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Abstract

The performance of steady-state tower shadow models for a wind turbine truss tower have
been evaluated. The Reynolds-Averaged-Navier-Stokes (RANS) approach, in conjunction with
the k — w Shear-Stress-Transport (SST) model, was used to simulate transient flows past cross
sections of a truss tower. The objective was to compare numerical results with Powles’, Blevins’
and Schlichting’s tower shadow models and evaluate their performance on a multimember struc-
ture. Parameters for each model have been estimated. It will be shown that the RANS model
was able to reproduce realistic results when used in transient simulations on high Reynolds
number flows (supercritical regime). The importance of considering unsteady motion when cal-
culating the turbulence intensity, using RANS with transient simulations, will be explained.
The multimember extension used for the tower shadow models reproduces the mean velocity
profiles quite well, and by using a suitable estimation method, global parameters were found for
all models. Additionally, turbulent inflow has been implemented with a user-defined function in
Fluent. The results have been evaluated, and show that such such sophisticated inflow modeling
is not necessary to predict realistic mean velocity profiles.






Project description

A truss tower could be a wind turbine tower option to the more common monopile. By further
considering downwind turbines, there is a need for a multimember tower shadow model. Powles’
model have a multimember extension, but this is not validated. Using a computational fluid
dynamics (CFD) approach, the numerical results can be evaluated with the performance of the
tower shadow model.
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Key-results

e The Reynolds-Averaged-Navier-Stokes (RANS) approach is able to give accurate results for
transient simulations of flow around two dimensional structures.

e When doing transient simulations with RANS it is important to consider that turbulence
intensity has contribution both from the sub-grid parametrization of turbulence and the un-
steady fluid motion, and needs to be properly calculated.

e Tower shadow models give a good representation of the mean velocity profile behind multi-
member structures.

e When finding tower shadow model parameters for numerous cases simultaneously, the best
optimization method is minimizing the largest maximum error for a single profile.

e There are global tower shadow parameters that can accurately predict the mean velocity
profile for a number of cross sections simultaneously.

e Turbulent inflow is not necessary to predict realistic tower shadow effects behind a truss tower.






Chapter 1

Introduction

Renewable energy is high on the political agenda and large companies are starting to invest in
wind energy. As there are several issues placing large wind turbines onshore, like size, noise,
transport, etc., the offshore environment is an interesting option. However, moving wind tur-
bines offshore gives a high increase in the overall cost. Transport, maintenance and installations
are only a few of the expenses that will increase offshore. This challenges the planning and
accurate analyzes are necessary to find cheaper ways of expanding wind energy production. The
material cost can be reduced by changing the more common monopile with a truss tower [17].
Usually, offshore wind turbines are installed on bottom-fixed sub-structures, such as tripod sub-
structures, gravity based foundations or jacket (truss) structures [6]. An interesting alternative
is to build a complete bottom-fixed wind turbine with a truss tower all the way to the nacelle.
As the truss tower is angled and has a wider tower diameter than the monopile, tower clearance
then becomes an issue. It is therefore interesting to look at a wind turbine with a downwind
rotor. The blades will bend away from the tower, reducing the risk of hitting the tower, and it
is possible to further decrease manufacturing cost of the blades by making them more flexible
(implying cheaper and lighter blades). A downwind rotor will also have a simpler yawing mech-
anism and will therefore be more robust. However, a downwind rotor will experience a tower
shadow effect much greater than the tower shadow for an upwind rotor. Since a truss tower is
more transparent than a monopile, impact loads on the blades from the tower shadow will be
reduced in a downwind configuration, when using a truss tower [25].

When analyzing damaging loads on complete wind turbines, the core issue is reliability. Ac-
curately predicting these loads is important and good numerical models are needed. For now,
numerous tower shadow models have been proposed and used for a monopile. Most of them
simply model the mean wind field behind a circular cylinder, as a representation of a two dimen-
sional cross section of a monopile. Powles’ tower shadow model has been used as an analytical
steady-state tower shadow model in the commercialized software package GH Bladed [5], which
simulates a complete wind turbine setup. Recently, this model have been extended to be applica-
ble for truss towers. However, there is little literature regarding the choice of model parameters.
With incorrect parameters the tower shadow model could predict mean velocity profiles with
large discrepancies, which again could result in over- and/or underpredicitons when used in a
fatigue analysis of a wind turbine. This important aspect is one of the key-issues in this report.



In chapter 2: Theoretical aspects the fundamentals of this study is presented. Then, in chapter 3:
Numerial simulations, a numerical study using the Reynolds-Averaged-Navier-Stokes (RANS)
approach, on flow past two dimensional cross sections of wind turbine towers, are presented.
Here, the mean velocity profiles, turbulence intensity profiles and power spectrums, are ana-
lyzed. Further, the tower shadow models are introduced in chapter 4: Tower shadow models.
Their performance will be compared with the numerical results and evaluated. A way to find
the best tower shadow model parameters are introduced and a recommended set of global pa-
rameters will be presented. The RANS model is used for transient simulations, which means
there is only parameterized turbulence. In chapter 5: Simulations with turbulent inflow, the
same numerical approach have been used with additional turbulent inflow, to see if this affects
the tower shadow. A summary is found in chapter 6: Aftermath, where the key-results are
discussed.



Chapter 2

Theoretical aspects

A fluid in motion involves a lot of complexity, and this has for several decades been a challenge
both for scientists and for industrial applications. For the time being there is no exact analytical
solution to the general equations, given by Navier-Stokes (NS) (2.3), of fluid dynamics, but with
simplifications practical problems can be solved. In short, one could say that fluid dynamics is
a discipline that consider the behaviour of fluid in motion, and can be used to solve practical
problems by calculating properties of the flow i.e., velocity, pressure, density and temperature,
that varies in space and time.

2.1 Fundamental equations

A fluid in motion is usually characterized using a non-dimensional quantity called the Reynolds
number, which is the ratio of the inertial to the viscous forces,

inertial forces  pDU DU
viscous forces ~ pu v

, (2.1)

where D is a characteristic length, e.g. the diameter of a circular cylinder, which the fluid is
passing, and U is the flow velocity. The density of the fluid is p, p is the dynamic viscosity and
v is the kinematic viscosity. When this concept was popularized by Osborne Reynolds in 1883
[26] it opened up the opportunity to compare different fluids. For the same Reynolds number
their behaviour will be (almost) the same, and this gave way to a more coordinated study of
fluids in motion.

Zdravkovich [39] divided the qualitative flow features into different flow regimes depending on
the Reynolds number, summarizing results from a large experimental study of flows past circular
cylinders. The flow is laminar for very low Reynolds number flows (0 < Re < 200), i.e., the
fluid smoothly flows around the cylinder. For Reynolds numbers above ~ 5, the flow separates
(at different distances due to the Reynolds number) and a von Karman vortex street develops.
These vortices occur with a certain frequencies f, which are described by the non-dimensional
Strouhal number, defined by

St="17 (2.2)



For a circular cylinder the Strouhal number will typically be between 0.2-0.6, depending on
the Reynolds number (and the surface roughness). By using mass, momentum and energy
conservation together with Reynolds transport theorem [37], it is possible to give a complete
description of the fluid in motion, that captures these features. These equations, together with

the stress tensor for Newtonian viscous fluid o;; = —pl + Tijl and the continuity equation, is
usually referred to as the Navier-Stokes equations,
d(pu - - . -
%pt ) +V - (piiil) = —Vp + uV2i + pfe, (2.3)

and the continuity equation

dp = L
E—I-V'(pu)—o. (2.4)

Here, p is the fluid density, the fluid velocity is denoted by i, p is the pressure and ﬁ; is the
volumetric forces acting on the fluid. The viscous stresses are represented by the term uV21,
where p is the dynamic viscosity. On the left side of equation (2.3), the term 8(8’)tu) describes the
velocity change in time and V - (p@#) is the convective acceleration, which makes the equations
non-linear. This non-linearity is the major cause of turbulent behaviour. Turbulent flows vary
significantly in space and time. This unsteady motion, or irregularity, is random, and together
with diffusivity the turbulence change a non-uniform system into a homogenous system when
sufficient energy is added.

Dissipation is another important feature in turbulent motion and it is a cascade process. If
no external energy is added to the turbulent system, all the kinetic energy dissipates eventually,
due to viscous shear stress, i.e., large eddies (or vortices) dissipates to smaller eddies before they
transform into internal energy (or heat). The latter happens at the Kolmogorov scale which
is the smallest turbulent scale [22, 32]. These complex features makes it necessary to use a
numerical approach to solve most practical problems.

2.2 Numerical models

Numerically predicting a flow behavior is always a challenge. There are several different meth-
ods which all have advantages and disadvantages. A common approach is the Finite Element
Method (FEM), which divides the domain(s) of interests into elements (or nodes), and the
partial differential equations (PDE) (of interest) are solved by simple local approximations for
each element [8]. This means that more elements requires more computational time. Another
possibility is to use the Finite Difference Method (FDM) [8], but this is not pursued here.

Direct Numerical Solution (DNS) solves the Navier-Stokes equations without any approxima-
tions. Unfortunately, the computational cost required for simulating flows with large Reynolds
numbers, is prohibitively high. The number of elements needed for DNS is

'] is the identity matrix and 7;; is the Reynolds stresses



2.2 NUMERICAL MODELS 7

Nnodes ~ (Re)%a (25)

i.e., this accurate numerical method can only be used for low Reynolds numbers, for the time
being.

Another computational demanding numerical model is the Large Eddy Simulation (LES). The
turbulent length scale can be divided into three scales: large eddies, the cascade range where the
large eddies transform into smaller eddies and the dissipation range, where the eddies dissipates
into viscous stresses. LES models the dissipation range with sub-grid parametrization, and solve
the equations explicitly for the large scales. LES is much faster than DNS, but it still requires
high computational cost [22].

2.2.1 Reynolds-Averaged-Navier-Stokes(RANS) approach

A more popular way, but less accurate, is to model the dissipation and cascade range. Sev-
eral different models do this and all of them are based on the Reynolds-Averaged-Navier-Stokes
(RANS). The RANS model does not provide a completely accurate description of turbulent be-
haviour in time, but results in a time-averaged solution of the Navier-Stokes equations. There-
fore, RANS is usually used for steady-state simulations. The governing equations are derived
from the Navier-Stokes equations using Reynolds decomposition,

i=U+1, (2.6)

where U is the mean velocity and @’ is a perturbation around this mean. The RANS equations
are then given by

OUZ- OUZ- ap 8 OUZ- abj
e RN § Pk R + — pug ), 2.
Pae ™ ° !0 Ox; Oz <V<8:Ej O:Ei) e uj) (2.7)

where the turbulent motions are represented by only —pw;u;, which are known as the Reynolds
stresses. The Reynolds stresses are not explicitly provided by the equations and additional as-
sumptions are necessary. Boussinesq assumed in 1877 [32, 37] that turbulence could be modeled
with eddy viscosity,

Obj 81/1 2
PUU; ,ut< i—l— j>—|—3p 0ij (2.8)

where k is the kinetic energy. Here, the turbulent dynamic viscosity p; is introduced. This
turbulent-viscosity hypothesis introduces six additional independent equations (2.8), resulting
in too many unknown variables, and a closure of the set of the equations became a problem.
Jones and Launders introduced in 1972 [15] a two-equation model, commonly known as the k—e
model, where they related the turbulent eddy viscosity to the turbulent kinetic energy k and
the turbulent dissipation rate e.



8 2.2.2 TWO-EQUATION MODELS

2.2.2 Two-equation models

The two additional transport equations gave way to a new direction of solving fluids in motion.
One equation for the kinetic energy

Dk
p— =V - ([kxVEk) + Gi — pe, (2.9)
Dt
and one for the dissipation rate
D Y (Ve + iy - C ¢ (2.10)
th - € € lﬁk k 2Ep k? :
where
The =+ 14 (2.11)
Ok,e

Here, p1; is the turbulent dynamic viscosity and oy, . the turbulent Prandtl numbers for £ and e.
Note, that % = % + @ -V is the material derivative. The dissipation rate is given by €, k is the
turbulent kinetic energy and p is the fluid density. Production of k is represented by Gi. The

model constants are found in table 2.1.

Table 2.1: Parameters used in the standard k — € viscosity model.

Parameters | Cic | Coc | C) | 0k | 0c
Values 1.44 11921009 |1.0] 1.3

The standard k — ¢ model is popular for its simplicity and is usually accurate for simple flows.
For more complex flows, on the other hand, flow patterns can be qualitatively incorrect. It
also needs to be improved in order to apply in the viscous near-wall region. Kolomogorov
had already suggested a different approach in 1942, which was refined by Wilcox in 1993 [22].
To better handle transitions in the near-wall region, the turbulent kinematic viscosity v; was
specified with the specific dissipation rate w,

Vt:ﬁ:CH

Y _ ¢
p e "

2 k
= (2.12)
w

This model is identical to the k — ¢ model for homogenous flows, but has an additional term for
inhomogeneous flows. The major difference is that the k — w model accounts for the effects of
streamwise pressure gradients and it has a superior way to treat the viscous near-wall region.
Menter refined this model further in 1994 [19], to yield the best behaviour of the k — € at a
free-stream boundary and the k — w in the near-wall region.
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k-w Shear-Stress-Transport (SST) model

This model combines the free-stream independence of the k-¢ model and the near-wall treatment
of the k-w model, by multiplying each model with a blending function and then adding the
models together. The blending function reassures that the appropriate behavior is predicted in
the near-wall region and the far-field zones. This makes the model a good choice for this study.
The two transport equations for the & — w SST model are given by,

Dk

rp; = V- (CwVE) + Gy — Yy, (2.13)
and
Dw ~

Here, the dissipation of the turbulent kinetic energy k and the specific dissipation rate w is rep-
resented by Y, and Y,,. The generation of k and w is represented by Gy, and G, respectively and
D,, represents the cross-diffusion term. The quantities I'y and I',, are the effective diffusitivities
for k and w. See ANSYS Fluent Theory Manual [3] for further details.

Flow past circular cylinders

The basic object of this study can be described as flow past circular cylinders, or more accurate;
flow past circular cross sections. This classical problem has been studied for a long time and it
is widely used in order to solve practical problems. Four regions characterize flow past circular
cylinders: (a) The stagnation region in front of the cylinder, (b) the boundary layers which is
attached to the cylinder surface, (c¢) the speed-up region to the side of the cylinder and (d) the
cylinder wake, which is the focus of this study.

Flow past a cylinder can be divided into different flow regions, depending on the Reynolds
number. For very low Reynolds number (Re<200) the flow is laminar and closely attached to
the cylinder, and vortices are produced in the far-wake region®. For higher Reynolds numbers,
a transition from laminar to turbulent state happens in different regions behind the cylinder.
The transitions happens in the far-wake for Re ~ 200, and as the Reynolds number increase
even higher, the transitions move towards the cylinder until the boundary layer region becomes
turbulent (at about Re ~ 10%). When the Reynolds number is sufficiently high (Re ~ 10%), the
flow reach the supercritical Reynolds number regime. This regime was earlier believed to be
the ultimate state for all flows [39], but later research found that earlier features reappear for
even higher Reynolds numbers [27]. This is not discussed further here, but an in-depth study is
found in Zdravkovich [39, 40]. In this study, a flow in the supercritical Reynolds number regime
has been simulated numerically.

When Re <5 there is no separation in the wake and therefore no vortices either.






Chapter 3

Numerical simulations and wake
development

Numerical simulations are a good option to avoid large experimental setups, which, in addition
to be time consuming and expensive, can give uncertain instrumental and measurement errors.
Numerical simulations also have drawbacks, but despite the challenges, i.e., computational ca-
pacity and numerical instabilities, they can give reliable results in a short period of time. As
the computer capacity has increased the last decades, several new and fast methods in compu-
tational fluid dynamics (CFD) have been developed (see chapter 2). Many of these models are
widely used in industrial applications, and their importance continue to expand as they become
even more accurate. In this study a numerical approach to measure wind fields behind a wind
turbine tower has been used.

Looking at a global scale, the wind is caused by pressure differences across the earth surface.
By considering the four atmospheric forces: the Coriolis force due to earth rotation, pressure
forces, inertial forces due to large scale motion and frictional forces at earth’s surface, one can
make a simple model of the winds behavior.

The Reynolds-Averaged-Navier-Stokes (RANS), in conjunction with the & — w Shear-Stress-
Transport (SST) viscosity model, has been used to predict mean wind fields and unsteady
fluctuations behind two dimensional cross sections of a wind turbine tower. Usually, RANS is
not used for transient simulations. Applying this means there will be an additional contribution
from the fluctuations to the turbulence intensity, and this needs to be accounted for (see section
3.5.2). Only one wind speed (12m/s) is considered, and turbulence intensity (10%) is added to
the inflow from the & — w SST sub-grid parametrization.

The two dimensional cross section of the monopile is represented as a single circular cylin-
der. When looking at two dimensional cross sections, important features like three dimensional
effects [38] are lost. This was necessary to reduce the computational time, but the major features
are still captured. Results from simulating flow past this cylinder was compared with earlier
literature, in order to validate the £k —w SST model. An arrangement of cylinders represent the
cross section of the truss tower. The truss tower is angled 0, 22.5 and 45 degrees with respect
to the inflow angle, in order to simulate different wind directions. The 22.5 degree case will

11
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be more representative to a real flow, where as the 0 and 45 degree towers, with their aligned
members (with respect to the inflow), are more extreme cases.

Note that it is common practice in computational fluid dynamics (CFD) to non-dimensionalize

all parameters. However, to be more consistent in the field of wind energy, dimensions have
been kept for all parameters in this study.

3.1 Geometry and mesh

Figure 3.1: Monopile (left) and the truss tower (right)

There are currently two tower options for the wind turbines, the monopile and the truss tower
(Fig. 3.1). Studied here is only the two dimensional cross sections of these towers. The cross
section of the monopile is represented by a single cylinder with a diameter of D=4m.

Four cross sections of the truss tower have been looked at (Fig. 3.2). Each of them are repre-
sented as a varied arrangement of cylinders, with main cylinders representing the main legs and
smaller cylinders representing the X-brace. The main cylinders has a diameter of d;=0.9m and
are separated by a distance of [;=10.8m for all cases. To represent the X-brace there are several
smaller cylinders, with a diameter of do=0.36m, in different arrangements. All cases use the
four main cylinders, and in addition has Case-A four smaller cylinders and Case-B,C,D eight
smaller cylinders (Fig. 3.3).

Case-A (Fig. 3.3a) represents the joint section of the X-brace, (top line in Fig. 3.2). Case-B
(Fig. 3.3b) has two smaller cylinders close to each other at the center between the main cylinders
(second line from above in Fig. 3.2). The third cross section, Case-C (Fig. 3.3¢c), has two small
cylinders at a larger distance from the center (third line from above in Fig. 3.2). Finally, the
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Figure 3.2: X-brace section of the truss tower. The four different cross sections that are looked
at are Case A through Case D.

fourth cross section, Case-D (Fig. 3.3d), is close to where the X-brace connects with the main
cylinders (bottom line in Fig. 3.2).

Both the main legs and the intersecting X-brace is angled at, respectively, 84.3 degrees and
49.5 degrees with respect to the horizontal. The cross section will therefore give an ensemble
of ellipsoids, but for simplicity an approximation using circular cylinders, have been made. The
main cylinders coordinates should also have a slight adjustment for the different cases, but for
consistency the coordinates are kept the same.

The truss tower is also simulated at 22.5 degrees and 45 degrees angle transverse to the in-
flow direction, to realize different wind directions. Figures can be found in appendix A, (Fig.
A.1 and Fig. A.2).

The two dimensional geometry of the cross sections are implemented in ANSYS Gambit (Ver-
sion 2.4.6; ANSYS Inc., Cantonburg USA). Each cross section is inserted in a domain spanning
17.5D, where D=4m is the diameter of the monopile, in x-direction (free-stream flow direction),
and 10D in y-direction (Fig. 3.5). An additional validation case for the monopile, where a
larger domain was used, is also included. Here, the domain is 27D in x-direction and 14D in
y-direction.

The left boundary of the domain is defined as the velocity-inlet. To give a free-stream behavior
of the flow, sidewalls with periodic boundary conditions were used. The outflow boundary was
implemented as a pressure-outlet with a reference pressure of latm, and the cylinder surface
was chosen to be wall.
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(a) (b)
() (d)

Figure 3.3: Casel: 0 degree truss tower cases embedded in mesh. a) Casel-A. b) Casel-B. c)
Casel-C. d) Casel-D
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Table 3.1: Number of grid cells for the different cases

Cell number | Monopile Truss tower

- A B C D
Monopile 8.7-10% - - - -
Casel - 3.0-10° | 3.3-10° | 2.5-10° | 3.2-10°
Case2 - 2.1-10° | 2.8-10° | 2.2-10° | 2.6-10°
Case3 - 2.8-10° | 2.9-10° | 2.1-10° | 2.8 -10°

To minimize numerical diffusion a quadrilateral mesh was used. This also give the opportunity
to have a large aspect ratio between the cells, that works well with flows that are in alignment
with the cells. In the preparations for this thesis [13], where a control surface encircled the whole
ensemble, there were a large area with unstructured mesh. This highly increased the computa-
tional cost. To save time, the amount of unstructured mesh in the domain was reduced. Control
surfaces were added around each cylinder, and this highly reduced the number of skewed cells.
Since there was no prior knowledge of where the transition would occur on the cylinder surface,
unstructured mesh encircled whole cylinders.

Table 7?7 shows each case with total number of nodes. There number of cells are somewhat
different, because the mesh needed to be adapted for the individual complex geometry.

Figure 3.4: Boundary layer outside the cylinder wall. The boundary layer contains 30 layers
with inner element size 0.0001 and a growth factor of 1.2.

The Reynolds number of this flow is in the supercritical regime. This means, it is a turbulent
boundary layer, very close to the cylinder wall, that need careful treatment. To capture this
important feature, a mesh boundary layer was added to each of the circular members. The
boundary layer has 30 layers with an inner element size of 0.0001m and a growth factor of 1.2
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(Fig. 3.4).

3.2 Numerical method

The geometry and mesh is implemented in the commercial software package ANSYS FLUENT
(Version 12.1.4; ANSYS Inc., Cantonburg, USA). This is a software used in a wide variety of
industrial applications, but here its computational fluid dynamic (CFD) capabilities are used.

In the preparations for this study [13], it was found difficult to accurately predict the flow
behavior in the supercritical Reynolds number regime. The necessary ingredient was a proper
initialization of the flow, which ”triggered” the flow into shedding. Another essential implemen-
tation needed to capture the flow features, was the mesh boundary layer that was added around
the circumference of the cylinders. The initialization of the numerical simulations followed this

recipe:

1.

oro W

10.
11.

Choose a double precision solver. This should always be the case if accuracy is of impor-
tance.

Read the mesh and check if it is applicable.
Choose the pressure-based transient solver.
Set velocity-inlet to 12m/s, and make sure the fluid material is air.

The boundary conditions should be set in GAMBIT, but it is always important to check
if they are correct. Velocity-inlet for the inflow boundary, pressure-outlet for the outflow
boundary, periodic for the sides and wall for cylinders.

. Compute the reference values from the velocity-inlet. Note: Area(m2) should be set to the

diameter of the cylinder in order to calculate the correct drag. The rest of the parameters
are as default. Also note that the reference values only affects the calculated values and
not the CFD simulation numerics.

. Initialize the flow with the laminar model and the default solution method (The SIMPLE

Pressure-velocity coupling scheme, and first order upwind spatial discretization. Standard
pressure and Least Squares Cell Based Gradient discretization).

. Run calculation with 2000 time-steps and a time-step size of 0.005s with 30 iterations for

each time-step.

. Next step is initializing with k-w SST viscosity model. Choose this model, and set the

turbulence specification method to Intensity and Length scale. Set the turbulent intensity
to 10% and the turbulent length scale to 1m.

Change the viscosity (u) in the order of 1072 and compute the reference values again.

Change pressure-velocity coupling to PISO, the spatial discretizations to PRESTO! for
pressure and second order upwind for momentum, turbulent kinetic energy and specific
dissipation rate. Set the transient formulation to second order implicit. Gradient stays
default.
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12. Run calculation with 2000 time-steps and a time-step size of 0.005s with 30 iterations for
each time-step.

13. Repeat from step 10 with the k-w SST viscosity model once, only changing the viscosity
to the correct value for air, 4y=1.789-107°, and simulate with 6000 time-steps.

The measurement lines were added after the initialization. All lines were placed at multiples of
the monopile diameter D=4m from the center of the tower. Respectively, there are lines and
rake lines (401 points) transverse to the free stream flow at every multiple from 6D to 12D, and
every half multiple from -5D to 5.5D, from the tower center (Fig. 3.5).

Figure 3.5: Monopile in a domain spanning 10D x 17.5D. Measuring lines are placed every
multiple from -5D to 12D and every half multiple -5D to 5.5D. Inflow is on the left hand side
and outflow is on right hand side. Periodic boundaries on each side.

Total pressure, velocity magnitude, x-velocity, y-velocity, turbulence intensity and production
of turbulent kinetic energy (tke) are outputs from the simulations. There are also data from
the pressure coefficient and y™ on the cylinder wall, together with lift and drag coefficients. All
data outputs are time series resulting in statistical data. Note that simulating with several of
these outputs should be done in the text-interface version of ANSYS Fluent.

3.3 Postprocessing

The unsteady flow was simulated with a time-step size of 0.005s with 6000 time-steps, result-
ing in a real flow time of 30s. The time-step size was chosen in order to capture at least 25
measurements for each vortex shedding. The vortex shedding frequency is given by

f=— (3.1)

where the Strouhal number value used is St=0.2, which is the normal value for a circular cylinder

[4]. The free-stream velocity U=12m/s and D is the characteristic diameter of the cylinder. For

the monopile, with a diameter of D=4m, the predicted shedding frequency becomes f :O.6zﬁ
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and gives a shedding each At=1.67s. To measure at least 25 times for each cycle, gives the
time-step size of 0.05s. However, the smallest members of the truss tower has a diameter of
ds=0.36m, which gives a shedding each A¢t=0.15s, which results in a measuring time-step size
of 0.005s. For consistency, this time-step size have been chosen for all simulations.

As explained in section 3.2: Numerical method, the measuring lines are in fact rake lines with
401 points along the y-axis (transverse to the flow) and are found at distances of every half
multiple from -5D to 5.5D and every multiple from 6D-12D' from the tower center. This means
that e.g., 3D behind the tower is in reality 12m from the center of the tower. Outputs were
recorded every time-step, at each rake line.

Postprocessing and analysis were performed using the last 5000 time-steps, with the statisti-
cal computing software R [24], using the MASS library [35] and custom written functions in
addition. Appendix H contains details about the scripts used in the postprocessing.

3.4 Validating the model

The model was validated in a high Reynolds number regime (Re=3.3-10%). After initialization,
the k-w Shear-Stress-Transport (SST) viscosity model was able to reproduce the von Karman
vortex street (Fig. 3.6), if the time-step size was chosen to be low enough (At=0.005s).

NeoromDRoOBNOERoDNE

Figure 3.6: Vortex shedding behind the monopile. The colorbar to the left shows vorticity
magnitude from 0-20%.
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The pressure coefficient is calculated around the circumference of the monopile (Fig. 3.7a).
Comparing with data from Ong et al. [21] (Fig.3.7b), the pressure coefficient is very well pre-
dicted in this validation.

At the stagnation point upstream of the cylinder, 6 = 0°, C, is close to 1 and successfully drops
to C, = —2.5 at 6 = 80°, due to the flow separation. Then C), rise to -0.5 before stabilizing
at @ = 120°. Experimental data from Warshauer and Leene [36] and Achenbach [1] confirms

IThis varies from the monopile to the different truss tower angles, as the lines were placed from the center of
the tower. E.g., the 0 degree truss tower has lines every half multiple from -6D to 5.5D and every multiple from
6D to 11D.
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Figure 3.7: Pressure coefficient measured clockwise around the circumference of the monopile.
0 degrees is the stagnation point in front of the cylinder. a) Simulated pressure coefficient from
the monopile. b) Experimental and simulated pressure coefficients (from Ong et al.[21])

this pattern. The Reynolds number in the referred literature is not exactly the same as in the
present study, but since they are in the same Reynolds number regime is it possible to quali-
tatively compare the results [39]. The drag coefficient Cp=0.37 is within the expected range,
0.21-0.6 (Ong et al.[21]).

It is important to capture transitions in the viscous sublayer, and to check that the compu-
tational wall ¥y was sufficiently employed. This is a non-dimensional quantity that uses viscous
length units to measure the length of the boundary layer [22]. The value of y* should be below
5 in this Reynolds number regime, and results showed a v, ,,=3.5, which should be accurate
enough for industrial applications [28].

At the sides of the domain the expected value is 12m/s from the velocity inlet, but Fig. 3.8 shows
that the free-stream velocity is slightly higher at the sides for both domains. By simulating in
a larger domain, 14D in y-direction and 27D in x-direction, it was hoped that this numerical
blockage would be reduced. Only a slight reduction was seen. This indicates that expanding
the computational domain would probably reduce the blockage effect, but the domain needs to
be very much larger for a sufficient reduction. The larger domain will substantially increase the
computational demand and is therefore not pursued further. Also, the drag coefficient (Cy=0.36)
is still in the expected region of 0.21-0.6 and almost the same as in the smaller domain.

3.5 Results

The results have been divided into three different sections: Mean velocity profiles, turbulence
intensity and power spectral density analysis.
Flow past a cross section of a monopile, represented as a single cylinder, and cross sections of a
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Figure 3.8: Velocity profiles from the large and small domain used for the monopile

truss tower have been studied. The truss tower is represented at four different cross sections de-
pending on the height from the X-brace. Case A, has four main cylinders of diameter d;=0.9m,
representing the main legs of the truss tower and four smaller cylinders with diameter do=0.36m,
representing the joint section of the X-brace. Case B,C,D the same main cylinders as Case A
and eight smaller cylinders (still with diameter d,=0.36m) representing the cross section fur-
ther down the X-brace (Fig. 3.2). This is explained in detail in section 3.1: Geometry and mesh.

The truss tower is also angled 0 degrees, 22.5 degrees and 45 degrees with respect to incoming
wind direction, respectively called Casel, Case2 and Case3. This results in a total of twelve
different truss tower cases.

3.5.1 Mean velocity profiles

The features of the flow vary with changing Reynolds number [39]. In this study the Reynolds
number lies in the supercritical Reynolds number regime, and is 7.4-10° for the truss tower,
calculated with the diameter of the main cylinders d;=0.9m and incoming wind speed of 12m/s.
The Reynolds number for the monopile (with D=4m) is 3.3-10°.

When flow passes a circular cylinder the pressure increases at the stagnation point in front (up-
stream) of the cylinder. Here, the velocity drops and the flow exhibits a speed-up to the sides
of the cylinder. If the Reynolds number is high enough, that is higher than about 400, the flow
separates from the cylinder surface, which again results in eddies (Fig. 3.9). The separation
points move towards the front of the cylinder as the Reynolds number increase. The velocity
field behind the cylinder changes and a velocity deficit can be observed. The deficit is due to
unsteady motion, or turbulent behavior, which are eddies that grow larger downstream. These
eddies, or vortices, are the famous von Karman vortex street (Fig. 3.9). At some distance
downstream of the cylinder the velocity deficit will be minimal and the wake fully developed.
For the truss tower, which includes more than one cylinder, the wake from each cylinder could
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Figure 3.9: Authors drawing of flow past a single circular cylinder. An example of the mean
velocity profile downstream of the cylinder is shown to the right in the drawing.

interact, depending on the spacing between the cylinders [16, 18]. This is also expected to have
an influence on the wake development.

In this section, the numerical results of the mean velocity profiles are analyzed. The veloc-
ity deficits have been measured at certain distances behind the towers. The region for distances
from the cylinder wall up to 5D downstream the cylinder (where D=4m is the monopile diam-
eter), will be called the near-wake region. This region is expected to have the largest velocity
deficit. The region from 5D to 9D will be called the far-wake region. Note, the wind turbine
blade for a downwind rotor will pass through the tower shadow region at about 3D behind the
tower. However, both near- and far-wake region have been studied in order to understand the
wake development.

Mean velocity profiles for the monopile

The first noticeable feature upstream of the cylinder is the high velocity magnitude at the side
of the domain at y=420m (Fig. 3.10a). The velocity is expected to be similar to the inflow
velocity of 12m/s, but due to periodic boundaries and insufficient domainsize, this is somewhat
higher. This numerical blockage effect is already slightly visible at 4D upstream of the cylinder,
and at 1D upstream the velocity magnitude is 12.3 m/s.

The numerical model is able to capture the expected speed-up to the side of the cylinder.
The speed-up is about 2% at 2D downstream, and it is still slightly visible further downstream.
A single 'dip’, which is symmetric at the centerline (y=0m), represents the time-average ve-
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Figure 3.10: Mean velocity profiles for the monopile. The vertical line indicates the centerline. a)

Upstream of the cylinder. b) Near-wake region, 2D-5D downstream of the cylinder. c¢) Far-wake
region, 6D-9D downstream of the cylinder.
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locity deficit up- and downstream of the cylinder (Fig. 3.10). As expected, the deficit is largest
close to the cylinder. Upstream at the centerline, the velocity deficit dip is first seen at a distance
3D from the cylinder, where the velocity is 11.8m/s. From 3D to 2D upstream, the velocity
deficit increase, about 4%, and another 20% from 2D to 1D. At 1D upstream at the centerline,
the velocity is found to be 9m/s. This means that the cylinder already affects the flow upstream.

At 2D downstream, the velocity is 6.8m/s at the centerline. This is a reduction of almost
50% from the inflow of 12m/s. Note that the velocity at the domain sides (y==+20m) is higher
than 12m/s due to limited domain size and periodic boundary conditions, as mentioned above.
From 2D to 3D the minimum velocity magnitude increase about 30%, from 6.8m/s to 9.6m/s
and another increase of 8% from 3D to 4D. Moving towards the far-wake region, where the wake
is almost fully developed, there is only 2% increase in the minimum velocity magnitude from
4D to 5D. In the far-wake region the increase is minimal, about 2% change from 5D to 9D.

Mean velocity profiles for truss tower - Casel

The setup of the truss tower cross sections were designed at four different heights, giving the
smaller cylinders different coordinates (Fig. 3.2 and Fig. 3.3 from section 3.1 Geometry and
mesh). The main cylinders were fixed for all cases. The velocity profiles show several dips,
respectively behind each of the cylinders.
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Figure 3.11: Mean velocity profiles for the truss tower Casel-A. The vertical lines indicates the
center of each cylinder. a) Near-wake region, 2D-5D downstream of the cylinders. b) Far-wake
region, 6D-9D downstream of the cylinders.

In truss tower Casel-A, were the tower is angled 0 degrees transverse to the inflow there are
three tandem configurations (Fig. 3.3a). One with two small cylinders (in the middle) and two
with two main and one small cylinder (left and right). This gives three distinct dips in the
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velocity profile (Fig. 3.11).

As expected, is the velocity deficit behind the main cylinders larger compared with the deficit
behind the small cylinders. At 2D downstream, the minimum velocity magnitude is 7.6m/s
behind the main cylinders and 10.5m/s behind the smaller cylinders. This is a difference of
about 28%.

The wake downstream of the small cylinders seems fully developed already at 2D, and does
not change much further downstream?. The velocity deficit behind the small cylinders decrease
about 4% from 2D to 9D.

At 3D downstream of the main cylinders, the minimum velocity is 9.2m/s, which is an in-
crease of 18% from 2D. Another 6% increase from 3D to 4D and 3% from 4D to 5D. Here, the
wake is fully developed, with a velocity of 10.5m/s in the far-wake region, corresponding to a
total velocity deficit decrease of about 2%.
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Figure 3.12: Mean velocity profiles for the truss tower Casel-B. The vertical lines indicates the
center of each cylinder. a) Near-wake region, 2D-5D downstream of the cylinders. b) Far-wake
region, 6D-9D downstream of the cylinders.

Casel-B,C,D have in total eight smaller cylinders in addition to the four main cylinders (Fig.
3.3). There are now two tandem configurations including two main cylinders and two small
cylinders, and additional two tandem configurations including only two small cylinders.

The velocity deficit at 2D downstream of the main cylinders, have a minimum velocity magni-
tude of about 6.4m/s (Fig. 3.12a, Fig. 3.13a and Fig. 3.14a). It seems that the additional small

2The diameter of the small cylinders is 1/10 the size of the monopile. Which would make 2D a far wake region

for the small cylinders. For consistency the near- and far-wake regime are kept as a multiple of the monopile
diameter D.
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Figure 3.13: Mean velocity profiles for the truss tower Casel-C. The vertical lines indicates the

center of each cylinder. a) Near-wake region, 2D-5D downstream of the cylinders. b) Far-wake
region, 6D-9D downstream of the cylinders.
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Figure 3.14: Mean velocity profiles for the truss tower Casel-D. The vertical lines indicates the

center of each cylinder. a) Near-wake region, 2D-5D downstream of the cylinders. b) Far-wake
region, 6D-9D downstream of the cylinders.
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cylinders, between the main cylinders, give larger velocity deficits, compared to Casel-A (about
15% difference).

Casel-B has, in addition to the tandem arrangements, two smaller cylinders in a side-by-side
arrangement at a distance 1.2dy from center to center (de=0.36m is the diameter of the small
cylinder). The velocity deficit dip in Fig. 3.12a) is 8.3m/s at 2D and, interestingly, its even
lower at 3D, about 8.0m/s. Further downstream, the velocity magnitude only has about 3-4%
increase at each diameter distance from 4D to 9D. This means that the wake behind the close
side-by-side arrangement has developed earlier, compared with the wake from the single small
cylinder in Casel-A. For Casel-B, the small cylinder wake also give a larger deficit at 3D and
further downstream, compared behind the main cylinders. It is likely to believe that this effect
is caused by the wake interactions [18].

Behind the main cylinders, 2D to 3D, it is a velocity increase of 30%, from 6.4m/s to 9.0m/s.
Another increase to about 7% from 3D to 4D, and 4% from 4D to 5D. In the far-wake region
the wake is almost fully developed, and the total change from 5D to 9D is only about 4%, which
is similar to Casel-A.

Casel-C (Fig. 3.13) shows a very similar wake pattern behind the small cylinders, compared
to the single small cylinder in Casel-A (Fig. 3.11). This means there are sufficient distances,
which is 5 cylinder diameters according to Zdravkovich [41], between the small cylinders to avoid
interference between the wakes. The largest difference for this case, as mentioned above, is the
velocity deficit which is 15% lower behind the main cylinders compared with Casel-A. However,
the wake behind the smaller cylinders seems to affect the wakes behind the main cylinders fur-
ther downstream, making the deficit slightly larger (about 4%) compared with Casel-A. This
is probably because the eddies grow larger in the far-wake region and absorbs the smaller eddies.

For Casel-D (Fig. 3.14) only two distinct dips were expected, because the small cylinders
are placed very close (with a gap of 1d3) to the main legs [2, 12]. Note that experiments in the
earlier literature have a different Reynolds numbers. A similar behavior is, however, expected.
Interestingly, no significant differences for the minimum velocity magnitude behind these clus-
ters are visible, compared with Casel-B,C. The wake behind the side-by-side arrangements and
the tandem arrangements behaves very differently. The tandem and side-by-side arrangements
exhibit a larger velocity deficit, but the wake develops earlier for the side-by-side configuration,
resulting in a large deficit through out the wake.

From 2D to 3D for Casel-D, the minimum velocity magnitude changes from 6.4m/s to 7.4m/s,
which is only 14% compared to Casel-B and Casel-C, which has a change of 30%. An addi-
tional 9% change from 3D to 4D and 4% change from 4D to 5D. The wake already seems fully
developed and change about 2% every diameter from 5D to 9D (8.5m/s to 9.7m/s).

Mean velocity profiles for truss tower - Case2 and Case3

The results from Case2 and Case3 will not be discussed thoroughly here, but the mean velocity
profiles for all cases can be found in appendix B.
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After analyzing the data from the more extreme Casel, it is clear that cylinder wake inter-
actions have a great influence on the mean velocity profile. Flow past the truss tower Case2
would perhaps be the most representative case, since it is not expected that the wind will affect
exactly aligned members. The wake behind Case2 exhibits more wake interactions, because the
members are in a staggered arrangement (Fig. 3.15). Interestingly, the velocity deficit differ-
ences between the near- and far-wake region for Case2, are not very large. It is also overall
lower compared with Casel and the monopile. It seems that by avoiding tandem configurations,
the velocity deficit is reduced to a large extent, especially in the near-wake region. Case3d is
somewhat similar to Casel, since both have members aligned in tandem configurations to the
flow direction. However, there are more tandem configurations and thereby more deficit dips,
which behaves similarly to Casel.
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Figure 3.15: Vorticity magnitude[l/s], Case2-C. There are clearly wake interactions downstream
of the tower.



28 3.5.2 TURBULENCE INTENSITY

3.5.2 Turbulence intensity

Offshore, the wind speed has effect on surface roughness [10] and the turbulence intensity is a
function of the wind speed [14]. In an offshore environment, where the wave height increases
with higher wind, the turbulence intensity in the wind could be high. The turbulence intensity
T1, is given by the ratio between velocity fluctuations (u') and the mean free-stream velocity
U07

Tr=2 . (3.2)

For a wind speed at Up=12m/s, which is used in this study, the turbulence intensity could be
about 6-10% depending on the height above sea level [33]. The turbulence intensity added to
the inflow has therefore been chosen to be 10%, with a turbulent length scale of 1m. The latter
should be chosen to be of the same scale as the expected size of the vortices that are exhibited
behind the structure. For wind turbines, such turbulence intensities could result in damaging
fatigue loading to e.g., the wind turbine blades. When further using a downwind turbine, the
wind will exhibit additional unsteady motion because of the tower. This will probably induce
even more damage to the blades.

In this study two tower options have been tested for the downwind turbine, by simulating
two dimensional cross sections of a monopile and truss tower. The turbulence intensity behind
the towers is analyzed, without including wind turbine blades.

The turbulent flow can be split into three components: mean flow, unsteady motion and high-
frequency turbulence. Usually, Reynolds-Averaged-Navier-Stokes (RANS) is used for steady
simulations, which means there is no additional contribution fra fluctuations. In this study, on
the other hand, the RANS approach have been used to do transient simulations. This means
that T'I is only calculated (in Fluent) from the parameterized turbulence, which gives a sub-
stantially lower turbulence intensity, compared to reality. It is therefore important that the
contribution from the fluctuations is added to the calculated T'1.

The high-frequency turbulence is actually represented by a sub-grid parameterization. This

means that the mean velocity, U;, in each cell for each time-step ¢ is actually an ensemble
velocity mean < U; >,

1<~
Ui =< U >= lim = > U, (3.3)
7=1

n—oo M 4

where j is the ensemble index. The turbulence fluctuations at time-step ¢ from the sub-grid
parametrization can therefore be given as:

2
Oensemble,i = \/ < Ulz >-=U;" . (3.4)

Here, U; is a random velocity at time-step ¢ = 1,2,..., N. Note, that this is the turbulence



3.5 RESuLTS 29

intensity calculated by Fluent.

The other contribution is from the unsteady motion or the fluctuations in the flow. The turbu-
lence intensity from this component is given by

N
1 =2 =2
Ounsteady — N Z U, =-U s (35)

where the mean velocity is

N
Z (3.6)

and Uj; is the ensemble mean velocity at time-step i. With both these contributions the total
turbulence intensity is

3|>—‘

N
\/ Ounsteady T Z i—1 Uonsomblo,i)
Tlgory = . (3.7)

Uo
Ja?
Uy

A detailed proof is given in appendix G.

The turbulence intensity will be studied at 3D, 6D and 9D downstream of the tower. As before,
the near-wake region is regarded as 2D-5D and the far-wake region is from 5D and downstream.

Turbulence intensity for the monopile

The turbulence intensity from the fluctuations clearly results in the largest contribution behind
the monopile (Fig. 3.16). This is as expected because of the vortex shedding that develops. As
the vortices shift from left to right there are two distinct peaks, or twin peaks at approximate
y = £2m. At 3D downstream of the monopile, the turbulence intensity is highest, about 12%
where the vortices are, but just 6% at the centerline (y=0). In the far-wake region, at 6D, this
changes to 6% for the highest peak and 2.5% for the lowest.

The parameterized turbulence intensity give similar, but smaller, peaks at y = +2m. This
means there are contributions, both from the turbulent kinetic energy and from the fluctuations
behind the structure. At the sides of the domain, only the parameterized turbulence contributes
to the turbulence intensity. From the inflow this was set to be 10%, but at 3D downstream this
has dropped to 8%, due to dissipation. At 6D and 9D an additional drop from 8% to 7.5% is
visible (Fig. 3.16).

As expected, the turbulence intensity is highest close to the cylinder, 3D downstream. Here, the
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Figure 3.16: Turbulence intensity for the monopile. a) The two different components. b) Total
turbulence intensity

largest total turbulence intensity is 15%, and is found as two twin-peaks behind the monopile.
The total turbulence intensity between the peaks drops to 12.5%. At the sides, the total tur-
bulence intensity is 8%, because it only has contributions from the parameterization. Further
downstream, the total turbulence intensity is maximum 12% at 6D, with a dip to 9.5% between
the two twin-peaks. The twin-peaks are less distinct at 9D, with a maximum intensity of 9%.

It is clear that parameterized turbulence contributes more to the total turbulence intensity
at the sides of the cylinders, and that unsteady motions gives the largest contribution behind
the monopile. This shows that it is very important to consider both contribution and that
it needs to be properly calculated. Considering that a tower shadow model can represent the

mean velocity profiles, this could result in large underpredictions in a fatigue analysis. This is
discussed in chapter 4: Tower shadow models.

Turbulence intensity for truss tower - Casel

From what was seen behind the monopile, a twin-peak is expected behind each individual circular
member in the cross section of the truss tower, with the dip behind the center of the cylinders
(y=0m). This is visible for truss tower Casel-A (Fig. 3.17). The twin-peaks have their main
contribution from the fluctuations. At 3D downstream, the maximum total turbulence intensity
is 12.5% with the dip at 10%. At the sides (y=220m), the turbulence intensity is the same, 8%,
as for the monopile. This should be expected because the inflow is the same, and no fluctuations
generated from the cylinders should affect this region significantly. The same values are found
behind the main cylinders in Casel-B and Casel-C (Fig. 3.18 and Fig. 3.19).

Behind the smaller members in Casel-A, the maximum intensity at 3D downstream is 9%. Its
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Figure 3.17: Turbulence intensity for the Casel-A. The vertical lines indicate the center of each
cylinder. a) The two different components. b) Total turbulence intensity

interesting that the intensity is lower behind the smaller cylinders, at 6D and 9D, than the
initial inflow intensity. The vortex shedding from the cylinders have decayed and reduced the
total turbulence intensity to be lower here than at the sides. This is also seen for Casel-B (Fig.
3.18), but here some shedding is visible at 6D (and even 9D). From the mean velocity profiles
(see section 3.5.1) it was understood that a side-by-side arrangement gave a slower decay for the
vortex shedding and this is also seen here. Note, however, that in the far-wake regime have the
same total intensity behind the small member and at the domain sides.

The features discovered in Casel-C (Fig. 3.19) is very similar to Casel-A. But it is interesting
to see that the shedding generated behind the small members is absorbed by the large shedding
from the main cylinders, without increasing the turbulence intensity behind the main cylinders.
The most interesting feature is seen behind the clusters in Casel-D (Fig. 3.20). It seems that
maximum total intensity is still 12.5%, but that one of the twin-peaks is one percent lower. This
means it is not much increase in turbulence intensity due to the interacting wakes. At 6D and
9D, the differences are small compared with the other cases. It seems that wake interactions
from the clusters do not increase the turbulence intensity. A side-by-side arrangement could,
however, make the total turbulence intensity higher further downstream:.

Turbulence intensity for truss tower - Case2 and Case3

The turbulence intensity behaves similarly for Case2 and Case3 as for Casel. The largest dif-
ference is that the last cylinder affected by the flow, contributes to higher turbulence intensity.
The main reason is that the measuring lines are from the center of the tower and are now closer

to the last cylinder. This is most evident for Case3, where the last cylinder is closest to the
measuring lines.
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Figure 3.18: Turbulence intensity for the Casel-B. The vertical lines indicates the center of each
cylinder. a) The two different components. b) Total turbulence intensity
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Figure 3.19: Turbulence intensity for the Casel-C. The vertical lines indicates the center of each
cylinder. a) The two different components. b) Total turbulence intensity
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Figure 3.20: Turbulence intensity for the Casel-D. The vertical lines indicates the center of each
cylinder. a) The two different components. b) Total turbulent intensity

The same features is, however, seen. There is only a small contribution from the small fluc-
tuations and there is highest turbulence intensity behind the main cylinders. The tandem con-
figurations in Casel and Case3 seems to give more contribution to the intensity, compared with

the staggered arrangement in Case2. All plots for Case2 and Case3 can be found in appendix
C.
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3.5.3 Power spectral analysis

When the wind is passing a structure like a monopile or a truss tower, an unsteady motion
will develop. This unsteady motion is also experienced at the area where the blades of a down-
wind wind turbine rotate, and could induce damaging fatigue loads on the blades. In a two
dimensional environment, which in this study means flow around cylinders, the fluctuations are
mainly seen as a von Karman street. This vortex shedding will occur with a certain frequency.
However, the flow will also exhibit other frequencies due to transient behaviour.

For flow past a circular cylinder, the expected frequency of the vortex shedding is made non-
dimensional by the Strouhal number. The Strouhal number is usually found to be about 0.2 for
a circular cylinder, but having a smooth surface on the cylinder makes this larger. In this study
the cylinder surface is smooth and will therefore give a Strouhal number between 0.2-0.47 (Fig.
3.21).
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Figure 3.21: Strouhal number vs Reynolds number (from [31])

As the frequency is calculated from the time-series, they would give indications of what to ex-
pect in spectral analysis. In the time-series from the inflow (Fig. 3.22a), measured very close
to the sides of the domain 3D in front of the towers, there are not much oscillations. It could
be expected that some high frequencies will be found, but the fluctuation magnitude would be
negligible.

Behind the monopile, the situation is very different (Fig. 3.22b). The time-series at the center-
line, 3D downstream of the cylinder, exhibits regular fluctuations and the velocity changes with
a certain frequency. This is a result from the single von Karman street, that is expected behind
a single cylinder. The shedding is fully developed as the oscillations follow the same pattern
during a period of time.

The vortex shedding behind the truss tower Casel-A is also fully developed (Fig. 3.22c). There
is a clear pattern, but the regular single oscillation is not visible anymore. Instead, it seems that
there are (at least) two major frequencies. One high frequency that is modulated on a lower
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Figure 3.22: Time series for the inflow, a) 3D upstream of the monopile measured at the center-

line(y=0m). b) 3D downstream of the monopile measured at the centerline. ¢) 3D downstream
of the truss tower measured at the centerline
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frequency. Comparing the time-series behind the monopile and the truss tower, it is expected
that flow behind the different cross sections will exhibit different frequency content.

The shedding frequency is calculated from the velocity magnitude fluctuations using the Fast
Fourier transform (FFT) algorithm without any smoothing, to capture distinct peaks.
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Figure 3.23: Power spectral density, 3D upstream of the monopile. a) Measured at y=+20m.
b) Measured at the centerline(y=0m)

For a circular cylinder with a diameter D = 4m the Strouhal number is expected to be between
0.2-0.47 (Fig. 3.21). This relates to a shedding frequency behind the monopile between 0.6 and
1.41Hz.

At the centerline (y=0) in front of the monopile only two frequency peaks at 1.10Hz and 2.10Hz
are visible (Fig. 3.23b). They have a low power magnitude, about 10, This is close to the
detecting range and could be numerical instabilities. The same peaks are also found to the side
upstream, but with the same low magnitude (Fig. 3.23a).

The same frequencies are found at 3D downstream, but with higher magnitude, close the order
of 10° (Fig. 3.24a). This probably mean that they are not numerical instabilities upstream, but
inherited from the unsteady motions downstream. None of these frequencies are in the expected
vortex shedding frequency range. However, there is an additional peak at 1.2Hz, which could
be from the vortex shedding that develops behind the monopile, resulting in a Strouhal number
of 0.4. This have a power density in the order of 10~".

At 6D the frequency situation is very similar. The only difference is that the power density
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Figure 3.24: Power spectral density downstream of the monopile. a) 3D downstream. b) 6D
downstream

is overall lower than at 3D. Now the peak at 2.10Hz has the density of 10~! and the peak at
4.20Hz has a density of 1072 (Fig. 3.24b). This implies that vortex shedding still occur, but
less prominent.

Truss tower - Casel

There are two different power spectra upstream of the truss tower Casel-A (Fig. 3.25). The
one measured at the side has a power density in the order of 1079, which is considered very low
(close to the detecting range) (Fig. 3.23). The two highest peaks are in the order of 1075, one
at 0.70Hz and one at 3.10Hz. The latter peak is also found with a higher power density, in the
order of 1074, at the centerline.

The frequencies change behind the truss tower (Fig. 3.26). As expected, there is an increase
in power density and the peaks are found in the order of 1072. The two main peaks are found
at 0.70Hz and 13.90Hz. Interestingly, is seems that the 0.70Hz frequency is inherited from the
upstream motions, but with a higher density. The 3.10Hz peak is also visible in the spectra, but
with low power density.

A frequency of 13.90Hz give a Strouhal number of 0.417 for the smaller cylinders, with di-
ameter do=0.36. This makes sense in the supercritical Reynolds number regime (Fig. 3.21).
A third peak is found at about 6Hz. Knowing that the main cylinder diameter is d;=0.9, the
resulting Strouhal number will be 0.45, which also seems reasonable.

At 6D downstream, the frequencies from 3D have disappeared. The largest power magnitude,
in the order of 1072, is found at 0.70Hz. Another frequency peak is found at 2.40Hz has a power
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Figure 3.25: Power spectral density, 3D upstream of the truss tower, Casel-A. a) Measured close
to the domain sides. b) Measured at the centerline.
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Figure 3.26: Power spectral density downstream of the truss tower, Casel-A. a) 3D downstream.
b) 6D downstream



3.5 RESULTS 39

density in the order of 10~%. The latter could be a result from wake interactions and that some
of the shedding is less prominent, which results in a different frequency.
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Figure 3.27: Power spectral density downstream of the truss tower, Casel-B. a) 3D downstream.
b) 6D downstream

The two small cylinders in a side-by-side arrangement, in Casel-B, seems to change the frequency
(Fig. 3.27a). The peak is found at 7.80Hz with a density in the order of 1072, If the same
Strouhal number of 0.417 was to be expected for the vortex shedding behind the side-by-side
arrangements, that arrangement will correspond to a cylinder with diameter of 0.65m. Each
cylinder has in reality a diameter of 0.36m and they are separated with distance of 0.8m.
Another peak at about 4Hz could be from the shedding exhibited behind the main cylinders.
This would then result in a Strouhal number of 0.3. Not only one main cylinder results in the
vortex shedding, but a tandem structure involving two main and two smaller cylinders. This
explains the frequency difference compared with one cylinder [2]. The smaller vortex sheddings
have dissipated at 6D and the peak at 4Hz now has lower power density (Fig. 3.27b). Here,
1Hz is the dominant frequency which is inherited from the inflow.

The power density for Casel-C seems very low already at 3D, compared with the other results
(Fig. 3.28a). The reasons for this is unknown. Interestingly, the power density is about the
same at 6D downstream of the tower (Fig. 3.28b). Both frequency peaks are found at 0.60Hz
and 1.40Hz with a power density in the order of 107%.

The clusters in Casel-D exhibit frequencies in the order of 1073 (Fig. 3.29). One frequency at
1.20Hz and another one at 2.5Hz. The latter would result in a Strouhal number of 0.1875 using
the main cylinder diameter of d; = 0.9m. At 6D downstream there are similar frequencies. The
three peaks are still the dominant, and interestingly, they keep the power densities. The reason
could be that the wakes develop earlier and the same shedding are found in both near- and
far-wake region (See section 3.5.1: Mean velocity profiles).
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Figure 3.28: Power spectral density downstream of the truss tower, Casel-C. a) 3D downstream.
b) 6D downstream
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Figure 3.29: Power spectral density downstream of the truss tower, Casel-D. a) 3D downstream.
b) 6D downstream
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Truss tower - Case2 and Case3

The vortex shedding behind Case2 exhibits a power density in the same order as Casel. Because
the cylinders are in a staggered arrangement, it is not expected that the frequencies are similar
[16]. A more thorough study is necessary to understand the details of wake interactions, but
this will not be the focus of this report. However, a frequency peak at about 3.5Hz seems to be
a trend for Case2, with a power density of about 1072. This corresponds to a Strouhal number
of 0.26 using the main cylinder diameter (do = 0.9m).

The shedding downstream from truss tower Case3 has the largest frequency peaks, in the order
of 10°, which is higher than for Casel and Case2. The measuring lines are now closer to the
last cylinder and the frequency peak will therefore have higher power density. The frequencies
seems reasonable from their expected values calculated from the Strouhal number.

The power spectra for the Case2 and Case3 can be found in appendix D.

3.6 Discussion

Results from numerical simulations of flow past two dimensional cross sections of a monopile
and a truss tower in the supercritical Reynolds number regime, have been studied. Numerical
analysis of flows with Reynolds numbers are very time consuming. It is therefore very important
that the numerical model and the parameters are carefully chosen.

The objective were to compare the mean velocity flow field downstream of the structures and
to study the wake development. Mean velocity profiles have been measured at multiples of the
monopile diameter D, where distances up to 5D downstream is considered the near-wake region.
The far-wake region are considered from 5D and further downstream.

Since the blades on a downwind wind turbine is rotating at a distance equal to 3D from the
tower, the turbulence intensity and power spectra is considered most thoroughly here. However,
additional results from 6D, and 9D for the turbulence intensity, are included to see the effects
in the far-wake region. Wake development in both near- and far-wake regions are different be-
hind the two towers. One von Karman street is observed behind the monopile and several von
Karman streets behind the truss tower.

As the cylinder representing the monopile is larger than the cylinders representing the truss
tower, the resulting eddies are also larger. This does not necessarily mean that the resulting ve-
locity deficit is larger. Although the truss tower is more transparent, the tandem configurations
results in a larger velocity deficit downstream. At a distance 3D downstream of the towers, the
velocity deficit is almost the same for the monopile and Casel-A. For Casel-B,C,D the velocity
deficit is even larger. This clearly indicates that more cylinders involved in a tandem configura-
tion gives larger deficits. This is, however, not representative in reality. When wind flows past
a truss tower structure, it is not expected that the wind hits the tower at the exact 0 degree
angle. This means that the tandem configurations is more likely to be staggered arrangements,
like Case2. Results show that the staggered arrangements give a velocity deficit which is much
lower than the deficit behind the monopile (Fig. 3.10), Casel (Fig. 3.11, 3.12, 3.13 and 3.14)
and Case3 (Fig. B). Another interesting observation is that truss tower Case2 gives a similar
wake for all the different cases (Case2 A,B,C and D), which is very promising considering that
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a steady tower shadow model could predict this more easily (Figures in appendix B). This is
studied in chapter 4: Tower shadow models.

It is not only tandem effects that effects the wake development. Earlier literature, like Kiya
et al. [16], Gao et al. [12] and Alam and Zhou [2], study flow past varied arrangements of cylin-
ders and their results show that distances between the cylinders affect the wake. These features
are not studied in detail here, but the numerical results clearly show that wake interactions
change the downstream environment.

The total turbulence intensity is larger for the monopile by about 20%, compared to truss
tower Casel. Interestingly, the results from Case2 and Case3 show a larger turbulence intensity
in some of the cases, but still not larger than the monopile. This means that wake interactions
does not necessarily contribute to the turbulence intensity. Unfortunately, the lack of earlier
literature that studies the turbulence intensity behind such structures makes it difficult for com-
parisons.

Both the truss tower spectrum and the monopile spectrum is dominated by the vortex shedding
frequencies. The velocity profiles indicated that wake interactions changed the shedding pro-
cess. As discussed in Kiya et al. [16] the staggered arrangements, seen in Case2, will change the
shedding process and thereby the frequencies. Most of the frequencies resulted in a Strouhal
number in the expected region. The monopile spectrum showed an order of magnitude more
fluctuations than the truss towers.

One major conclusion is that the Reynolds-Averaged-Navier-Stokes (RANS) approach is able to
give accurate results for transient simulations of flow around two dimensional structures. This
is very important considering that RANS is mostly used for steady-state simulations. This takes
us to another important aspect that was discovered.

The turbulence intensity have two contributions. One from the sub-grid parameterization and
another from the unsteady fluid motion. The section 3.5.2: Turbulence intensity made it clear
that calculating this properly is a key issue that should be considered when using RANS for
transient simulations. Since steady-state tower shadow models (see chapter 4: Tower shadow
models) are commonly used for a complete wind turbine simulations, this important aspect could
also result in large underpredictions of the loads on the blades.



Chapter 4

Tower shadow models

A numerical approach to predict the mean velocity profile behind a wind turbine tower have
been tested in the previous chapter. Another approach is to use a steady-state tower shadow
model. These tower shadow models could be a beneficial tool if they are able to predict the mean
velocity profiles accurately. A complete wind turbine setup simulation already demands lots of
computational capacity and a tower shadow model can avoid time consuming preparations with
unsteady numerical simulations. The positive aspect of such an idea could help develop faster
simulation tools in the wind turbine design field.

There are several tower shadow models that could be used for wind turbine tower structures.
One of the popular choices has been Powles’ model [23]. This model was originally designed for
wind turbine monopiles and predict the velocity deficit downwind of a circular cylinder, which
represent the two dimensional cross section of a monopile. The wake development is predicted
using two parameters, respectively the wake width (w) and the velocity deficit (A) (see section
4.1). Blevins [4] proposed another two-parameter model. His interesting proposal of introduc-
ing an upstream virtual origin (xg) of the wake allows for more flexibility, and could therefore
give better predictions of the velocity deficit in the region of interest (see section 4.5). A third
possibility is Schlichting’s model [29]. This model was originally made for predicting the wake
behind a thin plate, but it is also applicable for circular cylinders. Schlichting’s model have
three parameters that needs to be chosen (see section 4.5).

Unfortunately, no tower shadow models are available for a multimember structure, such as
the truss tower. Powles’ model has, however, recently been extended to predict the velocity
deficit for such setups. Two dimensional cross sections of the truss tower are represented as
several cylinders with different size and in different arrangements. The extended model simply
superpose each of these cylinders linearly.

The multimember extension of Powles’ model is an idea that simplifies the wake development in
such an arrangement. Depending on the distances between the cylinders, and if they are placed
in a tandem or side-by-side configuration, it is expected that some wake interactions would occur
[16, 12, 2, 18]. How much these differences affect the velocity profile is studied by comparing
the steady tower shadow models and the statistics from the numerical results.

43
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4.1 Powles’ model

Powles’ tower shadow model [23] is implemented in GH Bladed (Version 3.82, Garrad Hassan
and Partners Ltd.) [5]. This software is used to analyze a complete wind turbine setup and is
the only one available with a multimember tower shadow model.

The tower shadow model has three different solutions in GH Bladed: a potential solution, a
semi-empirical solution (Powles’ model) and a combination of the two. The potential solution
model the velocity magnitude upwind of the monopile an is expressed with a x- and y-component:

—2zy D\?
- (2 . 42
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Both components are calculated in the terms of the cylinder diameter D and a free-stream
reference velocity Uy. The velocity magnitude is then U = , /U2 + Ug. Note that a potential

solution for flow past multiple cylinders is not possible to approach with a linear superposition
method [9] and will not be discussed for the multimember structures of this report.

Downstream of the cylinder, Powles’ model is a semi-empirical model that predicts the velocity

profiles, given by
U=U (1 — Acos® (%7‘1’) >, (4.3)

where A is the velocity deficit at the middle of the wake. The dimensionless parameter w = W/2d
is represented by the physical wake width W and the cylinder diameter d. This empirical model
assumes a cosine bell-shape within a 460 degree angle, which means it is cut of when the deficit
falls to A/4. Outside this region the potential solution model the velocity.

4.2 Multimember extension of Powles’ model

The simplest idea to make Powles’ model applicable for a multimember structure, such as the
truss tower, is to use a linear superposition approach. This means that Powles’ model is applied
for each individually member, which is represented as circular cylinders.

Superposing the velocities for each member gives
n
U=> U+ (1+n)lp (4.4)
i=1

for the final velocity. Here, U;(i = 1,2,...,n) is the individual velocity for the i-th member of
the structure. The maximum potentially velocity is 2Uy and limited to zero.
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Two parameters, respectively the wake-width w and velocity deficit A, needs to be fitted to
the individual member. Following Bossanyi et al. [5], the wake characteristics were assumed to

use a square-root model:
Alz) = A== (4.5)
)= "\ zpd’ '
X

w(z) = wr\/; . (4.6)

The parameters are made non-dimensional in order to be comparable with each other, using the
reference length x,, = 2.825D, which is a typical distance for a downwind rotor. In addition, the
reference values of w, and A, are used to scale w and A with the member diameter d.

Several aspects of the wake characteristics are not accounted for. Off course, there are three
dimensional effects, which are not possible to model in two dimensions [38]; and depending on
the placements of the cylinders, their wake can interact exhibiting new wake features and render
the model less valid (Fig. 4.1). Wake interaction is captured by the numerical simulations.
Studied later in this chapter is comparison on how much the steady-state tower shadow models
and numerical results differ.

Figure 4.1: Contour plot of wake interactions, a part of cross section Casel-D. Figure clearly
show wake interactions from cylinders placed at certain distance with each other. Color indicate
vorticity magnitude. Red is 10[1/s]. Blue is 0[1/s]
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4.3 Parameter estimation

As the multimember extension of Powles’ model is applied, the two parameters w and A needs
to be known for all the members in the truss tower. As already mentioned, Eq. 4.6 gives the
behavior of the parameters, and the reference values w, and A, are used to scale w and A.
In order to find good choices of these parameters, all cases were fitted by minimizing the root-
mean-square (RMS) error between simulation results and model predictions for each individual
mean velocity profile, with the Nelder-Mead search algorithm [20]. This was done by choosing
a random value between 0.0 and 1.0 for A, and 0.5 and 5.0 for w, and then optimized ten times
with five hundred iterations each.

In order to see if there could be optimized parameters that apply for a number of mean ve-
locity profiles (instead of a single individual fit), global parameters including the four cases
A,B,C,D have been estimated for Casel, Case2 and Case3. Four different optimization methods
have been applied here:

1. By minimizing maximum error from the cross section with the largest such error
2. By minimizing the sum of maximum error from all cases
3. By minimizing RMS-error from the cross section with the largest RMS-error

4. By minimizing the sum of RMS-error from all cases

This has been done at distances 3D and 6D downstream of the tower.

4.4 Results and discussion

4.4.1 Monopile

The potential solution was able to follow the pattern of the numerical results upstream of the
tower. However, the velocity was overpredicted at 1D upstream of the tower (Fig. 4.2a). In-
terestingly, the speed-up at the sides were also predicted. This feature, which also is exhibited
downstream, were not captured there. At 3D upstream, a potential tower shadow is visible and
the potential model slightly overpredicts this (Fig. 4.2b). Powles’ tower shadow model was orig-
inally designed to model the time-averaged velocity deficit downstream of a monopile. Figure
4.3 shows that Powles’ model predicts the velocity deficit quite well, both at a distance 3D and
6D downstream of the tower. The root-mean-square error at 3D is 0.092m/s and about the same
at 6D. The wake width parameter is 1.8D and the velocity deficit about 22% at a 3D distance
downstream (Fig. 4.3a). Compared with empirical measurement in earlier literature! [23] the
parameters is about w=1D and a velocity deficit (A) of about 40%.Powles’ model accurately
predict that the wake widens downstream and at 6D it is found to be 2.292D with a deficit of
11%. Notice here that the speed up is still visible for the CFD-results, but not for Powles’ model.

The dip between y = +6m is where the semi-empirical solution of the model describes the

!These parameters are not from flow around a circular cylinder, but a hexagonal cylinder. Also the wind speed
is different, but should still be comparable.



4.4 RESULTS AND DISCUSSION 47

14

12

velocity [m/s]
10
velocity [m/s]
10

8

I
8
I

— CFD

— CFD
©— —— Potential

©— —— Potential

I I I I 1 I I I I
-20 -10 0 10 20 -20 -10 0 10 20
y [m] y [m]

(a) (b)

Figure 4.2: Monopile velocity profiles from CFD-simulations and Powles’” model. a) 1D up-
stream. b) 3D upstream

wake. Outside this region, where the velocity has fallen to A/4, the potential model was unable
to predict the expected speed up at the sides of the cylinder. The free-stream velocity is larger
than the inflow of 12m/s at the domain sides. This is an artifact from the periodic boundary
conditions and the limited domain size. This will, however, not affect the tower shadow model

predictions, if the reference velocity is set to be equal to the free-stream velocity at the sides of
the domain.
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Figure 4.3: Monopile velocity profiles from CFD-simulations and Powles’ model. a) 3D down-
stream. b) 6D downstream

4.4.2 Truss towers

The truss tower cases were divided into Casel, Case2 and Case3. Here, Casel is four different
two dimensional cross sections angled 0 degrees transverse to incoming wind direction. Case2
and Case3 are the same two dimensional cross sections angled 22.5 and 45 degrees, respectively.
The four different cross sections (A,B,C and D) represents the X-brace at four different heights
(See details in section 3.1: Geometry and mesh).

As explained above, the parameters A, and w, are estimated in order to give the best ve-
locity profile prediction, both with an individual fit and a global fit.

Individual estimates versus CFD results

As for the monopile, the tower shadow model was unable to predict the speed-up at the sides
of the cylinders. The velocity deficit was, on the other hand, quite accurately predicted for
Casel-A, with an underestimation of about 2% behind the smaller cylinders (Fig. 4.4a). Behind
the main cylinder no discrepancies are observed. It seems that Powles’ model have problems
with the wake development behind the smaller cylinders, especially when the small cylinders are
placed in a close side-by-side arrangement as in Casel-B. For Casel-B, the deficit underestima-
tion is almost 20% (Fig. 4.4b). The deficit behind the main cylinders was only overpredicted
by about 2%.

Applying Powles’ model for Casel-C, it also slightly overpredicts the deficit, about 1%, behind
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the main cylinders (Fig. 4.4c). One could argue that the extra cylinder in these tandem con-
figurations, compared to Casel-A, is the reason for this. The velocity deficit behind the small
cylinders were again underestimated, now about 5%. When looking at Casel-A,B and C, one
can observe that the deficit parameter A, is quite similar, about 20% (Table 4.1). Note that
when the small cylinders are placed close to each other (Casel-B), Powles’ model was unable to
predict the large deficit. The wake width parameter w, is very similar, about 2.2D for the three
cases.

Surprisingly, the velocity deficit behind Casel-D was quite well predicted, with only a small
displacement of the dip (Fig.4.4d). Now, however, the velocity deficit parameter is much larger
than for Casel-A,B,C, about A, = 24%. The wake width (w,) is somewhat lower, about 2.0D.
In reality, the smaller wakes are absorbed by the larger ones, and the tower shadow model does
not capture this. Fortunately, the wake width behind the main cylinders overlap the area where
the smaller wake is exhibited. Therefore the model fits quite well, even though there are wake
interactions. It seems like the individual fits in Powles’ model give accurate prediction when
the velocity deficit are of the same scale, as they were in Casel-D. The velocity deficit behind
different sized cylinders, especially when placed in a side-by-side configuration, is difficult to
predict.

So, are wake interactions the problem? There are wake interactions when the circular mem-
bers are closer than five diameters to each other [2, 18], but Powles’ model was still able to
quite accurately predict the deficit behind the larger members, when in tandem configuration,
even though their arrangements should give wake interactions. However, the close side-by-side
members in Casel-B, gave a much larger deficit than Powles’ model was able to reproduce.
Casel-D also have members close to each other, but here the problem was avoided since the
wake behind the main cylinders absorbed the smaller wakes. If applying Powles’ model closer
to the cylinder, one would expect the tower shadow model to fail. Another problem could be
the different sized cylinders, or at least the large differences in the wake. The wake behind the
small cylinders of Casel-A,B,C, is much different from the wake behind the main cylinders, and
Powles’ model performance is probably weakened by this.

If wake interactions are a problem, how well does Powles’” model perform for Case2, where
the tower is angled 22.5 degrees and is less transparent to the incoming wind? Powles’ model
performs quite well. The discrepancies are only displacements of the dips, but the major features
are reproduced (Fig. 4.5). This is good news as Case2 is the most representative case.

Interestingly, the wake parameters for Case2 behaves quite similarly compared with Casel. The
deficit parameters (A,) for Case2-A,B,C are about 20-21%, with a wake width (w,) of about
2.0D. Again Case-D is the odd one out, with a deficit parameter of 25% and wake width of 1.8D.

It is also worth mentioning that many of the same problems seen in Casel occur for Case3
(Figures in appendix E). Accurate predictions for Case3-A, but less accurate for Case3-B and
C. Case3-D have larger deficit discrepancies also the displacements. The most interesting ob-
servation regarding this case, however, is that the parameters vary more (A, = 19 — 29% and
wy, = 1.4 — 2.4D) than for Casel and Case2 (see table 4.1).

Wake interactions are an important feature in the wake development behind the truss tower.
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Figure 4.4: Mean velocity profiles for Casel represented by the CFD-simulations and Powles’

model, including both the individual(red line) and global fit(green line). a) Casel-A b) Casel-B
¢) Casel-C d) Casel-D
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Figure 4.5: Mean velocity profiles for Case2 represented by the CFD-simulations and Powles’
model, including both the individual(red line) and global fit(green line). a) Case2-A b) Case2-B
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Table 4.1: Individually estimated parameters for Powles’ model

Tower setup 3D 6D
Wy A, Wy A,

Monopile 1.804 | 0.219 | 2.292 | 0.111
Casel-A 2.218 | 0.199 | 2.195 | 0.203
Casel-B 2.295 | 0.197 | 2.212 | 0.200
Casel-C 2.269 | 0.187 | 2.342 | 0.195
Casel-D 1.995 | 0.241 | 2.114 | 0.215
Case2-A 2.060 | 0.205 | 1.736 | 0.291
Case2-B 2.027 | 0.217 | 1.691 | 0.289
Case2-C 1.985 | 0.215 | 1.836 | 0.285
Case2-D 1.813 | 0.249 | 1.966 | 0.258
Case3-A 2.028 | 0.211 | 2.083 | 0.243
Case3-B 1.913 | 0.235 | 2.078 | 0.236
Case3-C 2.378 | 0.187 | 1.900 | 0.262
Case3-D 1.434 | 0.294 | 2.062 | 0.211

Although Powles’ model does not account for such, it was possible to get more or less accurate
predictions with individual estimations, at least for some of the cases. Fortunately, the largest
discrepancies are found for Casel and Case3. Aligned members, such as this are not common
in reality and can be seen as more extreme cases, but still, they were quite well predicted.

Further downstream, at 6D, some of the smaller wakes should have dissipated and perhaps
Powles’ model should give more accurate results. In a way they do, but here the same problems
predicting the wake behind the small cylinders occur, only now the discrepancies are smaller.
This is discussed in detail below.

Global fit parameter estimates

Four different optimization methods were used to find global parameters for Powles’ model (see
section 4.3: Parameter estimation). Global parameters were found for Casel, Case2 and Case3.
The parameters were estimated in order to fit the four cross sections in each case.

The results are very different. When looking at velocity profiles for Case2, there is no doubt
that minimizing the maximum error give the best overall parameters (Fig. 4.6a). If estimated
from minimizing the maximum error from a single cross section or the sum of all errors, does
not change the profiles considerably (Fig. 4.6b). As expected, both root-mean-square (RMS)
error estimates over- and underpredicts the deficit to a larger scale for all cross sections (Fig.
4.6¢ and Fig. 4.6d). For Casel, the differences between the cross sections are larger. None of
the estimate methods is better than the other, since each of them performs well on at least one
cross section. The same thing can be said for Case3, but here the RMS-approach performs more
inaccurate to a larger extent.
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Figure 4.6: Velocity profiles 3D downstream for Case2-A including four different global fit
estimate methods. a) Minimizing maximum error from a single profile with the largest single
such error. b) Minimizing the sum of the maximum error from all cases included in the fitting.

¢) Minimizing the RMS error from a single profile. d) Minimizing the sum of the RMS error
from all cases included in the fitting.
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Table 4.2: Powles’ model. Individual errors for four different global fit estimate minimized
Root-Mean-Square (RMS) error and minimized maximum error at a 3D distance downwind of
the truss towers. The global fit just includes each case e.g., Casel-error includes only the Casel
profiles.

Tower setup Error estimates 3D

Estimate method | Single max error | Tot. max error | Single RMS error | Tot. RMS error
Casel-A 0.86 0.48 0.35 0.35
Casel-B 1.40 1.77 0.56 0.56
Casel-C 1.40 0.96 0.46 0.46
Casel-D 1.16 0.71 0.55 0.54
Case2-A 0.88 0.77 0.39 0.36
Case2-B 1.31 1.21 0.50 0.48
Case2-C 1.31 1.21 0.51 0.49
Case2-D 1.31 1.47 0.54 0.55
Case3-A 0.77 0.58 0.37 0.32
Case3-B 0.96 0.77 0.48 0.47
Case3-C 1.26 1.07 0.51 0.44
Case3-D 1.26 1.48 0.51 0.55

Error estimates are found in table 4.2, and by looking at the numbers, one would expect that
RMS-estimates give best results since, the errors are smaller and quite consistent. However, by
looking at the velocity profiles, it is clear that minimizing the maximum error gives the best
velocity profile predictions, and it therefore seems that using the parameters from this global fit
gives most reasonable results, especially for Case2. The global parameters found by minimizing
maximum error from a single cross section are found in table 4.3. Note that the parameters for
Case2 could be used as a global set of parameters and would give reasonable results for all cross
sections.

As the best parameters are found by minimizing maximum error from a single profile, this
is the only method pursued in this study.

Table 4.3: Globally estimated parameters by minimizing maximum error from a single cross
section for Powles’ model 3D downstream of the truss tower.

Tower setup 3D Min. Max.
Parameter Wy A, Error
Casel 2.388 | 0.218 1.40
Case2 1.968 | 0.194 1.31
Case3 1.718 | 0.231 1.26

At a distance 6D downstream of the truss tower it was expected that Powles’ model would
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perform better (see Fig. 4.8 below). The global estimates, however, does not work well here. All
estimate methods gives similar results, with large discrepancies for Case2 and Case3. Casel, on
the other hand, is very well reproduced by again minimizing the maximum error from one cross
section, and it would therefore make sense to use the same estimation method 6D downstream.



56 4.4.2 TRUSS TOWERS

Individual versus global fitting

The global estimates do not, as expected, give as accurate results as the individual fit. For
Casel and Case3 this is seen as over- and underpredictions, typically for the largest deficit dip.
However, this is usually seen in the same places where the individual estimates also show dis-
crepancies. This means that the global estimate give slightly different results overall. Note that
an overprediction is especially large for Casel-C and Case3-C using the global fittings, mainly
because the deficit parameter A, (22% and 23%), deviates with the individual parameters, which
is 19% for both cases. The opposite problem, that is an underprediction, occurs for Case2-D,
where A, = 25% for the individual estimate and 19% for the global estimate.

For Casel and Case2, the individual wake width parameter is similar to the global wake width
parameter, but the global deficit parameter is larger for Casel (except Casel-D) and overall
smaller for Case2 (Fig. 4.4 and 4.5).

For Case3, where the wake width parameters vary more, the wake width is found lower except
for Case3-D where the wake width is larger. The individual velocity deficit parameters are about
the same as the global deficit parameter (except Case3-C as explained above).

The results show that using global estimates for the aligned member cases (Casel and Case3)
would give more inaccurate results for some of the cross sections. For the more representative
scenario, Case2, the individual parameters vary less and the global parameters do not deviates
that much from the individual ones. This means that it is possible to use only one set of param-
eters for all cases. This is good, because it is time consuming to estimate parameters for many
different cases.

3D versus 6D downstream

It was expected that the tower shadow model would be able to predict the wake development
better at a distance 6D downstream, since some of the wakes should have decayed here (see
Fig. 4.8 below). The individual estimates are somewhat better, but the global estimates are
actually worse; mainly underpredicting the wake width. What is also interesting, is that the
individual estimates suggest a higher deficit parameter for most cases at 6D compared to 3D.
Further downstream, where the wake grows larger, there is probably more interaction effects
which results in a different behavior than reproduced by Powles’ model. The wake widens,
which probably means that the smaller wakes are absorbed by the larger ones, and this is not
foreseen by Powles’ model. This could perhaps be resolved by changing the reference distance
when predicting the velocity profile in the far-wake regime or implement an ’absorption limit’2,
but this is not pursued further here.

2Term invented by the author. A limit depending on the spacing between the cylinders and their size, and
when the smaller wake is absorbed
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4.5 Alternative tower shadow models

4.5.1 Blevins’ model

Blevins’ model is designed to predict the mean velocity profile behind a circular cylinder. The
main difference from this model and Powles’ model is the parameter describing the upstream
virtual origin of the wake zy. This parameter makes the model more flexible in a way that it is
not limited to just consider wake development downstream of the cylinder. This could mean that
the model could give better predictions of the mean velocity profiles. The second parameter is
the drag coefficient C'y, and depends analytically both on the wake width and the velocity deficit.

Blevins’ model is represented by three equations. In the first equation b is the half-width,

b = 0.23[Cud(z + 70)]? , (4.7)

and represents the length from the centerline to the position where one-half of the centerline
velocity deficit ¢ is reached,

mwo(%f | (48)

Note that a misprint was detected in Blevins [4] and conected in equation 4.8, following Fredheim
[11]. The total velocity deficit profile is given by

—0.69y2

U(z,y) =Up(1l —ce 2 ). (4.9)

To extend this model for multimember structures, the same extension approach used for Powles’
model applies here. This approach superpose each wake from the individual member linearly, to
find the resulting velocity (See section 4.2: Multimember extension on Powles’ model). Blevins’
velocity wake model has a square-root-model as the basis (Eq. 4.7 and Eq. 4.8) and the reference
parameter values have been estimated by the same method explained in section 4.3: Parameter
estimates.

4.5.2 Schlichting’s model

Schlichting’s model is not originally made for circular cylinders, but it models the wake behind a
thin flat plate [29]. This model has three parameters that need to be chosen. The fluid viscosity
is represented by v and [ represents the length of the thin flat plate. The latter parameter
can here be interpreted as the virtual origin of the wake, similar to zg in Blevins’ model. The
third parameter is the drag coefficient and this has been chosen to be 0.37, which is the drag
coefficient calculated from the validation run (section 3.4: Validating the model).

The velocity deficit in Schlichting’s model is given by

1
. Cd U(]l T\ 2 y2U0
Uz,y) = UOm W (7) e:vp(— dzy ) (4.10)
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and the same multimember extension approach used for Powles’ and Blevins’ model is applied.

Since the drag coefficient parameter is chosen to be 0.37, it is only the fluid viscosity v and
the length [ that needs to be adjusted by minimizing the root-mean-square (RMS) error. How-
ever, note that Eq. 4.10 is Reynolds number dependent which means that [ needs to be large
for large Reynolds numbers. This could make the model unstable, which implies an adjustment
could be made for the model.

4.5.3 Comparison

Applying Blevins’ and Schlichting’s model for the monopile gives similarly accurate results as
Powles’ model, but none of them are able to capture the speed-up at the sides of the cylinder.
Figures are found in appendix E.

Both Blevins’ and Schlichting’s model have been tested using the same linear superposition
approach as Powles’ model. Blevins’ model shows similar accuracy as Powles’ model for Casel,
where Schlichting’s model shows larger discrepancies, usually seen as over- or/and underpredic-
tions of the velocity deficit for both the global and individual estimates.

The individual fits from Powles’ model follows the deficit pattern for Case2 better than Blevins’
model, but just slightly. Schlichting’s model has again largest discrepancies, but here are the
global estimates more consistent. This also applies for Case3. Examples of the differences are
found in figure 4.7. Rest of the velocity profiles are found in appendix E.

There is not much difference between the three steady-state tower shadow models. All of them
are able to predict the main features of the velocity profile. The lack of applicability when
wake interactions occur is a trend, and it is probably necessary to include additional features
in the equations to treat this complexity. However, it is expected that all the models, with the
applied superposition approach, are able to give reasonable predictions of the mean velocity pro-
files. Again, to give even more accurate results, some modifications could be made for all models.

Blevins’ and Schlichting’s parameters are found in table 4.6 and table 4.7, and their best esti-
mated global parameters are found in table 4.4 and table 4.5. In the far wake region all models
are equally inaccurate. None of the profiles are able to capture the wake interactions that occur
here. An example of this is found in figure 4.8.

Table 4.4: Globaly estimated parameters by minimizing maximum error from a single cross
section for Blevins’ model 3D downstream of the truss tower.

Tower setup 3D Min. Max.
Parameter Cy g Error
Casel 0.538 | 52.371 1.26
Case2 0.381 | 72.018 1.38
Case3 0.368 | 8.871 1.46




4.5 ALTERNATIVE TOWER SHADOW MODELS

59

14
14

12
I
12

velocity [m/s]
10
velocity [m/s]
10

00— 00—
-——- =28 | | ----- X = 2.8
——- A=0217 | - A=0.194 -—- C4=0454 | | oo Cy=0.381
od —=- w=2027 |- w, = 1.968 o —=- x=382165| | .- Xo=72.018
| T T | T | T T | T
-20 -10 0 10 20 -20 -10 0 10 20
y [m] y [m]
(a) (b)
<
|

velocity [m/s]
10

m_
---v=0233| | ----- v=0.281
©o— - I=1204 | | ----- |=1.251
I [ [ I [
-20 -10 0 10 20
y [m]
(c)

Figure 4.7: Mean velocity profiles 3D downstream represented by Powles’, Blevins’ and Schlicht-
ing’s model together with CFD-simulations for both global and individual estimates. a) Powles’

model b) Blevins’ model ¢) Schlichting’s model
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Table 4.5: Globaly estimated parameters by minimizing maximum error from a single cross
section for Schlichting’s model 3D downstream of the truss tower.

Tower setup 3D Min. Max.
Parameter v l Error
Casel-A 0.334 | 1.575 1.72
Case2-B 0.281 | 1.251 1.40
Case3-D 0.316 | 1.256 1.31

Table 4.6: Individually estimated parameters for Blevins’ model

Tower setup 3D 6D

Cd ) Cd )
Monopile 0.415 | 5.806 - -
Casel-A 0.453 | 41.507 | 0.467 | 90.944
Casel-B 0.479 | 54.030 | 0.477 | 118.567
Casel-C 0.449 | 56.931 | 0.477 | 122.457
Casel-D 0.489 | 28.391 | 0.464 | 80.789
Case2-A 0.451 | 34.379 | 0.511 | 25.427
Case2-B 0.454 | 32.165 | 0.488 | 23.423
Case2-C 0.449 | 32.718 | 0.519 | 21.429
Case2-D 0.465 | 21.158 | 0.510 | 49.127
Case3-A 0.443 | 32.498 | 0.511 | 59.625
Case3-B 0.466 | 29.176 | 0.483 | 69.838
Case3-C 0.452 | 52.526 | 0.494 | 40.678
Case3-D 0.414 | 0.971 | 0.449 | 87.083
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Schlichting’s model together with CFD-simulations for both global and individual estimates. a)
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Table 4.7: Individually estimated parameters for Schlichting’s model

Tower setup 3D 6D

v l v l
Monopile 1.146 | 1.122 - -
Casel-A 0.311 | 1.213 | 0.302 | 1.227
Casel-B 0.277 | 1.212 | 0.252 | 1.179
Casel-C 0.278 | 1.144 | 0.340 | 1.250
Casel-D 0.249 | 1.330 | 0.251 | 1.260
Case2-A 0.297 | 1.166 | 0.227 | 1.416
Case2-B 0.233 | 1.204 | 0.177 | 1.364
Case2-C 0.259 | 1.216 | 0.195 | 1.445
Case2-D 0.197 | 1.271 | 0.201 | 1.386
Case3-A 0.273 | 1.191 | 0.254 | 1.359
Case3-B 0.205 | 1.229 | 0.217 | 1.350
Case3-C 0.339 | 1.191 | 0.277 | 1.406
Case3-D 0.143 | 1.224 | 0.231 | 1.208

4.6 Individual parameter estimates

The estimated parameters for the tower shadow models at several distances downstream of the
monopile are found in figure 4.9a. As the parameters are estimated at the actual distance down-
stream of the monopile, they should exhibit a square-root behavior from Eq. 4.6, for Powles’
model. From a distance 3D, or 12m, downstream this is more or less the case for both pa-
rameters. There are more discrepancies closer to the monopile, where the wake is not fully
developed, compared to a square-root-law. This means that Powles’ model is more adequate for
the far-wake region, but at a 3D distance, where the rotor is designed to be, the Powles’ model is
good. The error is also found to be quite low, about 0.09m/s, from 3D and further downstream.
For the other tower shadow models (Blevins’ and Schlichting’s), which are estimated with a
reference distance, the parameters should be constant downstream. This is only the case in the
far-wake region (5D and further downstream).

The estimated parameters for the truss tower have been scaled to a reference distance z, =
2.825D, which is the distance from the tower center to the rotor. This means that the parame-
ters should be constant with respect to the distance, for all the truss tower cases. From 3D and
further downstream, this is more or less the case for the velocity deficit parameter for Powles’
model, and the drag coefficient estimated for Blevins’ model. The wake width parameter and
the virtual wake origin vary more, but are roughly constant in the far-wake region. Schlichting’s
viscosity parameter actually seems to be distance dependent and gives the worst results here.
This reflects back to what was seen in the mean velocity profiles. An example of the parameter
estimates is found in figure 4.9b(Casel-A) and the rest is found in appendix F.

The unexpected transitions (differences in near- and far-wake region), seen from the tower



4.7 SUMMARY 63

O 1

b o | | 1 1 b | | 1
— | 1 - 1 1 — | 1 00— 1 1
ol V. | 1 1 . o | | . 4 |°¢bo¢
< o] o 1 = < | | g o] 1 1 E3 :\/ |°°000
] | |
o] 0%0080-9—9-9-9.9_0 ] oo ! o] 9¥Pccoh 00000 ] o !
s T-T- T 1 S rTrT—T-T T s T T T 1 S r—rT1-T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
x [m] x [m] x [m] ° x [m]
f:!— Vo | o0 1 1 f:!— | | S— \ .-
1% 8 1 EEEEE
dg: o | < &7 ! ! oo d’g: ! ! 0000 gg: ! !
] O000&',>oooooo . :0030000 ] -
= |: T T D e e R I | S e : :
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
x[m] x [m] x[m] x [m]
- 1 1 1 On 1 & ) | g 1 1
o| | © | 00%000000 — 10, ! | 1
> | %L %oooooO - o i i > o] | I°o - 0afa0000h © 0 0 0 ©
7 N Co e i1 oo Co
o o o
ST T T T 1 = e S e N | R e N s B | = e S e N |
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
ﬂ x[m] x [m] oo x[m] x [m]
E4 1 £y 1
5 ] 1 | 5 o | 1 |
S g | 1 g o S |
TR 1 | o | Wsoo
2 o] c 000000 2 o : A °°
E = E o T T T T T 1
0 10 20 30 40 50 0 10 20 30 40 50
x [m] x [m]
(a) (b)

Figure 4.9: Individual parameter estimates for Powles’(top row), Blevins’(second row) and
Schlichtings(third row) model. RMS-error found in bottom row. a) Monopile b) Casel-A

shadows point of view, makes it difficult to estimate the parameters. This identifiability issue
is seen as large 'jumps’ for w,, Cyq and x(y parameters (Fig. 4.9b). The residuals are still quite
low for the truss tower, about 0.5m/s, and this means that when individually estimating the
parameters, the tower shadow models are able to accurately reproduce the mean velocity profile.

4.7 Summary

All tower shadow models applied for the monopile give accurate results. However, all models
are unable to predict the speed-up at the sides of the cylinder. This important feature could be
important to capture since it could exhibit more fluctuating blades on a downwind wind turbine.

Extending the tower shadow models for a multimember structure is very useful. When parame-
ters are found for each individual case, the predicted mean velocity profiles are quite accurately
reproduced. However, the different sized members troubles the tower shadow models and some
underestimation of the deficit is seen for the smaller members. This underestimation is highly
increased for the cross sections which have the small members in a side-by-side configuration,
where the deficit is much larger. Interestingly, the deficit is accurately predicted when the small
members are placed close to the main members. The wakes behind the small members are
absorbed by the larger wakes and because of this, the tower shadow models preform better.

Another important aspect is choosing the correct parameters. There is no earlier literature
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that suggests parameters for multimember structures, but parameters for the monopile are usu-
ally suggested lower to what was found here. As the individual estimates reproduce the mean
velocity profiles quite well, are the parameters somewhat different for the different for each cross
section. For the more extreme Casel and Case3, vary the parameters more.

So, are there any global parameters that could work for all cross sections at a 3D distance?
Yes, there are. The more extreme cases (Casel and Case3, with aligned members) showed some
discrepancies with the global parameters, but they were not much larger than for the individual
estimates. The tower shadow models work better for the more representative case (Case2), but
the deficit dips are displaced. This is probably not a severe error when the steady-state tower
shadow models are introduced in a fatigue analysis of wind turbine blades. When minimizing
the maximum error, it is found to be about 1.4m/s (roughly 0.5m/s for RMS-error) for all cases.
Comparing that with the velocity inflow (12m/s), it is a maximum error of 10%. That is not
much when considered in an industrial application.

All major features of the mean velocity profiles are predicted by the tower shadow models
when using the global estimates, and it would be expected that the largest induced vibrations
are captured in order to produce accurate fatigue analysis.

For a far-wake study, the tower shadow models with global parameters show large discrepancies
for numerous reasons. The main reason is the growing wakes downstream. That results in more
wake interactions, which is not predicted by the tower shadow models. Here, the individual fit
is better.



Chapter 5

Simulations with turbulent inflow

The turbulence used in the simulations in chapter 3: Numerical simulations and wake develop-
ment is not structured, but imposed with turbulence intensity calculated using the parametriza-
tion from the k —w SST viscosity model. Ideally, the flow should be implemented with structured
turbulence. This is a better representation of a realistic low. Unfortunately, this turbulent in-
flow has very low turbulence intensity, which could make it difficult to ”trigger” the vortex
shedding. This could again result in a long initialization time. Therefore, the turbulent inflow
is added on top of the parameterized turbulence, which is set to be 10%, to have sufficient tur-
bulence intensity. The turbulent inflow is implemented with a user-defined function in Fluent
(see script in appendix H).

Turbulent inflow can be implemented with a spectrum. One option is the Kaimal spectrum,
which fits better to the empirical observations of atmospheric turbulence, and the von Karman
spectrum, which has proven to give good descriptions of the turbulence in wind tunnels. The
latter represent the atmospheric turbulence above 150m quite well. As this is a study of flow
past a wind turbine tower, the von Karman spectrum have been chosen here.

With turbulent inflow it is expected that the wake will fluctuate more and thereby exhibit
different frequencies. This could change the loads, and thereby the fatigue damage on a wind
turbine rotor. The following explains how the von Karman spectrum is implemented in Fluent,
and some results of the numerical simulations with turbulent inflow.

5.1 Implementation

The von Karman spectrum follows the form given in Burton et al.(pg. 23,Eq. 2.24 and Eq.
2.26) [7], where the x-component is given by

nSy(n) 4dn Loy, /Uy (5.1)
oa (14 70.8(nLay/T)2)8 '
and the y-component is given by
nSy(n)  4(nLay/Up)(1 + 755.2(nLs,/U)?) (5.2)
o (1+283.2(nLyy/Up)2) e '
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where L, = 73.5m is the longitudinal length scale and Lo, = 37.25m is the lateral length scale.
The terms S, (n) and S,(n) are the autospectral density functions, Up is the mean velocity and
n is the frequency. Standard deviations for the components were taken to be o, = 1.6m/s and
oy = 1.2m/s.

Taylor’s frozen turbulence hypothesis and von Karman spectrum are used to analytically derive
the correlations between the velocity with respect to distance. Refer Burton et al. [7] for
details about the coherence functions. The diagonal mixing matrix, introduced in Veers [34],
was simplified to be wrapped around 20 neighboring grid cells to correlate the lateral velocities
with respect to distance. A frequency band between 0-10Hz was discretized using 100 frequency
components. This was done for efficiency and to maintain stability. The user-defined function
implemented in C-code can be found in appendix H.

5.2 Postprocessing

In order to get a fully developed turbulence through the whole domain, which is 150m along
the flow direction, it was necessary to compute the flow as long as possible. Unfortunately, the
computational time increased, about 10 times, drastically when the flow was implemented with
the user-defined turbulence. The most time-consuming part of the simulations is outputting
files, since the speed of the harddrive is limited.

The simulation procedures followed the same recipe as seen in section 3.2: Numerical method
with the same time-step size, 0.005s (see section 3.3: Postprocessing for details). It was im-
portant to make the turbulent inflow fully developed through out the domain. Here, 30000
time-steps was simulated, which results in a real flow time of 150s. An additional 5000 time-
steps initialized the flow. A longer initialization would have been preferred, but due to the time
consuming process, this was all that was managed. The same outputs as before were saved. This
resulted in approximately six weeks of simulation time, together for Casel A,B,C and D, using
a high performance workstation. The total number of output files was about 3.5 - 10, which
demanded a large harddrive and time consuming postprocessing, using the statistical computing
software R [24]. All 30000 time-steps was used for postprocessing in order to capture as much
data from the inflow as possible.

5.3 Results and discussion

The inflow now has unsteady motion (or fluctuations) in addition to the turbulence intensity
parameterized by the k& — w SST viscosity model. Fig. 5.1 shows the differences in a vorticity
magnitude contour plot. The vortex shedding is no longer aligned directly behind the cylinders,
and vortices can be shed with angles from the cylinders.

The velocity profiles upstream of the truss tower shows that the flow fluctuates around the
mean velocity inflow of 12m/s, or actually about 12.3m/s due to blockage effect (Fig. 5.2a). No-
tice that the potential tower shadow model give the upstream velocity profile without turbulent
inflow. With sufficient simulation time, the mean velocity profile upstream should be constant.
However, the turbulence intensity should be higher, as discussed below.
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The mean velocity profiles downstream shows the same pattern as before, but now with less
symmetry (Fig. 5.2b). This is probably due to insufficient calculation time of the turbulent
inflow. Nevertheless, Powles’ model are able to predict most of the features, which means the
results are very good.
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Figure 5.2: Mean velocity profiles for Casel-A with von Karman turbulent inflow a) 3D Upstream
b) 3D Downstream

In the previous chapter 3: Numerical simulations and wake development, the turbulent inflow
gave no contribution from unsteady motions to the turbulence intensity. Now, with the von
Karman spectrum, Fig. 5.3a the inflow fluctuations now has a turbulence intensity of about 5%,
and even higher for some of the cases.

Downstream of Casel-A with turbulent inflow, the maximum intensity is about 15%(Fig. 5.3d),
compared with 12% without the turbulent inflow (Fig. 5.3c). Here, the turbulence inflow is
added on top of the parameterized inflow and this would not be the case in reality. Ideally, it
would be better to just have the structured turbulent inflow, which is a better representation
of the wind and the turbulence intensity. At the sides of the domain the turbulence intensity
is 8% with only parameterized turbulence and 10% with the turbulent inflow on top of the
parameterized turbulence. This is not much difference which means it is probably not necessary
to simulate complete wind turbine setups with a von Karman spectrum.

The main frequencies exhibited from the vortex shedding is still very similar, only now the
magnitude is about one order higher than before (Fig. 5.4). For Casel-A the high frequency
peak at about 13Hz is lower and the peak at 6.9Hz is the dominant one. This could mean that
the shedding from the smaller cylinders, which give the frequency of 13Hz, is more affected by
the turbulent fluctuations from the inflow, compared with the vortex shedding from the main
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cylinders. The latter has a corresponding frequency of 6.9Hz. Also notice that the low frequency
from the inflow at 0.60Hz, which is also captured with the von Karman spectrum.

--- 1st 6.90 Hz --- 1st 13.90 Hz

o s
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) : [} :
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Figure 5.4: Frequency spectrum for Casel-A. a) With von Karman turbulent inflow. b) Without
von Karman turbulent inflow

When dealing with fatigue analysis of a wind turbine a realistic scenario is preferable. A
turbulent inflow provides this, but increase the computational time drastically (about 10 times
for flow simulations). Results above showed that the frequencies were the same for both the
turbulence inflow simulations and the parameterized turbulence simulations. There was only
a larger power density for the turbulent inflow case. However, considering that the turbulent
inflow was added on top of the parameterized turbulence, the power density is probably reduced
when the parameterized turbulence is reduced. Differences were also seen for the turbulence in-
tensity. The fluctuation component gave a contribution from the turbulent inflow, but also this
will be reduced when only turbulent inflow is considered. The mean velocity profile was quite
accurately predicted, but small discrepancies due to insufficient simulation time, were observed.

This means that it is probably not necessary to use structured turbulence inflow in order to
get realistic predictions of the flow profiles behind a truss tower.



Chapter 6

Aftermath

The numerical model used in this study have been pushed to its limit. A Reynolds-Averaged-
Navier-Stokes (RANS) approach has been used to run transient simulations of flow past cross
sections of a monopile and a truss tower. The computational demand has proven to be a chal-
lenge even though several simplifications have been made. However, results show that using a
numerical model like the k —w Shear-Stress Transport (SST) viscosity model give very accurate
results in decent amount of time. The high Reynolds number (~ 10%) made the simulations a
challenge, but by adapting the computational grid and triggering the flow, realistic results were
captured.

One of the key issues when using RANS model for transient simulations, is the turbulent
intensity. RANS only calculates the sub-grid parameterization turbulence, but an additional
contribution from the unsteady motions also needs to be considered. It is very important that
this is done properly, as section 3.5.2: Turbulence intensity showed.

In addition to the study above, the same numerical approach was tried on a model scale (about
1:130) of the same truss tower and monopile. Unfortunately, it was not possible to get good
validation results with the same numerical approach. Results showed that the wake was not
symmetric as it should have been, which is probably due to numerical instabilities.

The time-series resulted in mean velocity profiles which were compared with steady-state tower
shadow models. These models were modified to be applicable for two dimensional cross sections
of a truss tower, and their parameters were estimated to each of the individual truss tower cross
section. The tower shadow models was unable to predict features like wake interactions, since
the wake are calculated for each individual member and then linearly superposed. However, the
tower shadow models proved to be very efficient. Some discrepancies were found for the more
extreme cases (Casel and Case2), but much better for the more representative Case2.

Different estimation methods were performed when trying to find the best set of global pa-
rameters. The best optimization method was to minimize the largest maximum error for a
single profile. The global set of parameters for each of the tower shadow models are found in
table 4.3,4.4 and 4.5. With these parameters, the tower shadow models were able to repro-
duce the mean velocity deficit very well. Note, however, that when using a steady-state tower
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shadow model for a complete wind turbine setup, one should also consider the contribution to
the turbulence intensity from the fluctuations. Avoiding this could result in underpredictions
of damaging loads. One question remains. The periodic motions of the vortex shedding are not
captured when they are modeled with an increased turbulence intensity. This could mean that
the loads are not correctly reproduced. This interesting idea could be studied by comparing re-
sults from this study with a ”dynamic tower shadow model”. However, this is left to future work.

Simulations with the turbulent inflow is not necessary to predict a realistic tower shadow behind
truss tower cross sections. The power spectra was about one order higher compared with the
structured turbulent inflow, but in these simulations the turbulent inflow was added on top of
the parameterized turbulence. Together, they probably gave a larger turbulence intensity than
they should have.

There are several aspects of these studies that could be modified in order to get more realistic
results. One important is that two dimensional simulations is a simplified model and important
three dimensional effects [38] is lost.

For now it is possible to implement the time-series from the numerical studies or the tower
shadow models into GH Bladed. This study has been started, but unfortunately, it was not
finished to be included in this report. However, some early results show that a complete wind
turbine setup simulation with Powles’ model underpredict the damage equivalent loadings (DEL)
on the blades. The same simulations have been done implementing the time-series, where DEL is
calculated to be higher. Considering that Powles’ model is a steady-state model, the important
unsteady motions are disregarded, which results in too low turbulence intensity.
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Appendix A

Additional figures: Geometry

(d)

Figure A.1: Case2: 22.5 degree truss tower cases embedded in mesh. a) Case2-A b) Case2-B c)
Case2-C d) Case2-D
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(a) (b)
() (d)

Figure A.2: Case3: 45 degree truss tower cases embedded in mesh. a) Case3-A b) Case3-B c¢)
Case3-C d) Case3-D



Appendix B

Additional figures: Mean velocity
profiles
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Figure B.1: Mean velocity profiles for Case2-A. The vertical lines indicates the center of each

cylinder. a) Near-wake region, 3D-6D downstream of the cylinders. b) Far-wake region, 7D-10D
downstream of the cylinders.
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Figure B.2: Mean velocity profiles for Case2-B. The vertical lines indicates the center of each

cylinder. a) Near-wake region, 3D-6D downstream of the cylinders. b) Far-wake region, 7D-10D
downstream of the cylinders.
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Figure B.3: Mean velocity profiles for Case2-C. The vertical lines indicates the center of each

cylinder. a) Near-wake region, 3D-6D downstream of the cylinders. b) Far-wake region, 7D-10D
downstream of the cylinders.



APPENDIX B. ADDITIONAL FIGURES: MEAN VELOCITY PROFILES 83

<_ <_
| o
w v
£ £
BCJ_ ED_
e ==
o o
() ()
> >
0 — 3D 0 — 7D
— 4D — 8D
— 5D — 9D
.. — 6D o — 10D
T T T T T T T T T
20 10 10 20 -20 10 10 20
y [m] y [m]

Figure B.4: Mean velocity profiles for Case2-D. The vertical lines indicates the center of each

cylinder. a) Near-wake region, 3D-6D downstream of the cylinders. b) Far-wake region, 7D-10D
downstream of the cylinders.
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Figure B.5: Mean velocity profiles for Case3-A. The vertical lines indicates the center of each

cylinder. a) Near-wake region, 3D-6D downstream of the cylinders. b) Far-wake region, 7D-10D
downstream of the cylinders.
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Figure B.6: Mean velocity profiles for Case3-B. The vertical lines indicates the center of each

cylinder. a) Near-wake region, 3D-6D downstream of the cylinders. b) Far-wake region, 7D-10D
downstream of the cylinders.
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Figure B.7: Mean velocity profiles for Case3-C. The vertical lines indicates the center of each

cylinder. a) Near-wake region, 3D-6D downstream of the cylinders. b) Far-wake region, 7D-10D
downstream of the cylinders.
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Figure B.8: Mean velocity profiles for Case3-D. The vertical lines indicates the center of each

cylinder. a) Near-wake region, 3D-6D downstream of the cylinders. b) Far-wake region, 7D-10D
downstream of the cylinders.






Appendix C

Additional figures: Turbulence
intensity profiles
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Figure C.1: Turbulence intensity for the Case2-A. The vertical lines indicates the center of each
cylinder. a) The two different components. b) Total turbulence intensity
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Figure C.2: Turbulence intensity for the Case2-B. The vertical lines indicates the center of each
cylinder. a) The two different components. b) Total turbulence intensity
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Figure C.3: Turbulence intensity for the Case2-C. The vertical lines indicates the center of each
cylinder. a) The two different components. b) Total turbulence intensity
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Figure C.4: Turbulence intensity for the Case2-D. The vertical lines indicates the center of each
cylinder. a) The two different components. b) Total turbulence intensity
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Figure C.5: Turbulence intensity for the Case3-A. The vertical lines indicates the center of each
cylinder. a) The two different components. b) Total turbulence intensity
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Figure C.6: Turbulence intensity for the Case3-B. The vertical lines indicates the center of each
cylinder. a) The two different components. b) Total turbulence intensity
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Figure C.7: Turbulence intensity for the Case3-C. The vertical lines indicates the center of each
cylinder. a) The two different components. b) Total turbulence intensity
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Figure C.8: Turbulence intensity for the Case3-D. The vertical lines indicates the center of each
cylinder. a) The two different components. b) Total turbulence intensity






Appendix D

Additional figures: Power spectra
plots
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Figure D.1: Power spectral density downstream of the truss tower, Case2-A. a) 3D downstream.
b) 6D downstream
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Figure D.2: Power spectral density downstream of the truss tower, Case2-B. a) 3D downstream.

b) 6D downstream
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Figure D.3: Power spectral density downstream of the truss tower, Case2-C. a) 3D downstream.

b) 6D downstream
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Figure D.4: Power spectral density downstream of the truss tower, Case2-D. a) 3D downstream.

b) 6D downstream
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Figure D.5: Power spectral density downstream of the truss tower, Case3-A. a) 3D downstream.
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Figure D.6: Power spectral density downstream of the truss tower, Case3-B. a) 3D downstream.
b) 6D downstream
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Figure D.7: Power spectral density downstream of the truss tower, Case3-C. a) 3D downstream.
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Figure D.8: Power spectral density downstream of the truss tower, Case3-D. a) 3D downstream.
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Appendix E

Additional figures:
profiles
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Figure E.1: Mean velocity profile for the monopile represented by the CFD-simulations, Blevins’
and Schlichting’s model 3D downstream. a) Blevins’ model b) Schlichtings model
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Figure E.2: Mean velocity profiles for Case3d represented by the CFD-simulations and Powles’

model 3D downstream, including both the individual(red line) and global fit(green line). a)
Case3-A b) Case3-B c¢) Case3-C d) Case3-D
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Figure E.3: Mean velocity profiles for Casel represented by the CFD-simulations and Blevins’
model 3D downstream, including both the individual(red line) and global fit(green line). a)

Casel-A b) Casel-B c¢) Casel-C d) Casel-D
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Figure E.4: Mean velocity profiles for Case2 represented by the CFD-simulations and Blevins’
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Figure F.1: Individual parameter estimates for Casel for Powles’(top row), Blevins’(second row)
and Schlichting’s(third row) model. RMS-error found in bottom row. a) Casel-A b) Casel-B
c¢) Casel-C d) Casel-D
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Figure F.2: Individual parameter estimates for Case2 for Powles’(top row), Blevins’(second row)
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Figure F.3: Individual parameter estimates for Case3 for Powles’(top row), Blevins’(second row)
and Schlichting’s(third row) model. RMS-error found in bottom row. a) Case3-A b) Case3-B
c¢) Case3-C d) Case3-D



Appendix G

Derivation of total turbulence
intensity

The turbulence intensity T'T is defined as a ratio between velocity fluctuations (u’) and the mean
free-stream velocity (Up):

u/

TI = — .
Uo

(G.1)

There are two contributions to the total velocity fluctuations v’ = u},,. Together with the con-
tribution from the sub-grid parameterization there is another contribution from the unsteady
motions (in time).

Since the numerical study is a stochastic process the velocity in each time step, the random
variable U;, includes a predication of turbulent motion. This gives the decomposition

where ¢ is the index number of IV time-steps. The turbulent contribution from each time-step
is denoted as Ut(i) and U; = U + Uu(i) is the ensemble mean written in terms of the overall
mean velocity U and the unsteady fluctuations U, for each time-step i. The ensemble mean
is usually written in brackets < U; >,

n

= . )
Ui=<U; > Jim — ;21 U, (G.3)

where j is the ensemble index. Note that < U, >=0 and % Zf\il U,® = 0.

The total mean velocity is U or the total sum of all ensemble mean velocities divided by the
total number of N time-steps,

1
N

1 1
U, <U;> E <U> (G.4)

i=1 i=1 i=1

U=

~
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Further, the variance of the total velocity describes the total fluctuations due to turbulence:

The term < U;?2 > is unknown, but since

parameterization,

g,

2 TT\2
ensamble,i < (UZ—UZ) >

-2
= <Ui2>_Ui ,

and the variance for the unsteady turbulent motions are known

g

then

The total turbulent intensity is then,

TI(tot) =

IREAR—
121nstoady = NZ(UZ_U)z

1 N
2 —2 —=2
N E (Uonsamblo,i + U; ) -U
i=1
N
i 2 + 2
N Uonsamblo,i Uunstoady

s
I
—_

-

Ounsteady + (% Zi\il Uonsomblo,i)

Uo

S3

(G.5)

(G.6)

(G.7)

(G.8)

the ensemble variance is known from the sub-grid

(G.9)
(G.10)

(G.11)

(G.12)

(G.13)

(G.14)

(G.15)

(G.16)



Appendix H

Scripts

H.1 Tower shadow functions, R-code

Tower shadow functions. This code was provided by Michael Muskulus and modified by Torbjgrn
Ruud Hagen.

# shadow.R: compute, estimate and plot tower shadow models
# Copyright (C) 2011 Michael Muskulus (michael.muskulus@nitnu.no)
# Version 0.9c — ISOPE—2011 paper bugfiz

# CHANGELOG

#

# Version 0.9¢ — Master Thesis (TorbjA, rn)

# — Ready for plotting turbulence intensity

#

#

# Version 0.9d — Master Thesis adds (TorbjA rn)

# — Made ready for implementing 22.5 degree cases

# — Addjusted plots for truss and monopile, ekstra points for black and white
plots

# — Updated: Possiblities for choosing which model you want to plot

#

# Version 0.9c — ISOPE—2011 paper bugfiz

# — Corrected calculation of tower shadow models for truss towers: all members
now used

# — Fized a sign in case Al

# — Fized plotting: showed wrong profiles (relative to begin of structure, not
center)

#

# Version 0.9b — ISOPE—2011 paper

# — Version used for the paper submitted to ISOPE—2011

#

D <- 4.0 # monopile diameter

Dl <- 0.9 # truss large diameter

Ds <— 0.36 # truss small diameter

In <— 401 # mo. points on rake line

ly <— seq(—20.00,+20.00,0.1) # y—coordinates along rake line
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Vo <— 12.0 # free stream wvelocity
ref <— 2.825 # reference distance in D for Powles
# options
adapt .v <— 1 # use actual mean velocity, not free—stream V0?
# values: 0 (use V0), 1 (use V at border), 2 (use profile mean
V)

powles.verbose <— F # show details of Powles / Bladed model?

#fdir <— ”Rdata/”  # where to find / store the data

#fdir <— 7/media/lomega_HDD/ Work/Rdata/” #If the data is stored on ezternal
harddrive

fdir <— 7 /media/lomega_HDD/Work/Rdata/TurbInflow/” #If the data is stored on
external harddrive plus turbulent inflow

# CAVEAT

# lx, mx are "real positions” (from beginning of structure)
# x is "relative position” (from center of structure)
# conversion: x + sxr is “real position”

# max— sxr 1s “relative position”

# monopile data

# rake lines

fn.m < c(’—4d”,7-3d”,7-2d” ,”-1d” ,”70d” ,”1d” ,”2d” ,”3d” ,”4d” ,”5d” ,”6d” ,”7d” ,”8d” ,”9
d”,”10d4” ,711d” ,”12d”,

?—4p5d” ,”=3p5d” ,”—2p5d” ,”—1p5d” ,”—0p5d” ,” 0p5d” ,” 1p5d” ,”2p5d” ,”3p5d” ,”4p5d” ,” 5p5d”)

ds.m <— c(seq(—4,12),seq(—4.5,5.5))

stopifnot (length (ds.m) = length (fn .m))

# center of structure

sx.m <— 0.0

# sort rake lines

ix <— sort(ds.m,index.return=TRUE)8$ix

fn.m <— fn.m[ix]

ds.m <— ds.m[ix]

# position of rake lines

Ix.m <— ds.m * D + sx.m

truss tower data

case A: 0 degrees

case B: 45 degrees

case C: 22p5 degrees

rake lines

fn.A < c(’-4d”,7-3d”,7-2d” ,”—-1d” ,”70d” ,”1d” ,”2d” ,”3d” ,”4d” ,”5d” ,”6d” ,”7d” ,”8d” ,”9
d”,”10d4” ,711d” ,”12d”,

?—4p5d” ,”=3p5d” ,”—2p5d” ,”—1p5d” ,”—0p5d” ,” 0p5d” ,” 1p5d” ,”2p5d” ,”3p5d” ,”4p5d” ,” 5p5d”)

ds.A <— c(seq(—4,12) ,seq(—4.5,5.5))

stopifnot (length (ds.A) = length (fn.A))

fn.B <— fn.A

ds.B <— ds.A

RN

#
#
#
#

stopifnot (length (ds.B) = length (fn.B))
fn.C <—fn.A
ds.C <—ds.A
stopifnot (length (ds.C) = length (fn.C))

# center of structure
sx.A <— 5.4
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sx.B <= 7.637

sx.C <— 7.056

# sort rake lines

ix <— sort(ds.A,index.return=TRUE)8$ix

fn. A <— fn.Alix]

ds . A <— ds.Alix]

ix <— sort(ds.B,index.return=TRUE)8$ix

fn.B <— fn.B[ix]

ds.B <— ds.B[ix]

ix <— sort(ds.C,index.return=TRUE)8$ix

fn.C <~ fn.Cl[ix]

ds.C <— ds.C[ix]

# position of rake lines (CAVEAT: in terms of monopile diameter D)

Ix .A < ds.A %« D+ sx.A

Ix.B <~ ds.B * D+ sx.B

Ix.C < ds.C * D + sx.C

# truss tower cases

cases .A <— ¢(1,4,7,10)

cases .B <— ¢(2,5,8,11)

cases .C <— ¢(3,6,9,12)

# truss tower geometry

# large members

# case A: 0 degrees; cases 1,4,7,10

mx.A <— ¢ (0, 0, 10.8, 10.8)

my.A <— c(5.4, —5.4, 5.4, —5.4)

# case B: 45 degrees: cases 2,5,8,11

mx.B <— ¢ (0, 15.274, 7.637, 7.637)

my.B <— ¢ (0, 0, 7.637, —7.637)

# case C: 22p5 degrees: cases 3,6,9,12

mx.C <— ¢ (0, 14.111, 9.978, 4.133)

my.C <— ¢(—2.923, 2.923, —7.056, 7.056)

# smaller members

# depend on case

mx.al <— c¢( 0, 10.8, 5.4, 5.4)

my.al <— c( O, 0, 5.4, —5.4)

mx.ad <— c( O, 0, 10.8, 10.8, 2.7, 2.7, 8.1, 8.1)
my.ad <— c(2.7, —2.7, 2.7, —-2.7, 5.4, 5.4, 5.4, —5.4)
mx.a7 <— c( O, 0, 10.8, 10.8, 1, 1, 9.8, 9.8)
my.a7 <— c(4.4, —4.4, 4.4, —4.4, 5.4, —-5.4, 5.4, —5.4)
mx.al0 <— ¢c( O, 0, 10.8, 10.8, 5, 5, 5.8, 5.8)
my.al0 <— ¢(0.4, —0.4, 0.4, —-0.4, 5.4, —-5.4, 5.4, —5.4)
mx.b2 <— c¢(3.818, 3.818, 11.455, 11.455)

my.b2 <— c¢(3.818, —3.818, 3.818, —3.818)

mx.b5 <— ¢(1.909, 1.909, 5.782, 5.782, 9.546, 9.546, 13.364, 13.364)
my.b5 <— ¢(1.909, —-1.909, 5.782, —5.782, 5.782, —5.782, 1.909, —1.909)
mx.b8 <— ¢(0.707, 0.707, 14.567, 15.567, 6.93, 6.93, 8.344, 8.344)
my.b8 <— ¢(0.707, —-0.707, 0.707, —0.707, 6.93, —6.93, 6.93, —6.93)
mx.bll <~ ¢(3.536, 3.536, 4.101, 4.101, 11.738, 11.738, 11.173, 11.173)
my.bll <— ¢(3.536, —-3.536, 4.101, —4.101, 3.536, —3.536, 4.101, —4.101)
mx.c3 <— c( 4.989, 12.044, 9.122, 2.067)

my.c3 <— c( —4.989, —2.067, 4.989, 2.067)

mx.c6 <— c( 2.494, 7.483, 11.617, 6.628, 11.011, 13.078, 3.100, 1.033)
my.c6 <— c( —3.954, 6.0227, 3.956, 6.0227, —4.562, 0.427, 4.562, —0.427)
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mx.c9 <— c( 0.9239, 0.9054, 10.3607, 13.7283, 13.1871, 5.057, 3.7503, 0.3827)

my.c9 <— c¢(-3.3057, —6.6733, —6.1321, 1.998, 3.3057, 6.6733, 6.1321, —1.998)

mx.cl2 <— c( 4.6194, 5.3585, 11.8914, 12.1976, 9.4916, 8.7525, 2.2196, 1.9134)

my.cl2 <— c(—4.8364, —5.1426, —2.4366, —1.6975, 4.8364, 5.1426, 2.4366, 1.6975)

# tower shadow models

# potential solution (Wikipedia)

# U(r,theta) = UOx (1 + (R/r) "2)xsqrt(1—2%«cos”"2 theta)

?potential” <— function(x,y,V0,D=1) { # from Bladed theory manual
Vx <= VO + (y"2 — x72)/(y"2

( +x°2)"2 % (D/2)°2 * VO
Vy <— (—2%xx*y) /(y"2 + x7°2)"°2 %« (D/2)"2 % V0 # CAVEAT: VO is wvector in
the manual (!)
R < D/2

r <— sqrt(x"2 + y~2)
list (Vx=Vx,Vy=Vy,V=sqrt (Vx"2 + Vy~"2))
}

?potential2” <— function(x,y,V0,d) { # alternative (Wikipedia)
R < d/2
r <— sqrt(x"2 + y~2)
#Ve <— (272 — y°2)/(y"2 + x°2) « VO— VO x (R/r) 2 # 2?2
#Vy <— (=2xzxy) [(y "2 + x°2)°2 % (D/2)°2 = VO # 22
#V <= sqrt(Vz 2 + Vy 2)
Va <— VO % sqrt (1 + (R/r)"4 + 2« (R/r)"2 * (y"2 — x"2) / 172)
#list (Vi=Vz, Vy=Vy,V=sqrt (Vz"2 + Vy~2),Va=Va)
list (Va=Va)
}

?powles” <— function(x,y,V0,d,delta ,w, ref=NULL, debug=FALSE, bladed=TRUE, cut=TRUE,
deg=60,mixed=ITRUE
,smooth=TRUE, verbose=powles. verbose) {
if (delta < 0) return(rep(Inf , length(y))) # for optimization
if (delta > 1) return(rep(Inf , length(y))) # for optimization
#if (w> 4) return(rep(Inf,length(y))) # for optimization
if ('is.null(ref)) { # just assume that we are in the wake region
if (length(x) != 1) stop(”Cannot._process._more_than.one_x.value._yet...”)
if (verbose) cat(paste(” Scaling._given._w=" round(w,3) ,” delta=" ,round(delta,3) ,”
~to.”))
f.ref <— sqrt(abs(x)/abs(ref*d)) # NEW: ref is in terms of diameter (!!)
w <—w x f.ref # increase with sqrt of distance
delta <— delta / f.ref # decrease with sqrt of distance
if (verbose) cat(paste(”w=" ,round(w,3) ,” delta=" ,round(delta ,3),” at.x=",

x,” _instead of uxref=" ;round(ref ,3) ,” ,.d=" ,round(d,3) ,”.”))
}
xl <— x
if (length(xl1) = 1) x1 <— rep(x,length(y))
ym <— wxd/2
if (debug) {
cat (paste (”Powles:\n”)
cat (paste ("x.=.” ,x,”\n”))
cat (paste ("W_.=." ,w,”\n”))
cat (paste ("D=.7 ,d,”\n”))
cat (paste (”delta._=." ,delta ,”\n”))

print (delta)
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}
A <— 1 — deltax(cos(pixy/(w«d)))" 2
# Bladed: potential flow inside 60 degree cone
if (bladed) {
A2 <— potential2(xl,y,V0=V0,d)$Va / VO
if (mixed) {
# restrict Powles’ model to one half—period
ix1 <— which(y > (wxd) / 180 % 90 | x <= 0)
ix2 <— which(y < —(wxd) / 180 * 90 | x <= 0)
Alixl] <= 1 # NEW
Alix2] <= 1 # NEW
Al <A
# use potential flow if it exhibits the larger deficit
# gives continuous results
ix <— which (A2 < A)
#print(A2[iz])
Alix] <— A2[ix]
if (smooth) {
# where do we have speedup and Powles exhibits slowdown?
ix3 <— which(A2 > 1 & A < 1)
# average both solutions if they exhibit different signs
Alix3] <— (A1[ix3] + A2[ix3])/2
}
} else { # restrict to cone around centerline
# default is 60 degrees in argument
ixl <— which(y > (wxd) / 180 % 60 | x <= 0)
ix2 <— which(y < —(wd) / 180 % 60 | x <= 0)
Alixl] <— A2[ix1]
Alix2] <— A2[ix2]
}
} else {
if (cut) {
Aly > ym] <-1
Aly < -ym] <- 1
}
}
ix <— which(sqrt (x"2 + y"2) <= d/2)
Alix] <= 0 # invalid contribution (inside cylinder)
\Y% <— AxVO0
if (verbose) cat(paste(”min.V=" round(min(V),3),”\n”))
\Y%
}

”

blevins” <— function(x,y,V0,d,cd,x0,verbose=FALSE) {

if (x < 0) return(rep(V0,length(y)))

if (x0 < 0) return(rep(V0,length (y))) # NEW: virtual wake before

x0 <— x0 * d # NEW: z0 in terms of diameter!

#if (z0+x < 0 | c¢d < 0) cat(paste(”*** Blevins z =

,"\n”))

if (x04+4x < 0) return(rep

b <= 0.23 x sqrt(cd=d*(x+x0))

v <= VO — ud * exp(—0.69%(y"2) / b"2)

Inf ,length (y))) # for optimization algorithms

(
if (cd < 0) return (rep(Inf ,length (y))) # for optimization algorithms
# half—width of wake

ud <— 1.02 % VO * sqrt(cdxd / (x+x0)) # wvelocity deficit at centerline
if (verbose) cat(sprintf(”Blevins:._ b.=%8.5f, ud.=_.%8.5f.\n” ,b,ud))

cylinder (1)

”
,x0
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v

}

# mean drag: 1.485 +— 0.005 #This is wrong
#Correct mean drag 0.37 +—0.005

?schlichting” <— function(x,y,V0,d,nu,1) {
if (x < 0) return(rep(V0,length(y)))
Hnu=1.460e—5
l <— 1 = d #NEW: assume | in terms of D
if (1 < 0) return(rep(Inf length(y))) # for optimization algorithms
if (nu < 0) return(rep(Inf , length(y))) # for optimization algorithms
cd <— 0.37
v<— V0 % cd / (4 % sqrt(pi)) * sqrt(VO*1l/nu) / sqrt(x/(1l)) * exp(—y"2 * VO / (4
*x%nu) )
# nu: kinematic viscosity, in m2/s
v<—V0—-v
v

}

# tower shadow models
# truss tower case

”bladed .a” <— function(x,y,V0,delta ,w,case) {
foo <— 0.0
# larger members
if (case %in% cases.A) { mx <— mx.A — sx.A; my <— my.A }
if (case %in% cases.B) { mx <— mx.B — sx.B; my <— my.B }
if (case %in% cases.C) { mx <— mx.C — sx.C; my <— my.C }
for (i in seq(along=mx)) { # larger members
fool <— powles(x—mx[i], y—-my[i], d= D1, delta= delta, w= w, ref= ref,
bladed= TRUE, V0=V0) # need to use reference
foo <— foo + (fool — VO0)
}

# smaller members

if (case %in% cases.B) mx <— mx — sx.B
if (case %in% cases.C) mx <— mx — sx.C
for (i in seq(along=mx)) {
fool <— powles(x—mx[i], y-my[i], d= Ds, delta= delta, w= w, ref= ref, bladed=
TRUE, V0=V0)
foo <— foo + (fool — VO0)

if (case = 1 ) { mx <— mx.al; my <— my.al }
if (case = 2 ) { mx <— mx.b2; my <— my.b2 }
if (case = 3 ) { mx <— mx.c3; my <— my.c3 }
if (case = 4 ) { mx <— mx.ad; my <— my.ad }
if (case = 5 ) { mx <— mx.b5; my <— my.b5 }
if (case = 6 ) { mx <— mx.c6; my <— my.c6 }
if (case = 7 ) { mx <— mx.a7; my <— my.a7 }
if (case = 8 ) { mx <— mx.b8; my <— my.b8 }
if (case =—= 9 ) { mx <— mx.c9; my <— my.c9 }
if (case = 10) { mx <— mx.al0; my <— my.al0 }
if (case = 11) { mx <— mx.bll; my <— my.bll }
if (case = 12) { mx <— mx.cl2; my <— my.cl2 }
if (case %in% cases.A) mx <— mx — sx.A

(

(



H.1 TOWER SHADOW FUNCTIONS, R-CODE

119

foo <— sign(foo) * unlist (lapply (abs(foo),

v <— foo + VO

v

}

”blevins.a” <— function(x,y,V0,cd,x0,case) {

foo <— 0.0

# larger members

if (case %in% cases.A) { mx <— mx.A — sx.A;
if (case %in% cases.B) { mx <— mx.B — sx.B;
if (case %in% cases.C) { mx <— mx.C — sx.C;
for (i in seq(along=mx)) {
fool <— blevins(x—-mx[i], y-my[i], DI, cd,
foo <— foo + (fool — VO0)

}

# smaller members

if
if

if (case =
if (case =
if (case =
if (case =
if (case =
if (case =
if (case =
if (case =
if (case =
if (case =
if (case =
if (case =
if (

(

(

0
1
12)

== O 00 O Uk W N
NN N N N NI NI NN N

{ mx <— mx.al;
{ mx <— mx.b2;
{ mx <— mx.c3;
{ mx <— mx.a4;
{ mx <— mx.b5;
{ mx <— mx.c6;
{ mx <— mx.a7,;
{ mx <— mx.b8;
{ mx <— mx.c9;
{ mx <— mx.al0;
{ mx <— mx.bll;
{ mx <— mx.cl2;

for (i in seq(along=mx)) {
fool <— blevins(x—mx[i], y-my[i], Ds, cd,
foo <— foo + (fool — VO0)

my <—
my <—
my <—
my <—
my <—
my <—
my <—
my <—
my <—
my <—
my <—
my <—

my.
my.
my.
my.
my.
my.
my.
my.
my.
my.
my.
my.
case %in% cases.A) mx <— mx — sx.A

case %in% cases .B) mx <— mx — sx.B

case %in% cases.C) mx <— mx — sx.C

al
b2
c3
a4
b5
c6b
a7
b8
c9

all
bll
cl2

foo <— sign(foo) * unlist (lapply (abs(foo),

v <— foo + VO

v

}

?schlichting .a” <— function(x,y,V0,nu,l,case)

foo <— 0.0

# larger members

if (case %in% cases.A) { mx <—
if (case %in% cases.B) { mx <—
if (case %in% cases.C) { mx <—
for (i in seq(along=mx)) {
fool <— schlichting (x—mx[i], y-my[i], DI,
foo <— foo + (fool — VO0)

}

# smaller members

if (case
if (case
if (case
if (case

1)

2)
3)
4)

{ mx <— mx.al;
{ mx <— mx.b2;
{ mx <— mx.c3;
{ mx <— mx.a4;

mx.A — sx.A;
mx.B — sx.B;
mx.C — sx.C;

my <—
my <—
my <—
my <—

my.
my.
my.
my.

al
b2
c3
a4

function(x) { min(x,V0) }))

my <— my.A }
my <— my.B }
my <— my.C }

x0 , VO=V0)

e e e e A

x0 , VO=V0)

function(x) { min(x,V0) }))

my <— my.A }
my <— my.B }
my <— my.C }

nu, 1,V0=V0)

e o
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if (case = 5 ) { mx <— mx.b5; my <— my.b5 }
if (case = 6 ) { mx <— mx.c6; my <— my.c6 }
if (case = 7 ) { mx <— mx.a7; my <— my.a7 }
if (case = 8 ) { mx <— mx.b8; my <— my.b8 }
if (case = 9 ) { mx <— mx.c9; my <— my.c9 }
if (case = 10) { mx <— mx.al0; my <— my.al0 }
if (case = 11) { mx <— mx.bll; my <— my.bll }
if (case = 12) { mx <— mx.cl2; my <— my.cl2 }
if (case %in% cases.A) mx <— mx — sx.A

if (case %in% cases.B) mx <— mx — sx.B

if (case %in% cases.C) mx <— mx — sx.C

for (i in seq(along=mx)) {
fool <— schlichting (x—mx[i], y-my[i], Ds, nu, 1,V0=V0)
foo <— foo + (fool — VO0)
}
foo <— sign(foo) * unlist (lapply(abs(foo), function(x) { min(x,V0) }))
v <— foo + VO

v

}

# fitting the models

7 fit .bladed” <— function(x,y,u,d,V0, quiet=TRUE, ntry=10, ref=NULL) {
fn <— function(par) {
delta <— par[1]

w <— par[2]
v <— powles(x, y, VO, d, delta, w, bladed= TRUE, ref= ref)
rms <— sqrt (mean((v—u) "2))
rms
}
foo <— NULL

best .value <— Inf
for (i in seq(ntry)) {
pars <— c(runif(1l,min=0.0,max=1.0) ,runif(n=1,min=0.5,max=3.0))
fool <— optim (par=pars, fn=fn ,method="Nelder—Mead” ,control=list (maxit=500))
if (fool$value < best.value) {
foo <— fool
best.value <— fool$value
}
}
if (!quiet) print(foo)
delta <— foo$par[1]
w <— foo$par[2]
rms <— fooS$value
list (delta=delta ,w=w, rms=rms)
}

?fit .blevins” <— function(x,y,u,d,V0, quiet=TRUE, ntry=10) {
fn <— function(par) {
cd <— par[1]
x0 <— par[2]
if (cd < 0) return(+Inf)
#if (z1 < 0) return(+Inf)
v <— blevins(x,y,V0,d,cd,x0)
rms <— sqrt (mean((v—u) "2))



H.1 TOWER SHADOW FUNCTIONS, R-CODE 121
rms
}
foo <— NULL

best .value <— Inf
for (i in seq(ntry)) {
pars <— c(runif(l,min=0.25 max=3.0) ,runif(n=1,min=0.5,max=9.0))
fool <— optim (par=pars, fn=fn ,method="Nelder—Mead” ,control=list (maxit=500))
if (fool$value < best.value) {
foo <— fool
best .value <— fool$value
}
}
if (!quiet) print(foo)
cd < fooS$par[1]
x0 <— fooS$par[2]
rms <— foo$value
list (cd=cd,x0=x0,rms=rms)

}

7 fit .schlichting” <— function(x,y,u,d,V0, quiet=IRUE, ntry=10) {
fn <— function(par) {
nu <— par[l]
1 <— par[2]
if (nu < 0) return(+Inf)
#if (z1 < 0) return(+Inf)
v <— schlichting (x,y,V0,d,nu,1)
rms <— sqrt (mean((v—u) "2))
rms
}
foo <— NULL
best .value <— Inf
for (i in seq(ntry)) {
pars <— c(runif(l,min=0.25max=3.0) ,runif(n=1,min=0.5,max=9.0))
fool <— optim (par=pars, fn=fn ,method="Nelder—Mead” ,control=list (maxit=500))
if (fool$value < best.value) {
foo <— fool
best.value <— fool$value
}
}
if (!quiet) print(foo)
nu <— fooS$par[1]
1 <— foo$par[2]
rms <— foo$value
list (nu=nu, =1 ,rms=rms)

}

# fitting the models
# truss tower cases

7 fit .bladed.a” <— function(x,y,u,case,V0, quiet=FALSE, ntry=10) {
fn <— function(par) {
delta <— par[1]
w <— par[2]
v <— bladed.a(x,y,V0,delta ,w, case)
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rms <— sqrt (mean((v—u) "2))
rms
}
foo <— NULL
best .value <— Inf
for (i in seq(ntry)) {
pars <— c(runif(1l,min=0.0,max=1.0) ,runif(n=1,min=0.5,max=5.0))
fool <— optim (par=pars, fn=fn ,method="Nelder—Mead” ,control=list (maxit=500))
if (fool$value < best.value) {
foo <— fool
best .value <— fool$value

}
}
if (!quiet) { cat(paste(”BLADED.FIT:\n”)); print(foo) }
delta <— foo$par[1]
w <— foo$par[2]
rms <— foo$value
list (delta=delta ,w=w, rms=rms)

}

”?fit .blevins.a” <— function(x,y,u,case,V0, quiet=FALSE, ntry=10) {
fn <— function(par) {
cd <— par[1]
x0 <— par[2]
v <— blevins.a(x,y,V0,cd ,x0,case)
rms <— sqrt (mean((v—u) "2))
rms
}
foo <— NULL
best .value <— Inf
for (i in seq(ntry)) {
pars <— c(runif(1l,min=0.25 max=3.0) ,runif(n=1,min=0.5,max=9.0))
fool <— optim (par=pars, fn=fn ,method="Nelder—Mead” ,control=list (maxit=500))
if (fool$value < best.value) {
foo <— fool
best.value <— fool$value

}

if (!quiet) { cat(paste(”BLEVINS_FIT:\n”)); print(foo) }
cd <— foo$par[1]

x0 <— foo$par[2]

rms <— foo$value

list (cd=cd,x0=x0,rms=rms)

}

7 fit .schlichting .a” <— function(x,y,u,case,V0, quiet=FALSE, ntry=10) {
fn <— function(par) {
nu <— par[l]
1 <— par[2]
v <— schlichting .a(x,y,V0,nu,1l, case)
rms <— sqrt (mean((v—u) "2))
rms

foo <— NULL
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best .value <— Inf
for (i in seq(ntry)) {
pars <— c(runif(1l,min=0.25 max=3.0) ,runif(n=1,min=0.5,max=9.0))
fool <— optim (par=pars, fn=fn ,method="Nelder—Mead” ,control=list (maxit=500))
if (fool$value < best.value) {
foo <— fool
best.value <— fool$value
}

}
if (!quiet) { cat(paste(”SCHLICHTING_.FIT:\n”)); print(foo) }

nu <— foo$par[1]
1 <— foo$par[2]
rms <— foo$value
list (nu=nu, =1 ,rms=rms)

}

# plotting mean velocity profiles for black and white figs

largestep <— 6

#Potential

#pl <— seq(0,400,20) #Extra points for potential

#Powles

p2 <— c(seq(0,150,40) ,seq(250,400,40)) #Ezxtra points for Powles

mp2 <— seq(178,223,5) #Extra points monopile in the middle monopile

PtmOdeg <— c(seq(137,161,largestep) ,seq(245,263,largestep)) # Extra points for
truss main cylinder Odeg

Ptm22p5deg <— c(seq(121,139,largestep) ,seq(261,279,largestep) ,seq(161,179,
largestep) ,seq (221,239 ,largestep)) # Eztra points for truss main cylinder 22
pbdeg

Ptm45deg <— c(seq(191,209,largestep) ,seq (115,133 ,largestep) ,seq(267,285,largestep)
) # Eztra points for truss main cylinder 45deg

#Blevins

p3 <— seq(5,400,40) #Eztra points for Blevins

mp3 <— seq(181,221,5) #Extra points monopile in the middle

#BtmOdeg <— c(seq(187,161,largestep),seq(245,263,largestep)) # Extra points for
truss main cylinder Odeg

#Schlichting

p4 <— seq(10,400,40) #Extra points for Schlichting

mpd <— seq(179,219,5) #Extra points in the middle monopile

#Stm0deg <— c(seq(187,161,largestep),seq(245,263,largestep)) # Extra points for
truss main cylinder Odeg

HCOFD

pb <— seq(3,400,40) #Eztra points for CFD

mp5 <— seq(180,220,5) #Extra points in the middle monopile

#CtmOdeg <— c(seq(187,161,largestep),seq(245,263,largestep)) # Extra points for
truss main cylinder Odeg

# Truss small members need special treatment

smallstep <— 6
smallstep22pb <—20

#Casel
sml <— seq(196,204,smallstep)
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#Case?

sm2 <— c(seq(158,166,smallstep) ,seq(234,242,smallstep))

#Case8

sm3 <— c(seq(146,154,smallstep22pb) ,seq (246,254, smallstep22pb) ,seq (216,224,
smallstep22pb) ,seq (176,184 ,smallstep22p5))

#Casey

smd <— c(seq(169,177,smallstep) ,seq(223,231,smallstep))

#Caseb

smb <— c(seq(169,177,smallstep) ,seq(223,231,smallstep) ,seq(142,150,smallstep) ,seq
(250,258, smallstep))

#Caseb

smb <— c(seq (121,279 ,smallstep22pb)) #This adds points to the whole section of
cylinders

#Case7

#Case8

#Case9

#Casell

sml0 <— c(seq(185,215,smallstep))

#Casell

smll <— c(seq(147,177,smallstep),seq(223,253,smallstep))

#casel?2

sml2 <— c(seq(121,279,smallstep)) # Points for whole section

# monopile

exp.y <— ¢(0.075,0.05,0.025,0,—-0.025,—0.05,—-0.075)
exp.y <— exp.y/0.025
expmononorm <—¢(0.93,1.04,0.85,0.41,0.85,1.04,0.93)

?plot . monopile” <— function(id,delta=0.4,w=1.0,cdb=1.0,nu=1.0,x0=6,1=6,yl=c(2,17) ,
V0=V0, verbose=TRUE, best . fit=FALSE, 1g=TRUE, turb=FALSE, use . vx=FALSE, Global=FALSE
,CFD=TRUE, bladed=TRUE, blevins=TRUE, schlichting=TRUE, potential=TRUE,BW=FALSE,
norm=FALSE, exp=FALSE) {

# options

# — best. fit —— find best parameters

# = lg — plot legend (names of different methods)

# — turb — wuse turbulent cases (different data file)

# — use.vr — wuse z—wvelocity (instead of wvelocity magnitude)
# distances

x <— Ilx.m[id] — sx.m # relative position

y <= ly

cat (paste (” Monopile_at.” ,x,”’m.distance _from._center\n”))

# setting up the coordinate system

if (norm)plot (y/D,y/D, type="n" ,ylim=c(0.5,1.2) ,xlim=c(—5,5) ,xlab=expression(y/D) ,
ylab=expression (U/U[0]) ,bty="n")

else plot(y,y,type="n” ,ylim=yl ,xlab="y.[m]” ,ylab="velocity .[m/s]” ,bty="n")

if (verbose) title (main=paste (" Monopile _Q." ;x,” m_(” ,fn.A[id],”)” ,sep=""))

# read data

fn <— paste (fdir ,” monopile—" ,fn.m[id],” .Rdata” ,sep=""")

if (turb) fn <— paste(fdir ,” turb—monopile—",fn.m[id],” .Rdata” ,sep="")
cat (paste (” Looking _for_file.” ;fn,”\n”))

if (!file.exists (fn)) stop(”Not_found —._check_your.files”)

load (fn)

y <— fl8y

u <— fl$mean.v
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if (use.vx) u <— fl$mean.vx

if (adapt.v = 1) VO <— u[l]

if (adapt.v = 2) V0O <— mean(u)

if (verbose) {
du <— fl8mean.v — fl$mean.vx
cat(sprintf(”Max._difference _between_velocity .magnitude .and .x—component .=_.%38.5

[ ()

if (norm) abline (h=V0/12,1ty=4)

else abline (h=VO0, lty=4)

cat (paste ("V0_=_" ,round (V0,4) ,”\n”))

# CFD profile
if (CFD) {
if (norm)lines(y/D,u/12,col="blue” ,lwd=1)
if (exp)points(exp.y,expmononorm ,type="0" ,1ty=2,col="red”)
if (exp)legend (” bottomright” ,col=c(” blue” ,”red”) ,pch=c(46,21) ,lty=c(1,2),legend=c
("CFD” ,” Physical_experiment” ) ,bg=" white”)
else lines(y,u,col="blue” | lwd=1)
£ (BW) {
lines (y[p5],u[p5],type="0" ,pch=4,col="blue” ,1ty=0) #extra points
lines (y [mp5] ,u[mp5] , type="0" ,pch=4,col="blue” ,1ty=0) #eztra points
}
}
# Potential profile
if (potential){
p <— potential2(x,y,V0=V0,D)$Va
lines (y,p, col="darkred” ,1ty=5)
legend (" bottomleft” ,col=c(” blue” ,” darkred”) ,lty=c(1,5) ,legend=c (”CFD” ,” Potential
7)) ,bg="white” ;cex=0.8)
}
if (bladed){
# Bladed profile
if (best.fit) {
foo <— fit.bladed (x=x,y=y,u=u,d=D,V0=V0) # CAVEAT: no reference walues here
delta <— fooS$delta
w <— foo$w
legendl <— substitute (Delta = v, list (v=sprintf(”%5.3f” ,delta)))
legend2 <— substitute (w = v, list (v=sprintf (" %5.3f” ,w)))
# legend8 <— substitute (z[r] == v, list (v=sprintf("%5.1f”,ref)))
# legend(”bottomleft”, col=c(”black”,”red”,”red”),lty=2,legend=do. call (7
expression”, c(legend3 ,legendl ,legend?2)),bg="white”,cex=0.8)
if (BW)legend (” bottomleft” ,col=c(”red” ,”red”),pch=22,1ty=2,legend=do. call (”
expression”
c(legendl ,legend2)) ,bg="white” ,cex=0.8)
else legend(” bottomleft” ,col=c(”red” ,”red”) ,lty=2,legend=do. call (" expression” ,
c(legendl ,legend2)) ,bg="white” ,cex=0.8)
}
foo <— powles(x=x,y=y,d=D, delta=delta ,w=w,V0=V0, bladed=TRUE)
if (norm)lines(y/D, foo/12,col="red” ,lwd=1,1ty=2)
else lines (y,foo,col="red” ,lwd=1,lty=2)
£ (BW) {
lines (y[p2],foo[p2],type="0" ,pch=22,col="red” ,1ty=0) #eztra points
lines (y [mp2], foo [mp2] ,type="0" ,pch=22,col="red” ,1ty=0) #eztra points

}
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# The following profiles are not defined in front of the monopile
if (x >D) {
if (blevins){
# Blevins profile
if (best.fit) {
bar <— fit.blevins(x=x,y=y,u=u,d=D,V0=V0)
cdb <— bar$cd
x0 <— bar$x0
legendl <— substitute (C[d] = v, list (v=sprintf(”%5.3f” ,cdb)))
legend2 <— substitute (x[0] = v, list (v=sprintf(”%5.3f” ,x0)))

if (BW) legend(”bottomright” ,col=c(” darkgreen” ,” darkgreen”) ,pch=24,1ty=3,
,cex=0.8)

legend=do. call (" expression” ,c(legendl ,legend2)) ,bg="white”

else legend(” bottomright” ,col=c(” darkgreen” ,” darkgreen”) 1ty =3,legend=do. call

(" expression” ,c(legendl ,legend2)) ,bg="white” ,cex=0.8)

}
bar <— blevins(x=x,y=y,d=D, cd=cdb ,x0=x0,V0=V0)
lines(y bar , col="darkgreen” ,lwd=1,1ty=3)

£ (BW){
llnes( [p3],bar [p3],type="0" ,pch=24,col="darkgreen” ,1ty=0) #extra points
lines (y [mp3] , bar [mp3] , type="0" ,pch=24,col="darkgreen” ,1ty=0) #eztra points
}

}
if (schlichting){
# Schlichting profile
if (best.fit) {
bar <— fit.schlichting (x=x,y=y,u=u,d=D,V0=V0)
nu <— bar$nu
1 <— bar$l
legendl <— substitute (nu = v, list (v=sprintf(”%5.3f” ,nu)))
legend2 <— substitute (1 = v, list (v=sprintf(”"%5.3f” ,1)))

}

bar <— schlichting (x=x,y=y,d=D,nu=nu, l=1 ,V0=V0)
if (CFD=FALSE) ltyl <— 1

else ltyl <— 4

lines(y bar , col=" purple” ,lwd=1,1ty=ltyl)

£ (BW){
llnes( [p4],bar [p4],type="0" ,pch=21,col="purple” ,1ty=0) #extra points
lines (y [mp4] , bar [mp4] ,type="0" ,pch=21,col="purple” ,1ty=0) #exztra points
}

if (best.fit & BW) legend(” bottomleft” ,col=c(” purple” ,” purple”) ,pch=21,1ty=

ltyl ,legend=do. call (” expression” ,c(legendl ,legend2)) ,bg=" white”
if (best.fit & BW=—FALSE) legend (”right” ,col=c(” purple” ,” purple”

}

}
# Legend

,cex=0.8)

S ty=ltyl,
legend=do. call (” expression” ,c(legendl ,legend2)) ,bg="white” ,cex=0.8)

if (lg & BW=—FALSE & Global=—FALSE) legend (” left” ,col=c(” blue” ,”red” ,” darkgreen”

,”purple” ;”black”) ,

lty=c(1,2,3,4,5) ,legend=c(”CFD” ,” Bladed” ,” Blevins” ,” Schlichting” ,” Potential”) ,cex

=0.8,bg=" white”)
if (lg & BW & !CFD) legend(”right” ,pch=c(24,21),col=c(” darkgreen”
c(3,1) ,legend=c(” Blevins” ,” Schlichting”) ,cex=0.5,bg=" white”)

” purple ” )

ty=
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if (lg & BW & CFD) legend(” left” ;col=c(”blue” ,” black” ,”red”) ,pch=c(4,46,22) ,1ty=
c(1,5,2) ,legend=c(”CFD” ,” Potential” ,” Bladed” ) ,cex=0.5,bg=" white”)

if (Global) legend(”top” ,col=c(” blue” ,”red”),lty=c(1,2) ,legend=c(”CFD” ,”
Individual —fit”) ,cex=0.8,bg=" white”)

res <— NULL

# return optimal parameters if fitting

if (best.fit) res <— list(delta=delta ,w=w,cdb=cdb ,nu=nu,x0=x0,1=1)

res

}

# plotting mean wvelocity profiles
# truss tower cases

?plot . truss.a” <— function(id,case,delta=0.4,w=1.0,cdb=1.0,nu=1.0,x0=6,1=6,yl=c
(2,17) ,VO=V0, verbose=TRUE, best . fit=FALSE, use . vx=FALSE, 1g=TRUE, turb=FALSE,
Global=FALSE,CFD=TRUE, schlichting=TRUE

, blevins=TRUE, bladed=TRUE, potential=TRUE,BW=FALSE, norm=FALSE) {

# options

# — best.fit —— find best parameters

# = lg — plot legend (names of different methods)

# — turb — use turbulent cases (different data file)

# — adapat.v —— use actual mean velocity (not free—stream V0)

# - — wvalues: 0 (use V0), 1 (use V at border), 2 (use profile mean
V)

# — use.vx — use z—velocity (instead of velocity magnitude)

# distances

if (case %in% cases.A) x <— Ix.A[id] — sx.A # relative position

if (case %in% cases.B) x <— 1x.B[id] — sx.B

if (case %in% cases.C) x <— 1x.C[id] — sx.C

y <= ly

cat (paste (” Truss.case” ,case,” at.” ,x,”’m_distance .from_center\n”))

# setting up the coordinate system

if (norm)plot(y/D,y/D, type="n" ,ylim=c(0.5,1.2) ,xlim=c(—5,5) ,xlab=expression(y/D) ,
ylab=expression (U/U[0]) ,bty="n")

else plot(y,y,type="n” ,ylim=yl ,xlab="y.[m]” ,ylab="velocity .[m/s]” ,bty="n")

if (verbose & case %in% cases.A) title (main=paste(” Case.” ,case,” Q.” ;x,” .m_(”7 ,fn
Alid].")" sep=""))
if (verbose & case %in% cases.B) title (main=paste (” Case.” ,case,” Q.” ;x,” .m_(” ,fn
B[id].")" sep=""))
if (verbose & case %in% cases.C) title (main=paste(” Case.” ,case,” Q.” x,” .m_(” ,fn
Clid].")" sep=""))
# read data
if (Mturb){
if (case %in% cases.A) fn <— paste(fdir ,” truss” ,case,”—” ,fn.A[id],”.Rdata” ,sep="
")
if (case %in% cases.B) fn <— paste(fdir,” truss” ,case,”—” ,fn.B[id],”.Rdata” ,sep="
")
if (case %in% cases.C) fn <— paste(fdir,” truss” ,case,”—” ,fn.C[id],” .Rdata” ,sep="
)
}
if (turb) {
if (case %in% cases.A) fn <— paste(fdir,”turb—truss” ,case,”—” ,fn.A[id],”.Rdata
" sep="")
if (case %in% cases.B) fn <— paste(fdir,”turb—truss” ,case,”—” ,fn.B[id],”.Rdata

”

,Sep:” ” )
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if (case %in% cases.C) fn <— paste(fdir,”turb—truss” ,case,”—” ,fn.C[id],” .Rdata

7 sep="")

}

cat (paste (” Looking -for_file.” ;fn,”\n”))

if (!file.exists (fn)) stop(”Not_found ——._check_your.files”)

load (fn)

y <— fl18y

u <— fl$mean.v

if (use.vx) u <— fl$mean.vx

if (adapt.v = 1) VO <— u[1l]
if (adapt.v = 2) V0O <— mean(u)
if (verbose) {
du <— fl8mean.v — fl$mean.vx
cat(sprintf(”Max. _difference _between_.velocity .magnitude._and _x—component .=_%8.5
[ (i)

if (norm) abline (h=V0/12,1ty=4)
else abline (h=V0, 1ty=4)
cat (paste ("V0_=_" ,round (V0,4) ,”\n”))

if (CFD) {
# CFD profile
if (norm)lines(y/D,u/12,col="blue” ,lwd=1)
#if (norm)legend(”bottomright”, col=c(”blue”,”red”),lty=c(1,2),legend=c(”CFD”,”
Physical experiment”),bg="white”)

else lines(y,u,col="blue” | lwd=1)
£ (BW) {
lines (y[p5],u[p5],type="0" ,pch=4,col="blue” ,1ty=0) #extra points

if (case==1){ lines(y[sml],u[sml],type="0" ,pch=4,col="blue” ,1ty=0) #eztra

points
lines (y[PtmOdeg ] ,u[PtmOdeg] , type="0" ,pch=4,col="blue” |1ty
=0) #exztra points

if (case==2){ lines(y[sm2],u[sm2],type="0" ,pch=4,col="blue” ,1ty=0) #eztra
points
lines (y[Ptm45deg] ,u[Ptm45deg] , type="0" ,pch=4,col="blue”
lty=0) #eztra points

if (case==3){ lines(y[sm3],u[sm3],type="0" ,pch=4,col="blue” ,1ty=0) #eztra
points
lines (y [Ptm22pbdeg] ,u[Ptm22p5deg] ,type="0" ,pch=4,col="blue
7 1ty=0) #extra points

if (case==4){ lines(y[sm4],u[sm4],type="0" ,pch=4,col="blue” ,1ty=0) #eztra
points
lines (y[PtmOdeg ] ,u[PtmOdeg] , type="0" ,pch=4,col="blue” |1ty
=0) #exztra points

if (case==5){ lines(y[smb5],u[smb],type="0" ,pch=4,col="blue” ,1ty=0) #eztra
points
lines (y[Ptm45deg] ,u[Ptm45deg] , type="0" ,pch=4,col="blue”
lty=0) #exztra points
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if (case==6){ lines(y[sm6],u[sm6],type="0" ,pch=4,col="blue” ,1ty=0) #eztra
points
lines (y [Ptm22p5deg] ,u[Ptm22p5deg] ,type="0" ,pch=4,col="blue
7 1ty=0) #extra points

if (case==7){ #lines (y[sml],u[sml], type="0" ,pch=4,col="blue”,lty=0) #extra
points
lines (y [PtmOdeg ] ,u[PtmOdeg] , type="0" ,pch=4,col="blue” , 1ty
=0) #extra points

if (case==8){ #lines (y[sm2],u[sm2],type="0" ,pch=4,col="blue”,lty=0) #extra
points
lines (y[Ptm45deg] ,u[Ptm45deg] ,type="0" ,pch=4,col="blue”
lty=0) #exztra points

if (case==9){ #lines (y[sm3],u[sm3],type="0",pch=4,col="blue”,lty=0) #extra
points
lines (y [Ptm22pbdeg] ,u[Ptm22p5deg] ,type="0" ,pch=4,col="blue
7 1ty=0) #extra points

if (case==10){ lines(y[sml0],u[sml0],type="0" ,pch=4,col="blue” ,1ty=0) #
extra points
lines (y[PtmOdeg ] ,u[PtmOdeg] , type="0" ,pch=4,col="blue” , 1ty
=0) #extra points

}
if (case==11){ lines(y[smll],u[smll],type="0" ,pch=4,col="blue” ,lty=0) #
extra points
lines (y[Ptm45deg] ,u[Ptm45deg] ,type="0" ,pch=4,col="blue”
lty=0) #exztra points

if (case==12){ lines(y[sml2],u[sml2],type="0" ,pch=4,col="blue” ,1ty=0) #
extra points
lines (y [Ptm22p5deg] ,u[Ptm22p5deg] ,type="0" ,pch=4,col="blue
7 1ty=0) #extra points

}
}
lcol <— ”blue”
In < "CFD”

It <-1
points <— 4
}

# Potential profile
if (potential){
p <— potential2(x,y,V0=V0,D)$Va
lines (y,p, col="darkred” ,1ty=5)
if (CFD) {
lcol <— c¢(lcol ,”darkred”)
In <— c¢(ln,”Potential”)
It < c(1t,5)
points <— c(points,0)
}

else {
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lcol <— ”black”

In <— ”Potential”
1t <- 5

points <— 0

}

if (bladed) {
# Bladed profile
# Global fitting

if (Global){
legendl <— substitute (Delta[r] = v, list (v=sprintf(”%5.3f” ,delta)))
legend2 <— substitute (w[r] = v, list (v=sprintf (" %5.3f” ,w)))

legend3 <— substitute (x[r] = v, list (v=sprintf (" %5.1f” ;ref)))
legend (" bottomright” ,col=c(” darkgreen” ,” darkgreen” ,” darkgreen”) ,lty=3,legend
=do. call ("expression” ,c (legend3 ,legendl ,legend2)) ,bg="white” ,cex=0.8)

foo <— bladed.a(x=x,y=y, delta=delta ,w=w, case=case ,V0=V0)
if (norm)lines(y/D, foo/12,col="darkgreen” ,lwd=1,lty=3)
else lines(y,foo,col="darkgreen” ,lwd=1,1ty=3)
}
# Individual fitting
if (best.fit) {
foo <— fit.bladed.a(x=x,y=y,u=u,case,V0=V0) # CAVEAT: global reference wvalue

used
delta <— foo$delta
w <— foo$w
legendl <— substitute (Delta[r] = v, list (v=sprintf(”%5.3f” ,delta)))
legend2 <— substitute (w[r] = v, list (v=sprintf (" %5.3f” ,w)))
legend3 <— substitute (x[r] = v, list (v=sprintf (" %5.1f” ;ref)))

if (BW) legend(” bottomleft” ,col=c(”black” ,”red” ,”red”) ,pch=c(46,22,22) ,1ty=2,
legend=do. call (" expression” ,c(legend3 ,legendl ,legend2)) ,bg="white” ,cex
=0.8)

if (Global) legend(” bottomleft” ,col=c(”red” ,”red” ,”red”),lty=2,legend=do. call
(" expression” ,c(legend3 ,legendl ,legend2)) ,bg="white” ,cex=0.8)

else legend(” bottomleft” ,col=c(”black” ,”red” ,”red”) ,lty=2,legend=do. call (”
expression” ,c(legend3 ,legendl ,legend2)) ,bg="white” ,cex=0.8)

foo <— bladed.a(x=x,y=y, delta=delta ,w=w, case=case ,V0=V0)
if (norm)lines(y/D, foo/12,col="red” ,lwd=1,1ty=2)
else lines (y,foo,col="red” ,lwd=1,lty=2)

}
if (Global=FALSE & best . fit=—FALSE) {
foo <— bladed.a(x=x,y=y, delta=delta ,w=w, case=case ,V0=V0)
if (norm)lines(y/D, foo/12,col="red” ,lwd=1,1ty=2)
else lines (y,foo,col="red” ,lwd=1,lty=2)
}
if (BW) {
lines (y[p2],foo[p2],type="0" ,pch=22,col="red” ,1ty=0) #eztra points
if (case==1){ lines(y[sml],foo[sml],type="0",pch=22,col="red” ,1ty=0) #eztra

points
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lines (y[PtmOdeg ], foo [PtmOdeg] ,type="0" ,pch=22,col="red”
lty=0) #exztra points

}
if (case==2){ lines(y[sm2],foo[sm2],type="0" ,pch=22,col="red” ,1ty=0) #eztra
points
lines (y[Ptm45deg] , foo [Ptm45deg] ,type="0" ,pch=22,col="red” ,
lty=0) #exztra points
}
if (case==3){ lines(y[sm3],foo[sm3],type="0" ,pch=22,col="red” ,1ty=0) #eztra
points
lines (y [Ptm22pb5deg] , foo [Ptm22p5deg]| , type="0" ,pch=22,col="
red” ,1ty=0) #extra points
}
if (case==4){ lines(y[sm4],foo[sm4],type="0" ,pch=22,col="red” ,1ty=0) #eztra
points
lines (y[PtmOdeg ], foo [PtmOdeg] ,type="0" ,pch=22,col="red”
lty=0) #exztra points
}
if (case==5){ lines(y[smb],foo[smb],type="0" ,pch=22,col="red” ,1ty=0) #eztra
points
lines (y[Ptm45deg] , foo [Ptm45deg] ,type="0" ,pch=22,col="red” ,
lty=0) #exztra points
}
if (case==6){ lines(y[sm6],foo[sm6],type="0" ,pch=22,col="red” ,1ty=0) #eztra
points

lines (y [Ptm22p5deg] , foo [Ptm22p5deg]| , type="0" ,pch=22,col="
red” ,1ty=0) #extra points

if (case==7){ #lines (y[sml], foo[sml],type="0",pch=22,col="red”,lty=0) #
extra points
lines (y[PtmOdeg] , foo [PtmOdeg] ,type="0" ,pch=22,col="red”
lty=0) #exztra points

if (case==8){ #lines (y[sm2],foo[sm2],type="0",pch=22,col="red”,lty=0) #
extra points
lines (y[Ptm45deg] , foo [Ptm45deg] ,type="0" ,pch=22,col="red” ,
lty=0) #exztra points

if (case==9){ #lines (y[sm3], foo[sm3],type="0",pch=22,col="red”,lty=0) #
extra points
lines (y [Ptm22pb5deg] , foo [Ptm22p5deg]| , type="0" ,pch=22,col="
red” ,1ty=0) #extra points

}
if (case==10){ lines(y[sml0],foo[sml0],type="0" ,pch=22,col="red” ,lty=0) #
extra points
lines (y[PtmOdeg ], foo [PtmOdeg] ,type="0" ,pch=22,col="red”
lty=0) #eztra points

if (case==11){ lines(y[smll],foo[smll],type="0" ,pch=22,col="red” ,lty=0) #
extra points
lines (y [Ptm45deg] , foo [Ptm45deg] ,type="0" ,pch=22,col="red” ,
lty=0) #exztra points

if (case==12){ lines(y[sml2],foo[sml2],type="0" ,pch=22,col="red” ,lty=0) #
extra points
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lines (y [Ptm22pbdeg] , foo [Ptm22p5deg]| , type="0" ,pch=22,col="
red” ,1ty=0) #extra points
}
}
if (CFD=IRUE || potential=TRUE) {
lcol <= c(lcol ,”red”)
In <— c¢(ln,”Bladed”)
It  <— c(1t,2)
points <— c(points,22)

}
else{
lcol <— ”red”
In <— ”Bladed”
It <— 2
points <— 22
}
}
# The following profiles are not defined in front of the monopile
if (x >D) {

if (blevins) {

if (Global){
legendl <— substitute (C[d] = v, list (v=sprintf(”%5.3f” ,cdb)))
legend2 <— substitute (x[0] = v, list (v=sprintf(”%5.3f” ,x0)))
if (BW) legend(”bottomright” ,col=c(” darkgreen” ,” darkgreen”) ,pch=24,1ty=3,
legend=do. call (" expression” ,c(legendl ,legend2)) ,bg="white” ,cex=0.8)
else legend(” bottomright” ,col=c(” darkgreen” ,” darkgreen”) ,lty=3,legend=do.
call (”expression” ,c(legendl ,legend2)) ,bg="white” ,cex=0.8)

bar <— blevins.a(x=x,y=y,cd=cdb,x0=x0, case=case ,V0=V0)
lines (y,bar, col="darkgreen” ,lwd=1,1ty=3)

}

# Blevins profile
if (best.fit) {
bar <— fit.blevins.a(x=x,y=y,u=u, case,V0=V0)
cdb <— bar$cd
x0 <— bar$x0
legendl <— substitute (C[d] = v, list (v=sprintf(”%5.3f” ,cdb)))
legend2 <— substitute (x[0] = v, list (v=sprintf(”%5.3f” ,x0)))
if (BW) legend(” bottomleft” ,col=c(” darkgreen” ,” darkgreen”) ,pch=24, 1ty =3,
legend=do. call (" expression” ,c(legendl ,legend2)) ,bg="white” ;cex=0.8)
else legend(” bottomright” ,col=c(” darkgreen” ,” darkgreen”) ,lty=3,legend=do.
call ("expression” ,c(legendl ,legend2)) ,bg="white” ,cex=0.8)

#if (BW) legend(”bottomleft”,col=c(”red”,”red”),pch=24,lty=2,legend=do. call
(7 expression”,c(legendl ,legend2)),bg="white”,cex=0.8)

#else legend(”bottomleft”,col=c(”’red”,”red”),lty=2,legend=do. call (”
expression”, c(legendl ,legend2)),bg="white”,cex=0.8)

bar <— blevins.a(x=x,y=y,cd=cdb,x0=x0, case=case ,V0=V0)
lines (y,bar, col="darkgreen” ,lwd=1,1ty=3)

#lines (y,bar, col="red”  lwd=1,lty=2)

}
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if (Global=FALSE & best . fit=—FALSE) {
bar <— blevins.a(x=x,y=y,cd=cdb,x0=x0, case=case ,V0=V0)
lines (y,bar, col="darkgreen” ,lwd=1,1ty=3)

}

£ (BW) {
lines (y[p3],bar [p3],type="0" ,pch=24,col="darkgreen” ,1ty=0) #extra points
if (case==1){ lines(y[sml],u[sml],type="0" ,pch=24,col="darkgreen” ,l1ty=0) #
extra points
lines (y[PtmOdeg ] ,u[PtmOdeg] , type="0" ,pch=24,col="darkgreen
7 1ty=0) #extra points

if (case==2){ lines(y[sm2],bar [sm2],type="0" ,pch=24,col="darkgreen” ,1ty=0)
#extra points
lines (y[Ptm45deg] , bar [Ptm45deg] ,type="0" ,pch=24,col="
darkgreen” ,1ty=0) #ezira points

if (case==3){ lines(y[sm3],bar [sm3],type="0" ,pch=24,col="darkgreen” ,1ty=0)
#extra points
lines (y [Ptm22pbdeg] , bar [Ptm22p5deg]| , type="0" ,pch=24,col="
darkgreen” ,1ty=0) #ezira points

if (case==4){ lines(y[sm4],bar [sm4],type="0" ,pch=24,col="darkgreen” ,1ty=0)
#extra points
lines (y[PtmOdeg ] , bar [PtmOdeg] , type="0" ,pch=24,col="
darkgreen” ,1ty=0) #ezitra points

if (case==5){ lines(y[smb],bar [smb5],type="0" ,pch=24,col="darkgreen” , 1ty=0)
#extra points
lines (y[Ptm45deg] , bar [Ptm45deg] ,type="0" ,pch=24,col="
darkgreen” ,1ty=0) #eztra points

if (case==6){ lines(y[sm6],bar [sm6],type="0" ,pch=24,col="darkgreen” ,1ty=0)
#extra points
lines (y [Ptm22p5deg] , bar [Ptm22p5deg]| , type="0" ,pch=24,col="
darkgreen” ,1ty=0) #ezitra points

if (case==7){ #lines (y[sml],bar[sml],type="0",pch=24,col="darkgreen”, lty=0)
#extra points
lines (y [PtmOdeg ] , bar [PtmOdeg] , type="0" ,pch=24,col="
darkgreen” ,1ty=0) #ezira points

if (case==8){ #lines (y[sm2],bar[sm2],type="0",pch=24,col="darkgreen”, lty=0)
#extra points
lines (y[Ptm45deg] , bar [Ptm45deg] ,type="0" ,pch=24,col="
darkgreen” ,1ty=0) #ezira points

if (case==9){ #lines (y[sm3], bar[sm3],type="0",pch=24,col="darkgreen”, lty=0)
#extra points
lines (y [Ptm22p5deg] , bar [Ptm22p5deg]| , type="0" ,pch=24,col="
darkgreen” ,1ty=0) #ezitra points
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if (case==10){ lines(y[sml0],bar[sml0],type="0" ,pch=24 col="darkgreen” , lty
=0) #extra points
lines (y[PtmOdeg ] , bar [PtmOdeg] , type="0" ,pch=24,col="
darkgreen” |l1ty=0) #exztra points

if (case==11){ lines(y[smll],bar[smll],type="0" ,pch=24,col="darkgreen” 1ty
=0) #extra points
lines (y[Ptm45deg] , bar [Ptm45deg] ,type="0" ,pch=24,col="
darkgreen” |l1ty=0) #exztra points

if (case==12){ lines(y[sml2],bar [sml2],type="0" ,pch=24,col="darkgreen” 1ty
=0) #extra points
lines (y [Ptm22p5deg] , bar [Ptm22p5deg]| , type="0" ,pch=24,col="
darkgreen” |l1ty=0) #exztra points

}

}
if (CFD=IRUE || potential
lcol <— c¢(lcol ,”darkgreen”)
In <= c¢(ln,”Blevins”)
It <= c¢(1t,3)
points <— c(points,24)
}
else {
lcol <— ”"darkgreen”
In <— ”Blevins”
It <3
points <— 24

TRUE || bladed=TRUE){

}

if (schlichting) {
if (Global){

legendl <— substitute (nu = v, list (v=sprintf(”%5.3f” ,nu)))
legend2 <— substitute (1 = v, list (v=sprintf(”%5.3f” ,1)))
if (best.fit & BW) legend (” bottomright” ,col=c(” darkgreen” ,” darkgreen
7)) ,pch=21,1ty=3,legend=do. call (” expression” ,c(legendl ,legend2)),
bg="white” ,cex=0.8)
if (best.fit & BW=FALSE) legend (” bottomright” ,col=c(” darkgreen” ,” darkgreen”
) ,1ty=3,legend=do. call (” expression” ,c(legendl ,legend2)) ,bg="white” ,cex
=0.8)

bar <— schlichting .a(x=x,y=y,nu=nu, l=1,case,V(0=V0)
lines (y,bar, col="darkgreen” ,lwd=1,1ty=3)

# Schlichting profile
if (best.fit) {
bar <— fit.schlichting .a(x=x,y=y,u=u, case,V0=V0)
nu <— bar$nu
1 <— bar$l
legendl <— substitute (nu = v, list (v=sprintf(”%5.3f” ,nu)))
legend2 <— substitute (1 = v, list (v=sprintf(”%5.3f” ,1)))

if (best.fit & BW) legend (”right” ,col=c(” purple” ,” purple”) ,pch=21,1ty=1,
legend=do. call (" expression” ,c(legendl ,legend2)) ,bg="white” ,cex=0.8)
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if (best.fit & BW=—FALSE) legend (”right” ,col=c(” purple” ,” purple” ), lty=4,
legend=do. call (" expression” ,c(legendl ,legend2)) ,bg=" white” ,cex=0.8)

#legend(”bottomleft”,col=c("red”,”red”),lty=2,legend=do. call (" expression”,
c(legendl ,legend2)),bg="white”, cex=0.8)

bar <— schlichting .a(x=x,y=y,nu=nu, l=1, case,V(0=V0)
lines (y,bar, col="purple” ,lwd=1,1ty=4)
#lines (y,bar, col="red” , lwd=1,lty=2)

if (CFD=FALSE) ltyl <— 1

else ltyl <— 4

if (Global=FALSE & best . fit=FALSE) {

bar <— schlichting .a(x=x,y=y,nu=nu, l=1, case,V(0=V0)
lines (y,bar, col="purple” ,lwd=1,1ty=4)

}

£ (BW) {
lines (y[p4],bar [p4],type="0" ,pch=21,col="purple” ,l1ty=0) #eztra points
if (case==1){ lines(y[sml],bar[sml],type="0” ,pch=21,col="purple” ,1ty=0) #
extra points
lines (y[PtmOdeg] , bar [Ptm0Odeg] , type="0" ,pch=21,col=" purple”
,1ty=0) #extra points

if (case==2){ lines(y[sm2],bar[sm2],type="0" ,pch=21,col="purple” ,1ty=0) #
extra points
lines (y[Ptm45deg] , bar [Ptm45deg] ,type="0" ,pch=21,col="
purple” ,1ty=0) #exztra points

if (case==3){ lines(y[sm3],bar[sm3],type="0" ,pch=21,col="purple” ,1ty=0) #
extra points
lines (y [Ptm22pbdeg] , bar [Ptm22p5deg]| , type="0" ,pch=21,col="
purple” ,1ty=0) #exztra points

if (case==4){ lines(y[sm4],bar[sm4],type="0" ,pch=21,col="purple” ,lty=0) #
extra points
lines (y[PtmOdeg] , bar [Ptm0Odeg] , type="0" ,pch=21,col=" purple”
,1ty=0) #extra points

if (case==5){ lines(y[smb],bar[smb],type="0" ,pch=21,col="purple” ,1ty=0) #
extra points
lines (y[Ptm45deg] , bar [Ptm45deg] ,type="0" ,pch=21,col="
purple” ,1ty=0) #exztra points

if (case==6){ lines(y[sm6],bar[sm6],type="0" ,pch=21,col="purple” ,1ty=0) #
extra points
lines (y [Ptm22p5deg] , bar [Ptm22p5deg]| , type="0" ,pch=21,col="
purple” ,1ty=0) #exztra points

if (case==7){ #lines (y[sml1],bar[sml],type="0" ,pch=21,col="purple”,lty=0) #
extra points
lines (y[PtmOdeg ] , bar [Ptm0Odeg] , type="0" ,pch=21,col=" purple”
,1ty=0) #extra points
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if (case==8){ #lines (y[sm2],bar[sm2],type="0" ,pch=21,col="purple”,lty=0) #
extra points
lines (y[Ptm45deg] , bar [Ptm45deg] ,type="0" ,pch=21,col="
purple” ,1ty=0) #exztra points

if (case==9){ #lines (y[sm3],bar[sm8],type="0" ,pch=21,col="purple”,lty=0) #
extra points
lines (y [Ptm22pbdeg] , bar [Ptm22p5deg]| , type="0" ,pch=21,col="
purple” ,1ty=0) #exztra points

if (case==10){ lines(y[sml0],bar [sml0],type="0" ,pch=21,col="purple” , 1ty=0)
#extra points
lines (y [PtmOdeg ] , bar [Ptm0Odeg] , type="0" ,pch=21,col=" purple”
,1ty=0) #exztra points

if (case==11){ lines(y[smll],bar[smll],type="0" ,pch=21,col="purple” , 1ty=0)
#extra points
lines (y[Ptm45deg] , bar [Ptm45deg] ,type="0" ,pch=21,col="
purple” ,1ty=0) #exztra points

if (case==12){ lines(y[sml2], bar[sml2], type="0" ,pch=21,col="purple” , 1ty=0)
#extra points
lines (y [Ptm22p5deg] , bar [Ptm22p5deg]| , type="0" ,pch=21,col="
purple” ,1ty=0) #exztra points
}
}
lcol <— c¢(lcol,” purple”)
In <— c¢(ln,”Schlichting”)
It <= c(lt,4)
points <— c(points,21)
}
}
# Legend
if (lg & BW=—FALSE & Global = FALSE) legend(” left” ,col=lcol , 1ty=lt ,legend=In,
cex=0.6,bg="white”)
if (lg & BW & CFD=FALSE) legend (”right” ,pch=points, col=lcol , 1ty=lt ,legend=In,
cex=0.6,bg="white”)
if (lg & BW & CFD) legend(” left” ,col=lcol ,pch=c(4,46,22) ,1ty=c(1,5,2) ,legend=c(”
CFD” ,” Potential” ,” Bladed” ) ,cex=0.8,bg="white”)

if (Global & best.fit & lg) legend (”top” ,col=c(”blue” ,”red” ,” darkgreen”) ,lty=c
(1,2,3) ,legend=c(”CFD” ,” Individual —fit” ,” Global —fit”) ,cex=0.8,bg=" white”)

#if (Global & best. fit & lg & blevins) legend(”top”,col=c(”blue”,”darkgreen”,”
darkred”),lty=c(1,3,4),legend=c(”CFD”,” Individual—fit”,” Global—fit”),cex=0.8,
bg="white”)

#if (Global & best. fit & lg & schlichting) legend(”top”,col=c(”blue”,” purple”,”
darkorange”) ,lty=c(1,4,5),legend=c(”CFD”,” Individual—fit”,” Global—fit"”), cex
=0.8,bg="white”)

res <— NULL

# return optimal parameters if fitting

if (best.fit) res <— list(delta=delta ,w=w,cdb=cdb ,nu=nu,x0=x0,1=1)
res

}

#plot turbulent intensity
#monopile



H.1 TOWER SHADOW FUNCTIONS, R-CODE 137

? plot . monopile. ti” <— function(id,delta=0.4,w=1.0,cdb=1.0,nu=1.0,x0=6,1=6,yl=c
(7,20) ,xl=c(—20,20) ,labx="y._[m]” ,laby="Turbulence_Intesity .[%]” ,VO=V0, verbose=
TRUE, best . fit=FALSE, lg=TRUE, turb=FALSE, ti . tot=TRUE, ti . fluent=FALSE, ti. fluc=
FALSE,MS=FALSE) {

x <— Ilx.m[id] — sx.m # relative position
y <=yl
cat (paste (” Monopile_at.” ,x,”’m_distance _from._center\n”))

# setting up the coordinate system

plot (y,y,type="n" ,ylim=yl , xlim=x1 , xlab=labx , ylab=laby , bty="n")

if (verbose) title (main=paste (" Monopile _Q.” ;x,” m_(” ,fn.A[id],”)” ,sep=""))
# read data

fn <— paste (fdir ,” ts—monopile—" ,fn.m[id],”.Rdata” ,sep="")

if (turb) fn <— paste(fdir ,”ts—turb—monopile—" ,fn.m[id],” . Rdata” ,sep="")
cat (paste (” Looking ~for_file.” ;fn,”\n”))

if (!file.exists (fn)) stop(”Not_found .—._check_your._files”)

load (fn)

if (MS) y <— fl8y/D

else y <— {18y

til <— apply (f1$ti,2 ,mean)

ti2 <— apply (f18v,2,var)

titot <— sqrt(12xtil+ti2)/12%100

if(ti.tot)lines (y,sqrt(12xtil4+ti2)/12%100,ylim=yl, col="blue”)

if (ti.fluent) lines(y,sqrt(12xtil)/12%x100,ylim=yl, col="red” ,lty=2)

if(ti.fluc) lines(y,sqrt(ti2)/12%100,ylim=yl, col="darkgreen” 6 lty=1)

if (ti.tot)legend(”topright” ,col="blue” ,legend=c(” Total_Turb_int”) ,lty=1,cex=0.6,
bg="white”)

if (ti.fluc & ti.fluent) legend (” topright”  col=c(”red” ,” darkgreen”)  , legend=c(” TI—
kinetic.energy” ,” TI-fluctuations”) ,lty=c(2,1),cex=0.6,bg=" white”)

}

#truss tower

?plot . truss.ti” <— function(id,case,delta=0.4,w=1.0,cdb=1.0,nu=1.0,x0=6,1=6,yl=c
(7,20) ,xl=c(—20,20) ,labx="y._[m]” ,laby="Turbulence_Intesity .[%]” ,VO=V0, verbose=
TRUE, turb=FALSE, ti. tot=IRUE, ti. fluent=FALSE, ti. fluc=FALSE,MS=FALSE) {

if (case %in% cases.A) x <— Ix.A[id] — sx.A # relative position
if (case %in% cases.B) x <— 1x.B[id] — sx.B
if (case %in% cases.C) x <— 1x.C[id] — sx.C
y <= ly
cat (paste (” Truss.case” ,case,” at.” ,x,”’m_distance .from_center\n”))

# setting up the coordinate system
plot(y,y,type="n" ,ylim=yl , xlim=x1 , xlab=labx , ylab=laby , bty="n")

if (verbose & case %in% cases.A) title (main=paste (” Case.” ,case,” Q.7 x,” m.(”,fn
Alid],")" sep=""))

if (verbose & case %in% cases .B) title (main=paste (” Case.” ,case,” Q.7 x,” m.(” ,fn
Blid],")" sep=""))

if (verbose & case %in% cases.C) title (main=paste (” Case.” ,case,” Q.7 x,” m.(”,fn
Clid] )" sep=""))

# read data

if (case %in% cases.A) fn <— paste(fdir,”ts—truss” ,case,”—” ,fn.A[id],” .Rdata”,
Sep:” 77)

if (case %in% cases.B) fn <— paste(fdir ,”ts—truss” ,case,”—” ,fn.B[id],” .Rdata”,
Sep:” 77)

if (case %in% cases.C) fn <— paste(fdir ,”ts—truss” ,case,”—” ,fn.C[id],” .Rdata”,
Sep:” 77)

if (turb) {
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if (case %in% cases.A) fn2 <— paste(fdir ,”ts—turb—truss” ,case,”—" fn.A[id],”.
Rdata” ,sep="")
if (case %in% cases.B) fn2 <— paste(fdir ,”ts—turb—truss” ,case,”—"  fn.B[id],”.
Rdata” ,sep="")
if (case %in% cases.C) fn2 <— paste(fdir ,”ts—turb—truss” ,case,”—"  fn.C[id],”.
Rdata” ,sep="")
}
cat (paste (” Looking _for_file.” ;fn,”\n”))
if (!file.exists (fn)) stop(”Not_found .—._check_your.files”)
load (fn)

if (MS) y <— fl8y/D

else y <— {18y

til <— apply (f1$ti,2 ,mean)

ti2 <— apply (f18v,2,var)

if(ti.tot)lines (y,sqrt(12xtil+ti2)/12%100,ylim=yl, col="blue”)

if(ti.fluent) lines(y,sqrt(12xtil)/12%x100,ylim=yl, col="red” ,lty=2)

if(ti.fluc) lines(y,sqrt(ti2)/12%x100,ylim=yl, col="darkgreen” 6 lty=1)

if(ti.tot)legend(”topright” ,col="blue” ,legend=c(” Total_Turb_int”) ,lty=1,cex=0.6,
bg="white”)

if(ti.fluc & ti.fluent) legend(” topright”  col=c(”red” ,” darkgreen” ), legend=c(” TI—
kinetic.energy” ,” TI-fluctuations”) ,lty=c(2,1),cex=0.6,bg=" white”)

}

# fit at all rake lines
# monopile

? fit . monopile” <— function(V0=V0) {
n <— length (ds.m)
deltas <— NULL

ws <— NULL
rmss <— NULL
ds <— NULL
XS <— NULL

for (i in seq(n)) {

if (Ix.m[i] <= 0) next # selection: fit only behind center of structure

x <— lx.m[i] — sx.m # relative position”
cat (paste (?Fit_.at.” ,sprintf ("%3d” ,x) ,” am..=>_." ,sep=""))
fn <— paste (fdir ,” monopile—" ,fn.m[i],” .Rdata” ,sep="")

cat (paste (” Looking ~for_file.” ;fn,”\n”))
if (!file.exists (fn)) {

warning (”Not_found .—._check_your._files”);
cat ("Not_found .—._check._your._files\n”)
next

}

load (fn)

u <— fl1$mean. vx
if (adapt.v = 1) V0 <— u[1]
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if (adapt.v = 2) V0 <— mean(u)
cat (paste ("V0_.=_" ,round (V0,3) ,”\n”))
y <— {18y

foo <— fit.bladed (x=x,y=y,u=u,d=D,V0=V0, quiet=TRUE)
delta <— foo$delta

w <— foo$w

sa
li

}

# [i

rms <— foo$rms

deltas <— c(deltas ,delta)

ws <— c(ws,w)

rmss <— c(rmss,rms)

cat(sprintf(”_delta=_%5.3f_ W=_%5.3f__rms=_%5.3f\n” ,delta ,w,rms))

bar <— fit.blevins(x=x,y=y,u=u,d=D,V0=V0)

cdb <— bar$cd

x0 <— bar$x0

rms2 <— bar$rms

cdbs <— c(cdbs,cdb)

x0s <— c(x0s,x0)

rms2s<— c(rms2s,rms2)
cat(sprintf(”.cdo=_%5.3f_._x0_=_%5.3f._.rms=_%5.3f\n” ,cdb ,x0,rms2))

baz <— fit.schlichting (x=x,y=y,u=u,d=D,V0=V0)

nu  <— baz$nu

1 <— baz$l

rms3 <— baz$rms

nus <— c(nus,nu)

Is <= c¢(ls,1)

rms3s<— c(rms3s,rms3)

cat (sprintf(”.nu.=_%5.3f__1 =_%5.3f__rms=_%5.3f\n” ,nu,l,rms3))

ds <— c¢(ds, ds.m[i])
xs <— c(xs, x)

ve (file=paste (fdir ,” fit _monopile. Rdata” , sep=""),ascii=ITRUE, deltas ,ws,rmss,ds,
xs ,cdbs , x0s ,rms2s,nus, ls ,rms3s)

st (delta=deltas ,w=ws, rms=rmss , ds=ds , xs=xs , cdb=cdbs , x0=x0s , rmsb=rms2s ,nu=nus , l=
Is ,rmss=rms3s)

t at all rake lines

# truss tower cases

7 fit
if
if
if

.truss” <— function(case ,V0=V0) {
(case %in% cases.A) dsl <— ds.A
(case %in% cases.B) dsl <— ds.B
(case %in% cases.C) dsl <— ds.C

n <— length (dsl)
deltas <— NULL
ws <— NULL
rmss <— NULL

ds

XS

cdbs <— NULL
x0s <— NULL
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rms2s <— NULL
nus <— NULL
Is <— NULL
rms3s <— NULL
for (i in seq(n)) {

if (case %in% cases.A) x <— Ix.A[i] — sx.A # relative position
if (case %in% cases.B) x <— 1x.B[i] — sx.B

if (case %in% cases.C) x <— 1x.C[i] — sx.C

if (x <= 7.7) next # selection: at least 7.7m behind center
cat (paste (?Fit_at.” ,sprintf (" %4.3{” ;x),” om..=>_." ;sep=""))

fn <— paste (fdir ,” truss” ,case,”—” ,fn.A[i],” .Rdata” ,sep="")
cat (paste (” Looking ~for._file.” ;fn,”\n”))

if (!file.exists (fn)) {

warning (”Not_found .—._check._your._files”);
cat ("Not_found .—._check._your._files\n”)
next

}

load (fn)

u <— fl$mean. vx

if (adapt.v = 1) VO <— u[l]

if (adapt.v = 2) VO <— mean(u)

cat (paste ("V0_=_" ,round (V0,3) ,”\n”))
y <— fl18y

foo <— fit.bladed (x=x,y=y,u=u,d=D, ref=ref, quiet=TRUE,V(0=VO0)
delta <— foo$delta

w <— foo$w

rms <— foo$rms

deltas <— c(deltas ,delta)

ws <— c(ws,w)

rmss <— c(rmss,rms)

cat(sprintf(”_delta=_%5.3f_ W=_%5.3f__rms=_%5.3f\n” ,delta ,w,rms))

ds <— c(ds, dsl[i])
xs <— c(xs, x)

bar <— fit.blevins(x=x,y=y,u=u,d=D,V0=V0)

cdb <— bar$cd

x0 <— bar$x0

rms2 <— bar$rms

cdbs <— c(cdbs,cdb)

x0s <— c(x0s,x0)

rms2s<— c(rms2s,rms2)

cat (sprintf(”.cdo=_%5.3f_._.x0_=_%5.3f__.rms=_%5.3f\n” ,cdb ,x0,rms2))

baz <— fit.schlichting (x=x,y=y,u=u,d=D,V0=V0)
nu  <— baz$nu

1 <— baz$l

rms3 <— baz$rms

nus <— c(nus,nu)

Is <= c¢(ls,1)



H.1 TOWER SHADOW FUNCTIONS, R-CODE 141

rms3s<— c(rms3s,rms3)
cat(sprintf(” cnu.=_%5.3f__1 =_%5.3f__orms=_%5.3f\n” ;nu,l,rms3))

}

save (file=paste (fdir ,” fit _truss_" ,case,” .Rdata” ,sep=""), ascii=TRUE, deltas ,ws,
rmss ,ds , xs,cdbs , x0s ,rms2s ,nus, ls ,rms3s)

list (delta=deltas ,w=ws,rms=rmss , ds=ds , xs=xs , cdb=cdbs , x0=x0s , rmsb=rms2s ,nu=nus , 1=
Is ,rmss=rms3s)

}

# plot rake line fits
# monopile

?plot . fit .monopile” <— function(foo ,bladed=TRUE, blevins=TRUE, schlichting=TRUE, rms=
TRUE, lg=FALSE) {
# foo contains results from fit.monopile
if (!rms)par (mfrow=c(1,2))
if (blevins & schlichting & bladed & rms) par(mfrow=c(4,2))
if (rms & !bladed) par(mfrow=c(2,2))
par (mgp=c (1.7,0.5,0) ,mar=c(2.75,2.75,0.5,0.25))

q <— which(ds.m %in% c(3,6)) # rake lines to show in plot: 38D, 6D

x <— foo$xs
ix <— which(x > 2) # selection: only show z > 2

foo$delta <— foo$delta[ix]

foo$w <— foo$w[ix]

foo8$rms <— foo$rms[ix]

foo$cdb <— foo$cdb[ix]

foo$x0 <— foo$x0[ix]

foo$rmsb  <— foo$rmsb[ix]

foo$nu <— foo$nu[ix]

foo$1 <— foo$1[ix]

foo$rmss <— foo$rmss[ix]

x <— foo$xs[ix]

foo$xs <— foo$xs[ix]

dx <— 1/sqrt(x)

dx1 <— sqrt(x)

library (MASS)

xl < ¢(0,50) # z—limits for plot
ix2 <— which(foo$xs > 8) # selection: only base fits on these

f <— data.frame(delta=foo$delta [ix2] ,w=foo$w[ix2],x=foo$xs[ix2],dx=1/sqrt (foo$xs
[ix2]) ,dxl=sqrt (foo$xs[ix2]))

dfit <— lm(delta ~ dx ,data=f) # inverse square—root law

print (f)

print (dfit)

dbar <— as.numeric(predict(dfit))

print (dbar)

wfit <— Im(w ~ dx1 ,data=f) # square—root law

# predict w_r (at reference point, among others)

wbar <— as.numeric(predict ( wfit))
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# parameters for panel labels

11 <- —0.5

ad <— —0.12

# plot type and symbols

pc <— 1

ty <— ”b”

if (bladed){

# plot Bladed model

if (TRUE) {

plot (x,foo$delta ,ylim=c(0,1) ,pch=pc, xlim=x1,bty="n" ,type=ty , xlab="x.[m]” ,ylab=
expression(Delta) ,col="blue”)

#mtext ("A”, line=Il , adj=ad, cex=1.2)

lines (f$x,dbar, col="darkgreen”)

abline (v=1x .m[q] — sx.m, lty=2) # relative position

if (TRUE) {

plot (x, foo$w, ylim=c(0,8) ,pch=1,xlim=x1,bty="n" ,type=ty ,xlab="x.[m]” ,ylab=
expression(w) ,col="blue”)

#mtext("B”, line=Il , adj=ad, cex=1.2)

lines ({$x,wbar, col="darkgreen”)

abline (v=1x .m[q] — sx.m, lty=2)

}

}

if(blevins){

# plot Blevins model

if (TRUE) {

plot (x,foo$cdb, ylim=c(0,1.2) ,pch=1,xlim=xl,bty="n" ,type=ty ,xlab="x.[m]” ,ylab=
expression(C[d]) ,col="blue”)

#mtext (”C”, line=Il , adj=ad, cex=1.2)

abline (v=1x .m[q] — sx.m, lty=2)
}
if (TRUE) {

plot (x,fo0$x0, ylim=c(0,70) ,pch=1,xlim=xl,bty="n" ,type=ty ,xlab="x.[m]” ,ylab=
expression(x[0]) ,col="blue”)

#mtext ("D”, line=Il , adj=ad, cex=1.2)

abline (v=1x .m[q] — sx.m, lty=2)

}

if (schlichting){

# plot Schlichting model

if (TRUE) {

plot (x,foo$nu, ylim=c(0,1.5) ,pch=1,xlim=xl ,bty="n” ,type=ty , xlab="x.[m]” ,ylab=
expression(nu),col="blue”)

#mtext ("E”, line=Il , adj=ad, cex=1.2)

abline (v=1x .m[q] — sx.m, lty=2)

}

if (TRUE) {

plot (x,foo$l,ylim=c(0,1) ,pch=1,xlim=x1,bty="n" ,type=ty ,xlab="x.[m]” ,ylab=
expression(1),col="blue”)

#mtext ("F”,line=Il , adj=ad, cex=1.2)

abline (v=1x .m[q] — sx.m, lty=2)

}

}

if (rms){

# RMS plot



H.1 TOWER SHADOW FUNCTIONS, R-CODE 143

}

if (TRUE) {
plot (x, foo$rms, xlim=x1 , ylim=c (0,1.6) ,pch=1,bty="n" ;type="n" ,col="blue” ,xlab="x.|
m]” ,ylab="RMS._error.[m/s]”)

if (blevins) lines(x, foo$rmsb,lty=2,col="blue” ,type=ty)

if (schlichting) lines(x,foo$rmss,lty=3,col="red” ,type=ty)

if (bladed) lines(x, foo$rms,lty=1,col="black” ,type=ty)

if (lg & blevins & schlichting & bladed)legend (” topright” ,col=c(” black” ,” blue” ,”
red”) ,1ty=c(1,2,3) ,legend=c(” Bladed” ,” Blevins” ,” Schlichting”))

abline (v=1x .m[q] — sx.m, lty=2)

abline (v=1x .m[q] — sx.m, lty=2)

#mtext ("G”, line=Il , adj=ad, cex=1.2)

}

}

# plot rake line fits
# truss tower cases

?plot . fit .truss” <— function(foo ,case,bladed=TRUE, blevins=TRUE, schlichting=TRUE,

rms=TRUE, 1g=FALSE) {
if (!rms)par (mfrow=c(1,2))
if (blevins & schlichting & bladed & rms) par(mfrow=c(4,2))
if (rms & !bladed) par(mfrow=c(2,2))
par (mgp=c (1.7,0.5,0) ,mar=c(2.75,2.75,0.5,0.25))

if (case %in% cases.A) vdx <— 1x.A — sx.A # 7behind the structure”, relative
position

if (case %in% cases.B) vdx <— 1x.B — sx.B

if (case %in% cases.C) vdx <— 1x.C — sx.C

x <— foo$xs

q <— which(ds.A %in% c(3,6)) # selection which rake lines to show on plot: 3D, 6
D

if (case %in% cases.B) q <— which(ds.B %in% ¢(3,6)) # 3D, 6D

if (case %in% cases.C) q <— which(ds.C %in% c(3,6))

ix <— which(x > 7.8) # selection: only show z > 7.8
foo$delta <— foo$delta[ix]
foo$w <— foo$w[ix]

foo$rms <— foo$rms[ix]
foo$cdb <— foo$cdb[ix]
foo$x0 <— foo$x0[ix]
foo$rmsb  <— foo$rmsb[ix]
foo$nu <— foo$nu[ix]

foo$1 <— foo$l[ix]
foo$rmss <— foo$rmss[ix]
x < x[ix]

dx <— 1/sqrt(x)

dx1l <— sqrt(x)

print (foo)
library (MASS)

xl < ¢(0,50) # z—limits for plot
ix2 <— which(foo$xs > 7.8) # selection: only base fits on these
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f <— data.frame(delta=foo$delta [ix2] ,w=foo8w[ix2],x=x[ix2],dx=1/sqrt (x[ix2]) ,dx1
=sqrt (x[ix2]))

# parameters for panel labels

11 <— —-0.5

ad <— —0.12

# plot type and symbols
pc <— 1

ty <— ”b”

if (bladed){

# plot Bladed model

if (TRUE) {

plot (x,foo$delta ,ylim=c(0,1) ,pch=pc, xlim=x1,bty="n" ,type=ty , xlab="x.[m]” ,ylab=
expression(Delta[r]) ,col="blue”)

#mtext ("A”, line=Il , adj=ad, cex=1.2)

abline (v=vdx [q] , lty=2)

}

if (TRUE) {

plot (x, foo$w, ylim=c(0,10) ,pch=pc, xlim=xl,bty="n" ,type=ty ,xlab="x.[m]” ,ylab=
expression(w[r]) ,col="blue”)

#mtext(”"B”, line=Il , adj=ad, cex=1.2)

abline (v=vdx [q] , lty=2)

}

}

if(blevins){

# plot Blevins model

if (TRUE) {

plot (x,foo$cdb, ylim=c(0,1.2) ,pch=pc, xlim=x1,bty="n" ,type=ty , xlab="x.[m]” ,ylab=
expression(C[d]) ,col="blue”)

#mtext (7C”, line=Il , adj=ad, cex=1.2)

abline (v=vdx [q] , lty=2)

}

if (TRUE) {

plot (x,foo$x0, ylim=c(0,100) ,pch=pc,xlim=xl ,bty="n” ,type=ty ,xlab="x.[m]” ,ylab=
expression(x[0]) ,col="blue”)

#mtext ("D”, line=Il , adj=ad, cex=1.2)

abline (v=vdx [q] , lty=2)

}

}

if (schlichting){

# plot Schlichting model

if (TRUE) {

plot (x, foo$nu, ylim=c(0,25) ,pch=pc, xlim=xl ,bty="n" ,type=ty , xlab="x.[m]” ,ylab=
expression(nu),col="blue”)

#mtext ("E”, line=Il , adj=ad, cex=1.2)

abline (v=vdx [q] , lty=2)

}

if (TRUE) {

plot (x,foo$l,ylim=c(0,3) ,pch=pc,xlim=xl,bty="n" ,type=ty ,xlab="x.[m]” ,ylab=
expression(1),col="blue”)

#mtext ("F”,line=Il , adj=ad, cex=1.2)

abline (v=vdx [q] , lty=2)

}
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if (rms){

# RMS plot

if (TRUE) {

plot (x, foo$rms, xlim=x1 , ylim=c (0,2) ,type="n" ,pch=pc, bty="n" ,col="blue” ,xlab="x.[m
1”7 ,ylab="RMS_error.[m/s]”)

abline (v=vdx[q], lty=2)

#mtext ("G”, line=Il , adj=ad, cex=1.2)

if (blevins)lines(x, foo$rmsb,lty=2,col="blue” ,type=ty)

if (schlichting)lines(x,foo$rmss,lty=3,col="red” ,type=ty)

if (bladed)lines (x, foo$rms,lty=1,col="black” ,type=ty)

if (lg & blevins & schlichting & bladed)legend (” topright” ,col=c(” black” ,” blue” ,”
red”) ,lty=c(1,2,3) ,legend=c(” Bladed” ,” Blevins” ,” Schlichting”))

}

if (FALSE) {

plot (x,fo0o$x0, ylim=c(0,10) ,pch=pc,xlim=xl ,bty="n” ,type=ty , xlab="x.[m]” ,ylab=
expression(x[0]) ,col="blue”)

mtext ("H” ,line=11 ,adj=ad, cex=1.2)

abline (v=vdx[q], lty=2)

legend (” topright” ,bg="white” ,pch=c(pc),col=c(” blue”) ,legend=c(” Detail”) ,cex=0.8)

}

}

H.2 Global estimations functions, R-code

Code to find and plot global parameters for the tower shadow models. This code was provided
by Michael Muskulus and modified by Torbjgrn Ruud Hagen.

# global—fit .R: global fitting of tower shadow models
# Copyright (C) 2011 Michael Muskulus (michael.muskulus@nitnu.no)
# Version 0.2 — Initial idea

# CHANGELOG
#
#

source (" shadow .R”)

#graphics. off ()

# optimization criteria

# note: single profile comparisons lead to either RMS (2—norm) or mazimal error (
maz—norm)

# all profile comparisons lead to either sum of errors or mazimal error
# this is a hierarchical process, with two levels (single profiles and between
profiles)

# don’t confuse this!

max. rms <— TRUE # minimize maximal error for single profile; alternative: sum
of errors #MAX ERROR = TRUE, SNITT ERROR = FALSE

max. error <— TRUE # minimize mazimal error for all profiles; alternative: sum of
errors #ITOT ERROR FOR ALL CASES

change <— TRUE #If a True/False bool needs to be changed during a loop
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# cases to use in the optimization

id=22 #16 = 3d 22=6d

id _name="6d”

id _x=24

#filename <— paste(’ ' fig—truss

5

,case[1],’—global ’,id_name, ’.png’, sep="")

case <—c(1, 4, 7, 10) # number

#case <—c(2, 5, 8, 11) # number

#case <— c(3, 6, 9, 12) # number

#case <= c(7, 9, 10, 12) #Marits article

#case < ¢(1,2,3,4,5,6,7,8,9,10,11,12) # number

case_x <— c(id_x,id_x,id -x,id -x,id _x, id -x,id -x, id -x, id _x,id -x,id -x, id _x) # z
—coordinate; relative position, as in: lx.Aflid] — sz.A

case_id <— c¢(id,id,id,id,id,id,id,id,id,id,id,id) # section id (number);

case_files <— c(paste(’truss’,case[l],’—’,id_name,’.Rdata’ 6 sep="") ,paste(’truss’,
case[2],’—’,id _name, ’.Rdata’ ,sep="") ,paste (’truss’,case[3],’—’,id —name, ’.Rdata
’  sep="") ,paste (’truss’,case[4],’—’,id —name, ’.Rdata’ ,sep=""))

#case_files <— c(paste(’truss ’,case[l],’— ’,id_name, ’. Rdata’,sep=""),paste( 'truss ’,
case[2], = 7,id_name, ’. Rdata’,sep=""),paste( 'truss ’, case[8], — ', id_name, ’. Rdata
7,sep=""),paste( 'truss ', case[4], — ,id_name, . Rdata ', sep=""),paste( ' truss ’,
case[5],’— 7,id_name, ’. Rdata’,sep=""),paste( 'truss ’, case[6], — ', id_name, ’. Rdata
7,sep=""),paste('truss ', case[7], — ,id_name, . Rdata ', sep=""),paste( truss ’,
case[8], = 7,id_name, ’. Rdata’,sep=""),paste( 'truss ’, case[9], — ', id_name, ’. Rdata
7,sep=""),paste( truss ', case[10], — ,id_name, . Rdata ', sep=""),paste (' truss’,
case[11],’— ", id_name, ’. Rdata ', sep=""),paste('truss ’, case[12], — 7, id_name, ’

Rdata’, sep=""))
#case_files <— c(’trussl—3d. Rdata’, "trussf{—3d.Rdata’, "truss7—3d. Rdata’, "truss10—3d

.Rdata )

#case_files <— c(’truss2—3d. Rdata’, "truss5—3d. Rdata’, "truss8—3d. Rdata’, "truss11—3d
.Rdata ’)

#case_files <— c(’truss3—3d. Rdata’, "truss6—3d. Rdata’, "truss9—3d. Rdata’, "truss12—3d
.Rdata ’)

#case_files <— c(’truss10—3d. Rdata’, "truss12—3d. Rdata’, "truss7—3d. Rdata’, "truss9—3
d.Rdata’) #Marits cases
#filename <— paste(’ ' fig—truss ', case[l],’—global ’,id_name, ".png’, sep="")

sy FIT FOR MORE THAN ONE MEASURING LENGTH #AbAbpsshs

#case <— c¢(1, 4, 7, 10) # number

#case <— c(2, 5, 8, 11) # number

#case <— c¢(case, 8, 6, 9, 11) # number

#case_x <— c(case_x,24,24,24,24,24,24) # z—coordinate; relative position, as

in: lx. Alid] — sz.A

#case_id <— c(case_id , 22,22,22,22,22,22) # section id (number); 22 = 6d

#case_files <— c(case_files , trussl—6d. Rdata’, "truss{—6d. Rdata’, "truss7—6d. Rdata
7, 7truss10—6d. Rdata ’)

#case_files <— c(case_files , truss2—6d. Rdata’, "truss5—6d. Rdata’, "truss8—6d. Rdata
7, 7truss11—6d. Rdata ’)

#case_files <— c(case_files , truss3—6d. Rdata’, "truss6—6d. Rdata’, "truss9—6d. Rdata
7, 7truss12—6d. Rdata ’)

#case_files <— c(case_files , 'truss10—6d.Rdata’, "truss12—6d. Rdata’, "truss7—6d. Rdata
7, 7truss9—6d. Rdata’) #Marits cases
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#

# BELOW HERE SHOULD NOT REQUIRE USER CHANGES
#

no_cases <— length (case_files)

no_points <— length (ly)
# load all relevant files and put the profiles into a matriz

cfd <— matrix (numeric(no_cases*no_points) ,ncol=no_points)
for (fi in seq(along=case_files)) {
f <— case_files [fi]
f <— paste (”/media/lomega_HDD/Work/Rdata/” ,f,sep="")
cat (paste (” Loading -profile .from.file.” ,f,”\n” ,sep=""))
load (f)
if (length(fl$mean.v) != no_points) stop(’Profile._does_not_have_the_required.
number .of _points?!’)
cfd[fi,] <— fl$mean.v

}

rm(’fl’) # might be quite large

# fitting the models
# truss tower cases

7 fit .bladed. all” <— function(V0, quiet=FALSE, ntry=>5) {
fn <— function(par) {
delta <— par[1]
w <— par[2]
rms <— 0.0
for (fi in seq(no_cases)) {
v <— bladed.a(case_x[fi],ly ,VO0,delta ,w,case[fi])

if (max.rms) {
rmsl  <— max(abs(v—cfd[fi,]))
} else {
} rmsl <— sqrt (mean((v—cfd[fi,]) "2))

if (max.error) {
rms <— max(rms,rmsl) #IF TRUE MINIMIZING MAXIMUM ERROR FOR HIGHEST ERROR
} else {
rms <— rms + rmsl #IF TRUE MINIMIZING MAX ERROR FOR SUM OF ALL
PROFILES
}
}
rms
}
foo <— NULL
best.value <— Inf
for (i in seq(ntry)) {
pars <— c(runif(l,min=0.0,max=1.0) ,runif(n=1,min=0.5,max=5.0))
fool <— optim (par=pars, fn=fn ,method="Nelder—Mead” ,control=list (maxit=500))
cat (paste (”..rms.=_" ,round (fool$value ,6) ,”\n” ,sep=""))
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if (fool$value < best.value) {
foo <— fool
best .value <— fool$value

}
}

cat(”\n”)
# show details
rms <— 0.0

for (fi in seq(no_cases)) {
v <— bladed.a(case_x[fi],ly ,VO0, foo$par[1l], foo8par[2], case]fi])

if (max.rms) {
rmsl  <— max(abs(v—cfd[fi,]))
} else {
rmsl <— sqrt (mean((v—cfd[fi ,]) "2))
}
if (max.error) {
rms <— max(rms,rmsl)
} else {
rms <— rms + rmsl

}

cat (paste (” Error_for.case #’ ,case[fi],” .=.

}

cat (paste ("TOTAL_error_=>." ,round(rms) ,”\n” ,sep=""))

”

,round (rmsl,6) ,”\n” ,sep=""))

#if (VYquiet) { cat(paste(”BLADED FIT:\n”)); print(foo) }
delta <— foo$par[1]

w <— foo$par[2]

rms <— foo$value

list (delta=delta ,w=w, rms=rms)

}

7 fit .blevins. all” <— function(V0, quiet=FALSE, ntry=>5) {
fn <— function(par) {
cd <— par[1]
x0 <— par[2]
rms <— 0.0
for (fi in seq(no_cases)) {
v <— blevins.a(case_x[fi],ly ,V0,cd,x0,case[fi])
if (max.rms) {
rmsl  <— max(abs(v—cfd[fi,]))
} else {
rmsl  <— sqrt (mean((v—cfd[fi ,]) "2))
}

if (max.error) {

rms <— max(rms,rmsl)
} else {

rms <— rms + rmsl
}

}

rms

}
foo <— NULL
best.value <— Inf
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for (i in seq(ntry)) {
pars <— c(runif(1l,min=0.25 max=3.0) ,runif(n=1,min=0.5,max=9.0))
fool <— optim (par=pars, fn=fn ,method="Nelder—Mead” ,control=list (maxit=500))

cat (paste (”..rms.=_" ,round (fool$value ,6) ,”\n” ,sep=""))
if (fool$value < best.value) {
foo <— fool

best .value <— fool$value

}
}

cat (”\n”)
# show details
rms <— 0.0
for (fi in seq(no_cases)) {
v <— blevins.a(case_x[fi],ly ,V0, foo$par[1l], foo8par[2], case]fi])

if (max.rms) {
rmsl  <— max(abs(v—cfd[fi,]))
} else {
rmsl <— sqrt (mean((v—cfd[fi ,]) "2))

if (max.error) {

rms <— max(rms,rmsl)
} else {

rms <— rms + rmsl

}

cat (paste (" Error_for._case #’ ,case[fi],” _.=>_" ;round(rmsl,6) ,”\n” ,sep=""))

}

if (!quiet) { cat(paste(”BLEVINS_FIT:\n”)); print(foo) }
cd <— foo$par[1]

x0 <— foo$par[2]

rms <— foo$value

list (cd=cd,x0=x0,rms=rms)

}

7 fit .schlichting . all” <— function(V0, quiet=FALSE, ntry=5) {
fn <— function(par) {
nu <— par[1l]
1 <— par[2]
rms <— 0.0
for (fi in seq(no_cases)) {
v <— schlichting .a(case_x[fi],ly,V0,nu,l,case[fi])
if (max.rms) {
rmsl  <— max(abs(v—cfd[fi,]))
} else {
rmsl <— sqrt (mean((v—cfd[fi,]) "2))
}

if (max.error) {

rms <— max(rms,rmsl)
} else {

rms <— rms + rmsl
}

}

rms
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foo <— NULL
best .value <— Inf
for (i in seq(ntry)) {
pars <— c(runif(1l,min=0.25 max=3.0) ,runif(n=1,min=0.5,max=9.0))
fool <— optim (par=pars, fn=fn ,method="Nelder—Mead” ,control=list (maxit=500))

cat (paste (”..rms.=_" ,round (fool$value ,6) ,”\n” ,sep=""))
if (fool$value < best.value) {
foo <— fool

best .value <— fool$value

}
}

cat (”\n”)
# show details
rms <— 0.0
for (fi in seq(no_cases)) {
v <— schlichting .a(case_x[fi],ly, V0, foo8par[1l], foo8par[2],case[fi])

if (max.rms) {
rmsl <— max(abs(v—cfd[fi,]))
} else {
rmsl <— sqrt (mean((v—cfd[fi ,]) "2))
}
if (max.error) {
rms <— max(rms,rmsl)
} else {
rms <— rms + rmsl

}

cat (paste (" Error._for._case #’ ,case[fi],”_.=>_" ;round(rmsl,6) ,”\n” ,sep=""))

}

if (!quiet) { cat(paste(”SCHLICHTING_.FIT:\n”)); print(foo) }
nu <— foo$par[1]

1 <— foo$par|[2]

rms <— foo$value

list (nu=nu, l=1 ,rms=rms)

}

# for plotting: use plot.truss.a and give it the estimated parameters

#

# example :

# > res <— fit.bladed. all (V0=12.0)

# > plot.truss.a(id=case_id[1],case[1], delta=res$delta ,u=resSw) # id gives the
z—section

#graphics. off ()

run .example <— function() {
#res.bladed <— fit.bladed. all (V0=12)
#res. blevins <— fit.blevins. all (VO=12)
res.schlichting <— fit.schlichting .all (V0=12)

#for (counter in 1:4){

#png(paste (' fig—truss—bladed ', case [counter],’—globalf —’,id _name, ’.png’,sep=""),
pointsize=9,width=7,height=7,res=600,units="cm”)
#par (mfrow=c(1,1))
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#par (mgp=c(1.4,0.5,0) ,mar=c (2.5,2.5,0.25,0.25))

#plot.truss.a(id,case[counter], yl=c(6,14), delta=res.bladed$delta,verbose=F,w=res
.bladedSw, schlichting=F, blevins=F, potential=F, Global=T,norm=F, best. fit=T, lg=
change)

#if (counter == 1) change <— FALSE

#}

#for (counter in 1:4){

#png(paste (' fig—truss—blevins ', case[counter],’— globall —’,id _name, ’.png’,sep=""),
pointsize=9,width=7,height=7,res=600,units="cm”

#par (mfrow=c(1,1))

#par (mgp=c(1.4,0.5,0) ,mar=c (2.5,2.5,0.25,0.25))

#plot.truss.a(id,case[counter], yl=c(6,14), z0=res.blevins$z0, verbose=F, cd=res.
blevins$cd, schlichting=F, bladed=F, blevins=T, potential=F, Global=T,norm=F, best.
fit=T, lg=change)

#if (counter == 1) change <— FALSE

’

#}
for (counter in 1:4){
png(paste ('fig—truss—schlichting ’,case[counter],’—globall—",id _name, ’.png’,sep="")

,pointsize =9,width=7,height=7,res =600, units="cm”)

par (mfrow=c (1,1))

par(mgp=c (1.4,0.5,0) ,mar=c(2.5,2.5,0.25,0.25))

plot.truss.a(id,case[counter ], yl=c(6,14), l=res.schlichting$l,verbose=F, nu=res.
schlichting $nu, schlichting=T, bladed=F, blevins=F, potential=F, Global=T, norm=F,
best . fit=T, lg=change)

if (counter = 1) change <— FALSE

}

graphics. off ()

}

run .example . blevins <— function() {

res <— fit.blevins.all(V0=12)

par (mfrow=c(3,2))

plot.truss.a(16,1, bladed=F,schlichting=F, blevins=T,cd=res$cd,x0=res $x0)
plot.truss.a(16,2, bladed=F,schlichting=F, blevins=T,cd=res$cd,x0=res $x0)
plot.truss.a(16,7, bladed=F,schlichting=F, blevins=T,cd=res$cd,x0=res $x0)
plot.truss.a(16,8, bladed=F,schlichting=F, blevins=T,cd=res$cd,x0=res $x0)
plot.truss.a(16,10, bladed=F, schlichting=F, blevins=T,cd=res$cd,x0=res$x0)
plot.truss.a(16,11, bladed=F, schlichting=F, blevins=T,cd=res$cd,x0=res $x0)

run.example . schlichting <— function() {
res <— fit.schlichting.all(V0=12)
par (mfrow=c(3,2))

plot.truss.a(16,1, bladed=F,schlichting=T, blevins=F,nu=res$nu, l=res$1)
plot.truss.a(16,2, bladed=F,schlichting=T, blevins=F,nu=res$nu, lI=res$1)
plot.truss.a(16,7, bladed=F,schlichting=T, blevins=F,nu=res$nu, lI=res$1)
plot.truss.a(16,8, bladed=F,schlichting=T, blevins=F,nu=res$nu, l=res$1)
plot.truss.a(16,10,bladed=F, schlichting=T, blevins=F,nu=res$nu, I=res$1)
plot.truss.a(16,11,bladed=F, schlichting=T, blevins=F,nu=res$nu, lI=res$1)
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H.3 Spectral estimations functions, R-code

Code to get frequency peaks from the numerical time-series. This code was provided by Michael
Muskulus.

# get—peaks.R: find local mazima in discrete data
# Copyright (C) 2011 Michael Muskulus (michael.muskulus@nitnu.no)
# Version 0.9 — ISOPE—2011 paper

7 get . peaks” <— function(x,y,n=NULL) {
# get a list of peaks (y—profile changing direction) ordered by magnitude
yd <— diff(y)
ydl <— yd[—length (yd)]
ydr <— yd[—1]
ix <— which(ydl > 0 & ydr < 0) + 1 # local mazima
xm <— x[ix]
ym <— yl[ix]
foo <— sort (ym,index.return=TRUE, decreasing=TRUE)
if (!is.null(n)) { foo$ix <— fooSix[seq(n)] }
xm <— xm[foo8$ix]
ym <— ym[foo$ix]
list (xm=xm,ym=ym)
}

Code to plot frequency spectrum. This code was provided by Michael Muskulus and modified
by Torbjsrn Ruud Hagen.

# spectra.R: estimate and plot spectra
# Copyright (C) 2011 Michael Muskulus (michael.muskulus@nitnu.no)
# Version 0.9 — ISOPE—2011 paper

source (" get—peaks.R”)

?plot .spec” <— function(spec ,mt,n) {

yl <— c¢(5,14)

xl1l <— ¢(0,8)

yll <= c(le—6,8)

y12 <= c(le—8,1e2)

fsp <— 5

spx <— spec$freq

spy <— 2 % spec8spec # correction for one—sided spectrum

plot (spx ,spy ,log="xy” ,lwd=1,ylim=yl2 ,type="0" ,bty="n" ,col="blue” ,xlab="f{_[Hz] ",
ylab="S(f)” ,cex=0.2,pch=1,cex.lab=1.5,cex.axis=1.5,xlim=c(0.5,50))

mtext (mt, line=-0.7,adj=—0.2,cex=1.2)

foo <— get.peaks (spx,spy,n=10)
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}

print (foo)

# find peak

spy <— spy[spx > 0.5]

spx <— spx[spx > 0.5]

peakl <— spx[which.max(spy) ]

oof <~ sort (spy,index.return=TRUE, decreasing=TRUE)

ix2 <— 2

while (abs(oof$ix[ix2] — oof$ix[1]) <= fsp) ix2 <— ix2 + 1

peaklb <— spx[oof8ix[ix2]]

loclb <— spy[oof$ix[ix2]]

locl <— max(spy)

abline (h=locl , lty=2,lwd=1)

abline (v=peakl , lty=2,lwd=1)

abline (v=peaklb | lty=3,lwd=1)

abline (h=loclb , lty=3,lwd=1)

cat(sprintf(” First._peak_at_%5.3f _Hz_with_power .%6.4f\n” ,peakl ,locl))

cat(sprintf(”Second._peak._at._.%5.3f _Hz_with_power _.%6.4f\n” ;peaklb ,loclb))

legend (" topright” ,1ty=c(2,3) ,legend=c(sprintf (”1st..%3.2f_Hz” ,peakl) ,sprintf(”2
nd_%3.2f _Hz” ,peaklb)) ,cex=0.8)

#legend (" topright”,lty=c(1),legend=c(sprintf(”%d points”,n)),cer=0.8)

#source (”shadow.R”)

graphics. off ()
png(” fig—spectra.png” ,width=9,height=12,pointsize =9,res =600, units="cm” )

par (mfrow=c(3,2))
par (mgp=c (1.6 ,0.5,0) ,mar=c(4,2.7,0.5,0.5) ,oma=c(1.5,2,1,1))

anew <— FALSE

# source on exzternal harddrive 7/media/Elements/Work/Rdata/”

# load data

if (!exists (Pym”) || anew) {
load (” /media /Elements /Work/Rdata/ts—monopile —3d. Rdata” )
xm <— fl8$v
ym <— f18y

rm(fl) # save space

if (!'exists (Pym.t”) || anew) {
load (” /media/Elements /Work/Rdata/ts—trussl —2d.Rdata” )
xm.t <— fl$v
ym.t <— fl18y
rm(fl) # save space
}
if (lexists (”y10”) || anew) {
load (” /media /Elements /Work/Rdata/ts—truss4 —2d. Rdata” )
x10 <— fl18v
y10 <— f18y
rm(fl) # save space

}

if (lexists (”x10.t”) || anew) {
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load (7 /media /Elements /Work/Rdata/ts—truss7 —2d. Rdata” )
x10.t <— fl$v

yl0.t <— fl8y

rm(fl) # save space

}

if (!exists (”x10front”) || anew) {
load (” /media/Elements /Work/Rdata/ts—truss10—2d.Rdata” )
x10front <— fl$v
y1l0front <— fl18y
rm(fl) # save space

if (!exists (”x10front.t”) || anew) {
load (7 /media /Elements /Work/Rdata/ts—trussl —1d. Rdata”)
x10front .t <— fl$v
y1lO0front .t <— {18y
rm(fl) # save space

}

dt <— 0.005

span <— NULL
#span <— c(2)

i <— 201 # centerline for truss
im <— 201 # centerline for monopile

cat

cat (paste (? Truss.1:.” ;nrow(xm) ,” _time._steps._available\n” ,sep=""

cat (paste (? Truss.2:.” ;nrow(xm.t),” .time_steps._available\n” ,sep=""))

cat (paste (" Truss.3:.” ,nrow(x10),” _time._steps._available\n” ,sep=""))

cat (paste (" Truss_4:.” ;nrow(x10.t) ,” _time_steps._available\n” ,sep=""))

cat (paste (" Truss.5:.” ;nrow(x10front),” .time._steps._available\n” ,sep=""))
( ( (

paste (" Truss .6:.” ,nrow(x10front.t),” .time_steps._.available\n” ,sep=""))
#trans <— seq(200) # remove first 200 data points

last <— 400

last <— 2000 # 10 s

prelim <— FALSE # no truss turbulent

zm <— xm[nrow (xm)-rev (seq(last)) ,]
zm.t <— xm.t[nrow(xm.t)-rev(seq(last)) ,]
z10 <— x10[nrow(x10)-rev(seq(last)) ,]
z10front <— x10front [nrow(x10front)—rev(seq(last)) ,]
# 210t <— z10.t/,]
if (prelim) {
z10.t <— x10.t[nrow(x10.t)-rev(seq(600)),] # need at least 8 seconds (to
travel 30 m downstream), i.e., 600 time steps
} else {
z10.t <— x10.t[nrow(x10.t)-rev (seq(last)) ,]

}

if (prelim) {

z10front .t <— x10front.t [nrow(x10front.t)—rev(seq(600)),] # need at least 8
seconds (to travel 30 m downstream), i.e., 600 time steps
} else {

z10front .t <— x10front .t [nrow(x10front.t)—rev(seq(last)) ]
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}

cat (paste (7i.—=.

EEEC ]
s Ly

y1l0front[i],”.” ,yl0front.t[i],”\n” ,sep=""))

#ts.m
#ts.mt

<— ts(zm[—trans,i],
<— ts(zm.t[—trans ,im], deltat=dt)
#ts. 10 <— ts(zl0[—trans,i],

deltat=dt)

deltat=dt)

#ts. 10t <— ts(z10.t[—trans,i], deltat=dt)

ts.m <—
ts. mt <—
ts. 10 <—
ts. 10t <—

ts(zm[,i], deltat=dt)
ts(zm.t[,im],deltat=dt)
ts(z10[,i], deltat=dt)

ts(z10.t[,1], deltat=dt)

tsfront .10 <— ts(z1lOfront[,i],deltat=dt)
tsfront .10t <— ts(z1O0front.t[,i],deltat=dt)

spec.m <— spectrum (ts.m, span=span , plot=FALSE)

spec.mt <— spectrum (ts.mt, span=span,plot=FALSE)

spec.10 <— spectrum (ts.10, span=span, plot=FALSE)

spec.10t <— spectrum (ts.10t, span=span, plot=FALSE)

specfront .10 <— spectrum (tsfront .10, span=span, plot=FALSE)
specfront .10t <— spectrum (tsfront.10t, span=span, plot=FALSE)
spec <— spec.m

plot .spec (spec,”A”, n=length (ts.m))

spec
plot .
spec
plot .
spec
plot .
spec
plot .
spec

<— spec.mt
<— spec.10
<— spec.10t
<— specfront .10

<— specfront .10t

spec (spec,”B”, n=length (ts.mt))
spec (spec ,”C” , n=length (ts.10))
spec (spec ,”D” , n=length (ts.10t))

spec (spec ,”E” ;n=length ( tsfront.10))

plot .spec (spec,”F”, n=length (tsfront.10t))

cat (paste (? Truss.1:.” ;nrow(xm) ,” _time._steps._available\n” ,sep=""

cat (paste (? Truss.2:.” ;nrow(xm.t),” .time_steps._available\n” ,sep=""

cat (paste (? Truss.3:." ;nrow(x10),” .time._steps._available\n” ,sep=""

cat (paste (" Truss._4:.” ;nrow(x10.t) ,” _time_steps._available\n” ,sep=""))

cat (paste (" Truss._5:.” ;nrow(x10front),” time._steps._available\n” ,sep=""))

cat (paste (" Truss._6:.” ;nrow(x10front.t),” _time_steps._available\n” ,sep=""))

cat(paste (7i=.",i,” cim.=." ;im,” ; .y [i]=." ,ym[i],” .7 ,ym.t [im],”.” ,y10[i],” .
y10.t[i],”.” ,yl0front[i],”.” ,y1l0front.t[i],”\n” ,sep=""))

graphics. off ()

))
)

”

ioy[i] =2 ym[i],727 ym.t[im] 72 y10[i] 707 y10.¢[i],7."

I
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H.4 Turbulent inflow implementations, C-Code

This code is implemented in ANSYS Fluent as a user-defined function in order to run simulations
with von Karman turbulent inflow. Provided by Michael Muskulus. Code to plot frequency
spectrum. This code was provided by Michael Muskulus and modified by Torbjgrn Ruud Hagen.

/* inflow.c — Von Karman turbulent inflow for Fluent simulations %/

/* */
/* Copyright 2011 by Michael Muskulus (michael.muskulus@ntnu.no) =/

#include ”udf.h”

#include ”/usr/local/include /gsl/gsl _math.h”
#include ”/usr/local/include /gsl/gsl_sf.h”
#include ”/usr/local/include /gsl/gsl_ieee_utils.h”

const real TPI = 2.0 * M_PI;

/* model constants */

const double Lu = 73.5;
const double Un = 12.0;
const double stdU = 1.6;
const double stdV = 1.2;
const double c = 1.0; /* definition of eta =/

/* method constants */

int nbins; /% dynamically determined =/
const int nfreqs = 100;
const double flower = 0.0;

const double fupper = 10.0;
const double deltaf = 0.01;

const double df = 0.1; /* (fupper — flower) / nfreq; */
const double cutoff = le—6;
const int bw = 20; /* adjacent processes */

/* derived constants =/

const double Lv = 36.75; /* Lu/2.0; =/

const double Lv2 = 73.5; /* Lvx2.0; x/

/* precomputed for speed */

const double stdU2 = 2.56; /* stdU=xstdU; =/

const double stdV2 = 1.44; /* stdVxstdV; =/

const double psdluC = 62.72; /* stdU2#4%Lu/Um; */

const double psdlvC = 17.64; /* stdV2#4xLv/Um; */

const double psd2uCl = 2.58230e—-05; /+ (0.747/Lu2)*(0.747/Lu2); */ /% first term
in eta */

const double psd2uC2 = 0.5235988; /* ¢ % TPI / Um; =/

const double psd2vCl = 0.000103292; /+ (0.747/Lv2)*(0.747 /Lv2); */

const double psd2vC2 = 0.5235988; /* ¢ % TPI / Um; =/

const double LudUm = 6.125; /* Lu/Um; x*/

const double LvdUm = 3.0625; /* Lv/Um; */

const double c56 = 0.8333333; /* 5.0/6.0; x/

const double c116 = 1.8333333; /+ 11.0/6.0; =/

const double fuc = 0.4472136; /* sqrt (2.0 = df); =/

/* does this work? */
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int first_run = 1;
int tdone_x, tdone_y;
FILE*x ret;

/* main coefficient data */
double* mHI;
doublex mH2;
doublex phil;
doublex phi2;

/* helpers x*/

doublex freqs;

doublex ys; /* we are paranoid and check y values at each time step x*/
double ymin, ymax;

const double YDIM = 30.0;

double fmin (double x1, double x2) {
if (x1 < x2) return x1; else return x2;

¥

double fmax(double x1, double x2) {
if (x1 > x2) return x1; else return x2;

¥

double psdlu(double f) {
double x1 = gsl_pow_2(LudUmsxf) ;
double s = psdluC / pow (1.0 + 70.8 * x1, c56);
return s;

¥

double psdlv(double f) {
double x1 = gsl_pow_2(LvdUmsx*f) ;
double s = psdlvC * (1 + 755.2 % x1) / pow(l 4+ 283.2 % x1, cl16);
return s;

¥

double psd2u(double f, double r) {
double eta = r * sqrt (psd2uCl 4+ gsl_pow_2(psd2uC2 * f));
double coh = 0.994 * (pow(eta,c56) * gsl_sf_bessel _Knu(ch56, eta) — 0.5 % pow(eta
,cl16) * gsl_sf_bessel _Knu(cll6, eta));
coh = fmin(coh, 1.0); /% restrict to realistic values =*/
coh = fmax(coh,—1.0);
double s = coh * psdlu(f);
return s;

¥

double psd2v (double f, double r) {
double eta = r * sqrt (psd2vCl 4+ gsl_pow_2(psd2vC2 * f));
double g = eta * Lv2 / r;
double g2 = gsl_pow_2(g);
double coh = 0.597 * (4.781 % g2 = pow(eta,c56) * gsl_sf_bessel _Knu(ch6,eta) —
pow(eta,cl16) * gsl_sf_bessel Knu(cll6,eta)) / (2.869 =* g2
— 1.0);
coh = fmin(coh, 1.0); /% restrict to realistic values =*/
coh = fmax(coh,—1.0);
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double s = coh % psdlv(f);
return s;

¥

int ind_y(int j) { /+* wrapping around the y values */

while (j < 0) j += nbins;
while (j >= nbins) j —= nbins;
return j;

}

int ind_yf(int j, int 1) { /% channel, frequency x*/
/* allow for wrap in j =/
int i = ind_y(j) + l*nbins; /% CAVEAT: here was a terrible memory access
mistake, nfreq instead of nbins =/
return i;

¥

int ind _bwf(int j, int 1) { /% channel, frequency =/

if (j <0)j=-j;
int i = j 4+ lxbw;
return i;

¥

double get_r(int i, int j) {
/* ys[i] — yslind_y(j)]; */
double d1 = fabs(ys[ind_-y(i)]—ys[ind_-y(j)]);
double d2 = fabs(ys[ind_y(i)]—ys[ind_y(j)]+(YDIM));
double d3 = fabs(ys[ind_y(i)]—ys[ind_y(j)]—(YDIM));
dl = fmin(dl,d2);
dl = fmin(d1,d3);
return dl;
};
void initialize () {
int i,j,k;
double r;
char s[255];
/* mask IEEE underflow ... in Bessel computation =/

gsl _ieee _env_setup () ;

/* initialize frequency bins =/
freqs = (doublex) malloc(nfreqs * sizeof(double));
for (i=0; i<nfreqs; ++i) {
freqs[i] = ((double) i + 0.5 + flower) * df 4+ (double) rand () = deltaf / (
double) RAND_MAX; ;
Message (” freq . %1 =_%8.5f\n” ,i, freqgs[i]);
};

/* initialize coefficient space */

mHl = (doublex) malloc(nfreqs*bwxsizeof(double));
mH2 = (doublex) malloc(nfreqs*bwxsizeof(double));
phil = (doublex) malloc (nfreqs*nbinsxsizeof(double)) ;
phi2 = (doublex) malloc (nfreqs*nbinsxsizeof(double)) ;

for (k=0; k<bw; ++k)
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for (i=0; i<nfreqs; ++i
mH1[ind _bwf(k,i)] = 0.
mH2[ind _bwf(k,i)] = 0

} ,

Message (" Building_.H_matrices\n” ) ;
/* average spectral contributions x/
for (j=0; j<nbins; ++j) {

for (k=0; k<bw; ++k) {

¥

¥

/*Message (" j .=-%3d, .ko=_%3d .=>_.1r.=-%8.5g\n” ,j ,k,r);*/
for (i=0; i<nfreqs; ++i) {
if (k= 0) {

mH1[ind _bwf(0,i)] += (psdlu(freqs[i]) / (double)(nbins));
mH2[ind _bwf(0,1)] += (psdlv(freqs[i]) / (double)(nbins));

sprintf(s, "{_=_%8.5g_:_.y.=_-%8.5g, -k.=_%3d, _Hl 4+=_%12.8g, ~H2 4+=_%12.8g\n
7 freqs[i],ys[j],k,psdlu(freqs[i]) ,psdlv(freqs[i]));

fputs (s, ret);

else {

r= get _r(j,j+k);

mH1[ind _bwf(k,i)] += (psd2u(freqgs[i]

,T) (2 (double) (nbins)));
mH2[ind -bwf(k,i)] += (psd2v(freqs[i],r)

/ 0 %
/ (2.0 = (double) (nbins)));

sprintf(s, "{.=_%8.5g_: .yl =_%8.5g, _.y2.~-%8.5g, . k=_%3d, -t .=_%8.5g , -H1.
+=-%12.8¢, - H2.4=_%12.8g\n” ,freqs[i],ys[j],ys[ind_y(j+k)],k,r,psd2u(
freqs[i],r),psd2v(freqs[i],r));

fputs (s, ret);

r = get_r(j,j—k);
mH1[ind _bwf(k,i)] += (psd2u(freqs[i]

,T) (2.0 * (double) (nbins)));
mH2[ind _bwf(k,i)] += (psd2v(fregs[i],r) 0 =

/
/ (2 (double) (nbins)));

sprintf(s, "f.=_%8.5g_: .yl =_%8.5g, .y2_~-%8.5¢, - k=_%3d, .t .=_%8.5g , -H1.
+=_-%12.8g, _H2 4=.%12.8g\n” ,freqs[i],ys[j],ys[ind_y(j—k)] .k, r, psd2u(
freqs[i],r),psd2v(freqs[i],r));

fputs (s, ret);

¥
/* Message(”j.=9%d, k.=9d,.i.=9d, Hl=_%8.5¢g_..H2=_%8.5g\n” ,j ,k,i ,mHl|

indcf(k,i)],mH2[indcf(k,i)]); */

/* normalize x/

double sql, sq2;

for (i=0; i<nfreqs; ++i) {
sql = sq2 = 0.0;
for (k=0; k<bw; ++k) {

sql 4= mHl[ind _bwf(k,i)]

sq2 += mH2[ind _bwf(k,i)] * mH2[ind _bwf(k,i)
I
sql
sq2
for

= sqrt(sql) / sqrt(mHl[ind _bwf(0,1i
0,i

(k=0; k<bw; ++k) {
mH1
mH:

* mH1[ind _bwf(k,i)];
]

)

) 1)
) ])

)
)

sqrt (sq2) / sqrt (mH2[ind _bwf(

[ind _bwf(k,i)] /= sql;
2[ind -bwf(k,1)] /= sq2;
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};

Message ("#1-f=_%8.5g_:." ,freqs [i]);

for (k=0; k<bw; ++k) Message(” %12.8g.” ,mH1[ind _bwf(k,i)]) ;
Message (" \n#2_f=_%8.5g.:." ,freqs [i]);

for (k=0; k<bw; ++k) Message (” %12.8g.” mH2[ind _bwf(k,i)]) ;
Message (”\n”) ;
sprintf (s, "Hl./_.H2_f=_%8.5g\n” ,freqs[i]);
fputs (s, ret);
for (k=0; k<bw; ++k) {
sprintf (s, "%12.8g.” ,mHl[ind _bwf(k,1)]); fputs(s,ret);
};
sprintf (s, 7\n”);
fputs (s, ret);
for (k=0; k<bw; ++k) {
sprintf (s, "%12.8g.” ,mH2[ind _bwf(k,1)]); fputs(s,ret);
};
sprintf(s, 7\n”);
fputs (s, ret);

¥

/* random phases x*/
Message ("Random._phases\n” ) ;
for (j=0; j<nbins; j++)
for (i=0; i<nfreqs; ++i) {
phil[ind_yf(j,i)] = (double) rand() * TPI / (double) RAND_MAX;
phi2 [ind_yf(j,i)] = (double) rand() * TPI / (double) RAND_MAX;
};
};

double evaluate _u(double t, int j) {
int m, 1;
double fu = 0.0;
double f;
for (m=>bw; nxbw; ++n)
for (1=0; l<nfreqs; ++1)
f = fabs(mHl[ind -bwf(m,1)]) ;
f = fuc;
f %= cos(freqs[1l]*t + phil [ind_yf(m+j,1)]);
fu += f;
};
return fu;

¥

double evaluate _v(double t, int j) {
int m, 1;
double fv = 0.0;
double f;
for (m=>bw; nxbw; ++mn)
for (1=0; l<nfreqs; ++1)
f = fabs(mH2[ind -bwf(m,1)]) ;
f %= fuc;
f %= cos(freqs[l]*t + phi2[ind_yf(m+j,1)]);

{
1

{
1
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fv 4= f;
I

return fv;

¥

DEFINE _PROFILE (inlet _x_velocity , t, i)

{
real x[ND_ND]; /# position vector; ND.ND = 2 for 2D model */
real y;
face _t f;
real ts = CURRENT_TIME; /% in seconds x*/
char s[255];
int nt = N_TIME; /* no. time step */

if (first_run) {
/* find out the number of cells */
nbins = 0;
begin _f _loop (f,t)
{
F_CENTROID(x,f,t);
y = x[1];
nbins++;
}
end _f _loop (f,t)
int bin = 0;
/* write out some information =/

char s[20];
first _-run = 0;
ret = fopen (”inflow.out” ,”w”);

fputs (?INITIALIZATION LIN _U\n” , ret);
sprintf (s, "TIME_STEP . =_%i\n", (int)N_TIME);
sprintf (s, ”"NO._FACES.=_%i\n”, nbins);
fputs (s, ret);
ys = (doublex) malloc(nbins*sizeof(double));
ymin = ymax = 0.0;
begin _f _loop (f,t)
{
F_CENTROID(x,f,t);
y = x[1];
ys[bin] = y;
bin++;
if (y < ymin) ymin = y;
if (v > ymax) ymax = y;
sprintf (s, ”face #%i:_y=_-%8.4f\n”, bin, y);
Message (” face #%i : oy = %8.4f\n”, bin, y);
fputs (s, ret);
}
end _f _loop (f,t)
sprintf (s, ”"ymin.=_%8.4f\nymax.=.%8.4f\n” ,ymin ,ymax) ;
fputs (s, ret);
/* initialize =*/
Message ("INITIALIZING _.H\n" ) ;
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}

} .

initialize ();

sprintf(s,” \nRunning._simulation\nSampling._velocity._at._y[40] _=_-%6.4f,__y[80] =
“%6.41 0y [120] .= %6.4f\n\n” ,ys[39] ,ys[79],ys[119]);

fputs (s, ret);

fclose (ret);

)

int bin = 0;

d
d
b

{

ouble v1,v2,v3;
ouble v;
egin _f_loop (f,t)

F_CENTROID(x, f , t) ;
y = x[1];

if (abs(y — ys[bin]) > le—4) exit(1); /* being paranoid */
v = Um + evaluate_u(ts,bin);
if (bin = 39) vl = v;
if (bin = 79) v2 = v;
if (bin = 119) v3 = v;
F_PROFILE (f,t,i) = v;
bin++;

}

end _f _loop (f,t)

if (tdone_x != nt) {
ret = fopen (”inflow.out”,”a”);

¥

sprintf (s, ”Evaluating .x—velocity_at_.time.step_=%i\n”, (int)N_TIME);
fputs (s, ret);

sprintf(s, 7..vx[40] =_-%8.6g,--vx[80] =_-%8.6g,.-vx[120] =_%8.6g\n” ,vl,v2,v3);
fputs (s, ret);

fclose (ret);

tdone_x = nt;

DEFINE _PROFILE (inlet _y _velocity , t, i)

{

real x[ND_ND]; /# position vector; ND.ND = 2 for 2D model */
real y;

face _t f;

char s[255];

real ts

CURRENT_TIME; /% in seconds */

int nt = N_TIME; /* no. time step */

if

(first _run) {
/* find out the number of cells */
nbins = 0;
begin _f _loop (f,t)
{

F_CENTROID(x,f,t);

y = x[1];

nbins++;

end _f_loop (f,t)
int bin = 0;
/* write out some information =/
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char s[20];

first _run = 0;

ret = fopen (”inflow.out” ,”w”);

fputs (?INITIALIZATION LIN _V\n” , ret);
sprintf (s, "TIME_STEP . =_%i\n", (int)N_TIME);
sprintf (s, ”"NO._FACES.=_%i\n”, nbins);

fputs (s, ret);

ys = (doublex) malloc(nbins*sizeof(double));
ymin = ymax = 0.0;

begin _f _loop (f,t)

F_CENTROID(x, £, t) ;

y = x[1];

ys[bin] = y;

bin++;

if (y < ymin) ymin = y;

if (v > ymax) ymax = y;

sprintf (s, ”face #%i:_y.=_-%8.4f\n”, bin, y);
fputs (s, ret);

end _f_loop (f,t)

sprintf (s, ”"ymin.=_%8.4f\nymax.=.%8.4f\n” ,ymin ,ymax) ;
fputs (s, ret);

/* initialize =x/

Message ("INITIALIZING _.H\n" ) ;

initialize ();

fclose (ret);

¥

int bin = 0;

double v1, v2, v3;

double v;

begin _f _loop (f,t)

{
F_CENTROID(x, f , t) ;
y = x[1];
if (abs(y — ys]| le—4) exit(1); /* being paranoid */
v = evaluate_v(ts,
if (bin = 39) vl =
if (bin = 79)
if (bin = 119)
F_PROFILE (f,t, i
bin++;

}

end _f _loop (f,t)

if (tdone_y != nt) {
ret = fopen (”inflow.out”,”a”);
sprintf (s, ”Evaluating .y—velocity .at_.time.step._=%i\n”
fputs (s, ret);

=
<4 < < —V

. (int)N_TIME) ;

sprintf (s, 7.o.vy[40] =_%8.6g,..vy[80] =_%8.6g,._vy[120] =_-%8.6g\n” ,vl,v2,v3);

fputs (s, ret);
fclose (ret);
tdone_y = nt;
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