region include the cerebral cortex and the boundaries that demarcate the different anatomical
structures. The whole-brain is the brain regarded as a single homogeneous region.

In all the categories of the experiment the results show very good correlation (≥ 0.9) between our
proposed method and the subjective evaluation by human observers. This indicates that our proposed
method correlates with human visual system. The high correlation can be attributed to four factors.
They are the efficient performance our proposed algorithm, expertise of the human observers, the wide
interval between distortion levels and the number of observations. The observers, by their expertise, have
knowledge of successive slices extracted from the same MRI volume data. Their visual perception of the
small variations in the image quality between the different but successive slices will be reflected in the
subjective evaluation. The interval between the different levels of distortion is reasonably large for the
human eye to efficiently discriminate between the differen levels of perceived distortions in the images.
The number of data points used for computation of the correlation coefficient is reasonably high. The
minimum number of data points in each category is 30.

The performance evaluation results indicate that the different regions of the brain may not have the
same quality index. Our proposed method demonstrate very good evaluation of image quality at different
regions of a slice and across slices of a MRI volume data. Very good objective evaluation was also
recorded for MRI volume data with same and different acquisition protocols as well as different types
and levels of perceived distortion.

The plots in Fig. 10 show that our objective quality assessment closely agrees with the subjective
evaluation on MRI volume data without perceived distortion. There is a general decrease in image quality
with increasing levels of motion blur and noise as displayed in Fig. 7 and Fig. 8. Our proposed method
demonstrate excellent performance on images degraded by bias fields. The plots in Fig. 9f, Fig. 9g and
Fig. 9h demonstrate accurate quantification of the variations in the configurations of bias fields across
different slices in a MRI volume data.

Comparative performance evaluation displayed in Fig. 12 demonstrate that few relevant quality attributes
such as noise and sharpness may be useful only for predicting noise level and global sharpness attributes
but are inefficient for the prediction of image quality when bias fields is present in the images. Image
quality is the aggregate of the effects of all possible distortions on an ideal image. Different types of
distortions have different effects on the different homogeneous regions. Thus quality measure based on a
single attribute or few relevant quality attributes cannot exhibit robust quality evaluation. Our proposed
method is a robust and efficient quality evaluation method for structural brain MRI images. It identifies
and adopt quality attributes that essentially captures all possible distortions with a strategy that optimally
evaluates image quality in the different homogeneous regions.

There is increasing interest in the use of MRI imaging systems in the clinical trials of drugs for
monitoring the progression of multiple sclerosis, Alzheimers disease and other neurological diseases. This
report will encourage reliable results in many areas of brain volumetric analysis such as whole brain
volume measurement, ventricular volume measurement, ventricular atrophy measurement, cortical gray
matter atrophy measurement and cortical gray matter thickness measurement. Our proposed method can
directly evaluate image quality of the corresponding regions-of-interest in a longitudinal data before input
to an automated image analysis system.

In clinical research organizations quality control procedures requires physicians, radiologists and trained
readers to subjectively evaluate the outputs of automated image analysis systems. Subjective image quality
evaluation can be a cumbersome task for a trained reader. In the evaluation of MRI-derived atrophy
metrics the reader’s visual attention changes with the different metrics. The reader’s visual attention is
on the white matter region during white matter atrophy measurement. The focus changes towards the
cortical gray matter region during gray matter atrophy measurement and to the whole-brain for whole-
brain atrophy measurement. The good correlation between the outputs of our proposed method and expert
human observers indicates that our proposed method can contribute to the efficient management of the
large volume of data in clinical research organizations and meet the deadline to deliver image analysis
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reports to the sponsoring pharmaceutical organizations.
Some image analysis tasks such as semi-automated identification of lesions requires the consensus of

at least two experts. These tasks can be time consuming because of variability in the visual judgement
of the experts. Objective method such as our proposed method can improve the discernment of a trained
MRI reader, help find a common ground between two trained MRI readers and speed up consensus
quality assessment. The inter-expert variability is much higher when it comes to image qualities that are
considered borderline cases because the human visual system has no clearly defined threshold of quality
index. Our proposed method can be used as a tool to define a quality index threshold that classifies an
image into acceptable quality image and poor quality image.

Daily very large volumes of MRI data are transferred from clinical trial sites around the globe to clinical
research organizations (CRO) that manage clinical trials for pharmaceutical organizations. This new quality
evaluation method will find useful application in CRO environments to enforce the standardization of
variations in the quality attributes of MRI images from different manufacturers, different clinical trial
sites and different acquisition protocols.

VI. FUTURE RESEARCH DIRECTION

The goal attained in the current research work is a general framework to measure image quality at
specific regions of the brain. In this work the quality model was built from MRI data of healthy subjects.
In real-world scenarios the MRI volume data are derived from subjects with and without brain atrophy.
Future work will consider building the quality model from MRI data that includes subjects with atrophy in
the different regions of the brain. This approach will induce a trade-off which will improve the confidence
in the prior belief computed by our algorithm. Current work regard the white matter, thalamus and the
ventricle as a single region which we termed the low entropy region. In the future the low entropy region
will be segmented into three separate regions consisting of the white matter, thalamus and ventricle. This
will extend the application of our proposed method to quality evaluation of the thalamus and the ventricle
regions.

VII. CONCLUSIONS

We hereby propose a new post-acquisition quality assessment method for structural brain MRI images.
Our proposed method is significant because of the increasing interest in the use of MRI system for
monitoring disease progression in multiple sclerosis, Alzheimers disease and other neurological diseases.
We exploit the relationship between entropy and the classical image quality attributes to develop new
quality measures for brain MRI images. Entropy is regarded as the aggregate of image quality attributes.
Local contrast, local standard deviation and local details are the tests of quality attribute. Quality measure is
formulated as a probability problem with focus on the different homogeneous regions of the brain. Bayes
theorem is applied to compute the quality scores. Experimental results demonstrate that our proposed
method gave good quality measures across images with different acquisition protocols, different types
and levels of distortion and correlates with subjective evaluation by human observers. It will be suitable
for automated environments and in applications where specific regions of the the brain are required for
image analysis. This new method will encourage the use of MRI images of acceptable quality in MRI-
based clinical trials, ensure accurate diagnosis and improve the performance of a trained reader in the
performance evaluation of image analysis systems. The algorithm does not require image registration. It
operates on binary images and thus has the potential of real-time operation.
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TABLE I
DESCRIPTION OF TEST DATA UTILIZED FOR THE PERFORMANCE EVALUATION OF OUR PROPOSED METHOD FOR THE QUALITY

EVALUATION OF AN MRI SLICE

Categories of Experiment Type of MRI Volume Data Number of MRI Volume Data Number of Slices

MRI volume data without perceived distortion

T2 2 40
T1 2 30
PD 5 30
FLAIR 4 30

MRI volume data degraded by bias fields T1 10 100

MRI volume data degraded by motion blur T2 2 30
T1 2 30

MRI volume data degraded by noise T2 2 30
T1 2 30

Total 31 350
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Fig. 1. The plots of the proposed generalized mathematical models for describing the relationship between TCP energy and noise level in
the (a) foreground and (b) background modes.
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Fig. 2. The flow chart of post-acquisition quality evaluation for a brain MRI image. The event of interest, local entropy (ENT), is extracted
(FEX) from the test image, Three separate observations; local contrast (CON), local standard deviation (STD) and local details (DTL)
feature images are also extracted (FEX) from the same test image. These images, except foreground (FRG), are transformed (BIT) to the
binary domain for classification into low and high energy regions. Each region (EL, EH) in the local entropy feature image (ENT) is
combined with corresponding region in the contrast (CL, CH), standard deviation (SL, SH) and details (DL, DH) feature images to obtain
the likelihood (LL, LH) for each observation. For each region, Bayes rule combines the prior belief (PBL, PBH) with the likelihood (LL,
LH) corresponding to each feature image to compute quality score for each quality attribute. The total quality score for each region (PTL,
PTH) is the weighted sum of the quality score of each quality attribute. The global quality score (PG) of the slice is the weighted sum of
the total quality score (PTL, PTH) for each region.
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Fig. 3. Bayesian framework inspired post-acquisition quality assessment of (a) a brain MRI slice (TIM) in a MRI volume data. The event
of interest, (b) the local entropy (ENT) which represents image quality is extracted from the test image. Three separate observations of image
quality are (c) local contrast (CON) (d) local standard deviation (STD) (e) and local details (DTL) feature images. The four feature images
are transformed to the binary domain and classified into the low and the high energy regions. For each region, the posterior probability of
each region given any of the observations gives quality score for (f) contrast quality attribute, (g) standard deviation quality attribute and (h)
details quality attribute. The total quality score for each region is the weighted sum of quality scores for each quality attribute. The weighted
sum of the total quality score for each region is the ((i) global quality score.
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TEST IMAGE: SLICE # 1

(a)

TEST IMAGE: SLICE # 5
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Fig. 4. Two slices (a) and (b) in a T2 MRI volume data from BrainCare Oy, (c) contrast attribute quality scores, (d) standard deviation
attribute quality scores, (e) details attribute quality scores and (f) global quality scores for 10 successive slices in the MRI volume data
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TEST IMAGE: SLICE # 2
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Fig. 5. Two slices (a) and (b) in a T1 MRI volume data from BrainCare Oy, (c) contrast attribute quality scores (d) standard deviation
attribute quality scores, (e) details attribute quality scores and (f) global quality scores for 10 successive slices in the MRI volume data
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TEST IMAGE: SLICE # 1

(a)

TEST IMAGE: SLICE # 7

(b)
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Fig. 6. Two slices (a) and (b) in a T2 MRI volume data from NeuroRx Research Inc, (c) contrast attribute quality scores, (d) standard
deviation attribute quality scores, (e) details attribute quality scores and (f) global quality score for 10 successive slices in the MRI volume
data
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(f)

Fig. 7. (a) A slice in a T2 MRI volume data from BrainCare Oy is artificially degraded by motion blur. The degradation was scaled from
0 to 20. (b) Degraded version of the image corresponding to motion blur level of 20. (c) The contrast attribute quality scores, (d) standard
deviation attribute quality scores, (e) details attribute quality scores and (f) global quality scores for the different levels of motion blur
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(f)

Fig. 8. (a) A slice in a T2 MRI volume data from BrainCare Oy is artificially degraded by different levels of Rician noise. The Rician
noise level was scaled from 0 to 20. (b) Degraded version of the image corresponding to Rician noise level of 20. (c) The contrast attribute
quality scores, (d) standard deviation attribute quality scores (e) details attribute quality scores and (f) global quality scores for the different
levels of Rician noise.
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TEST IMAGE: SLICE # 4
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(i)

Fig. 9. Five slices (a), (b), (c), (d) and (e) from a T1 MRI volume data from NeuroRx Research Inc. The data was originally acquired
with bias fields. (f) contrast attribute quality scores, (g) standard deviation attribute quality scores, (h) details attribute quality scores and (i)
global quality scores for 21 successive slices in the MRI volume data.
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Fig. 10. Validation of the objective quality scores for MRI volume data that are without perceived distortion. (a) T2 MRI volume data, (b)
T1 MRI volume data, (c) FLAIR MRI volume data and (d) PD MRI volume data.
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Fig. 11. The mean quality scores for (a) low energy, (b) high energy and (c) global energy regions of T2 MRI volume data degraded by
different levels of motion blur. The mean quality scores for (d) low energy, (e) high energy and (f) global regions of T2 MRI volume data
degraded by different levels of Rician noise. (g) The mean quality scores for the low energy, high energy and global regions of T1 MRI
volume data originally acquired with bias fields
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TEST IMAGE: SLICE # 19
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Fig. 12. (a) A slice from a MRI volume data degraded with bias fields. Two different MRI slices degraded with 20 different levels of (b)
Rician noise and (c) motion blur. The global sharpness and the noise level of the different slices in the MRI volume data in (a) are displayed
in (d) and (g), respectively. The global sharpness and the noise level of the different levels of Rician noise for the slice in (b) are displayed
in (e) and (h), respectively. The global sharpness and the noise level of the different levels of motion blur for the slice in (c) are displayed
in (f) and (i), respectively.


