
Master of Science in Physics and Mathematics
July 2011
Arvid Næss, MATH

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Mathematical Sciences

Lévy Processes and Path Integral
Methods with Applications in the Energy
Markets

Christian A. J. Oshaug

Lévy processes and Path Integral Methods

with Applications in the Energy Markets

Christian Aleksander Jansen Oshaug

July 29, 2011

Problem description

Lévy processes may be well suited for modelling changes in energy prices. We
will look into possible one-factor models driven by Lévy processes, and see
how they can be calibrated to historical price series. We will use numerical
Path Integrals to obtain price distributions and to valuate derivatives, based
on energy price models.

i

Abstract

The objective of this thesis was to explore methods for valuation of deriva-
tives in energy markets. One aim was to determine whether the Normal
inverse Gaussian distributions would be better suited for modelling energy
prices than normal distributions. Another aim was to develop working imple-
mentations of Path Integral methods for valuing derivatives, based on some
one-factor model of the underlying spot price.

Energy prices are known to display properties like mean-reversion, peri-
odicity, volatility clustering and extreme jumps. Periodicity and trend are
modelled as a deterministic function of time, while mean-reversion effects are
modelled with auto-regressive dynamics. It is established that the Normal
inverse Gaussian distributions are superior to the normal distributions for
modelling the residuals of an auto-regressive energy price model. Volatility
clustering and spike behaviour are not reproduced with the models consid-
ered here.

After calibrating a model to fit real energy data, valuation of derivatives
is achieved by propagating probability densities forward in time, applying
the Path Integral methodology. It is shown how this can be implemented for
European options and barrier options, under the assumptions of a determin-
istic mean function, mean-reversion dynamics and Normal inverse Gaussian
distributed residuals.

The Path Integral methods developed compares favourably to Monte
Carlo simulations in terms of execution time. The derivative values obtained
by Path Integrals are sometimes outside of the Monte Carlo confidence inter-
vals, and the relative error may thus be too large for practical applications.
Improvements of the implementations, with a view to minimizing errors, can
be subject to further research.

iii

Contents

1 Introduction 1

2 Stochastic models for price changes in financial markets 2

2.1 Randomness of price processes 2

2.2 Brownian motion . 2

2.3 Geometric Brownian Motion and the Black-Scholes model . . 3

2.4 Empirical shortcomings of the Black-Scholes framework 4

3 Lévy processes 6

3.1 NIG distributions . 7

3.2 The NIG process . 7

3.3 Estimating NIG parameters 9

4 The Path Integral approach to valuing derivatives 12

4.1 The Path Integral approach 12

4.2 Valuation of path-independent derivatives 13

4.2.1 Forward contracts . 13

4.2.2 European options . 13

4.3 Exotic options . 14

4.4 Barrier options . 15

4.4.1 Valuing knock-out barrier options by Path Integrals . . 15

4.4.2 Valuing knock-in barrier options by Path Integrals . . . 16

5 Modelling energy prices 19

5.1 Energy data . 19

5.2 A one factor model for energy spot prices 19

5.2.1 Modelling seasonal variations 21

5.2.2 Modelling detrended and deseasonalized data. 23

5.2.3 Simulation . 25

5.3 Modelling spot prices with periodic autoregressive models. . . 27

5.3.1 A periodic autoregressive model for log returns 27

5.3.2 Simulation . 36

5.4 Discussion . 36

v

6 Valuing energy derivatives with numerical path integrals 42

6.1 Implementation of density forecast 42
6.1.1 Cell mapping . 42
6.1.2 Integration with Simpson’s Rule 44
6.1.3 Numerical results for density forecast 45

6.2 Valuing path-independent derivatives based on forecasted den-
sities . 49
6.2.1 Numerical results for path-independent derivatives . . . 49

6.3 Valuing barrier options with Path Integrals 50
6.3.1 Implementation of Path Integral method for up-and-

out barrier options . 54
6.3.2 Numerical results for up-and-out barrier options 55
6.3.3 Implementation of PI method for up-and-in barrier op-

tions . 56
6.3.4 Numerical results for up-and-in barrier options 56

6.4 Discussion . 56

A Terms and Definitions 62

B Proofs and derivations 63

B.1 NIG parameters from moment characteristics 63
B.2 Alternative parameterizations of the IG distribution 64
B.3 Proof of out-in parity for barrier options 65

C R code 66

C.1 Energy modelling . 66
C.2 Density forecast and path-independent derivatives 71
C.3 Barrier options . 82

vi

Acknowledgements

I want to thank my supervisor, Arvid Næss, for giving me advice along the
way. Thanks to Sjur Westgaard for advice and for providing me with the
data I needed. Thanks to Eskil K. Dahl for reading through the thesis and
offering helpful comments.

Til Ada Oline og Linus Aleksander; beklager at vi mistet en halv sommer.
Jeg skal gjøre det godt igjen.

Til Marit, for at du holder ut med meg.

vii

1 Introduction

In this thesis we are concerned with the stochastic properties of energy price
time series, and how to valuate derivatives based on energy spot price models.

In Section 2 we review some basic finance theory, and we look at Brownian
motion and the model of Black and Scholes (1973). In Section 3 we look at
Lévy processes, and the Normal inverse Gaussian process in particular, as an
alternative to Brownian motion in financial modelling. Section 4 is devoted to
the Path Integral methodology for valuation of derivatives, as an alternative
to Monte Carlo methods, in cases where no analytical solutions are known.

In Section 5 we consider one-factor stochastic models for daily energy spot
prices. We discuss how known properties of energy price data can be mod-
elled, and we establish that Lévy processes are better suited than Brownian
motion for driving the stochastics of the considered models.

In Section 6 we show how to implement Path Integral methods specifically
for one of the models discussed in Section 5. We compare results from the
Path Integral methods with results obtained by Monte Carlo simulations.
The Path Integral methods compare favourably to Monte Carlo simulations
in terms of execution time. All results are reasonable, suggesting that the
implementations are working as intended, but some of the error can not be
accounted for without further research.

1

2 Stochastic models for price changes in fi-

nancial markets

2.1 Randomness of price processes

It’s common to assume some version of the “Efficient Market Hypothesis”
when modelling price changes in financial markets, i.e. the market responds
instantly to new information about an asset, such that the price pt of an
asset “fully reflects” some set Φt of information that is available at time t
(Fama, 1970). Assuming no arbitrage possibilities, an efficient market leads
to random changes in the asset price (Samuelson, 1965). The resulting price
process is a Markov process, which means that distributions of future states
depends solely on the present state of the process.

Definition 1. The stochastic process X = {Xτ , τ ≥ 0} is said to have the
Markov property if

Pr(Xt = x|Fs) = Pr(Xt = x|xs)

where s < t and Fs represents the history of X up to time τ = s.

Definition 2. The stochastic process X = {Xτ , τ ≥ 0} is a martingale if

(i) Xt is known at time t

(ii) E[|Xt|] <∞ for all t ≥ 0

(iii) E[Xt|Fs] = Xs (0 ≤ s ≤ t)

where Fs represents the history of X up to time τ = s

A martingale is a process that is ‘constant on average’, and models an in-
vestment prospect with zero risk premium, a so-called ‘fair game’ (Schoutens,
2003, p. 14).

2.2 Brownian motion

Brownian motion is a Markov process that is commonly used for modelling
in finance. We follow Schoutens (2003) in the following exposition.

Definition 3. A stochastic process X = {Xt, t ≥ 0} is a standard Brownian
motion on some probability space (Ω,F, P) if

(i) X0 = 0 almost surely,

2

(ii) X has independent increments,

(iii) X has stationary increments,

(iv) Xt −Xs ∼ N(0, t− s), dt > 0.

The standard Brownian motion is often called the Wiener process after
Norbert Wiener, and we will use the notation W = {Wt, t ≥ 0} for this
process.

We see from condition (ii) that the standard Brownian motion is a Markov
process. From the Markov property and the zero-mean distribution of time
increments, we have

E[Wt|Fs] = E[Wt|Ws] = Ws. (1)

Thus, the standard Brownian motion is a martingale. It can be proved that
the brownian motion has continuous paths. However, the paths are not
differentiable at any point and the variation of the paths is infinite on any
interval.

2.3 Geometric Brownian Motion and the Black-Scholes

model

The return of an asset over a given time interval is defined to be the change
in the asset price divided by the original value of that asset. Let S denote
the value of an asset, then the return over a time interval dt can be written
as dS

S
. This quantity is of more interest to us than the absolute change in the

asset price, and a common model for the return of an asset is given by the
following stocastic differential equation (see Wilmott et al., 1995; Schoutens,
2003):

dS

S
= σdW + µdt (2)

where −∞ < µ <∞ and σ ≥ 0. In this model the term µ is called the drift
parameter. It is a measure of the average rate of growth in the asset price and
it contributes to the return in a deterministic way, like the interest rate (spot
rate) on an investment in a risk-free bank. The term dW is the stochastic
element of the model and represents a Wiener process, i.e. dW ∼ N(0, dt).
The term σ is a scale parameter for the Wiener process. It is called the
volatility and is a measure of the magnitude of variation in the asset price.
The drift and volatility are often treated as constants, in which case there
are maximum likelihood estimators available for calibration with historical
data.

3

When σ = 0 the model is purely deterministic and (2) has an exact
solution, yielding exponential growth in the value of the asset (Wilmott et al.,
1995, p. 21):

St = S0 exp (µ(t− t0)). (3)

When σ > 0, however, the unique solution of (2) becomes (Schoutens, 2003,
p. 28):

St = S0 exp

(

(µ− 1

2
σ2)t+ σWt

)

. (4)

This exponential functional of Brownian motion is called geometric Brownian
motion. We can write (4) as:

St = exp

(

log S0 + (µ− 1

2
σ2)t+ σWt

)

. (5)

Since Wt is normally distributed and the class of normally distributed vari-
ables are closed under linear transformation, the exponent has a normal
distribution. Thus St has a lognormal distribution.

That assets prices follow a lognormal distribution is one of the key as-
sumptions in the Black-Scholes model (Black and Scholes, 1973), which has
been widely used for valuing European call and put options on the stock
markets.

2.4 Empirical shortcomings of the Black-Scholes frame-

work

The Black-Scholes model is attractive from a theoretical point of view, as it
leads to analytical solutions for the price of European options, but empiri-
cal analysis reveal that the log-returns of real assets may differ significantly
from the normal distribution. In particular, historical log-returns may have
significant skewness and excess kurtosis.

Definition 4. The skewness of a distribution is denoted by γ1 and is defined
to be the third moment around the mean divided by the cube of the standard
deviation:

γ1 =
µ3

σ3
=

E[(X − µ)3]

E[(X − µ)2]
3
2

Skewness is a measure of the assymetry in the distribution. For symmetric
distributions, such as the normal, the skewness is zero. Positive skewness
indicates that the right tail of the distribution is longer than the left tail,
and a negative skewness indicates the opposite. (Schoutens, 2003, p. 34)

4

Definition 5. The excess kurtosis of a distribution is denoted γ2 and is given
by

γ2 =
µ4

σ4
− 3 =

E[(X − µ)4]

E[(X − µ)2]2
− 3

where µ4 is the fourth moment around the mean.

We will refer to the excess kurtosis as simply the kurtosis. The correc-
tion of −3 in the definition is chosen in order to make the kurtosis of the
normal distribution equal to zero. A distribution with zero kurtosis is called
mesokurtic. Distributions with positive kurtosis are called leptokurtic, and
distributions with negative kurtosis are called platykurtic. The kurtosis can
be viewed as a measure of the ‘pointyness’ of the distribution or of the fatness
of the tails. Leptokurtic distributions are more pointy and have fatter tails
than the normal distribution. (Schoutens, 2003, p. 35)

Fama (1965) mentions several sources of research that show the inade-
quacy of the normality hypothesis and document leptokurtic behaviour in
the stock market. Schoutens (2003, p. 34) provides skewness and kurtosis
estimates for some major stock indices, which indicates leptokurtic behaviour
and negative skewness. Similar behaviour may be observed in energy price
series.

5

3 Lévy processes

The Lévy processes (named after Paul Lévy) is a class of stochastic pro-
cesses, of which Brownian motion is a special case. We use the definition of
Applebaum (2004).

Definition 6. A stochastic process X = {X(t), t ≥ 0} is a Lévy process if

(i) X has independent and stationary increments,

(ii) X(0) = 0 almost surely,

(iii) X is stochastically continuous (see Appendix A).

Alternatively (Schoutens, 2003, p. 44-45), the Lévy process may be de-
fined in terms of infinite divisibility (see Appendix A). Let φ(u) be a charac-
teristic function of any infinitely divisible distribution. A Lévy process is a
stochastic process X = {Xt, t ≥ 0} which has X0 = 0 and has independent,
stationary increments, such that the distribution of Xt+s−Xs has (φ(u))

t as
it’s characteristic function

It can be shown that the cumulant characteristic function ψ(u) = log φ(u)
of the Lévy increments satisfies the Lévy-Khintchine formula

ψ(u) = iγu− 1

2
σ2u2 +

∫ +∞

−∞

(exp(iux− 1− iux1{|x|<1})ν(dx) (6)

where γ ∈ R, σ2 ≥ 0 and ν is a Lévy measure (see Appendix A). The in-
finitely divisible distribution is thus determined by the Lévy triplet [γ, σ, ν(dx)].

A Lévy process consists of a linear deterministic part, a Brownian part
and a pure jump part, corresponding to each term in the Lévy triplet. The
jumps are determined by the Lévy measure ν(dx). If σ = 0, then the Lévy
process has no Brownian part and is called a pure jump Lévy process.

By using Lévy processes in modelling financial time series, we are able
to reproduce behaviours that can not be accounted for with Brownian mo-
tion. Examples of models based on Lévy processes found in the litterature
include the Variance Gamma model (Madan and Seneta, 1990), the Hyper-
bolic model (Eberlein and Keller, 1995) and the the Normal inverse Gaussian
(NIG) model (Barndorff-Nielsen, 1995), all of which are special cases of the
Generalized Hyperbolic model (Eberlein and Prause, 1998).

The NIG market model has been used by Rydberg (1997), and more re-
cently been by Næss et al. (2010), for analyzing stock market returns. We will
restrict our attention to models based on the NIG distribution throughout
this thesis.

6

3.1 NIG distributions

The class of Normal inverse Gaussian (NIG) distributions was introduced by
Barndorff-Nielsen (1995). The NIG distribution with parameters α, β and δ,
denoted NIG(α,β,δ), has a known density function (Schoutens, 2003, p. 60):

fNIG(x;α, β, δ) =
αδ

π
exp(δ

√

α2 − β2 + βx)
K1(α

√
δ2 + x2)√

δ2 + x2
(7)

where K1 denotes the modified Bessel function of third order with index
1 (see e.g. Abramowitz and Stegun, 1968, a reference work with a chapter
devoted to Bessel functions).

We can add a location parameter µ to this distribution such that if X ∼
NIG(α, β, δ), then

X = X + µ ∼ NIG(α, β, δ, µ) (8)

with density function

fX(x) = fX(x− µ). (9)

The α and β parameters determines the steepness and asymmetry of the dis-
tribution, while δ and µ are scale and location parameters (Rydberg, 1997).
By using the four parameter NIG distribution, the variance, skewness and
kurtosis can be calibrated independently of the mean when fitting the distri-
bution to a data set.

In Figure 1 we compare a normal density function to a NIG density. Both
distributions have zero mean and unit variance, but the NIG density has an
additional skewness = 1 and kurtosis = 2. The skewness is clearly seen as
the right tail of the NIG density is thicker than the left tail. The positive
excess kurtosis is seen more clearly when we plot the log densities of the
distributions, as in Figure 2. We see that the density in the tails decrease
more rapidly for the normal distribution than for the NIG distribution.

3.2 The NIG process

The NIG process is a Lévy process defined by

XNIG = {XNIG
t , t ≥ 0} (10)

with increments XNIG
t+s − XNIG

s distributed as NIG(α, β, δt) (see Rydberg
(1997) or Schoutens (2003)). An additional drift term µ can be added, such
that the increments are distributed according to a NIG(α, β, δt, µt) law.

7

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Example of NIG density

x

D
en

si
ty

Normal distribution
NIG distribution

Figure 1: Example densities of normal and NIG distributions. Both distri-
butions have mean = 0 and variance = 1, but the NIG distribution has
skew = 1 and kurtosis = 2.

−15 −10 −5 0 5 10

−
10

0
−

60
−

20
0

Comparison of log densities

x

Lo
g

de
ns

ity

Normal distribution
NIG distribution

Figure 2: Log densities of normal and NIG distributions, where the first
two moments are equal and the NIG distribution have positive skewness and
kurtosis.

8

The location and scale of the increments are proportional to t, due to the
convolution properties of the NIG distribution (Rydberg, 1997):

NIG(α, β, δ1, µ1) ∗NIG(α, β, δ2, µ2) = NIG(α, β, δ1 + δ2, µ1 + µ2) (11)

The NIG(α, β, δ) distribution can be written as a mixture of a normal
and an Inverse Gaussian (IG) variable (Barndorff-Nielsen, 1997). Assuming
we can simulate from the normal and the IG distributions (see e.g. Rydberg,
1997), we can use this relation to simulate from the NIG distribution. Fol-
lowing Schoutens (2003) and adding the drift term µt, we can represent a
drifted NIG process by

Xt = βδ2It + δWIt + µt (12)

where Wt is a standard Brownian motion. It is an IG(µ, λ) process with
parameters µ = (δ

√

α2 − β2)−1 and λ = 1, which has increments with the
following probability distribution (see Næss et al., 2010):

fIG(x;µ, λ) =

[

λ

2πx3

]
1
2

exp

(−λ(x− µ)2

2µ2x

)

. (13)

Note that under this parameterization, which is different from that of Schoutens
(2003), the IG distribution has the following scaling properties (see Appendix
B):

X ∼ IG(µ, λ) → tX ∼ IG(tµ, tλ) . (14)

The representation of the NIG process in Equation (12) can interpreted
as a Brownian motion in “economic time”, where the economic time follows
an IG process in real time. A large jump in the IG process can then be inter-
preted as a period of high economic activity, which increases the probability
of large price movements. In Figure 3 we show a NIG process obtained by
means of an IG process and a Brownian motion. We see that large jumps in
the IG process corresponds to large movements in the NIG process.

3.3 Estimating NIG parameters

Having a known probability density function, the four parameter NIG distri-
bution can be fitted to a data set using Maximum Likelihood (ML) estima-
tion. Numerical methods for doing ML estimation for the NIG distributions
(see e.g. Karlis, 2002) will not be discussed here.

Alternatively, one can use the Method of Moments for parameter estima-
tion. The first four moments of the NIG(α, β, δ, µ) distribution are known

9

0 200 400 600 800 1000

0
50

00
10

00
0

20
00

0

Simulation of NIG process

t (real time)

I(
t)

 (
ec

on
om

ic
 ti

m
e)

NIG process
IG process

Figure 3: NIG process simulated by means of a IG process, with parameters
α = 0.5, β = 0.15, δ = 0.07 and µ = −0.022. The NIG process have been
scaled and shifted in order to show it’s characteristics in the plot. We clearly
see that large jumps in the IG process corresponds to large jumps in the NIG
process.

in terms of the four parameters, and these equations can be solved for the
parameters (see Appendix B). Thus we have:

α =

√

3γ2 − 4γ21√
m2(γ2 − 5

3
γ21)

(15)

β =
γ1√

m2(γ2 − 5
3
γ21)

(16)

δ =

√

m2(3γ2 − 5γ21)

γ2 − 4
3
γ21

(17)

µ = m1 −
γ1
√
m2

γ2 − 4
3
γ21

(18)

where m1 is the mean, m2 the variance, γ1 the skewness and γ2 the excess
kurtosis of the distribution. The parameters may be straightforwardly esti-
mated from these equations by using sample moments.

Method of Moments estimation is, in general, less accurate than ML esti-
mation and may be inadequate. In particular, it will fail whenever γ̂2 <

5
3
γ̂21 .

Method of Moments estimates are sometimes used as initial values for itera-
tive ML algorithms. If the samples are large and the best possible estimates
are not required, the Method of Moments may be preferred for it’s simplicity,

10

and we will use it for implementations in this thesis.

11

4 The Path Integral approach to valuing deriva-

tives

4.1 The Path Integral approach

A motivation for modelling asset prices is to estimate the value of deriva-
tives, and the Path Integral (PI) method (for technical expositions, see Næss
(2001) or Linetsky (1997)) can be used to calculate the value derivatives un-
der a given model. It has been proposed as an alternative to Monte Carlo
simulations, as MC techniques are too slow for some purposes.

Let X = {Xt, t ≥ 0} be a Markov process and let 0 = τ0 < τ1 < · · · <
τm−1 < τm = T , such that the density p(xτi |xτi−1

) is known and we are able
to sample from that density. We assume X0 is known, and we want to know
the density of XT at some time t = T . A typical MC approach is to start at
X0 and simulate from the known density function to propagate the process
forward in time. This way we obtain a sample of the stochastic process for
t = 0, τ1, . . . , τm−1, T . If we repeat this procedure k times, then we obtain
a size k sample of the process, from which we can estimate the probability
density function at each time τi.

The Path Integral method involves propagating the whole density func-
tion itself forward in time, i.e. for each time step τi − τi−1 we approximate
the distribution of Xτi given the distribution in Xτi−1

. By iterating over all
the time steps i = 0, . . . ,m we can approximate the distribution of XT .

Assume we know the probability density function p(xτi |xτi−1
) for all τi

and the initial density p(x0). If the value of X0 is known, then p(x0) = δ(X0)
where δ denotes the Dirac delta function with

∫∞

−∞
δ(x)dx = 1. The density

p(xτi) can be found by the law of total probability

p(xτi) =

∫ ∞

−∞

p(xτi |xτi−1
)p(xτi−1

)dxτi−1
(19)

whenever p(xτi−1
) is known. Iterating through i = 0, . . . ,m, we obtain

p(xT) = p(xτm) =
∫ ∞

−∞

. . .

∫ ∞

−∞

p(xτm|xτm−1) . . . p(xτ1|xτ0)p(xτ0)dxτ0 . . . dxτm−1 . (20)

By numerically calculating the integral in Equation (20), we can obtain an
approximation to the density of XT , whenever Xt is a Markov process with
known increments and initial distribution.

The PI approach described here enables us to approximate future densi-
ties of models different from that of Black and Scholes. For Brownian motion

12

and the NIG process the distribution of XT can be derived analytically, due
to the convolution properties of the increments. However, the PI method can
be modified to solve valuation problems that are path dependent, and also
to find the distribution of XT in the case of a mean reverting model.

4.2 Valuation of path-independent derivatives

The most common derivatives in financial markets are European options,
futures and forward contracts. The payoff functions of European options and
forward contracts are dependent only on the price ST of the underlying at
the expiry t = T . There also exist a wide variety of more exotic derivatives,
such as Asian, barrier and lookback options. These derivatives are path
dependent, i.e. the payoff depends on the development of the underlying
price process prior to expiry. We will do a short review of some derivatives
of interest, mainly following Wilmott et al. (1995).

Note that we will only derive the values of the derivatives at expiry/maturity.
We make no assumptions about risk-free interest rates, and accordingly the
values are not discounted.

4.2.1 Forward contracts

A forward contract is an agreement between two parties to buy/sell an asset
at some specified time in the future. The underlying asset is to be delivered
at a predetermined price E, called the forward price, at the maturity date T .
To the buyer, the value V of the forward contract at maturity is given by:

V (T,E) = ST − E . (21)

4.2.2 European options

A European call option is a contract that gives the holder a right to buy an
asset, called the underlying, at a fixed price at some specified time T. We say
that the option expires at time T, and the predetermined price E is called
the exercise price. Since the contract gives the buyer a right, but not a duty,
to exercise the option, the value C of a European call option at expiry is
given by

C(T,E) = max(0, ST − E) . (22)

Similarly, the European put option gives the holder a right to sell the
underlying asset, and the value P at expiry is given by

P (T,E) = max(0, E − ST) . (23)

13

If the asset price ST at expiry is lower than the exercise price E, the Eu-
ropean call option is worthless. The European put option is worthless if the
opposite holds. Then we have the following relation between the European
put and call options at expiry:

C(T,E)− P (T,E) = ST − E . (24)

This relation is called the put-call parity, and establishes that, for fixed T and
E, buying a call and selling a put is equivalent to buying a forward contract.

The values of both European options and forward contracts are dependent
only on the asset price at time T . If the probability density function fT (s)
of ST is known, the expected value of a European call option is given by

E[C(T,E)] =

∫ ∞

E

(s− E)fT (s)ds . (25)

The expected value of a European put option is given similarly by

E[P (T,E)] =

∫ E

−∞

(E − s)fT (s)ds . (26)

The value of a forward contract V (T,E) can be determined from the put-call
parity and the expressions above, or from the integral

E[V (T,E)] =

∫ ∞

−∞

(s− E)fT (s)ds . (27)

We note that having −∞ as a lower limit of integration allows for, in
principle, negative prices of the underlying. In many financial markets nega-
tive prices are not possible, but that is merely to say that f(s) = 0 for s < 0.
In some power markets, however, negative prices have occurred in the past.

4.3 Exotic options

A barrier option is an option that either comes into existence or becomes
worthless if the asset price St reaches some predetermined value (the bar-
rier) before expiry. Asian options are options for which the payoff function
depends on some form of average of the price process St. Lookback options
have payoff functions that depend on the minimum or maximum asset price
over the life time of the option. All these option types are path dependent,
i.e. it is not enough to know the distribution of ST in order to find their
expected value.

A typical approach to valuing exotic options is to do repeated MC runs
and calculate the average option value. The PI method may provide a fast

14

and accurate alternative to MC simulations for many valuation problems.
Skaug and Naess (2005) have developed a PI approach for calculating the
value of Asian options, which requires integration in two dimensions. PI
methods for barrier options are treated in Skaug and Naess (2007) and Næss
et al. (2010).

4.4 Barrier options

In the following we will look at how Path Integrals can be used to value
barrier options in particular.

Barrier options can be either continuously monitored or discretely mon-
itored. At each monitor time we check if the price has reached some prede-
termined barrier price B. The value of the option depends on whether the
barrier is reached in the life time of the option.

There are two basic types of barrier options. Knock-in options are worth-
less until the barrier price is reached, while knock-out options are worthless
from the moment the barrier is reached. The barrier may be above or below
the initial price, and complex options may be constructed by combinations
of upper and lower, knock-in and knock-out barriers.

4.4.1 Valuing knock-out barrier options by Path Integrals

Consider an up-and-out barrier option, i.e. a knock-out option with an upper
barrier B. The underlying price process is discretely monitored at times τj,
j = 1, . . . ,m, where τj+1 > τj > 0 and τm = T . Following Skaug and Naess
(2007), we define the probability function:

Hm(s) = P{s < Sτm ≤ B ∩ Sτj ≤ B; j < m}, (28)

for −∞ < s < B. This is the probability that the price process St have not
crossed the barrier at any monitoring up to and including t = τm and that
it is larger than s at t = τm. Now we can define the H-density

hm(s) = −dHm(s)/ds . (29)

such that

Hm(s1)−Hm(s2) =

∫ s2

s1

hm(s)ds (30)

for s1 < s2 < B.
Assume that hj(s) and the conditional p(sτj+1

|sτj) is known. The H-
density can then be propagated forward in time by

hj+1(s) =

∫ B

−∞

p(s|s̃)hj(s̃)ds̃ (31)

15

for s < B. If the initial distribution p(sτ1) is known, then

h1(s) = p(sτ1 = s) (32)

for s < B. Thus, by Equations (31) and (32) we can write

hm(s) =

∫ B

−∞

. . .

∫ B

−∞

p(s|sτm−1) . . . p(sτ2|sτ1) p(sτ1) dsτ1 dsτ1 . . . dsτm−1 (33)

Once hm(s) is known, the value of a up-and-out call option C(τm, E,B)
can be straightforwardly evaluated by

C(τm, E,B) =

∫ B

E

(s− E)hm(s)ds , (34)

while the value up-and-out put option is given by

P (τm, E,B) =

∫ E

−∞

(E − s)hm(s)ds . (35)

For down-and-out barrier options, i.e. knock-out options with a lower we
have to redefine Hm(s) and change the limits of the integrals, but for the
most part the procedure is the same.

4.4.2 Valuing knock-in barrier options by Path Integrals

We consider an up-and-in option, i.e. a knock-in barrier option with an upper
barrier B, exercise price E and expiry T . As before, the option is discretely
monitored at times τj, j = 1, . . . ,m, with T = τm.

The value of an up-and-in option can be derived from a parity of knock-in
and knock-out options (see Appendix B.3):

CE(T,E) = CUAO(T,E,B) + CUAI(T,E,B) . (36)

Thus, if the values of a European call option and a up-and-out barrier option
are known (at fixed E and T), we can find the value of the corresponding
up-and-in barrier option directly. The same result holds for put options.

If none of these values are known, we can use the Path Integral approach
to find CUAI and PUAI. In the following we show how this can be done.
The method described here is computationally as expensive as finding CE

and CUAO separately, in fact we do compute the equivalent of a knock-out
density and a full probability density. The following method can be modified
and extended to evaluate more complex barrier structures.

16

We define two probability functions

Hm(s) = P{Sτm > s ∩ [∪m
j=1Sτj > B]} (37)

and
Gm(s) = P (Sτm > s ∩ [Sτj < B; j ≤ m]) , s < B , (38)

and we have the relation

Hm(s) +Gm(s) = P{Sτm > s} . (39)

Hm(s) is the probability that St have crossed the barrier at some monitoring
j ≤ m and is greater than s at time τm. Gm is the probability that St have
not yet crossed the barrier and is greater than s at time τm. From these
probabilities, we can define the H-density and the G-density by

hm(s) = −dHm(s)/ds (40)

and
gm(s) = −dGm(s)/ds , s < B , (41)

and we denote the full probability density function of Sτj by pj(s).
When propagating these functions forward in time, gj+1(s) can only re-

ceive contributions from gj(s), because only those price processes that have
never crossed the barrier at τj can still be in the set of non-crossing processes
at τj+1. Thus, we have

gj+1(s) =

∫ B

−∞

p(s|s̃)gj(s̃)ds̃, . (42)

The function hj+1(s), s < B, only receives contributions from hj(s), however
for s > B it receives contributions from the full probability density function
pj(s). This is because whatever the value of Sτj , there is a positive probability
of achieving Sτj+1

> B. But for a process to be in the set of barrier-crossing
processes and to be smaller than B at t = τj+1, it would have to already be
in that set at t = τj. From these considerations, we get

hj+1(s) =







∫∞

−∞
p(s|s̃)hj(s̃)ds̃ if s < B

∫∞

−∞
p(s|s̃)pj(s̃)ds̃ if s > B

. (43)

The expressions in Equations (42) and (43) can be evaluated numerically,
and by iteration we can find hm(s). The value of an up-and-in call option
can then be found by evaluating

C(τm, E,B) =

∫ ∞

E

(s− E)hm(s)ds (44)

17

and the value of the corresponding put option is given by

P (τm, E,B) =

∫ E

−∞

(E − s)hm(s)ds . (45)

18

5 Modelling energy prices

5.1 Energy data

In this part we will analyse three historical energy related time series. We
will look at spot prices for Brent Crude oil, a natural gas price index from
ICE and the Nord Pool system spot price for electricity in Norway. All price
series where obtained from the Reuter Ecowin reporting tool.

The oil price data go back to 1985 and are given in USD per barrel. The
ICE natural gas index data go back to 1998, and they are given in GBP per
Therm, where 1 Therm is the equivalent of 100 cubic feet. The electricity
prices go back to 1996 and are given in NOK per MWh. In Figure 4 we
display the log values of these time series. The prices are monitored at a
daily basis, with weekends removed. This leaves approximately 260 trading
days each year. The oil, gas and electricity data contains 177, 215 and 139
missing values respectively. We replace missing values by the mean value of
the adjacent non-missing data.

Energy commodities are known to display interesting price dynamics.
Such commodities have limited storeability, which makes it difficult to com-
pensate for shocks in supply or demand. Price shocks are frequently observed
in gas and electricity markets. Other typical characteristics of electricity
prices include seasonal and weekly periodicity, mean reversion and volatility
clustering (see e.g. Byström (2005), Koopman et al. (2007) and Weron et al.
(2004)). Log returns on electricity prices are not normally distributed and
display significant skewness and excess kurtosis (see e.g. Cartea and Figueroa
(2005) and Lucia and Schwartz (2002)). Some of these characteristics may
be idiosyncratic to electricity, while others may apply to oil and gas prices
as well.

In modelling these energy spot prices, we will focus on features like pe-
riodicity, mean reversion and the distribution of driving processes. We will
assume the volatility to be constant throughout this thesis.

5.2 A one factor model for energy spot prices

In this section we will look at a one factor model, similar to those used
in Lucia and Schwartz (2002) and Benth et al. (2008). In modelling these
energy price series we will assume that they share the same basic dynamics.
We assume that general price growth and seasonal variations can be modelled
in a deterministic way. We will use a single factor geometric model for the
price series:

d lnS(t) = d ln Λ(t) + dX(t) (46)

19

2
3

4
5

6
7

Historical energy prices

lo
g

pr
ic

e

1985 1990 1995 2000 2005 2010

Oil
Gas
Electric

F
igu

re
4:

H
istoricallog

sp
ot

p
rices

of
B
ren

t
C
ru
d
e
oil,

n
atu

ralgas
an

d
electric

p
ow

er.

20

where Λ(t) is a deterministic function modelling trend and seasonal varia-
tions. X(t) is assumed to be a mean reverting process satisfying

dX(t) = −αX(t) dt+ dL(t). (47)

Here α is a mean reversion parameter and L(t) is the Lévy process driving
the stochastic dynamics of the model. The discrete Xt then becomes an
autoregressive process of order 1, an AR(1) process (see e.g. Shumway and
Stoffer, 2000), which can be written

Xt = ϕXt−1 + εt . (48)

Thus εt is a Lévy increment, and the mean reversion parameter is α = 1−ϕ.

5.2.1 Modelling seasonal variations

In order to analyze the stochastic properties of X(t) we need to have a
model for Λ(t). We assume that there is some trend in the log price because
of general price growth. It is also known that energy prices tend to display
seasonal variations as well as weekly variations. Thus a resonable model for
Λ(t) can be

lnΛ(t) = β0 + β1 cos

(

τ1 + 2πt

260

)

+ β2 cos

(

τ2 + 2πt

5

)

+ β3t . (49)

The typical way to fit a function to a discrete series is to use a Least
Squares (LS) approach. A possible drawback of using LS here is that extreme
values will be more influential than the normal valued data points. We want
lnΛ(t) to model only trend and periodic variations, not the random variations
of the stochastic process.

Benth et al. (2008, chap. 5.1.1) propose to remove “outliers” in the data
before fitting the model with LS. They look at the daily changes in the
logaritmically transformed spot prices. Sorting these data we find the lower
and upper quartiles Q1 and Q3, then we define the interquartile range (IQR)
to be the difference Q3 − Q1. An outlier is then defined to be any value
that falls outside the interval [Q1 − 3 × IQR,Q3 + 3 × IQR]. The number
of outliers found are shown in Table 1. For each outlying jump in the log
price, we replace the resulting value with the mean of the adjacent log prices
(treating it as we would a missing value). Then an ordinary LS procedure1

is employed in order to fit lnΛ(t) to the resulting time series. The estimated
parameters are shown in Table 2.

1We used the nlm function in R, with analytical gradient input. The results were

obtained in a few seconds.

21

of outliers detected
Oil 69
Gas 252

Electric 149

Table 1: Number of outliers found in the daily differences of log prices.

β0 β1 β2 β3 τ1 τ2
Oil 2.4247 0.0352 0 0.0003 0 0
Gas 2.5350 -0.0331 0 0.0005 0 0

Electricity 4.7697 0.2026 -0.0243 0.0003 -0.0024 0.0001

Table 2: Trend and seasonal parameters from ordinary LS with outliers re-
moved.

Another way to handle extreme variations in the data is to use robust least
squares estimation (see e.g. Klüppelberg et al., 2010). This algorithm works
by iteratively fitting the model and manipulating influential data points. In
each iteration, after fitting the model, we estimate the standard deviation s
of the sample. Then for each residual ri, if |ri| > δs we move the data point
δs closer to the fitted function. The value of δ is a matter of choice. We stop
the iterations when the change in the fitted function is below some tolerance
level of our choice.

Let ĝk(t) be the fitted seasonality function at the k-th iteration. We
choose a tolerance level of 0.1, i.e. we stop the iterations whenever

∑N
j=1 |ĝk(j)−

ĝk−1(j)| < 0.1, and we set δ = 1.5. The estimated parameters are shown in
Table 3.

β0 β1 β2 β3 τ1 τ2
Oil 2.4373 0.0142 0 0.0003 0 0
Gas 2.5339 0.0307 0 0.0005 0 0

Electricity 4.6955 0.1400 -0.0255 0.0003 -0.0024 0.0001

Table 3: Robust least squares estimates of trend and seasonal parameters.

In Figures 5, 6 and 7 we have plotted the fitted trend and seasonality
functions over the logaritmic price series. For the oil and electricity data there
is clearly a difference in the seasonal amplitudes, depending on the methods
of estimation. For the gas data there is almost no difference between the two
methods. The electricity data seems to have significant weekly variations,

22

0 1000 2000 3000 4000 5000 6000

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Logaritmic oil price and seasonality functions

Days

Lo
g

pr
ic

e

Ordinary LS with outliers removed
Robust least squares estimate

Figure 5: Logaritmic oil prices with seasonality and trend functions.

as we can see from the “thickness” of the plotted functions. We also note
that the electricity data seems to be more affected by seasonal variations.
The trend parameter β3 is in the same order of magnitude for all price series,
which seems reasonable as it models general price growth in the markets.

Which one of the methods to use is a matter of deliberate choice. The
robust least squares approach admits less influence to extreme values, and
the seasonal amplitudes thus tends to be smaller than for the other method.
However, an advantage of just removing outlying log price jumps is that this
method admits more influence to those extreme values that didn’t arise from
just a few extreme jumps. Thus periods of persistently high/low prices are
given more weight. This is perhaps a reasonable compromise, and following
Benth et al. (2008) we will use the parameters from ordinary LS with outliers
removed.

5.2.2 Modelling detrended and deseasonalized data.

After obtaining the parameters for trend and seasonal variations, we can
subtract ln Λ(t) from lnS in order to obtain a detrended and deseasonalized
time series.

dX(t) = d lnS(t)− d ln Λ(t) (50)

The resulting X(t) series are displayed in Figure 8. All three time series
have zero means, but they do not vary irregulary around zero. This leads us

23

0 500 1000 1500 2000 2500 3000

2.
5

3.
0

3.
5

4.
0

4.
5

Logaritmic gas price and seasonality functions

Days

Lo
g

pr
ic

e

Ordinary LS with outliers removed
Robust least squares estimate

Figure 6: Logaritmic gas prices with seasonality and trend functions.

0 1000 2000 3000 4000

3
4

5
6

7

Logaritmic electricity spot price and seasonality functions

Days

Lo
g

pr
ic

e

Ordinary LS with outliers removed
Robust least squares estimate

Figure 7: Logaritmic electricity prices with seasonality and trend functions.

24

to expect strong autocorrelation effects in the data, which is verified by the
empirical autocorrelation functions displayed in Figure 9. When we fit an
AR(1) model to the data, the autoregressive parameter ϕ is close to 1 for all
three series. This suggests that there is only a weak reversion effect in the
data.

We may assume α = 0 in Equation (47) and look at the dX(t) processes,
i.e. the changes in the log price processes after trends and seasonal variations
are removed. We approximate the sample density of these changes with
a kernel smoothing function2. We also estimate gaussian parameters and
NIG-parameters for these series. The results are compared in Figure 10.
The sample densities show signs of leptokurtic behaviour, which can not be
modelled with the gaussian distribution.

Normal Q-Q plots of these series (see Figure 11) confirm that the data are
not gaussian. However, it is evident from Figure 12 that the NIG distribution
fit the data quite well. When we fit an AR(1) model to each series and take
out the (small) mean reversion effect, we get the same results.

We should note that the assumption of NIG distributed residuals is quite
ad hoc. We have no argument to support such an assumption, except that
the NIG distributions have favourable modelling properties in this case.

5.2.3 Simulation

Once we have obtained estimates of the Λ(t), AR and NIG parameters, it is
easy to simulate from this model. We have

dLt ∼ NIG(α, β, δ, µ) (51)

and in each time step we obtain dXt from Equation (47), with reversion
parameter α = 1 − ϕ. Then lnSt is obtained by adding the seasonality
function to Xt.

We simulate 4000 days from this model, using the Nord Pool data, and
the result is shown together with historical data in Figure 13. The simulated
data clearly have a trend and seasonal variations. Compared to the driving
NIG process, we also see the effect of mean reversion.

From visual inspection the simulated data seem reasonable, but there are
too few extreme jumps and too many medium sized jumps. We also note that
we don’t get price spikes with our model. This behaviour may be a result of
our assumption of constant volatility and constant mean reversion. Thus the
model underestimates the probability of extreme jumps, and overestimate
the volatility in between extreme events. Neither can our model reproduce
the fast mean reversion often seen after extreme jumps.

2We applied the density() function in R with a gaussian kernel smoother.

25

−
2

−
1

0
1

Detrended and deseasonalized log price data

Date

R
es

id
ua

l l
og

 p
ric

e

1985 1990 1995 2000 2005 2010

Oil
Gas
Electricity

F
igu

re
8:

D
etren

d
ed

an
d
d
eseason

alized
log

p
rices

for
oil,

gas
an

d
electricity.

26

0 50 100 150 200 250 300

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
Detrended and deseasonalized series

lag

A
C

F

Oil
Gas
Electricity

Figure 9: Empirical autocorrelation functions for detrended and deseasonal-
ized time series. The ACF’s are computed by the acf -function in R.

5.3 Modelling spot prices with periodic autoregressive

models.

Another approach to seasonality modelling is to discard Λ(t) and use a pe-
riodic autoregressive model directly. Byström (2005) uses an AR-GARCH
model for modelling hourly spot prices at Nord Pool. In his model the hourly
arithmetic return (or yield), r, is modelled as

rt = ϕ0 + ϕ1rt−1 + ϕ2rt−24 + ϕ3rt−168 + εt . (52)

Here εt = σtηt, and ηt is assumed to be i.i.d. variables from a gaussian or
t-distribution with mean = 0 and variance = 1. The conditional variance
σ2
t is modelled by

σ2
t = β0 + β1ε

2
t−1 + β2σ

2
t−1 (53)

in order to recreate the volatility clustering that are often observed in finan-
cial time series (see Figure 14). Modelling volatility clustering is outside the
scope of this thesis, and we will consider a model where εt is assumed to be
i.i.d. variables from a stable distribution.

5.3.1 A periodic autoregressive model for log returns

In Byström (2005) the arithmetic returns, (St − St−1)/St−1, on electricity
prices are modelled by Eq. (52) and (53) in order to study the behaviour
of extreme changes in the upward direction. We are generally interested in

27

−0.2 −0.1 0.0 0.1 0.2

0
10

20
30

Oil

N = 6672 Bandwidth = 0.002712

D
en

si
ty

Sample density
Gaussian density
NIG density

−0.10 −0.05 0.00 0.05 0.10

0
20

60

Gas

N = 3302 Bandwidth = 0.0008946

D
en

si
ty

Sample density
Gaussian density
NIG density

−0.4 −0.2 0.0 0.2 0.4

0
4

8
12

Electricity

N = 3998 Bandwidth = 0.007413

D
en

si
ty

Sample density
Gaussian density
NIG density

Figure 10: Sample densities and estimated gaussian and NIG densities for
changes in detrended/deseasonalized log price series.

28

−4 −2 0 2 4

−
0.

3
−

0.
1

0.
1

0.
3

Normal Q−Q Plot, Oil data

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

−2 0 2

−
0.

5
0.

0
0.

5

Normal Q−Q Plot, Gas data

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

−2 0 2

−
0.

5
0.

0
0.

5

Normal Q−Q Plot, Electricity data

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 11: Normal Q-Q Plots of the changes in log prices after trend and
seasonal effects are removed.

29

−0.2 −0.1 0.0 0.1 0.2

−
0.

3
−

0.
1

0.
1

0.
3

NIG Q−Q Plot, Oil data

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

−0.5 0.0 0.5

−
0.

5
0.

0
0.

5

NIG Q−Q Plot, Gas data

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
0.

0
0.

5

NIG Q−Q Plot, Electricity data

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 12: Q-Q plots of fitted NIG distributions against de-
trended/deseasonalized log prices.

30

0 2000 4000 6000 8000

−
2

0
2

4
6

8

Simulation from seasonal model

Time (days)

Lo
g

pr
ic

e

Historical data
Simulated data
Driving process

Figure 13: Historical data, simulated data and driving process for the sim-
ulations. Simulations are from one factor model with deterministic seasons
and mean reversion, using the Nord Pool data.

0 1000 2000 3000 4000

−
1.

0
−

0.
5

0.
0

0.
5

Logarithmic returns of electricity prices (Nord Pool data)

Time (days)

Lo
g

re
tu

rn
s

Figure 14: Logarithmic returns of electricity price series. We see periods of
increased volatility, so called volatility clusters.

31

0 50 100 150 200 250 300

−
0.

10
0.

00
0.

10
0.

20

Lag

P
ar

tia
l A

C
F

Nord Pool logarithmic return

Figure 15: Partial autocorrelation structure for the logarithmic return on the
Nord Pool system price.

forecasting both upward and downward movements, and we choose to look at
the logarithmic returns log(St/St−1). Under the logarithmic transformation
the series of relative prices are balanced, i.e. the logarithmic returns sum to
zero whenever St = S0.

We anticipate that the log return of the energy prices will have autocor-
relations at lags of one year and one week. The empirical partial autocorre-
lation of logarithmic return confirm that such effects are present. From the
PACF plot of log returns in the Nord Pool data (see Figure 15) we see that
there might be significant autocorrelations on many lags between 1 and 260
days. However, we should be suspicious of autocorrelations that we didn’t
anticipate or are unable to explain. Moreover, there is no specific reason
why annual autocorrelations should be restricted to only one day, so a single
positive correlation at lag = 250 should be interpreted with caution. With
these considerations in mind, we might try fitting a periodic AR model with
periods of 1, 5 and 250 days.

We apply the same procedure to the oil and gas series. For the log
returns on oil prices, we are not able to find any AR parameters that are
significantly different from zero. For the gas data we find a relatively strong

32

negative correlation on lag = 1 and some positive correlation at lags around
261 (i.e. about a year), but other correlation effects do not correspond to
our anticipations and can not be accounted for. This means that under this
model, the oil price log returns simply follow a Lévy process, while the gas
price log returns follow a periodic AR model with periods 1 and 261 driven
by a Lévy process. Thus the oil log return is taken to have no periodicity at
all, while the gas log return is only dependent on the previous day and the
previous year.

We proceed with the model for the Nord Pool system price. The model
is given by:

rt = ϕ1rt−1 + ϕ2rt−5 + ϕ3rt−250 + εt . (54)

The gas price is modelled similarly. The LS estimates for the periodic au-
toregression parameters are shown in Table 4. We see that rt is negatively
correlated with rt−1, while there are positive correlations at the week and
year periods.

We note that the mean absolute value of the log returns are in the order
of 10−2 for all three data sets. The mean effect of the AR terms in the model
are thus in the order of 10−3, i.e. an order of magnitude smaller than the
standard deviation of the residual processes. Thus the residual process is
prominent to the price development under the present model.

ϕ1 ϕ2 ϕ3 Residual SD
Electricity -0.08725734 0.18678341 0.14764886 0.08381

Gas -0.2336056 0.1212698 0.04360

Table 4: Least squares estimates of periodic AR parameters and standard
deviation of the residual process, for log return models of gas and electricity
prices.

We use Q-Q plots to investigate the distribution of the residual processes
εt. From Figure 16 we see that these residuals are not from a gaussian
distribution. NIG distribution seem to fit the residual processes quite well,
as we can see from Figure 17 and 18. The NIG distribution also provides
a reasonable fit to the log returns of each data set (see Figure 19). From
visual inspection of the plots, however, the NIG distribution seems to be
more appropriate for electricity data than for oil and gas data.

As expected, we obtain the same results if we omit the autoregressive
terms and obtain Q-Q plots of the log returns directly.

33

−2 0 2

−
1.

0
−

0.
5

0.
0

0.
5

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 16: Normal Q-Q plot for the residual process εt in the periodic AR
model (Eq. 54), using electricity price data.

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

NIG Q−Q plot, Electricity data

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 17: NIG Q-Q plot of the residual process εt in the periodic AR model
(Eq. 54), using electricity data.

34

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

−
0.

5
0.

0
0.

5

NIG Q−Q plot, Gas data

Theoretical quantiles

S
am

pl
e

qu
an

til
es

Figure 18: NIG Q-Q plot of the residual process εt in the periodic AR model,
using gas data.

−0.2 −0.1 0.0 0.1 0.2

−
0.

3
−

0.
1

0.
1

0.
3

NIG Q−Q plot, Oil data

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 19: NIG Q-Q plot of the logreturns for oil data.

35

5.3.2 Simulation

After fitting a periodic AR model to a data set, we estimate the NIG param-
eters of the residual process εt. Knowing these parameters, we can simulate
the residual process forward in time. The log return in each time step is
then given by historical data and the residuals, using the relevant periodic
AR model (e.g. Eq. (54) for electricity). After obtaining the log return rt
forward in time, the log price is given by the relation:

lnSt = lnSt−1 + rt (55)

We simulate 2500 days forward from the periodic AR models, and the
results are shown in Figures 20 and 21. From these plots we see that the
periodic AR process differs little from the driving NIG process. Thus sea-
sonal variations and trend are almost absent in the simulated data. Repeated
simulations confirm that the model is likely to produce log prices that are
uncharacteristic of energy spot prices. Neither are the model capable of pro-
ducing price spikes with fast mean reversion or periods of extreme volatility.

It is not surprising that the fitted models produce uncharacteristic price
developments in the long run. Since the models only depend on developments
in the previous year, deviations from any expected outcome will propagate
forward in time. There are no mechanisms for reversion to any historical
developments beyond the previous year.

From Table 4 we see that the fitted models for electricity and gas are
more influenced by short term developments than long term developments.
As a result, even for simulations of less than 250 days ahead, the AR effects
in the model will be more dependent on the driving process than on historical
developments.

5.4 Discussion

We have looked at two different ways of modelling energy spot prices. In
Section 5.2 we fitted a deterministic function for trend and seasonal effects
of the log price, and used AR(1) dynamics for the mean reversion. In Section
5.3 we modelled the log returns as periodic AR models, attempting to capture
seasonal effects in the AR model itself.

Both of the considered models have the drawback that by design they do
not reproduce volatility clusters or price spikes (i.e. extreme jumps followed
by fast mean reversion). In order to reproduce so-called regime changes,
i.e. periods of increased volatility, we would have to use a two-factor model
(see e.g. Lucia and Schwartz, 2002, section 3.3)) or a GARCH model for the
volatility (see Byström, 2005).

36

0 1000 2000 3000 4000 5000 6000

4
6

8
10

12

Simulations, Electricity data

Time (days)

Lo
g

pr
ic

e

Historical data
Simulated data
Driving process

Figure 20: Simulation from periodic AR model with NIG distributed resid-
uals, using electricity data.

37

0 1000 2000 3000 4000 5000 6000

3
4

5
6

Simulations, Gas data

Time (days)

Lo
g

pr
ic

e

Historical data
Simulated data
Driving process

Figure 21: Simulation from periodic AR model with NIG distributed resid-
uals, using gas data.

38

In order to introduce price spikes into the model, we could consider a
two factor jump-diffusion model (see e.g. Cartea and Figueroa, 2005), where
small movements are modelled as a Brownian motion and large jumps occur
according to a Poisson process. Before estimating the parameters of such a
model, one has to find a way of identifying and filtering out the jumps in
order to separate the two simultaneous processes (see e.g. Johannes et al.,
2009).

In both of models the residuals are modelled as variables from a NIG
distribution. We have seen that the NIG distribution fits these residuals much
better than the normal distribution does, mainly because of the leptokurtic
behaviour of the residual process. There may be some inaccuracy in the tails,
and we have seen that residuals from the oil data deviate more from the NIG
distribution than residuals from gas and electricity data do.

The model with deterministic seasons and mean reversion produce what
seems like reasonable price developments. However, because of the assump-
tion of constant volatility, this model is likely to overestimate the probability
of small jumps and underestimate the probability of extreme jumps. That
trend, seasonal and weekly variations are all taken to be deterministic, in
combination with the mean reversion dynamics, may also cause the model
to be too conservative with respect to risk.

Simulations from the periodic AR model show that it behaves almost
like a NIG process. The lack of trend, strong seasonal variations and mean
reversion makes this model better suited for forecasting in the short run
than in the long run. However, it is less prone to underestimating the risk of
extreme prices (both upwards and downwards), and may thus be interesting
for the purpose of risk management.

These conciderations are supported by simulation results. By performing
3000 Monte Carlo runs for each model and computing approximate forecast-
ing distributions (see Figure 22), we see how the periodic AR model admits
larger probabilities for unexpected price developments in the long run. The
mean reversion effect makes the former model largely dependent on the de-
terministic component in the long run, to such an extent that the forecast
variance barely increases with time, while the forecast variance of the periodic
AR model increases linearly with time (see Figure 23).

For the purpose of applying the Path Integral method for forecasting and
pricing of derivatives, there is a clear advantage in using an AR model that
is only dependent on the previous time step, i.e. an AR(1) model. When
we introduce more AR parameters, like in the periodic AR models, this will
complicate the integration procedure. This poses an interesting problem, but
it will not be pursued in this thesis.

39

5.0 5.5 6.0 6.5 7.0 7.5

0.
0

0.
5

1.
0

1.
5

2.
0

Forecast density after 10 days

N = 3000 Bandwidth = 0.03584

D
en

si
ty

4 5 6 7 8 9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Forecast density after 40 days

N = 3000 Bandwidth = 0.06629

D
en

si
ty

3 4 5 6 7 8 9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Forecast density after 70 days

N = 3000 Bandwidth = 0.072

D
en

si
ty

2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Forecast density after 100 days

N = 3000 Bandwidth = 0.07562

D
en

si
ty

Figure 22: Forecasted probability density function at different times, ob-
tained with 3000 Monte Carlo simulations. Results from the model with
deterministic variations and mean reversion is shown in black, and the peri-
odic AR model is shown in red.

40

20 40 60 80 100

0.
2

0.
4

0.
6

0.
8

Variances of forecasted distributions

Simulated time steps (Days)

S
am

pl
e

va
ria

nc
e

Deterministic seasons
Periodic AR

Figure 23: Variance of forecast density as a function of time for the two
models considered.

41

6 Valuing energy derivatives with numerical

path integrals

6.1 Implementation of density forecast

In order to find the forecast density p(sT) of the energy price model in Section
5.2, we need to solve Equation (20) numerically. Since all the stochastic be-
haviour takes place in the AR(1) model, we can simplify the implementation
by working with the detrended/deseasonalized price process Xt.

When estimating the parameters of the model, there is the question of
how much history to take into account. Price developments 10 years ago may
not be relevant when forecasting one year ahead. The deterministic mean
function Λ(t) in Equation (49) will depend on the choice of data used in the
estimation procedure. In Figure 24 we see how different choices will lead to
different estimates. Not only do we get different amplitudes for the seasonal
variations, we even get a negative trend in one of the four examples. We
will not dwell on this problem at present, but rather adopt the convention
that when we want to forecast m days into the future, then we will use the
previous m days to estimate model parameters.

We start by fitting Λ(t) to the appropriate series of log prices, and subtract
the resulting function in order to obtain the AR process X̂t. From X̂t we
estimate the AR(1) parameter ϕ̂, and from the residuals we estimate the
NIG parameters α̂, β̂, δ̂ and µ̂. Then we run 1000 simulations from Xt,
t = 1, . . . ,m, to determine an interval [xmin, xmax] where the probability
density p(xt) is non-zero, and we expand the interval by 100% to include
most of the probability mass.

In order to perform the numerical integration, we set up a uniform grid of
size N over the interval [xmin, xmax]. The probability density in grid point i

at time t is denoted g
(i)
t . We will only calculate the probability density in the

gridpoints, and we approximate the full density function by a cubic spline
interpolation with end conditions g

(1)
t = g

(N)
t = 0 for every t.

6.1.1 Cell mapping

A fairly simple way of propagating the p(xt) forward in time is by looking
at the conditional probability densities for the grid points and treating them
as if they were discrete conditional probabilities. This method is sometimes
referred to as “cell mapping”, but it is in fact numerical integration in its
simplest form. Computationally it is exceptionally fast, because it relies only
on matrix multiplication.

42

0 100 200 300 400 500

5.
6

5.
8

6.
0

6.
2

6.
4

6.
6

6.
8

Deterministic mean functions for log St

days

Lo
g

pr
ic

e

Days used in estimation

200
300
400
500

Figure 24: Different estimates of the deterministic mean log price, depending
on how many days of history we use in the estimation. These functions are
estimated from the Nord Pool daily spot prices.

43

Let x(i) be the position of the i’th grid point, and p(x(i)|x(j)) the proba-
bility density for getting to x(i) given x(j) in the previous time step. In our
model these densities are from a NIG distribution with the location param-
eter adjusted by the AR dynamics:

p(x(i)|x(j)) = fNIG(x
(i); α̂, β̂, δ̂, µ̂+ ϕ̂1x

(j)) (56)

We can transform these densities into discrete probabilities by finding con-
stants ri such that the following relation is satisfied:

rj

N
∑

i=1

p(x(i)|x(j)) = 1 for j = 1, . . . , N . (57)

Then we can construct a transition matrix by:

P =











r1p(x
(1)|x(1)) r2p(x

(1)|x(2)) . . . rNp(x
(1)|x(N))

r1p(x
(2)|x(1)) r2p(x

(2)|x(2)) . . . rNp(x
(2)|x(N))

...
...

. . .
...

r1p(x
(N)|x(1)) r2p(x

(N)|x(2)) . . . rNp(x
(N)|x(N))











. (58)

Now, if we let gt be a normalized vector of grid probabilities at time t, we
can propagate the probabilities forward in time by multiplication

gt+1 = Pgt (59)

and since we know g1, we have

gm = Pm−1g1 . (60)

Now we can use the discrete probabilities gm to approximate the value of a
European option.

If we need a continuous approximation, we can perform spline interpo-
latation on the probability vector gm and integrate the spline once to find a
normalization constant. (Alternatively we can let g1 be a vector of densities
and propagate on the densities directly, obtaining a density vector gm.) The
normalized spline function is our forcasted probability density p(xm).

6.1.2 Integration with Simpson’s Rule

The method above only takes into account the conditional densities at the
grid points x(i), i = 1, . . . , N . A more precise result can be obtained by
solving the integral in Equation (19) numerically. We perform the integration

44

by use of Simpson’s Rule (see e.g. Burden and Faires, 2005), which is given
by

∫ x2

x0

f(x)dx =
h

3
[f(x0) + 4f(x1) + f(x2)] (61)

where x1 = x0 + h and h = (x2 − x0)/2. The error of Simpson’s rule is
ε = h5

90
f (4)(ξ), with x0 < ξ < x2.

We could use Simpson’s rule with only the grid points x(i), i = 1, . . . , N .
To improve accuracy we set up finer grids x(i,j), j = 1, . . . , K over limited
intervals [ai, bi], such that px(i)|x′(x′) is below some tolerance level close to
zero whenever x′ is outside [ai, bi]. In this way we don’t waste computer
time on integrating where the conditional densities are very close to zero,
and it allows us to obtain better precision on the interval where most of the
probability mass is located.

For each grid point x(i), we calculate the conditional densities p(x(i)|x(i,j))
for j = 1, . . . , K. The value of the integrand at the j’th grid point is

fi,j = p(x(i)|x(i,j))p(x(i,j)) . (62)

and hi is the distance between adjacent points in the fine grid x(i,j+1)−x(i,j).
Now, let k = 1, 3, 5, . . . , K−2. The probability density in x

(i)
t+1 approximated

by Simpson’s rule is then given by

g
(i)
t+1 =

K−2
∑

k=1

hi
3
[fi,k + 4fi,k+1 + fi,k+2] (63)

Finally we set g
(0)
t+1 = g

(N)
t+1 = 0 and perform cubic spline interpolation on gt+1

to obtain p(xt+1). This procedure can be done iteratively to obtain p(xm).
Note that the grid points and conditional densities need only be calculated
once, as they do not change with time.

6.1.3 Numerical results for density forecast

To assess the performance of the methods discussed above, we calculate the
density of Xt after t = 300 days, using the Nord Pool daily system price
data. We do the calculations with both the cell mapping technique and
integration with Simpson’s Rule. In addition, we perform repeated Monte
Carlo simulations with the model for comparison with the PI calculations.

The model parameters is estimated from the last 300 prices in the data
set. In Table 5 we show the results of the estimation procedure. We see from
the value of ϕ̂ that the estimated mean reversion is fairly strong compared
to what we found in Section 5.2.

45

ϕ̂ α̂ β̂ δ̂ µ̂
Estimate 0.90527 10.02191 -0.21844 0.03226 -0.00154

Table 5: Estimated parameters for detrended/deseasonalized process Xt,
based on previous 300 daily electricity prices.

Because of the mean reversion dynamics, the distribution of Xt will be
only temporarily dependent on the starting value. In the long run, we expect
the distribution to converge, such that we have Xt+1

approx∼ Xt for large t.
From Figure 25 we see how the densities evolve for t ≤ 30. After t = 30 the
densities are nearly unchanged in each time step. The rate of convergence
depends on the starting value x0 and the speed of the mean reversion. Thus,
for large t, the density of the model price will depend only on the model
parameters as the starting value becomes insignificant.

We approximate p(x300) for the Nord Pool system price model with cell
mapping, Simpson’s Rule and with MC simulations. We use N = 100 grid
points to monitor the probability density, and K = 1000 grid points for the
fine grid in the integration procedure with Simpson’s Rule. The number of
MC runs are 106. With our implementation running on a standard lap top
computer the cell mapping procedure finished in about 0.1 seconds, while the
integration procedure finished in about 250 seconds. The MC implementation
finished in about 2500 seconds on the same computer. In Figure 26 we have
plotted the approximate densities obtained. If we superimposed the plots
we would hardly have been able to discriminate between them, except for a
small “dent” in the MC density around x = 0.02, which we were not able
to reproduce even with 10 times as many grid points. From Table 6 we see
that the moment characteristics of the three density forecasts are almost the
same.

Monte Carlo Cell mapping Simpson’s Rule
Mean -0.02373 -0.02374 -0.02372

Variance 0.01787 0.01788 0.01784
Skewness -0.02336 -0.03374 -0.03413
Kurtosis 0.92804 0.91277 0.91854

Table 6: Approximate mean, variance, skewness and kurtosis of forecasted
distributions.

46

−0.6 −0.4 −0.2 0.0 0.2 0.4

0
2

4
6

8
10

12

Densities propagated with Simpson’s Rule

xt

p(
x t

)

t=1
t=5
t=10
t=15
t=20
t=25
t=30

Figure 25: Densities p(xt) evolving with time, propagated by integration with
Simpson’s Rule.

47

Monte Carlo simulations

x300

D
en

si
ty

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0.
0

1.
0

2.
0

3.
0

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0.
0

1.
0

2.
0

3.
0

Cell mapping

x300

D
en

si
ty

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0.
0

1.
0

2.
0

3.
0

Simpson’s Rule

x300

D
en

si
ty

Figure 26: Approximations to p(x300) with different methods.

48

6.2 Valuing path-independent derivatives based on fore-

casted densities

Once we have obtained some representation of the probability density func-
tion p(xT), we can derive the value of a European option or a forward con-
tract at some specified exercise price by evaluating the respective integrals
in Equations (25), (26) or (27).

In our Path Integral implementations we found the densities of the de-
trended/deseasonalized AR(1) process Xt at t = T , which we here denote
pXT

(x). Now, let Yt be the log price process ln(St). We have Yt = lnΛ(t)+Xt.
Then, the density of YT is given by:

pYT
(y) = pXT

(y − ln Λ(T)) . (64)

We can evaluate the price of a derivative by integrating in the log scale. Since
all of the probability mass of our approximate pXT

(x) is located within the
end points of a grid x(i), we can subsitute the infinite limits of integration by
finite values. Thus, by changing variables, Equation (25) becomes

C(T,E) =

∫ x(N)+lnΛ(T)

lnE

(exp (y)− E)pXT
(y − ln Λ(T))dy . (65)

For put options we get

P (T,E) =

∫ lnE

x(1)+lnΛ(T)

(E − exp (y))pXT
(y − ln Λ(T))dy (66)

and the value of a forward contract becomes

V (T,E) =

∫ x(N)+lnΛ(T)

x(1)+lnΛ(T)

(exp (y)− E)pXT
(y − ln Λ(T))dy . (67)

These integrals can be evaluated numerically to obtain the respective deriva-
tive values under the assumed model.

6.2.1 Numerical results for path-independent derivatives

We compute derivative values for T = 300 days at different exercise prices.
The results are shown in Table 7. We observe that the prices from the PI
methods are very close to the prices obtained from MC simulations. We do
not see any clear evidence that cell mapping is less accurate than integration
by Simpson’s Rule.

49

In Figure 27 we have plotted the derivative values as functions of exer-
cise/forward price. We have C(T,E) = P (T,E) when E = EXP[ST]. The
put-call parity is obeyed and the values behave as we would expect.

We also compute option prices for different values of T , as shown in Figure
6.2.1, and again we observe a close match between MC and PI results. The
PI implementation with Simpson’s Rule is about 10 times faster than the
MC implementation.

We can construct confidence intervals for the option values from the
MC results, using the test statistic tn−1 = [x − µ]/[s/

√
n], where tn−1 is t-

distributed with n−1 degrees of freedom. We detect errors in C(250, 600) at
the 0.05 level. The confidence interval for this option is [170.6895, 171.1095],
and both of the PI methods overestimate the option value. The other results
are within the confidence interval.

To see how the input parameters affect the precision, we rerun the PI
algorithms for different values of N and K. The results are shown in Figures
28 and 29. For cell mapping, we see that the errors are quite large when the
grids are sparse, as one would expect. The behaviour of the Simpson’s rule
method is rather unexpected with small errors for sparse grids. Both methods
stabilize at about N = 150 and K = 200. The option values converge to a
level close to, but not inside, the confidence interval.

E Method C(T,E) P (T,E) V (T,E)

500 MC 138.5592 1.3698 137.1894
Cell mapping 138.5803 1.3597 137.2216
Simpson’s Rule 138.5784 1.3575 137.2219

600 MC 54.0839 16.89451 37.18939
Cell mapping 54.10426 16.88292 37.22197
Simpson’s Rule 54.06196 16.84004 37.22255

700 MC 12.33172 75.10708 -62.77536
Cell mapping 12.28608 75.0634 -62.77732
Simpson’s Rule 12.28495 75.0626 -62.77758

Table 7: Model prices for European options and forward contracts at matu-
rity T = 300, calculated from forecasted densities.

6.3 Valuing barrier options with Path Integrals

In this section we look at implementations of a Path Integral method for
valuing knock-out and knock-in options with an upper barrier. We let m

50

500 600 700 800 900 1000

−
20

0
0

20
0

Derivative prices as functions of E, for T=300.

Exercise/forward price

V
al

ue
 o

f d
er

iv
at

iv
e

Call option
Put option
Forward contract

Figure 27: Values of European options and forward contract with ex-
piry/maturity T=300, as a function of exercise/forward price. These prices
are calculated from densities obtained by Path Integrals with Simpson’s Rule.

51

50 100 150 200 250 300

0.
00

1
0.

00
2

0.
00

3
0.

00
4

0.
00

5

Error of European call values, as a function of N

N

R
el

at
iv

e
er

ro
r

Cell mapping
Simpson’ Rule
Confidence Interval

Figure 28: Relative deviation from MC result for European Call options with
T = 250, E = 600 and K = 1000. The results converge at about N = 150.

52

0 200 400 600 800

0.
00

0.
01

0.
02

0.
03

0.
04

Error of European call values, as a function of K

K

R
el

at
iv

e
er

ro
r

Simpson’ Rule
Confidence Interval

Figure 29: Relative deviation from MC result for European Call options with
T = 250, E = 600 and N = 150. The results converge at about K = 200.

53

T Method CPU time C(T,E) P (T,E)

200 Monte Carlo 1885 1.2510 112.5134
Cell mapping 0.14 1.2523 112.4547
PI w/Simpson 164 1.2503 112.5319

250 Monte Carlo 2284 170.8995 1.7775
Cell mapping 0.14 171.1734 1.7828
PI w/Simpson 201 171.1296 1.7797

300 Monte Carlo 2692 54.0839 16.8945
Cell mapping 0.11 54.1043 16.8829
PI w/Simpson 243 54.0620 16.8400

Table 8: Numerical results for European options with E = 600. The CPU
time is given in seconds. Estimates outside MC confidence interval are shown
in red.

be the number of days until expiry, and we assume that the price of the
underlying is monitored on a daily basis, i.e. at t = 1, . . . ,m. We show how
to calculate the Path Integrals with Simpson’s method, and verify results by
use of MC simulations.

6.3.1 Implementation of Path Integral method for up-and-out bar-

rier options

To propagate the H-density forward in time, we need to solve Equation (31)
numerically. The procedure is basically the same as the one described in Sec-
tion 6.1.2. We work in detrended/deseasonalized space, where the stochastic
dynamics take place. We set up a grid x(i) to represent the density function
on, and we let the upper end of the grid be slightly above the maximum
barrier position. Then for each i = 1, . . . , N we set up a integration grid
x(i,j), j = 1, . . . , K, which is used to perform integration by Simpson’s Rule.
In each time step we interpolate the grid and corresponding densities by a
cubic spline to approximate the full density. But now we cut off the spline
at the barrier, such that the approximated density ht(x) is zero above the
barrier. The resulting cut-off density is then used in the integrand at the
next step.

Since we are doing the Path Integral procedure on the AR(1) process
Xt, the barrier depends on lnΛ(t), so we have to use the correct xbarriert in
each step. Moreover, to avoid approximation errors that might arise from
the discontinuity at the barrier, we set up a fine grid x(g), g = 1, . . . , G,
and calculate the densities at these grid points as well. We place these

54

extra grid points in an interval where we expect barrier effects to occur, i.e.
symmetrically around the previous cut-off value multiplied by ϕ. This grid
and corresponding G ×K propagator densities has to be calulated in every
time step, as the barrier value changes. This slows the algorithm down quite
a bit.

Because the density function is cut off in each step, some of the probability
mass will disappear. The mass that disappear at t = j corresponds to the
fraction of the processes Xt that will cross the barrier at t = j. The total
mass of hm(x), i.e. Hm(−∞), is the fraction of processes that do not cross
the barrier in the life time of the option. We can use hm(x) directly to value
the up-and-out call and put options, by rewriting Equations (65) and (66)
to obtain:

C(m,E,B) =

∫ lnB

lnE

(exp(y)− E)hm(y − Λ(m))dy (68)

and

P (m,E,B) =

∫ lnE

x(1)+lnΛ(m)

(E − exp(y))hm(y − Λ(m))dy . (69)

In practice, since hm(y − Λ(m)) = 0 whenever y > lnB, we use the same
implementation to evaluate these expressions as we did for the European
option, substituting pm(x) by hm(x) in the argument.

6.3.2 Numerical results for up-and-out barrier options

We use the Nord Pool electricity spot prices as input to the algorithm, and we
evaluate put and call options with different expiry dates and barrier prices.
For the Path Integral method we use N = 100 grid points for the density
representation, and K = 1000 points in the integration grid. To increase
precision of the density function around the barrier, we add 20 grid points in
an interval that is set to 5 times the length between the normal grid points.
We also run the algorithm without this barrier grid. For comparison we run
n = 106 MC simulations of the same barrier process.

In Figure 30 we have plotted the H-densities obtained from these three
algorithms. The approximated densities are so close to each other that they
can hardly be discriminated by visual inspection, even when we superimpose
the plots. On the right tail we see that the density is cut off at the barrier.

In Table 6.3.2 we display some of the results from running the algorithms.
Some of the option values falls outside the confidence interval, but all devi-
ations from the MC results are relatively small. The speed of the MC algo-
rithm depends on the parameters, because we stop the iteration each time a

55

process crosses the barrier. As expected, the PI implementation with extra
grid points around the barrier is somewhat slower than if we use a uniform
grid. However, in our test runs we found no significant loss of precision by
using the uniform grid.

6.3.3 Implementation of PI method for up-and-in barrier options

We expand a grid with N points over the same interval as for the density
forecasts. This grid is then extended by a finer grid of G points in an interval
where we expect to see effects from the discontinuity at the barrier.

In each time iteration we propagate both ht(x) and gt(x) over the whole
grid by applying Simpson’s Rule with K integration points. The imple-
mentation will spend twice as much CPU time as the implementation for
up-and-out barrier processes, as we have to do twice as many calculations.
The part of gt(x) that flows over the barrier is cut off and added to ht(x) in
each step. In Figure 31 we see how ht(x) develops around the barrier.

After iterating through all the time steps, the value of an up-and-in barrier
option can be calculated by the same procedure as before, using hm(x) instead
of pm(x) in the integrand in Equations (65) and (66).

6.3.4 Numerical results for up-and-in barrier options

We test run the PI implementation for up-and-in barrier options with N =
100 and K = 1000, for some combinations of B, E and T . We also calculate
the values by using the in-out parity of barrier options, using Cell mapping
with N = 150 for the European option and Simpson’s Rule without barrier
grid for the up-and-out option. The results are shown in Table 6.3.4.

By dropping the barrier grid, the algorithm runs about twice as fast, but
from our test runs we cannot conclude that there is any significant loss of
precision. The results from using the in-out parity are obtained even faster,
but the quality of the results vary from significantly better to significantly
worse.

6.4 Discussion

We have shown how to implement PI methods for an AR(1) model with NIG
distributed residuals, and we have shown how these methods can be used
to value derivatives. The PI implementations are considerably faster than
the corresponding MC implementations and they produce reasonable results.
Some of the options values found by the PI methods are not inside the MC

56

MC histogram and PI densities

x

D
en

si
ty

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4

0.
0

0.
5

1.
0

1.
5

2.
0

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4

0.
0

0.
5

1.
0

1.
5

2.
0

PI with barrier grid

x

H
−

de
ns

ity

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4

0.
0

0.
5

1.
0

1.
5

2.
0

PI without barrier grid

x

H
−

de
ns

ity

Figure 30: Histograms for MC simulations of X300, and corresponding den-
sities obtained with PI methods. The approximations are very close to ea-
chother.

57

T E B Method CPU time Hm(−∞) C(T,E,B) P (T,E,B)

200 600 900 Monte Carlo 2807 0.998703 1.182144 112.4794
PI with barrier grid 596 0.999403 1.196652 112.5342
PI without barrier grid 176 0.995904 1.192350 112.1393

250 780 1300 Monte Carlo 2737 0.948202 34.29881 46.38103
PI with barrier grid 747 0.948553 34.29263 46.39494
PI without barrier grid 211 0.946785 34.22921 46.30963

300 600 900 Monte Carlo 3434 0.571642 26.79804 10.28791
PI with barrier grid 880 0.570520 26.82146 10.27437
PI without barrier grid 259 0.570682 26.83117 10.27706

350 500 850 Monte Carlo 3066 0.539866 15.27036 16.28538
PI with barrier grid 1023 0.535164 15.09606 16.14556
PI without barrier grid 296 0.543417 15.33142 16.39373

T
ab

le
9:

N
u
m
erical

resu
lts

for
u
p
-an

d
-ou

t
b
arrier

p
ro
cesses

w
ith

d
iff
eren

t
ex
p
iry,

ex
ercise

p
rice

an
d
b
arrier

valu
es.

T
h
e
C
P
U

tim
e
is
given

in
secon

d
s.

E
stim

ates
ou

tsid
e
of

M
C

con
fi
d
en
ce

in
terval

are
sh
ow

n
in

red
.

58

0.45 0.50 0.55 0.60 0.65

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04

Knock−in density evolving with time

x

h t
(x

)

t=1
t=2
t=3
t=4
t=5
t=6

Figure 31: Development of the knock-in-density ht(x) around the barrier. In
each time step some mass is added above the barrier and some of the density
mass flows back below the barrier.

59

T E B Method CPU time Hm(−∞) C(T,E,B) P (T,E,B)

200 500 600 Monte Carlo 2320 0.352801 10.91859 6.019776
PI with barrier grid 947 0.334996 11.13991 6.403226
PI without barrier grid 573 0.416805 11.59898 6.761833
In-Out Parity 180 0.356603 10.79003 6.196707

250 780 1200 Monte Carlo 2846 0.131563 8.166562 5.414192
PI with barrier grid 1184 0.1301167 8.148202 5.473311
PI without barrier grid 579 0.1299593 8.139486 5.466824
In-Out Parity 220 0.1312831 8.136403 5.467996

300 600 900 Monte Carlo 3371 0.426954 27.1697 6.530322
PI with barrier grid 1433 0.4251654 27.40383 6.60442
PI without barrier grid 694 0.4249642 27.38936 6.601416
In-Out Parity 264 0.4293247 27.24158 6.565924

350 500 850 Monte Carlo 3793 0.459681 16.68078 13.16960
PI with barrier grid 1670 0.4582669 16.78025 13.24401
PI without barrier grid 807 0.457325 16.74659 13.21731
In-Out Parity 297 0.456579 17.01298 13.29620

T
ab

le
10:

N
u
m
erical

resu
lts

for
u
p
-an

d
-in

b
arrier

p
ro
cesses

w
ith

d
iff
eren

t
ex
p
iry,

ex
ercise

p
rice

an
d
b
arrier

valu
es.

T
h
e
C
P
U

tim
e
is
given

in
secon

d
s.

E
stim

ates
ou

tsid
e
of

M
C

con
fi
d
en
ce

in
terval

are
sh
ow

n
in

red
.

60

confidence interval. The reason for these observations are not clear and could
be explored further.

The performance of the PI algorithms depend on many variables; the
number of grid points representing densities, the resolution of the numerical
integration procedure, the size of the interval on which we approximate den-
sities, and the parameters of the price model. The forecasted densities should
in principle approach the true density as we increase the resolution of the
representation and integration grids. Further study is needed to determine
how variables should be chosen in order to achieve consistently good results,
and to improve the implementations with a view to minimizing error.

For barrier option methods, one source of error is the discontinuity in
the integrand that arise from cutting the the density function. At this point
the error of Simpson’s Rule diverges. The problem is partly contained by
keepingK large, thus keeping the step size h small, but it could be completely
remedied by splitting the integration grid at the cut-off point, and using the
correct limit value depending on which side of the discontinuity we integrate.

Another idea is to use cell mapping for barrier options too. The speed of
this method is so formidable that we can increase the grid resolution and still
achieve fast results. However, matrix multiplication has a running time of
about O(n3), so the speed is not without limitation. Additional grid points
should be added in a way that optimizes precision, e.g. by having a denser
grid around the barriers.

The results show that the PI approach can be a viable solution to valu-
ation of derivatives under models of the kind considered here. For practical
applications we would have to look into how the price model should be cal-
ibrated to achieve the best possible forecasts. For faster execution of the
algorithms, we would implement them in a different language, e.g. Matlab
or C.

61

A Terms and Definitions

Definition 7 (Stochastic continuity). Let X = {X(t), t ≥ 0} be a stochastic
process. If, for all a > 0 and for all s ≥ 0, limt→s P (|X(t)−X(s)| > a) = 0,
then X is stocastically continuous.

Definition 8 (Characteristic function). The characteristic functon φX of a
random variable X uniquely determines the density function F (x) = P (X ≤
x). φX is the Fourier-Stieltjes transform of F (x) (Schoutens, 2003, p. 15),
such that:

φX(u) = E[exp(iuX)] =

∫ +∞

−∞

exp(iux)dF (x) (70)

Definition 9 (Infinite divisibility). A distribution defined by the character-
istic function φ(u) is said to be infinitely divisible if, for every positive integer
n, n
√

φ(u) is also a characteristic function (Schoutens, 2003, p. 44).

Definition 10 (Lévy measure). A Lévy measure ν is a probability measure
on R \ {0} with

∫ +∞

−∞

inf{1, x2}ν(dx) =
∫ +∞

−∞

inf{1 ∧ x2}ν(dx) <∞ (71)

(Schoutens, 2003, p. 45)

62

B Proofs and derivations

B.1 NIG parameters from moment characteristics

The mean, variance, skewness and kurtosis of the NIG(α, β, δ) distribution
are given by (Schoutens, 2003), and we add the location parameter µ to this
parameterisation:

m1 = δβ/
√

α2 − β2 + µ (72)

m2 = α2δ(α2 − β2)−3/2 (73)

γ1 = 3βα−1δ−1/2(α2 − β2)−1/4 (74)

γ2 = 3

(

α2 + 4β2

δα2
√

α2 − β2

)

(75)

From (73) and (74) we can write

γ1√
m2

=
3β
√

α2 − β2

δα2
(76)

and (75) can be written as

γ2 =
3
√

α2 − β2

δα2
+

5

3

(

9β2

δα2
√

α2 − β2

)

. (77)

By substituting (76) and the square of (74) into (77) we obtain

γ2 =
γ1√
m2β

+
5

3
γ21 (78)

and thus we have

β =
γ1√

m2(γ2 − 5
3
γ21)

. (79)

Now, from (73) and (74) we can write

√
m2γ1 =

3β

α2 − β2
(80)

and (75) can be written as

γ2 = 3

(

1

δ
√

α2 − β2
+

4β2

α2δ
√

α2 − β2

)

. (81)

63

By substituting (80) into (81) we obtain

γ2 = γ21

(

α2

3β2
+

4

3

)

(82)

α = β

√

3γ2
γ21

− 4. (83)

Subtituting (79) into (83) we obtain

α =

√

3γ2 − 4γ21√
m2(γ2 − 5

3
γ21)

. (84)

Then, by substituting (79) and (84) into the square of (74), we can solve for
δ, and we get

δ =

√

m2(3γ2 − 5γ21)

γ2 − 4
3
γ21

. (85)

Then, solving for µ in (72) we obtain

µ = m1 −
γ1
√
m2

γ2 − 4
3
γ21
. (86)

B.2 Alternative parameterizations of the IG distribu-

tion

Two different parameterizations of the IG distribution is commonly in use.
Schoutens (2003) defines the distribution by the following PDF:

fIG(x; a, b) =
a√
2πx3

exp(ab) exp(−1

2
(a2x−1 + b2x)) , x > 0 (87)

which has mean = a/b and variance = a/b3. According to Schoutens (2003),
the scaling properties of this distribution is given by

X ∼ IG(a, b) → tX ∼ IG(
√
ta, b/

√
t) . (88)

By comparing the PDF’s in Equations (13) and (87) it’s clear that the relation
between the two parameterizations are given by

λ = a2 (89)

µ =
a

b
(90)

64

and thus we have mean = µ and variance = µ3/λ.
We can derive the scaling properties of this parameterization from Equa-

tion (88). Let X ∼ IG(µ, λ) ∼ IG(a2, a/b), then tX ∼ IG(µ̃, λ̃) with:

µ̃ = (
√
ta)2 = ta2 = tµ (91)

and

λ̃ =

√
ta

b/
√
t
= t

a

b
= tλ . (92)

The R library mgcv contains the function rig() which can be used to
simulate from IG distributions. Note that this function assumes a parame-
terization with an inverse scale parameter, such that Equation (89) becomes
λ = a−2.

B.3 Proof of out-in parity for barrier options

Let A be the set of all processes St that cross the barrier B, and let A be the
set of all processes that do not cross the barrier. We then have A ∩ A = ∅,
and the union of A and A is the entire sample space of St. The value of
a European call option is CE(St;T,E) = max(0, ST − E). The value of a
up-and-out call option is

CUAO(St;T,E,B) =







0 if St ∈ A

CE(St;T,E) if St /∈ A
(93)

and the value of a up-and-in call option is similarly

CUAI(St;T,E,B) =







CE(St;T,E) if St ∈ A

0 if St /∈ A
. (94)

It follows directly that

CE(T,E) = CUAO(T,E,B) + CUAI(T,E,B) . (95)

The same argument can be applied to put options.

65

C R code

In this section we include relevant [R] code that is developed and used to
obtain results in this thesis. Some of the code relies on additional utility
libraries; mgcv and fBasics.

C.1 Energy modelling

Fit a NIG distribution to a

vector of samples, using the

Method of Moments

#

Input:

X - data sample

#

estimateNIGparams = function(X)

{

m1 = mean(X)

m2 = var(X)

g1 = sampleskew(X)

g2 = samplekurtosis(X)

c(nigalpha(m2,g1,g2),nigbeta(m2,g1,g2),

nigdelta(m2,g1,g2),nigmu(m1,m2,g1,g2))

}

Estimate alpha parameter of NIG

distribution from sample moments

#

Input:

m2 - sample variance

g1 - sample skewness

g2 - sample kurtosis

#

nigalpha = function(m2,g1,g2)

{

sqrt(3*g2 - 4*g1^2) / (sqrt(m2)*(g2-(5/3)*g1^2))

}

Estimate beta parameter of NIG

distribution from sample moments

66

#

Input:

m2 - sample variance

g1 - sample skewness

g2 - sample kurtosis

#

nigbeta = function(m2,g1,g2)

{

g1 / (sqrt(m2)*(g2-(5/3)*g1^2))

}

Estimate delta parameter of NIG

distribution from sample moments

#

Input:

m2 - sample variance

g1 - sample skewness

g2 - sample kurtosis

#

nigdelta = function(m2,g1,g2)

{

sqrt(m2*(3*g2-5*g1^2)) / (g2-(4/3)*g1^2)

}

Estimate mu parameter of NIG

distribution from sample moments

#

Input:

m1 - sample mean

m2 - sample variance

g1 - sample skewness

g2 - sample kurtosis

#

nigmu = function(m1,m2,g1,g2)

{

m1 - g1*3*sqrt(m2)/(3*g2-4*g1^2)

}

Estimate kurtosis from data sample

#

Input:

67

X - data sample

#

samplekurtosis = function(X)

{

n = length(X)

diff = X-mean(X)

k1 = ((1/n)*sum(diff^4)) / ((1/n)*sum(diff^2))^2

k0 = ((n-1)/((n-2)*(n-3))) * ((n+1)*k1 - 3*(n-1))

k0

}

Estimate skewness from data sample

#

Input:

X - data sample

#

sampleskew = function(X)

{

n = length(X)

diff = X-mean(X)

s1 = ((1/n)*sum(diff^3)) / ((1/n)*sum(diff^2))^(3/2)

s0 = (sqrt(n*(n-1))*s1) / (n-2)

s0

}

Obtain residuals by removing auto-regressive

effects from a time series

#

Input:

X - time series

arobj - returned object from call to ar()

#

removeAR = function(X, arobj)

{

n=length(X)

result = c()

for(i in (arobj$order+1):n)

{

68

w = X[i]

for(j in 1:arobj$order)

{

w = w-arobj$ar[j]*X[i-j]

}

result = c(result,w)

}

result

}

Ordinary LS method, fitting season/trend

function to data (e.g. log prices)

#

Input:

data - the data

init - initial parameters for iterative minimization

typsize - typical size of model parameters

iterlim - maximum number of iterations

#

ordinaryLS = function(data,init=c(0,0,0,0,0,0),

typsize=c(5,1,0.1,0.1,0,0), iterlim=250)

{

result = nlm(SSR,p=init,data=data,typsize=typsize,

print.level=1, iterlim=iterlim)

result

}

Utility function for ordinaryLS()

Returns the sum of squares of the residuals

after function has been fitted

#

Input:

params - input parameters to logLambda()

data - the data to which model is being fitted

#

SSR = function(params, data)

{

rsq = data - logLambda(params,1:length(data))

result <- sum(rsq^2)

attr(result, "gradient") <- SSRgrad(params,data)

result

69

}

Utility function for SSR()

Return gradient vector of SSR.

#

Input:

params - input parameters to logLambda()

data - the data to which model is being fitted

#

SSRgrad = function(params,data)

{

grad = rep(0,6)

n = length(data)

j=1:n

translate parameters for readability

b0 = params[1]

b1 = params[2]

b2 = params[3]

b3 = params[4]

tau1 = params[5]

tau2 = params[6]

grad[1] = 2*sum(-data+b0+b1*cos((tau1+2*pi*j)/260) +

b2*cos((tau2+2*pi*j)/5)+b3*j)

grad[2] = 2*sum(cos((tau1+2*pi*j)/260) *

(-data+b1*cos((tau1+2*pi*j)/260) +

b0 + b3*j+b2*cos((tau2+2*pi*j)/5)))

grad[3] = 2*sum(cos((tau2+2*pi*j)/5) *

(-data+b1*cos((tau1+2*pi*j)/260) +

b0 + b3*j+b2*cos((tau2+2*pi*j)/5)))

grad[4] = 2*sum(j*(-data + b3*j + b0 +

b1*cos((tau1+2*pi*j)/260) +

b2*cos((tau2+2*pi*j)/5)))

grad[5] = sum(b1* (sin((tau1+2*pi*j)/260)/130) *

(data - b1*cos((tau1+2*pi*j)/260) -

b0 - b3*j - b2*cos((tau2+2*pi*j)/5)))

grad[6] = sum(b2* (sin((tau2+2*pi*j)/5)/2.5) *

(data - b2*cos((tau2+2*pi*j)/5) - b0 -

b3*j - b1*cos((tau1+2*pi*j)/260)))

70

grad

}

Return function values for log Lambda(t)

i.e. deterministic model of seasonal

and weekly variations + trend

#

Input:

param - vector of model parameters

t - vector of times at which we

want to evaluate the function

#

logLambda = function(param,t)

{

translate variable names

just for readability of formula

b0 = param[1]

b1 = param[2]

b2 = param[3]

b3 = param[4]

tau1 = param[5]

tau2 = param[6]

b0 + b1*cos((tau1 + 2*pi*t)/260) +

b2*cos((tau2+2*pi*t)/5) + b3*t

}

C.2 Density forecast and path-independent derivatives

Method for calculating input values to PI methods

based on AR(1) model with deterministic seasons

and NIG distributed residuals

#

Input:

m - time steps until t=T

data - historical values of S_T, ending at t=0

#

setupPI = function(m,data)

{

estimate parameters from the complete data set

71

in order to obtain starting values for next LS procedure

LStest = ordinaryLS(log(data))

startval = LStest$estimate

fit a seasonality function to the

m last historical log prices

LSfit = ordinaryLS(log(tail(data,m)),init=startval,

typsize=startval)

calculate residuals after deseasonalizing,

and fit AR(1) model

detrended = log(tail(data,m))- logLambda(LSfit$estimate, 1:m)

arfit = ar(detrended,order=1)

print(paste("AR parameter",arfit$ar))

residuals = removeAR(detrended, arfit)

estimate NIG parameters

NIGpar = estimateNIGparams(residuals)

p = ppoints(length(residuals))

quant = qnig(p,NIGpar[1],NIGpar[2],NIGpar[3],NIGpar[4])

do k MC runs to find approximate grid size

k = 1000

MC = c()

for(i in 1:k)

{

simulate m NIG-residuals

nigvar = rnig(m,NIGpar[1],NIGpar[2],NIGpar[3],NIGpar[4])

simulate Autoregressive process X

X = c(tail(detrended,1))

alpha = arfit$ar-1

for(j in 1:m)

{

dX = alpha*tail(X,1) + nigvar[j]

X = c(X,tail(X,1)+dX)

}

X = tail(X,m)

MC = cbind(MC,X)

}

72

setup PDF grid (expand range by 100% to be sure)

gridmin = min(MC) - 0.5*(max(MC)-min(MC))

gridmax = max(MC) + 0.5*(max(MC)-min(MC))

compile setup object

setup = NULL

setup$X0 = tail(detrended,1)

setup$range = range(MC)

setup$gridrange = c(gridmin,gridmax)

setup$seasonpar = LSfit$estimate

setup$arpar = arfit$ar

setup$nigpar = NIGpar

setup$m = m

return setup object

setup

}

Use the PI approach to approximate PDF of log(S_T)

#

#

Arguments:

m - time steps until t=T

data - historical values of S_T, ending at t=0

setup - output from the setupPI function

N - number of gridpoints for representing PDF

K - number of gridpoints in the integration grid

zero - any density less than this is set to 0

#

PIdensity = function(m,data,setup=NULL, N=100, K=1000,

zero=10^-6)

{

ptm = proc.time()

we need K to be an odd number i.o. to use Simpsons method

if(K%%2==0) K = K+1

create setup if not submitted as argument

if(is.null(setup))

setup = setupPI(m,data)

setup PDF grid (expand range by 100% to be sure)

73

gridmin = setup$gridrange[1]

gridmax = setup$gridrange[2]

grid = seq(gridmin,gridmax,length.out=N)

calculate and store values of propagator: p(x|x’)

xMat contains x’ values

propMat contains corresponding p(x|x’)

x is given by grid[row index]

propMat = c()

xMat = c()

test run to find location of probability mass

tempMat = c()

for(i in 1:N)

{

Xval = grid[i] # value of x for this col

condpdf = dnig(grid, setup$nigpar[1], setup$nigpar[2],

setup$nigpar[3],

(setup$nigpar[4]+setup$arpar*Xval))

tempMat = cbind(tempMat, condpdf)

}

find grid and propagator densities for each x

for(i in 1:N)

{

find limits and grid for this propagator row

to avoid calculations where propagator is zero

limits = range(grid[which(tempMat[i,]>zero)])

xMat = rbind(xMat,seq(limits[1],limits[2],length.out=K))

find densities for this propagator row

row = c()

for(j in 1:K)

{

row = c(row, dnig(grid[i], setup$nigpar[1],

setup$nigpar[2], setup$nigpar[3],

(setup$nigpar[4]+setup$arpar*xMat[i,j])))

}

propMat = rbind(propMat,row)

}

find distribution at t=1

X0 = log(tail(data,1))-logLambda(setup$seasonpar, m)

74

pdf = c(0,dnig(grid[2:(N-1)], setup$nigpar[1],

setup$nigpar[2], setup$nigpar[3],

(setup$nigpar[4] + setup$arpar*X0)),0)

pdfspline = splinefun(grid, pdf,method="natural")

print("starting iteration forward in time")

iterate through time steps

for(t in 2:m)

{

iterate through grid points

newpdf = c(0)

for(i in 2:(N-1))

{

perform integration

dens = 0

h = diff(xMat[i,1:2])

integrand = propMat[i,] * pdfspline(xMat[i,])

for(j in seq(1,K-2,2))

{

simpson = (h/3) * (integrand[j] +

4*integrand[j+1] + integrand[j+2])

dens = dens + simpson

}

newpdf = c(newpdf,dens)

}

newpdf = c(newpdf,0)

pdfspline = splinefun(grid,newpdf,method="natural")

if(t%%30==0) print(paste("Progress:",t))

}

find probability mass of spline

mass = integrate(pdfspline,gridmin,gridmax)

construct and return result

result = NULL

result$time = proc.time() - ptm

result$setup = setup

result$density = (function(x){pdfspline(x)/mass$val})

result$range = setup$gridrange

result

75

}

Approximate probability density by cell mapping

#

Input:

setup - object containing model parameters

e.g. result from call to setupPI()

N - number of points in grid

#

CellMapping = function(setup, N=100)

{

ptm = proc.time()

setup PDF grid (expand range by 100% to be sure)

gridmin = setup$gridrange[1]

gridmax = setup$gridrange[2]

grid = seq(gridmin,gridmax,length.out=N)

construct matrix of probability densities

P = c()

for(i in 1:N)

{

value of X at grid point i

Xval = grid[i]

get conditional densities for column i,

normalize and add to matrix

condpdf = dnig(grid, setup$nigpar[1], setup$nigpar[2],

setup$nigpar[3], (setup$nigpar[4]+

setup$arpar*Xval))

condpdf = condpdf/(sum(condpdf))

P = cbind(P, condpdf)

}

probability density vector at t=1

p1 = dnig(grid, setup$nigpar[1], setup$nigpar[2],

setup$nigpar[3], (setup$nigpar[4]+

setup$arpar*setup$X0))

g1 = p1/sum(p1)

propagate probability forward to t=m

gm = powmat(P,setup$m-1) %*% g1

76

pm = powmat(P,setup$m-1) %*% p1

set densities to zero at each end, and create spline

pm[0]=pm[N]=0

pspl = splinefun(grid,pm,method="natural")

find probability mass of pspl

mass = integrate(pspl,gridmin,gridmax)

construct and return result object

result = NULL

result$time = proc.time()-ptm

result$setup = setup

result$grid = grid

result$gm = gm

result$density = (function(x){pspl(x)/mass$val})

result$P = P

result

}

Utility function for CellMapping()

Finds the n’th power of a matrix.

#

M - the matrix

n - the power

powmat = function(M,n)

{

result = diag(1, ncol(M))

while(n>0)

{

if(n %% 2 != 0)

{

result = result %*% M

n = n-1

if(n==0) break

}

M = M %*% M

n = n/2

}

result

77

}

Run Monte Carlo simulations to obtain density estimate

#

Input:

setup - object that contains model parameters

n - number of MC runs

#

MonteCarloDensity = function(setup,n=10^6)

{

ptm <- proc.time()

mc = rep(0,n)

for(i in 1:n)

{

simulate m NIG-residuals

nigvar = rnig(setup$m,setup$nigpar[1],setup$nigpar[2],

setup$nigpar[3],setup$nigpar[4])

simulate Autoregressive process X

X = setup$X0

alpha = setup$arpar-1

for(j in 1:setup$m)

{

dX = alpha*X + nigvar[j]

X = X+dX

}

mc[i] = X

}

timer=proc.time()-ptm

construct and return result

result = NULL

result$n = n

result$mc = mc

result$time=timer

result$setup = setup

result

}

Return value of European call option

calculated from density at expiry

78

#

Input:

PIobj - returned

E - exercise price

#

valueEuropeanCall = function(PIobj, E)

{

deterministic mean of log price

logLambda = logLambda(PIobj$setup$seasonpar, 2*PIobj$setup$m)

limits of integration for log S density

limits = PIobj$setup$gridrange + logLambda

check if exercise price is small enough

if(log(E)>limits[2])

value = 0

else

{

get density function for log S

logdens = logpriceDensity(PIobj)

create integrand function

integrand = (function(lnS){(exp(lnS)-E)*logdens(lnS)})

perform integration

value = integrate(integrand,max(log(E),limits[1]),

limits[2])$val

}

value

}

Return value of European put option

calculated from density at expiry

#

Input:

PIobj - returned

E - exercise price

#

valueEuropeanPut = function(PIobj, E)

{

79

deterministic mean of log price

logLambda = logLambda(PIobj$setup$seasonpar, 2*PIobj$setup$m)

limits of integration for log S density

limits = PIobj$setup$gridrange + logLambda

check if exercise price is small enough

if(log(E)<limits[1])

value = 0

else

{

get density function for log S

logdens = logpriceDensity(PIobj)

create integrand function

integrand = (function(lnS){(E-exp(lnS))*logdens(lnS)})

perform integration

value = integrate(integrand,limits[1],

min(log(E),limits[2]))$val

}

value

}

Return value of forward contract

calculated from density at maturity

#

Input:

PIobj - returned PI object

F - forward price

#

valueForward = function(PIobj, F)

{

deterministic mean of log price

logLambda = logLambda(PIobj$setup$seasonpar, 2*PIobj$setup$m)

limits of integration for log S density

limits = PIobj$setup$gridrange + logLambda

get density function for log S

80

logdens = logpriceDensity(PIobj)

create integrand function

integrand = (function(lnS){(exp(lnS)-F)*logdens(lnS)})

perform integration

value = integrate(integrand,limits[1], limits[2])$val

value

}

Return log price density function.

Utility function for valuation of

derivatives.

#

Input:

PIobj - PI object

(returned from CellMapping or PIdens)

#

logpriceDensity = function(PIobj)

{

(function(lnS)

{

dens = rep(0,length(lnS))

x = lnS - logLambda(PIobj$setup$seasonpar,2*PIobj$setup$m)

notzero = which(x>PIobj$setup$gridrange[1] &

x<PIobj$setup$gridrange[2])

dens[notzero] = PIobj$density(x[notzero])

dens

})

}

Value European call option from MC results

#

Input:

MCobj - result from MonteCarloDensity-function

E - exercise price

#

mcEuropeanCall = function(MCobj,E)

{

81

logLambda = logLambda(MCobj$setup$seasonpar, 2*MCobj$setup$m)

values = exp(MCobj$mc + logLambda)-E

values[which(values<0)]=0

mean(values)

}

Value European put option from MC results

#

Input:

MCobj - result from MonteCarloDensity-function

E - exercise price

#

mcEuropeanPut = function(MCobj,E)

{

logLambda = logLambda(MCobj$setup$seasonpar, 2*MCobj$setup$m)

values = E-exp(MCobj$mc + logLambda)

values[which(values<0)]=0

mean(values)

}

Value forward contract from MC results

#

Input:

MCobj - result from MonteCarloDensity-function

F - forward price

#

mcForward = function(MCobj,F)

{

logLambda = logLambda(MCobj$setup$seasonpar, 2*MCobj$setup$m)

values = exp(MCobj$mc + logLambda)-F

mean(values)

}

C.3 Barrier options

Calculate density of Up-and-out barrier

process, by Path Integrals propagated

with Simpson’s Rule

#

Model: Deterministic + AR(1)

82

#

Input

m - number of days until expiry

data - the data from which we estimate model params

B - the upper barrier

N - number of points in density representation grid

K - number if points in integration grid

setup - obj returned from setupPI-function

zero - value at which the propagator function is

considered zero

bgwidth - width of barrier grid, as a fraction of

gridspacing

bgpoints - number of points in the grid around barrier

barrierGrid - boolean, true if we should use fine grid around

barrier

#

UAObarrierDens = function(m, data, B, N=100, K=1000,

setup=NULL, zero=10^-6, bgwidth=5,

bgpoints=20, barrierGrid=TRUE)

{

ptm <- proc.time()

check for input errors

if(tail(data,1)>B)

stop("Value out of range: B must be larger than S_0")

retrieve regular PI setup

if(is.null(setup))

setup = setupPI(m,data)

get seasonality function for t=1:m

logLambda = logLambda(setup$seasonpar, (m+1):(2*m))

calculate log barrier and x-barrier

logB = log(B)

XB = logB-logLambda

setup grid for h_m(x)

let gridmax be slightly above largest barrier

gridmin = setup$gridrange[1]

gridspace = (max(XB)-gridmin)/(N-2)

gridmax = max(XB)+gridspace

83

expand grid up to maximum barrier position

grid = seq(gridmin,gridmax,length.out=N)

calculate and store values of propagator: p(x|x’)

xMat contains x’ values

propMat contains corresponding p(x|x’)

x is given by grid[row index]

propMat = c()

tempMat = c()

xMat = c()

test run to find location of probability mass

for(i in 1:N)

{

Xval = grid[i] # value of x for this col

condpdf = dnig(grid, setup$nigpar[1], setup$nigpar[2],

setup$nigpar[3], (setup$nigpar[4]+

setup$arpar*Xval))

tempMat = cbind(tempMat, condpdf)

}

find integration grid and propagator

densities for each x in grid

for(i in 1:N)

{

find limits and grid for this propagator row

to avoid calculations where propagator is zero

limits = range(grid[which(tempMat[i,]>zero)])

xMat = rbind(xMat,seq(limits[1],limits[2],length.out=K))

find densities for this propagator row

row = c()

for(j in 1:K)

{

row = c(row, dnig(grid[i], setup$nigpar[1],

setup$nigpar[2],

setup$nigpar[3], (setup$nigpar[4]+

setup$arpar*xMat[i,j])))

}

propMat = rbind(propMat,row)

}

find distribution at t=1

84

(do calculations in deseasonalized space)

X0 = log(tail(data,1))-logLambda(setup$seasonpar, m)

pdf = c(0,dnig(grid[2:(N-1)], setup$nigpar[1],

setup$nigpar[2], setup$nigpar[3],

(setup$nigpar[4] + setup$arpar*X0)),0)

spline = splinefun(grid, pdf,method="natural")

find H-density function

hj = knockOutHdens(spline,setup$gridrange,XB[1])

print("starting iteration forward in time")

iterate through time steps

for(t in 2:m)

{

iterate through grid points

newpdf = c(0)

for(i in 2:(N-1))

{

perform integration

dens = 0

h = diff(xMat[i,1:2])

integrand = propMat[i,] * hj(xMat[i,])

for(j in seq(1,K-2,2))

{

simpson = (h/3) * (integrand[j] + 4*integrand[j+1] +

integrand[j+2])

dens = dens + simpson

}

newpdf = c(newpdf,dens)

}

newpdf = c(newpdf,0)

#---

Part where we find a fine grid around barrier and

calculate pdf in those points

#---

if(barrierGrid)

{

Find pdf in the close vincinity of the barrier

barrier grid

85

bpdf = c()

bgrid = seq(XB[t-1]*setup$arpar-0.5*gridspace*bgwidth,

XB[t-1]*setup$arpar+0.5*gridspace*bgwidth,

length.out=bgpoints)

calculate and store values of propagator: p(x|x’)

bxMat contains x’ values

bpropMat contains corresponding p(x|x’)

x is given by grid[row index]

bpropMat = c()

btempMat = c()

bxMat = c()

test run to find location of probability mass

for(i in 1:N)

{

Xval = grid[i] # value of x’ for this col

condpdf = dnig(bgrid, setup$nigpar[1], setup$nigpar[2],

setup$nigpar[3],

(setup$nigpar[4]+setup$arpar*Xval))

btempMat = cbind(btempMat, condpdf)

}

find grid and propagator densities for each x

for(i in 1:length(bgrid))

{

find limits and grid for this propagator row

to avoid calculations where propagator is zero

limits = range(grid[which(btempMat[i,]>zero)])

bxMat = rbind(bxMat,seq(limits[1],limits[2],

length.out=K))

find densities for this propagator row

row = c()

for(j in 1:K)

{

row = c(row, dnig(bgrid[i], setup$nigpar[1],

setup$nigpar[2], setup$nigpar[3],

(setup$nigpar[4]+

setup$arpar*bxMat[i,j])))

}

bpropMat = rbind(bpropMat,row)

86

}

iterate through grid points

bpdf = c()

for(i in 1:length(bgrid))

{

perform integration

dens = 0

h = diff(bxMat[i,1:2])

integrand = bpropMat[i,] * hj(bxMat[i,])

for(j in seq(1,K-2,2))

{

simpson = (h/3) * (integrand[j] + 4*integrand[j+1] +

integrand[j+2])

dens = dens + simpson

}

bpdf = c(bpdf,dens)

}

spline = splinefun(c(grid,bgrid),c(newpdf,bpdf),

method="natural")

}

else

spline = splinefun(grid,newpdf,method="natural")

#---

#find H-density function; h_j

hj = knockOutHdens(spline,setup$gridrange,XB[t])

}

construct and return result obj

result=NULL

result$time = proc.time()-ptm

if(barrierGrid)

{

result$bgrid = bgrid

result$bpdf = bpdf

}

result$newpdf = newpdf

87

result$B = B

result$grid = grid

result$spline = spline

result$density = hj

result$setup = setup

result

}

Return knock-out H-density function.

Utility function for barrier PI functions.

#

Input:

dens - density function

limits - interval where all mass is located

B - the barrier (in appropriate scale)

#

knockOutHdens = function(dens,limits,B)

{

(function(x){

val = rep(0,length(x))

notzero = which(x>limits[1] & x<=B)

val[notzero] = dens(x[notzero])

val

})

}

Return density function that is

zero below the barrier.

Utility function for UAIbarrierDens()

#

Input:

dens - density function

limits - interval where all mass is located

B - the barrier (in appropriate scale)

#

barOverflow = function(dens,limits,B)

{

(function(x){

val = rep(0,length(x))

notzero = which(x<limits[2] & x>=B)

88

val[notzero] = dens(x[notzero])

val

})

}

Estimate values of up-and-out barrier

call options by repeated MC runs

#

Input:

setup - setup object from setupPI()

E - exercise price of option

B - barrier price value

n - number of MC runs

#

mcUAObarrier = function(setup, E, B, n=10^6)

{

ptm <- proc.time()

get seasonality function for t=1:m

logLambda = logLambda(setup$seasonpar,

(setup$m+1):(2*setup$m))

calculate deseasonalized x-barrier

Xbar = log(B)-logLambda

create vector for X-values

Xvals = rep(NA,n)

for(i in 1:n)

{

simulate m NIG-residuals

nigvar = rnig(setup$m,setup$nigpar[1],setup$nigpar[2],

setup$nigpar[3],setup$nigpar[4])

simulate Autoregressive process X

X = setup$X0

alpha = setup$arpar-1

brokebarrier = FALSE

for(j in 1:setup$m)

{

dX = alpha*X + nigvar[j]

X = X+dX

89

if(X>Xbar[j])

{

brokebarrier = TRUE

break

}

}

if(brokebarrier==FALSE)

Xvals[i] = X

}

option values

values = exp(Xvals+tail(logLambda,1))-E

call = values[which(values>0)]

put = -values[which(values<0)]

construct and return result obj

result = NULL

result$time = proc.time()-ptm

result$n = n

result$setup = setup

result$lambdatail = tail(logLambda,1)

result$forward = values

result$call = call

result$put = put

result$callval = sum(call)/n

result$putval = sum(put)/n

result$Xvals = Xvals

result$B = B

result$E = E

result

}

Estimate values of up-and-in barrier

options by repeated MC runs.

#

Input:

setup - setup object from setupPI()

E - exercise price of option

B - barrier value

n - number of MC runs

#

90

mcUAIbarrier = function(setup, E, B, n=10^6)

{

ptm <- proc.time()

get seasonality function for t=1:m

logLambda = logLambda(setup$seasonpar,

(setup$m+1):(2*setup$m))

calculate deseasonalized x-barrier

Xbar = log(B)-logLambda

create for X-values

Xvals = rep(NA,n)

for(i in 1:n)

{

simulate m NIG-residuals

nigvar = rnig(setup$m,setup$nigpar[1],setup$nigpar[2],

setup$nigpar[3],setup$nigpar[4])

simulate Autoregressive process X

X = setup$X0

alpha = setup$arpar-1

brokebarrier = FALSE

for(j in 1:setup$m)

{

dX = alpha*X + nigvar[j]

X = X+dX

if(X>Xbar[j])

brokebarrier = TRUE

}

if(brokebarrier)

{

Xvals[i] = X

}

}

option values

values = exp(Xvals+tail(logLambda,1))-E

call = values[which(values>0)]

put = -values[which(values<0)]

91

construct and return result obj

result = NULL

result$time = proc.time()-ptm

result$n = n

result$setup = setup

result$call = call

result$put = put

result$callval = sum(call)/n

result$putval = sum(put)/n

result$Xvals = Xvals

result$B = B

result$E = E

result

}

Calculate density of Up-and-in barrier

process, by Path Integrals propagated

with Simpson’s Rule

#

Model: Deterministic + AR(1)

#

Input

m - number of days until expiry

data - the data from which we estimate model params

B - the upper barrier

N - number of points in density representation grid

K - number if points in integration grid

setup - obj returned from setupPI-function

zero - value at which the propagator function is

considered zero

bgwidth - width of barrier grid, as a fraction of

gridspacing

bgpoints - number of points in the grid around barrier

barrierGrid - boolean, true if we should use fine grid

around barrier

#

UAIbarrierDens = function(m, data, B, N=100, K=1000,

setup=NULL, zero=10^-6, bgwidth=5,

bgpoints=20, barrierGrid=TRUE)

{

ptm <- proc.time()

92

check for input errors

if(tail(data,1)>B)

stop("Value out of range: B must be larger than S_0")

retrieve regular PI setup

if(is.null(setup))

setup = setupPI(m,data)

get seasonality function for t=1:m

logLambda = logLambda(setup$seasonpar, (m+1):(2*m))

calculate log barrier and x-barrier

logB = log(B)

XB = logB-logLambda

#print(XB)

setup grid for h_m(x) and g_m(x)

gridmin = setup$gridrange[1]

gridmax = setup$gridrange[2]

gridspace = (gridmax-gridmin)/(N-1)

expand grid

grid = seq(gridmin,gridmax,length.out=N)

calculate and store values of propagator: p(x|x’)

xMat contains x’ values

propMat contains corresponding p(x|x’)

x is given by grid[row index]

propMat = c()

tempMat = c()

xMat = c()

test run to find location of probability mass

for(i in 1:N)

{

Xval = grid[i] # value of x for this col

condpdf = dnig(grid, setup$nigpar[1], setup$nigpar[2],

setup$nigpar[3], (setup$nigpar[4]+

setup$arpar*Xval))

tempMat = cbind(tempMat, condpdf)

}

find integration grid and propagator

densities for each x in grid

93

for(i in 1:N)

{

find limits and grid for this propagator row

to avoid calculations where propagator is zero

limits = range(grid[which(tempMat[i,]>zero)])

#print(limits[2]-limits[1])

xMat = rbind(xMat,seq(limits[1],limits[2],length.out=K))

find densities for this propagator row

row = c()

for(j in 1:K)

{

row = c(row, dnig(grid[i], setup$nigpar[1],

setup$nigpar[2], setup$nigpar[3],

(setup$nigpar[4]+setup$arpar*xMat[i,j])))

}

propMat = rbind(propMat,row)

}

find distribution at t=1

(do calculations in deseasonalized space)

X0 = log(tail(data,1))-logLambda(setup$seasonpar, m)

pdf = c(0,dnig(grid[2:(N-1)], setup$nigpar[1],

setup$nigpar[2], setup$nigpar[3],

(setup$nigpar[4] + setup$arpar*X0)),0)

pdfspline = splinefun(grid, pdf,method="natural")

find G-density function (=knock-out H-density)

gj = knockOutHdens(pdfspline,setup$gridrange,XB[1])

find H-density function

hj = barOverflow(pdfspline,setup$gridrange,XB[1])

print("starting iteration forward in time")

iterate through time steps

for(t in 2:m)

{

iterate through grid points

h_pdf = c(0)

g_pdf = c(0)

for(i in 2:(N-1))

{

94

perform integration

dens = c(0,0) # = c(h,g)

distance between integration grid points

h = diff(xMat[i,1:2])

h_integrand = propMat[i,] * hj(xMat[i,])

g_integrand = propMat[i,] * gj(xMat[i,])

for(j in seq(1,K-2,2))

{

simpson = (h/3) * (h_integrand[j] +

4*h_integrand[j+1] + h_integrand[j+2])

dens[1] = dens[1] + simpson

simpson = (h/3) * (g_integrand[j] +

4*g_integrand[j+1] + g_integrand[j+2])

dens[2] = dens[2] + simpson

}

h_pdf = c(h_pdf,dens[1])

g_pdf = c(g_pdf,dens[2])

}

h_pdf = c(h_pdf,0)

g_pdf = c(g_pdf,0)

#--

Part where we find a fine grid around barrier and

calculate pdf in those points

#--

if(barrierGrid)

{

Find pdf in the close vincinity of the barrier

barrier grid

bpdf = c()

bgrid = seq(XB[t-1]*setup$arpar-0.5*gridspace*bgwidth,

XB[t-1]*setup$arpar+0.5*gridspace*bgwidth,

length.out=bgpoints)

calculate and store values of propagator: p(x|x’)

bxMat contains x’ values

bpropMat contains corresponding p(x|x’)

95

x is given by grid[row index]

bpropMat = c()

btempMat = c()

bxMat = c()

test run to find location of probability mass

for(i in 1:N)

{

Xval = grid[i] # value of x’ for this col

condpdf = dnig(bgrid, setup$nigpar[1], setup$nigpar[2],

setup$nigpar[3],

(setup$nigpar[4]+setup$arpar*Xval))

btempMat = cbind(btempMat, condpdf)

}

find grid and propagator densities for each x

for(i in 1:length(bgrid))

{

find limits and grid for this propagator row

to avoid calculations where propagator is zero

limits = range(grid[which(btempMat[i,]>zero)])

bxMat = rbind(bxMat,seq(limits[1],limits[2],

length.out=K))

find densities for this propagator row

row = c()

for(j in 1:K)

{

row = c(row, dnig(bgrid[i], setup$nigpar[1],

setup$nigpar[2], setup$nigpar[3],

(setup$nigpar[4]+

setup$arpar*bxMat[i,j])))

}

bpropMat = rbind(bpropMat,row)

}

iterate through grid points

h_bpdf = c()

g_bpdf = c()

for(i in 1:length(bgrid))

{

perform integration

96

dens = c(0,0) # c(h,g)

distance between integration grid points

h = diff(bxMat[i,1:2])

h_integrand = bpropMat[i,] * hj(bxMat[i,])

g_integrand = bpropMat[i,] * gj(bxMat[i,])

for(j in seq(1,K-2,2))

{

simpson = (h/3) * (h_integrand[j] +

4*h_integrand[j+1] + h_integrand[j+2])

dens[1] = dens[1] + simpson

simpson = (h/3) * (g_integrand[j] +

4*g_integrand[j+1] + g_integrand[j+2])

dens[2] = dens[2] + simpson

}

h_bpdf = c(h_bpdf,dens[1])

g_bpdf = c(g_bpdf,dens[2])

}

h_spline = splinefun(c(grid,bgrid),c(h_pdf,h_bpdf),

method="natural")

g_spline = splinefun(c(grid,bgrid),c(g_pdf,g_bpdf),

method="natural")

}

else

{

h_spline = splinefun(grid,h_pdf,method="natural")

g_spline = splinefun(grid,g_pdf,method="natural")

}

#--

#find H-density function

hj = (function(x){

val = rep(0,length(x))

aboveBar = which(x<gridmax & x>XB[t])

val[aboveBar] = h_spline(x[aboveBar]) +

g_spline(x[aboveBar])

belowBar = which(x>gridmin & x<XB[t])

val[belowBar] = h_spline(x[belowBar])

97

val

})

#find G-density function

gj = knockOutHdens(g_spline,setup$gridrange,XB[t])

}

totalmass = integrate(gj,gridmin,XB[t])$val +

integrate(hj,gridmin,XB[t])$val +

integrate(hj,XB[t],gridmax)$val

construct and return result obj

result=NULL

result$time = proc.time()-ptm

if(barrierGrid)

{

result$bgrid = bgrid

result$g_bpdf = g_bpdf

result$h_bpdf = h_bpdf

}

result$g_pdf = g_pdf

result$h_pdf = h_pdf

result$grid = grid

result$g_spline = g_spline

result$h_spline = h_spline

result$totalmass = totalmass

since we have calculated the full probability density

i.e. hj + gj

we can correct the densities such that p(Omega)=1

result$density = (function(x){hj(x)/totalmass})

result$gdensity = (function(x){gj(x)/totalmass})

result$setup = setup

result

}

98

References

Abramowitz, M. and Stegun, I. (1968). Handbook of Mathematical Functions.
New York: Dover.

Applebaum, D. (2004). Lévy processes—from probability to finance
and quantum groups. Notices of the American Mathematical Society,
51(11):1336–1347.

Barndorff-Nielsen, O. E. (1995). Normal inverse gaussian distributions and
the modeling of stock returns. Research Report no. 300.

Barndorff-Nielsen, O. E. (1997). Processes of normal inverse gaussian type.
Finance and Stochastics, 2:41–68. 10.1007/s007800050032.

Benth, F. E., Benth, J. S., and Koekebakker, S. (2008). Stochastic modelling
of electricity and related markets. World Scientific Publishing Co. Pte.
Ltd., 1st edition.

Black, F. and Scholes, M. (1973). The pricing of options and corporate
liabilities. The Journal of Political Economy, 81(3):pp. 637–654.

Burden, R. L. and Faires, J. D. (2005). Numerical Analysis. Thomson
Brooks/Cole, 8th edition.

Byström, H. N. E. (2005). Extreme value theory and extremely large electric-
ity price changes. International Review of Economics & Finance, 14(1):41
– 55.

Cartea, A. and Figueroa, M. G. (2005). Pricing in electricity markets: a mean
reverting jump diffusion model with seasonality. Applied Mathematical
Finance, 12(4):313–335.

Eberlein, E. and Keller, U. (1995). Hyperbolic distributions in finance.
Bernoulli, 1(3):281–299.

Eberlein, E. and Prause, K. (1998). The generalized hyperbolic model: Fi-
nancial derivatives and risk measures. FDM Preprint 56, University of
Freiburg.

Fama, E. F. (1965). The behavior of stock-market prices. The Journal of
Business, 38(1):pp. 34–105.

Fama, E. F. (1970). Efficient capital markets: A review of theory and em-
pirical work. The Journal of Finance, 25(2):pp. 383–417.

99

Johannes, M. S., Polson, N. G., and Stroud, J. R. (2009). Optimal filtering
of jump diffusions: Extracting latent states from asset prices. The Review
of Financial Studies, 22(7).

Karlis, D. (2002). An em type algorithm for maximum likelihood estimation
of the normal-inverse gaussian distribution. Statistics & Probability Letters,
57(1):43 – 52.

Klüppelberg, C., Meyer-Brandis, T., and Schmidt, A. (2010). Electricity
spot price modelling with a view towards extreme spike risk. Quantitative
Finance, 10(9):963–974.

Koopman, S. J., Ooms, M., and Carnero, M. A. (2007). Periodic seasonal
reg-arfima–garch models for daily electricity spot prices. Journal of the
American Statistical Association, 102(477):16–27.

Linetsky, V. (1997). The path integral approach to financial mod-
eling and options pricing. Computational Economics, 11:129–163.
10.1023/A:1008658226761.

Lucia, J. J. and Schwartz, E. S. (2002). Electricity prices and power deriva-
tives: Evidence from the nordic power exchange. Review of Derivatives
Research, 5:5–50. 10.1023/A:1013846631785.

Madan, D. B. and Seneta, E. (1990). The variance gamma (v.g.) model for
share market returns. The Journal of Business, 63(4):511–524.

Næss, A. (2001). Lecture notes on the numerical solution of stochastic dif-
ferential equations by path integration methods. Technical report, De-
partment of Mathematical Sciences, Norwegian university of Science and
Technology, NO-7491, Trondheim, Norway.

Næss, A., Aukrust, E., and Westgaard, S. (2010). Pricing of barrier options
under a nig market model using numerical path integration. Working paper
no. N1-2010.

Rydberg, T. H. (1997). The normal inverse gaussian lévy process: simulation
and approximation. Communications in Statistics – Stochastic Models,
13(4):887–910.

Samuelson, P. A. (1965). Proof that properly anticipated prices fluctuate
randomly. Industrial Management review, 6(2).

Schoutens, W. (2003). Lévy Processes in Finance. Wiley, 1st edition.

100

Shumway, R. H. and Stoffer, D. S. (2000). Time Series Analysis and Its
Applications. Springer, 1st edition.

Skaug, C. and Naess, A. (2005). Pricing of asian options by numerical path
intergration. Internal Report.

Skaug, C. and Naess, A. (2007). Fast and accurate pricing of discretely
monitored barrier options by numerical path integration. Computational
Economics, 30:143–151. 10.1007/s10614-007-9091-5.

Weron, R., Bierbrauer, M., and Trück, S. (2004). Modeling electricity prices:
jump diffusion and regime switching. Physica A: Statistical and Theoretical
Physics, 336(1-2):39 – 48. Proceedings of the XVIII Max Born Symposium
@’Statistical Physics outside Physics@’.

Wilmott, P., Howison, S., and Dewynne, J. (1995). The Mathematics of
Financial Derivatives. Cambridge University Press, 2009 edition.

101

	Title Page
	prosjekt.dvi

