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Infrastructure-planning models are challenging because of their combination of
different time scales: while planning and building the infrastructure involves strate-
gic decisions with time horizons of many years, one needs an operational time scale
to get a proper picture of the infrastructure’s performance and profitability. In addi-
tion, both the strategic and operational levels are typically subject to significant un-
certainty, which has to be taken into account. This combination of uncertainties on
two different time scales creates problems for the traditional multistage stochastic-
programming formulation of the problem due to the exponential growth in model
size.

In this paper, we present an alternative formulation of the problem that combines
the two time scales, using what we call a multi-horizon approach, and illustrate it on
a stylized optimization model. We show that the new approach drastically reduces
the model size compared to the traditional formulation and present two real-life
applications from energy planning.

Keywords: stochastic programming, multistage, energy planning , scenario tree
construction

1 Introduction

Infrastructure-planning models typically focus on long-term investment strategies with time
horizons of years or even decades. For many such models it is important to acknowledge how
operational aspects will affect (and will be affected by) these strategic decisions: in order to find
robust, flexible, and profitable solutions, it is necessary to assess how the infrastructure can be
used, at what cost, and how it can respond to varying conditions. Hence, the goal is often to



design infrastructure in a way that maximizes the net present value of constructing, maintaining,
and using the infrastructure, while still allowing the users to satisfy their operational targets.
These aspects are on very different time scales: construction and maintenance of the infrastruc-
ture are strategic decisions with time scales of months or years, while the operational targets and
costs are driven by operational decisions with time scales of days, hours, or even minutes. The
main topic of this paper is how to address these complementary time scales in one optimization
model.

To further complicate the matter, these planning processes are subject to substantial uncer-
tainty: on the strategic level, there is uncertainty about future demands, prices, technology de-
velopment, etc. The uncertainty on the strategic level will influence the operational decisions,
and in addition there may be uncertainty in the short term. The sources of the uncertainties vary
between different types of applications.

One of the standard tools for solving optimization problems with uncertainty is stochastic-
programming models, in particular their scenario-tree-based formulations. With these models, it
is not obvious how to combine the two time scales, without the exponential growth in model size
described in Section 2. Depending on the objective function and purpose of the analysis, this
problem can be addressed in different manners. We can have separate strategic and operational
models and run them alternatively in a loop, adjusting the strategic model based on the results
from the operational model. An example of such an approach is provided in Myklebust (2010),
where a strategic and an operational model are run in sequence, as two separate entities.

There are also papers that consider aspects related to handling both time scales in one model
and, partially, uncertainty on the different time scales. One example is provided by Schiitz et al.
(2009) who include short-term variations in a strategic model for the Norwegian meat industry.
The model is a two-stage stochastic model where a supply chain is designed in the first stage and
then operated under uncertain demand in the second stage. The uncertainty in demand comes
from both short-term variations and long-term trends. De Jonghe et al. (2011) use an equilibrium
model to study the expansion of electricity generation capacity. They integrate the short-term
demand response in their strategic model by way of a representative profile and discuss the
effects on flexibility of the generation capacity. Their approach, however, considers only a
one-period deterministic model. Sonmez et al. (2013) analyze strategic investment decisions in
liquefied natural gas transport and discuss the impact of using a stochastic model (simulation)
for the throughput, i.e., at the operational level. They show that, when deciding about technology
and capacity choices, also operational flexibility is important in order to cope with short-term
variations and has a significant impact on profitability. Finally, Singh et al. (2009) describe a
multi-stage capacity-planning problem with potentially stochastic operational ‘submodels’ and
show how to solve it using Dantzig-Wolfe decomposition with variable splitting. This paper
focuses on the solution method and does not describe the structure of the operational uncertainty.

In this paper, we describe a model and scenario-tree structure that allows for using operational
decisions to evaluate the quality of the strategic decisions, while having uncertainty on both the
strategic and the operational levels. This is done by using a ‘multi-horizon’ optimization model,
where we embed important operational features directly into the strategic decision model, thus
allowing an immediate evaluation of potential investment solutions. An application of the same
scenario-tree structure has been presented in Hellemo et al. (2013). That paper, however, focuses



on a mathematical model developed for the natural gas industry, without an in-depth discussion
of the tree structure for the considered application. In contrast, our contribution lies in a detailed
discussion of the structure and its comparison to standard multi-period trees. We also provide
guidance on how to populate such scenario trees and describe two applications from the area of
energy planning.

The rest of this paper is organized as follows: in Section 2, we show why the standard ap-
proach to building multistage stochastic models is not well suited for models with both strategic
and operational uncertainties. Then, in Section 3, we present our new multi-horizon structure
that resolves the problem and illustrate its use on a stylized optimization problem. Finally, in
Section 4, we describe the two example applications. We also discuss other areas where it could
potentially be useful, before we conclude the paper.

2 Limitations of the standard approach

In this section, we explain why the standard approach for building scenario trees is not suitable
for models that combine long- and short-term uncertainties. We start by introducing the nec-
essary terminology for multistage stochastic-programming problems and the related scenario
trees: a period denotes the time interval between two consecutive time-discretization points. A
stage starts at a time point where new information is received. Per definition, the first time point
in the tree starts a stage.

A node represents a time point where decisions are made. We define two node types, strategic
nodes (illustrated in the figures with ‘@’) for long-term decisions and operational nodes (illus-
trated with ‘o”) for short-term decisions. A leaf node represents either a time point only or the
start of the last time period. An example of the former is the evaluation of a portfolio’s value
at a later point of time, while the latter could be decisions about operating a system in the last
hour. In this paper, all leaf nodes start a last operational period. In the figures, this last period is
represented by ‘L’. Note that we do not include a corresponding illustration of the last strategic
period, since the succeeding operational nodes make it clear that the last strategic node is not
momentary.

2.1 Models with one strategic stage

We start with the case where the standard approach works well: the classical two-stage stochastic
programming model. There, the first stage represents the strategic decisions about the infrastruc-
ture and the second stage the operational decisions, see cases (a) and (b) in Figure 1. The only
difference between the two cases is that (b) includes several operational periods; since these are
deterministic (no branching there), this is still a two-stage problem.

The last case (c) is different in the sense that it is a three-stage problem, since there is one
extra operational stage. This means that unlike the previous two cases that modelled operating
the infrastructure under several deterministic scenarios, this one actually models its operation
under uncertainty. In this way, it is a more complex model, but still relatively easy to solve as it
has only one strategic period, so we avoid mixing the strategic and operational time steps.

Since this class of problems is relatively easy to both model and solve, we have to understand
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Figure 1: Example of scenario trees with one strategic stage

the assumptions behind using just one strategic stage. Firstly, having only one strategic stage
means that all the strategic decisions have to be found now, there is no way of postponing a
strategic decision until we have learned more. In other words, the option to wait does not exist
in such a model—see Christiansen and Wallace (1998) or Fleten et al. (1998) for the connection
between options and stochastic optimization.

Furthermore, with only one strategic node, the model does not take into account the time it
takes to implement the strategic decisions—all the strategic decisions are implemented during
the first stage and used in the rest of the model.

There are many applications where this approach is sufficient. As an example, consider the
case where the strategic decision concerns routes and/or timetables for some form of transport
and the operational periods represent daily usage of those routes under different conditions (sce-
narios). Such models, using the scenario-tree structure from Figure 1(b), can be found, for
example, in King et al. (2012); Lium et al. (2009); Thapalia et al. (2012a,b).

2.2 Models with multiple strategic stages

With multiple strategic stages, things become much more complicated, as illustrated in Figure 2.
We see that going from the deterministic case (a) to a case with uncertainty at the strategic level
(b), the number of scenarios increases, though in a manageable manner. The problem is that
we still have no operational uncertainty—and how realistic is it to assume that we know all
parameters three years ahead? When we add the operational uncertainty, we get a scenario tree
similar to case (c). We see that the number of scenarios grows from four to 32, for a model
with three strategic periods and two branches per period for both the strategic and operational
nodes. Clearly, such an approach is not practical for real-life problems: if we increase the
number of branches from two to ten, which might still be too few for many practical problems,
we would need 100000 scenarios. Hence, the question is whether we can come up with a way
of modelling these two uncertainties that avoids this explosion in the number of scenarios; we
present one such a way in the next section.

3 Multi-horizon scenario trees

Our solution to the problem from the previous section is based on the observation that strategic
decisions typically do not depend directly on any particular operational scenario, but rather on
the overall operational performance during the time since the previous strategic decision. This
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Figure 2: Models with multiple strategic stages, using standard scenario trees. This illustrates the
increase of the tree size from a deterministic model (a), through a model with strategic
uncertainty (b), to a model with uncertainty on both the strategic and operational level (c).

implies that, in the strategic model, it is enough to branch only between the strategic stages; the
operational nodes can be seen as embedded into (or attached to) their respective strategic nodes.
They are there, in a way, to check the feasibility and profitability of the decisions made in their
respective strategic nodes.

This is presented in Figure 3. In this figure, tree (a) includes the same nodes as the tree
in Figure 2(b), except that we interpret the nodes differently: in the new structure, the tree is
constructed solely out of the strategic nodes, which have the associated operational nodes ‘em-
bedded’ in them. The second tree in the figure corresponds directly to the tree from Figure 2(c).
Finally, Figure 3(c) demonstrates that the operational part does not need to consist of a set of de-
terministic scenarios (or profiles), but can itself be a multistage stochastic problem. This allows
for an evaluation of the infrastructure under more complex stochastic operational conditions. In
this sense, Figure 3(c) provides a multi-strategic-stage equivalent of Figure 1(c).

We can see from the trees in Figure 2(c) and 3(b) that the new multi-horizon structure brings
a dramatic reduction in the size of the resulting tree. How large this difference will be depends
on the numbers of operational and strategic periods and the number of successors in the branch-
ings. Table 1 illustrates the size of this reduction, where the different base in the exponential
function is the main driver. This transfer to the problem size in terms of number of variables
and constraints, since variables and constraints in a period are duplicated for each node in that
period.

Since the new structure significantly reduces tree and problem sizes, it is natural to ask about
the cost of this reduction. The answer depends on the structure of the optimization model.
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Figure 3: Multi-horizon scenario trees with strategic uncertainty.

Table 1: Numbers of strategic and operational nodes for the standard tree in Figure 2(c) and the
multi-horizon tree in Figure 3(b). P is the number of strategic periods, P, the number of
operational periods per strategic period. B; and B, are the numbers of strategic and opera-
tional successors in each strategic and operational branching, respectively. We assume that
these numbers are constant throughout the tree and that B; > 1.

Standard tree Multi-horizon tree
Py _ Py
# strategic nodes % ~ (B,B,)" ! 1(131;), ~ BB
Py _ Py
# operational nodes  P,B, 725" ~ P,B, (B,B,)* P,B,"5% ~ P,B,B"




The new approach is exact if the following conditions are satisfied: firstly, strategic uncertainty
must be independent of the operational uncertainty and the strategic decisions must not depend
on any particular operational decisions. Without these requirements, we would not be able to
have a single strategic decision following two or more operational scenarios. Secondly, the first
operational decision in a strategic node cannot depend on the last operational decision from the
previous period—in the proposed structure; there is no connection between operational scenarios
of two consecutive strategic nodes.

The first requirement is quite natural and can be expected to be fulfilled in many situations,
especially if the difference between the strategic and operational time scales is big (years vs.
hours). The second requirement, on the other hand, is harder to fulfil exactly; for example, if
we have strategic periods coinciding with calendar years, together with one-hour operational
periods, we require that the operational decisions at 00:00 on January 1 do not depend on the
operational decisions from 23:00 on December 31 from the previous year. It follows that the
proposed structure will, in most cases, be an approximation of the ‘standard trees’ from the pre-
vious section. How good an approximation will be very much case-dependent. As an example,
consider a power producer with hydro power plants; clearly, the water reservoirs introduce a
memory aspect to the operational model, invalidating the second requirement above. However,
at least in regions with cold winters, it can be expected that the reservoirs will be at their mini-
mum level by the end of winter, in most scenarios. Hence, if we place the strategic decisions at
the end of winter, the approximation error will be very small.

In the application discussed in Section 4.1, EnRiMa, the links between the operational deci-
sions and the following investment periods are weak, and we can rely on such a scenario tree
structure. On the other hand, in the Ramona model presented in Section 4.2, the decisions in the
operational periods may influence the decision space for the following investment periods, such
that the tree structure will be an approximation.

3.1 Representative sub-periods

Even if the multi-horizon trees from Figure 3 are significantly smaller than the standard trees
from Figure 2, they have the same number of operational periods. With yearly strategic deci-
sions and hourly operational resolution, each operational scenario consists of 365 x 24 = 8760
periods—this might make our model intractable. Our solution is to split the interval between
strategic decisions into several sub-periods. For the ease of explanation, we describe the idea on
the case of yearly strategic decisions and hourly operational periods.

Let us first assume that we have a system that is being actively operated only during the day
and reverts to some ‘default state’ during the night. In such a case, there would be no link
between two consecutive days, i.e. the operational model could be run for each day separately.
For the scenario-tree structure from Figure 3(a), this would mean that a one-year scenario with
8760 hourly periods could be equivalently interpreted as 365 daily scenarios with 24 hourly
periods. In our idealistic example with no links between days, this restructuring provides an
equivalent model formulation. If there are links between consecutive days, usually in some form
of storage, then we get only an approximation. In such cases, one may split where the links
between consecutive operational periods are the weakest. For example, there might be strong
links between weekdays, but much weaker during weekends; hence, we might consider splitting



the one-year interval into 52 weeks instead.

This restructuring does not increase the problem size when using the multi-horizon scenario
tree. With the restructured tree we can now employ different scenario reduction techniques to
reduce the number of operational scenarios (see, for instance, Romisch (2009) for an overview),
resulting in a suitable number of representative operational sub-periods.

3.2 Generating values for multi-horizon scenario trees

Once we have decided the form of the scenario tree and the decomposition of the operational
periods, we are ready to build the full multi-horizon scenario tree and fill it with values. We
can start by generating the tree of the strategic nodes: this is a standard multistage scenario
tree, so one can use any standard method—see, for example, Dupacova et al. (2000) or Hgyland
and Wallace (2001). The only non-standard aspect is that, because of the very long time span
of these trees, one often cannot use historical data and has to rely on some prediction methods
and/or expert opinions to get the parameters of the distributions.

Next, we have to generate values for the operational scenarios. We distinguish between op-
erational parameters that have the same distributions in all strategic periods and parameters
that change over time (either deterministically or stochastically). An example for the former is
weather, at least when we ignore climate-change effects. For these parameters, we can use the
same set of operational scenarios in all the strategic nodes. Parameters that evolve also on the
strategic scale such as spot market energy prices require a different treatment: we have to sep-
arate the long-term trends from the short-term uncertainty. One way of doing this is to express
the operational values in terms relative to the corresponding value in the strategic node. We can
then use the same operational scenario in all the strategic nodes (given that the distribution itself
is independent of the long-term trends).

3.3 lllustrative example

We illustrate the approach on a small two-stage model, inspired by the EnRiMa model presented
in the next section: we consider installing photovoltaic (PV) panels on a building and want to
find out what capacity we should install and when. To be able to evaluate the value of the panels,
we need to model how they help to cover the electricity demand on an hourly basis. We make
the strategic periods one year long, so we have to have operational profiles to model how the
production of the PV panels changes throughout the year. In our simple example, we model this
using three profiles: winter and summer representing 90 days each, and one for the rest of the
year.

The model itself is very simple; we have only two decision variables in each strategic node n:
x, denoting the capacity to be installed and y, the total installed capacity, both measured in kW.
In the operational profiles, we have, in addition, variables fed denoting the amount of purchased
electricity at time ¢ of profile p, in kWh. The objective is to minimize the expected cost, which
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Figure 4: Example: the strategic tree, its parameters, and the complete multi-horizon scenario tree.
Note that we show only the first four operational periods in (c).

gives the following model:
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In the objective function (1), Pr, is the probability of node n, CI,, is the PV installation cost in
€/kW, WP is the weight of the profile (90 for winter and summer, 185 for ‘rest’), and CEP" is
the electricity cost at time ¢ of profile p, in € /kWh. Constraints (2) keep track of the installed
capacity. There, Pa(n) denotes the parent node of n; since the root node does not have a parent,
Ypa(n) 18 defined as zero there.! Finally, constraints (3) ensure that we have enough power to
satisfy the demand Dﬁ"’, given in kWh, at each period, profile and node. There, A‘Z"t is the
duration of the operational periods, in our case 1 hour, and R.” is a factor specifying what
percentage of the nominal capacity the panel actually produces at the given hour.

Generating values for the stochastic parameters

To keep the model as simple as possible, we have only three strategic nodes: the root node
representing ‘now’ and two nodes representing two different scenarios one year ahead—see
Figure 4(a). When we add the three operational profiles, we get the multi-horizon tree in Fig-
ure 4(c).

We start by generating values for the strategic stochastic parameters. In our case, there is only
one such parameter, namely the PV installation costs CI; its values in the three strategic nodes
are presented in Figure 4(b).

However, we need additional strategic parameters for modelling operational parameters that
evolve on the strategic time scale, as described at the end of Section 3.2. The first such a param-
eter is the electricity price CE, which we want to be stochastic also on the strategic scale. This
is accomplished by introducing additional parameters SCE modelling the long-term averages of
the price—see Figure 4(b). The actual operational values are then computed as

CE!'" = SCE, x ICEP" |

I'Actually, YPa(n) in the root node represents the currently installed capacity—which we assume to be zero.
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Figure 5: Operational profiles for electricity prices. The first plot shows the input profiles ICE,
given as relative values, the remaining three plots show the resulting profile values CE.

where ICEP" are dimensionless multipliers modelling the daily price profiles for each p € &2. In
our case, we let the price profiles be constant throughout the day but varying in the course of the
year, with the highest prices in winter—see Figure 5. This corresponds to the situation in Nor-
way, where electricity prices typically do not depend on the hour, but change often throughout
the year.

For the demand values D, we simplify the situation slightly by assuming that the long-term
development is known (deterministic). This is modelled by a parameter SD*, where 7 is the
strategic time period. In our case, we have used SD* = 10kWh. The operational values are,
therefore, computed as

Dgg _ SDPer(n) % IDp,t7

where Per(n) denotes the strategic period of node n and IDP* are, again, the multipliers from the
operational profiles. Unlike the electricity prices, we let the demand vary throughout the day, as
shown in Figures 6.

Finally, the PV-production factors R are assumed to be constant in the long term. Since these
are relative values by definition, we get simply

RD' = IR,

so we do not need any extra strategic parameter. The profiles are presented in Figure 7—the
values correspond to Bergen, Norway, as provided by the PVWatts™ calculator.?

2The PVWatts™ calculator was developed by the National Renewable Energy Laboratory and is available from

10
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Figure 6: Demand profiles. The left plot shows the input profiles ID, given as relative values,
the right plot the resulting profile values D in kW. The long-term demand is given as
SD=10kWh.
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Figure 7: Profiles for the fraction of PV production (/R). This is given as data and repeated in all
the strategic nodes.

Numerical results

With the given data, the optimal solution is to not install any PV panels and buy all the elec-
tricity. This is hardly surprising, given the assumptions of the model: the time horizon is too
short to make the panels profitable for the considered location. We also do not allow for the
electricity to be sold and ignore end-of-horizon issues, i.e. we do not assign any value to the PV
panels at the end of the last period. To create a more realistic investment model, we would also
have to include aspects such as discount rates and depreciation. Instead, the presented model
is meant as a demonstration of how to populate a multi-horizon tree—something that would be
less transparent with a more complex model.

http://www.nrel.gov/rredc/pvwatts/.
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4 Applications

4.1 Efficient energy usage — EnRiMa

EnRiMa (Energy Efficiency and Risk Management in Public Buildings) is a research project
funded by the European Commission via the 7th Framework Programme (FP7). In the context of
our paper, we are interested in the strategic decision-support system (DSS) developed as part of
the project. This DSS considers retrofits, investments into new equipment and decommissions of
obsolete installations, for a given public building. During the course of the project, the EnRiMa
DSS shall be implemented at several test sites in Austria and Spain.

As the above example demonstrates, the situation fits nicely into the multi-horizon framework.
We have strategic decisions with a long time horizon (ten years or more) and want to include the
option to postpone some of the decisions until later, due to the expected development of some
of the involved technologies: should we install PV panels now, or wait a couple of years until
their efficiency and price improve—or should we perhaps install only a few now and wait with
the rest? For this, we need multiple strategic periods.

At the same time, we need operational periods in order to evaluate operational costs, effi-
ciency, and robustness of the installed portfolio of equipment under different scenarios: with the
strategic period length set to one year, we need to test the performance of the installed infrastruc-
ture in both summer and winter, using both the representative and the extreme load scenarios.
All the operational scenarios are for one day, with hourly resolution. For the representative op-
erational periods, a few profiles representing seasonal variation appear sufficient. The critical
periods are modelled using CVaR values from historical data, implying that we do not require
the system to handle the most extreme cases—it is most likely acceptable if temperature in an
office building goes outside of the specified comfort zone on the very warmest or coldest days.

The most important stochastic parameters on the strategic level are the long-term development
of electricity and gas prices, the development of price and efficiency of different technologies
and, finally, regulations such as government subsidies or new electricity tariffs. For the opera-
tional periods, the most important stochastic parameters are the energy loads of the buildings.
In the model, these are calculated as a function of weather (temperature, humidity, and wind),
occupancy of the building, and building characteristics (Groissbock et al., 2011), where the lat-
ter might be dependent on some of the strategic decision variables. In addition, there can also
be uncertainty about the electricity prices in the case of real-time pricing; this provides an ex-
ample of a parameter that can be stochastic on both the strategic and the operational level and,
therefore, requires the special treatment described in Section 3.2.

Model size and comparison to standard scenario trees

The model sizes depend on the number of technologies and energy types, but even a small
realistic example will have about 100 binary variables in each strategic node. Furthermore, if
we have 10 operational profiles with one-hour resolution for 24 hours ahead, this gives about
30000 continuous variables per strategic node. For a three-stage model that plans 10 years
ahead, with 10 branches in the fifth period, the multi-horizon model will have 65 strategic nodes,
which means about 6500 binary and 2 million continuous variables. A standard stochastic-
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programming model, as presented in Figure 2(c), would need over 10'! strategic nodes to model
the same situation, clearly an impossible task to handle.

4.2 Natural gas transport infrastructure planning — Ramona

The Ramona project (‘Regularity and uncertainty analysis and management for the Norwegian
gas processing and transportation system’) was funded by the Norwegian Research Council and
ran from 2008 till 2011. The principal objective was the development of new theory, methods,
and tools to optimize regularity and capacity utilization in gas production, processing, and trans-
portation systems. Part of the project was concerned with developing decision support system
for the design of robust and flexible processing and transport infrastructure from fields (reser-
voirs) to markets, allowing reliable and profitable operations under various, and also adverse
situations.

New investments in natural gas transport network infrastructure such as platforms, pipelines,
compressors, or processing facilities should work well with existing and future infrastructure.
Rather than evaluating these investment options in isolation and independently of the total sys-
tem, their interactions with and effects on other infrastructure elements need to be taken into
account. The timing aspect is important with respect to satisfying production obligations and
developing new production fields, thus re-using infrastructure.

Increased focus on production assurance and security of supply makes it paramount to also
evaluate how the design solutions will perform during daily operations and what their financial
effects (costs and revenue) will be. For example, would a new pipeline allow to better satisfy
delivery contracts in critical times or to route gas not bound in contracts to the most profitable
markets—and how would it affect the gas flows in other pipelines? System effects in the pipeline
network mean that the pressure and flow in one part of the network may influence the capacity
in other parts (Midthun et al., 2009). Line-pack and other storage options require a multi-period
approach to fully appreciate their value for the system (Midthun, 2007). Consequently, finding
a robust and flexible design of natural gas transport networks requires, in addition to economics,
also considering operational aspects such as physical processes and day-to-day gas routing de-
cisions.

At the same time, decision makers face various kinds of uncertainty. Some uncertain para-
meters such as gas composition and volumes in undeveloped reservoirs, discoveries of new reser-
voirs, and long-term changes (trends) in price and demand levels, refer to the strategic model
horizon. Other uncertain parameters may vary from day to day. Examples are prices and de-
mands at the markets or nominations in long-term delivery contracts. Another kind of short-term
uncertainty is unplanned events (e.g., network outages) that can cause problems for the security
of supply in the system by drastically reducing capacity in parts of the network, if only for a
short time. Considering only average values for these uncertain parameters may conceal impor-
tant details. For example, delivery bottlenecks occurring during peak demand will not be visible
when aggregating and using average demand levels. Brief outages of critical infrastructure may
seriously affect the security of supply; using averaged values would completely disguise them.

A detailed description of the developed model is presented in Hellemo et al. (2013).
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Model size

The investment analysis is typically performed over a time horizon of between twenty and fifty
years while the operational analysis is carried out with daily time resolution. A typical case
instance would contain about 200 network elements. For a three-stage model with 12 strategic
periods and daily operational profiles with 10 branches, the multi-horizon model will then have
approximately 80 million continuous variables and 20 million binary variables, already a very
large model. In contrast, the corresponding model with a standard stochastic programming
formulation as in Figure 2(c) would be two orders of magnitude larger with around 7 billion
continuous variables and almost 2 billion binary variables.

4.3 Other applications

The presented multi-horizon structure is useful for strategic models where dealing with opera-
tional uncertainty is an important aspect for the strategic decisions and there are many potential
applications.

In the energy-planning sector, an example is the design of power networks capable of deal-
ing with fluctuating production from wind farms and other non-dispatchable energy sources—a
problem that will become even more important in the coming decades, with an increasing share
of renewable energy sources. It can, for example, be expected that this will cause the model
to suggest the installation of short-term energy-storage solutions—while these do not have any
value if we do not consider variability on the operational level. Such a model could also be ex-
tended to include other energy carriers, such as natural gas, to take advantage of the interaction
between them.

For the design of supply chains, both strategic and operational uncertainty can be of significant
importance, as shown in the work by Schiitz et al. (2009) mentioned in the Introduction. Another
example of a two-stage model with both strategic and operational nodes is presented in Pérez-
Valdés et al. (2012), where the design of an industrial park is considered. Extending these models
from two to multiple strategic decision points would enable the user not only to optimize the
static design of the supply chain, but also to optimize the timing of the strategic design decisions.
It is well known from real options theory that optimal timing is highly affected by uncertainty, for
instance, through the value of postponing a decision until more information becomes available.
And we are sure there are many other situations where the multi-horizon structure will be useful.

5 Conclusions

In this paper, we have discussed a multi-horizon structure for multistage stochastic programs
and their associated scenario trees. The structure allows one to model and solve problems that
need to combine strategic (long term) and operational (short term) uncertainty, without the ex-
plosion in the problem size that would follow from using a standard multistage model. We have
discussed conditions under which the new structure is equivalent to the standard approach, and
also provided guidelines for generating values for the multi-horizon scenario tree.

We have illustrated the proposed approach on a stylized optimization problem and also pre-
sented two real-world examples from the energy sector, one concerning climate control of public

14



buildings and the other gas pipelines and related infrastructure in the Norwegian and North Sea.
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