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Abstract. In this paper we study isentropic flow in a curved pipe. We fo-

cus on the consequences of the geometry of the pipe on the dynamics of the
flow. More precisely, we present the solution of the general Cauchy problem

for isentropic fluid flow in an arbitrarily curved, piecewise smooth pipe. We

consider initial data in the subsonic regime, with small total variation about
a stationary solution. The proof relies on the front-tracking method and is

based on [1].

1. Introduction

Consider a pipe filled with a compressible fluid. The pipe section is far smaller
than its length. The pipe is not assumed to be rectilinear. We propose below a
modification to the usual isentropic Euler equations that takes into account the
pipe’s geometry.

First, consider the case of a horizontal pipe with a single elbow. Following [11],
along the pipe we use the classical isentropic p-system in Eulerian coordinates

(1.1)


∂tρ+ ∂xq = 0,

∂tq + ∂x

(
q2

ρ
+ p(ρ)

)
= 0,

where t is time, x is the abscissa along the pipe, ρ is the mass density, q is the
linear momentum density, i.e., q = ρv where v is the velocity, and p is the pressure.
At the kink, located at, say, x = 0, the following conditions on the traces of q and
of the dynamic pressure P = q2/ρ+ p(ρ) are imposed:
(1.2)

q(t, 0−) = q(t, 0+) and P (t, 0−) = P (t, 0+)− f κ
(

2
∣∣sin(ϑ/2)

∣∣) q(t, 0+) ,

where the positive parameter f accounts for inhomogeneities in the pipe’s walls at
the kink and κ depends on the pipe’s angle ϑ, see Figure 1. Equivalently, (1.1)–

ϑ

Figure 1. A pipe curved by an angle ϑ at x = 0, as considered
in (1.1)–(1.2) or (1.3) and in Proposition 2.1.
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2 COLOMBO AND HOLDEN

(1.2) can be rephrased as a single balance law with a Dirac delta source term in
the second equation:

(1.3)


∂tρ+ ∂xq = 0,

∂tq + ∂x

(
q2

ρ
+ p(ρ)

)
= −f κ

(
2
∣∣sin(ϑ/2)

∣∣) q δx=0.

Next, we consider a smoothly curved pipe described by the equation Γ = Γ(x)
where x is arc–length. It is reasonable to assume that the dynamics of the fluid is
governed by the equations

(1.4)


∂tρ+ ∂xq = 0,

∂tq + ∂x

(
q2

ρ
+ p(ρ)

)
= −f(x) κ

(∥∥Γ′′(x)
∥∥) q ,

where
∥∥Γ′′(x)

∥∥ equals the curvature of the pipe at the location Γ(x). We have
κ(0) = 0, and f(x) is an empirical factor that depends on the location along the
pipe. A brief derivation of the model can be found in [11].

More generally, we consider an arbitrary piecewise smooth pipe. Call x̄0, . . . , x̄m
its corner points, or kinks, and denote by ϑi the angle of the pipe at x̄i, see Figure 1.
To avoid unphysical behavior we assume that the pipe is horizontal and rectilinear
outside a compact set. We are thus led to consider the system:

(1.5)



∂tρ+ ∂xq = 0,

∂tq + ∂x

(
q2

ρ
+ p(ρ)

)
= −f(x) κ

(∥∥Γ′′(x)
∥∥) q − ρ g sinα(x)

−
m∑
i=0

f(x̄i)κ
(

2
∣∣sin(ϑi/2)

∣∣) q(t, x̄i+) δx=x̄i ,

where α = α(x) describes the inclination of the pipe with respect to the horizontal
plane at x and g is gravity. Both κ and α vanish outside a compact set.

The main result of the present paper is that (1.5) generates a Lipschitz continuous
semigroup defined globally in time on all initial data that are small perturbations of
stationary solutions. The results in [1] also ensure the uniqueness of this semigroup.

The analytic techniques employed here are rooted in the idea of approximating
the piecewise smooth pipe with a polygonal one. Indeed, the case of a polygo-
nal pipe can be obtained by gluing together systems of the type (1.2), where the
source is a sequence of linear combinations of Dirac delta masses, which corre-
spond to stationary discontinuities. At this point, the front-tracking method for
systems of hyperbolic conservation laws [3, 12] proves to be a very effective tool.
First, front-tracking approximations are defined through the available solutions to
Riemann problems, including those at the Dirac masses. Second, front-tracking ap-
proximations are extremely accurate in capturing the essential features of the exact
solutions to conservation laws. Third, analytic techniques are available that allow
to prove the convergence of these approximations. We refer to [3, 12] for further
details on the front-tracking method.

2. Main Result

Throughout this paper, R+ = (0,+∞) and R+
= [0,+∞). Moreover, we denote

the state of the fluid by u, where u ≡ (ρ, q), with q = ρ v.
We assume that the fluid can be described through the pressure law p satisfying

(p): p ∈ C2(R+;R+), p′(ρ) ≥ 0 and p′′(ρ) ≥ 0 for all ρ > 0.
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A typical example is a polytropic gas with the γ-pressure law p(ρ) = ργ for γ ≥ 1.
With reference to the p-system (1.1) recall the following quantities

(2.1)

E(ρ, q) =
q2

2ρ
+ ρ

∫ ρ

ρ̄

p(r)

r
dr , mathematical entropy,

F (ρ, q) =
q

ρ

(
E(ρ, q) + p(ρ)

)
, entropy flow,

P (ρ, q) =
q2

ρ
+ p(ρ), dynamic pressure.

2.1. Stationary Solutions. Assume the pipe is horizontal. Then, both systems (1.3)
and (1.4) admit the stationary solution

q = 0 and ρ = constant.

In the case of a single kink (1.3), further stationary solutions are given by

ρ =

{
ρ`, x < 0,

ρr, x > 0,
q = constant, where P (ρ`, q)− P (ρr, q) = −fκ

(
2
∣∣sin(ϑ/2)

∣∣) q .
Stationary solutions in the case of a polygonal pipe are obtained by gluing together
solutions of the type above, i.e., q is constant while ρ satisfies the jump condition
at every kink.

In a smooth pipe with gravity, stationary solutions satisfy

∂xP
(
ρ(x), q

)
= −f(x)κ

(∥∥Γ′′(x)
∥∥) q − ρ g sinα(x) and q = constant.

Gluing together stationary solutions of the types above yields stationary solu-
tions in the case of a piecewise smooth pipe.

Throughout this paper, by ū = ū(x) we denote any of the stationary solutions
constructed above.

2.2. The Case of a Single Kink. We now briefly consider the Riemann Problem
for (1.3), referring to [11] for more details.

The pipe consists now of two rectilinear tubes connected through a kink at an
angle ϑ ∈ (−π, π) located at, say, x = 0, so that

Γ(x) =

{
(1, 0)x, x < 0,

(cosϑ, sinϑ)x, x > 0,

see Figure 1. Then, the Riemann Problem for the model (1.1)–(1.2) or (1.3) intro-
duced in [11] reads

(2.2)



∂tρ+ ∂xq = 0,

∂tq + ∂xP (ρ, q) = 0,

JqK (t, 0) = 0,

JP K (t, 0) = f κ
(

2
∣∣sin(ϑ/2)

∣∣) q(t, 0+),

(ρ, q)(0, x) =

(ρl, ql), x < 0,

(ρr, qr), x > 0,

where, as usual, we denote1 JF K (t, x) = F (t, x+)− F (t, x−) for any function F of
the pair (ρ, q). The function κ is assumed to satisfy

(κ): κ ∈ C1(R;R+
), with κ(0) = 0 and κ is even.

1Here F (x±) = limh↓0 F (x± h) for any function F .
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We also introduce the subsonic region

(2.3) Ω =
{

(ρ, q) ∈ R+ × R :
∣∣q/ρ∣∣ <√p′(ρ)

}
,

where the velocity v = q/ρ of the fluid is smaller than the sound speed
√
p′(ρ).

Due to its relevance in the applications, we restrict our attention below to initial
data and solutions attaining values in the subsonic region.

Proposition 2.1. Let (p) and (κ) hold. Fix f > 0 and a subsonic stationary
solution ū to (2.2). Then, there exists a δ > 0 such that for all states u`, ur ∈ Ω
satisfying

‖uo − ū‖L∞(R;R+×R) < δ where uo(x) =

{
u`, x < 0 ,

ur, x > 0 ,

the Riemann Problem (2.2) admits a unique self-similar weak entropy solution at-
taining values in Ω, consisting of a 1-wave supported in x < 0, a jump along x = 0
and a 2-wave supported in x > 0.

The Riemann Problem (2.2) was analyzed for arbitrary initial states in [11,
Section 2] in the isothermal case where the pressure p(ρ) = ρ. The well known
properties of the p-system allow us to apply [5, Theorem 3.2], so that the Cauchy
problem for (2.2) is well posed in L1. The proof of Proposition 2.1 directly follows
from the cited references.

2.3. The Case of a Piecewise Smooth Pipe. We now consider a piecewise
smooth pipe with finite curvature, see Figure 2. More precisely, we make the
following assumptions:

k

Γ(x̄i)

Figure 2. A piecewise smooth pipe.

(Γ): Γ ∈ C0(R;R3) is such that:
(1) Γ is piecewise smooth: there exist x̄0, x̄1, . . . , x̄m with xi−1 < xi for all i

such that Γ|(−∞,x̄0] ∈ C2((−∞, x̄0];R3), Γ|[x̄i−1,x̄i] ∈ C2([x̄i−1, x̄i],R3)

and Γ|[x̄m,+∞) ∈ C2([x̄m,+∞);R3);

(2) Γ is parametrized by arc–length:
∥∥Γ′(x)

∥∥ = 1 for all x ∈ R\{x̄0, . . . , x̄m};
(3) Γ has finite curvature: Γ′′ vanishes outside a compact set;
(4) Γ is horizontal outside a compact set: Γ′(x) · k vanishes outside a

compact, where k denotes the unit vertical vector.

On the friction term f , we require the following condition:

(f): f ∈ (C0 ∩ L∞)(R;R) and f ≥ 0.
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Lemma 2.2. Let Γ satisfy (Γ). Then, Γ′ ∈ BV(R;R3) and its weak derivative is
the measure

µ = Γ′′ dL+

m∑
i=0

(
Γ′(xi+)− Γ′(xi−)

)
δx=xi

.

ϑi

Γ′(x̄i+)

Γ′(x̄i−)

Figure 3. Justification of (2.4): here,
∥∥Γ′(x̄i+)

∥∥ =
∥∥Γ′(x̄i+)

∥∥ = 1.

Remark that the above expression of µ admits a geometric interpretation. For
i = 0, . . . ,m, call ϑi the angle at x̄i such that cosϑi = Γ′(x̄i−)·Γ′(x̄i+). Elementary
geometric considerations, see Figure 3, show that

(2.4)
∥∥Γ′(x̄i+)− Γ′(x̄i−)

∥∥ =
√

2(1− cosϑi) = 2
∣∣sin(ϑi/2)

∣∣,
as used in [11].

Definition 2.3. Let T > 0 and fix a stationary state ū ∈ R+ × R. By a weak
solution to (1.4) we mean a map

u = (ρ, q) ∈ C0
(

[0, T ]; ū+ (L1 ∩BV)(R;R+ × R)
)

such that uo = u|t=0 and for any function ϕ ∈ C1
c((0, T )× R;R), we have∫

R

∫ T

0

(ρ ∂tϕ+ q ∂xϕ) dt dx =0,∫
R

∫ T

0

(
q ∂tϕ+ P (ρ, q)∂xϕ

)
dt dx =

∫
R

∫ T

0

f(x)κ
(∥∥Γ′′(x)

∥∥) q(t, x)ϕ(t, x) dt dx

+

m∑
i=0

∫ T

0

f(x̄i)κ
(
2 sin(ϑi/2)

)
q(t, x̄i)ϕ(t, x̄i) dt

+

∫
R

∫ T

0

ρ(t, x) g sinα(x)ϕ(t, x) dtdx .

The weak solution (ρ, q) is a weak entropy solution if for any function ϕ ∈ C1
c((0, T )×

R;R+), we have∫
R

∫ T

0

(
E(ρ, q) ∂tϕ+ F (ρ, q) ∂xϕ

)
dtdx

+

∫
R

∫ T

0

∂qE(ρ, q)
(
f(x)κ

(∥∥Γ′′(x)
∥∥) q(t, x) + ρ(t, x) g sinα(x)

)
ϕdtdx ≥ 0 .

Theorem 2.4. Let (p), (Γ), (f), and (κ) hold. Fix a subsonic stationary solution

ū. Then, there exist δ̂, δ̌, and L ∈ R+ such that (1.4) generates a semigroup

S : R+ ×D → D

with the properties:
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(1) The domain D is non-trivial and its elements have uniformly bounded total
variation: {

u ∈ ū+ L1(R;R+ × R) : TV(u) ≤ δ̌
}
⊆ D,{

u ∈ ū+ L1(R;R+ × R) : TV(u) ≤ δ̂
}
⊇ D.

(2) For all uo ∈ D, the map t 7→ Stuo is a weak entropy solution to (1.5) in the
sense of Definition 2.3.

(3) S is Lipschitz continuous with respect to the L1 norm, i.e., for u, u′ ∈ D∥∥St′u′ − Stu∥∥L1(R;R+×R)
≤ L

(∥∥u′ − u∥∥
L1(R;R+×R)

+
∣∣t′ − t∣∣) .

Γ(x̄i)

x
x̄ij2−n

Figure 4. Discretization of (1.5) leading to (2.5).

Proof. We follow the construction in [1]. In the discretization of the pipe, we assume
for simplicity that all kinks are at a dyadic abscissa. In other words, without any
loss of generality, we assume that for all i = 0, . . . ,m, we have x̄i = ji2

−ni for
suitable ni ∈ N and ji ∈ {−22ni , . . . , 22ni}, see Figure 4.

Introduce the set Kn of indices that correspond to kinks, namely

Kn =
{
j ∈ {−22n, . . . , 22n} : ∃i ∈ {0, . . . ,m} such that x̄i = j 2−n

}
.

The procedure in [1, Theorem 3], by means of front-tracking approximate solutions
to (1.5), constructs an exact solution un to the following approximation of (1.5):

(2.5)



∂tρ+ ∂xq = 0,

∂tq + ∂x

(
q2

ρ
+ p(ρ)

)
= −

∑
j 6∈Kn

f(j2−n)κ

(∥∥∥Γ′′(j2−n)
∥∥∥) q(t, j2−n) δx=j2−n

−
22n∑

j=−22n

ρ(t, j2−n) g sinα(j2−n) δx=j2−n

−
m∑
i=0

f(x̄i)κ
(

2
∣∣sin(ϑi/2)

∣∣) q(t, x̄i+) δx=x̄i .

An application of [1, Theorem 6] yields for any n ∈ N the existence of a semigroup
Sn : R+ ×Dn → Dn satisfying (1) with D replaced by Dn, (2) with (1.5) replaced

by (2.5), and (3) for suitable δ̂, δ̌ and L independent of n.
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We now let n → +∞ and follow the procedure in [1, Theorem 8]. Remark
that (2.5) differs from the equation considered in [1] by the last term

−
m∑
i=0

f(x̄i)κ
(

2
∣∣sin(ϑi/2)

∣∣) q(t, x̄i+) δx=x̄i

on the right-hand side of the second equation. However, this term is independent
of n and does not prevent the application of techniques used in [1, Theorem 8], see
also [10]. �

3. Other Applications

The p-system (1.1) is of use in a variety of situations and the procedure presented
above may well be applied to them.

3.1. Water Flowing in a Pipe. A different scenario that admits the same treat-
ment presented in Section 2 is that of water flowing in a pipe. Neglecting friction
along the walls, in a horizontal pipe the Saint-Venant equations [17] read

(3.1)

 ∂ta+ ∂xq = 0,

∂tq + ∂x

(
q2

a + p(a)
)

= 0 .

Here, as usual, t is time, x the coordinate along the tube, a = a(t, x) is the area
of the wet cross-section, q = q(t, x) is the water flow, so that q = a v, where
v = v(t, x) is the averaged speed of water at time t and position x. The hydrostatic
term p = p(a) is defined as in [2, Section 3.2], namely

(3.2) p(a) = g

∫ a

0

(
h(a)− h(α)

)
dα

where h = h(a) is the height of water corresponding to a, see Figure 5. Here g is
the acceleration due to gravity. In the case of water pipes, the function h is often
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Figure 5. Notation used in (3.1) and (3.2). Left: the cross sec-
tion of a standard pipe used in the modeling of free surface flows.
Right: a pipe with the fictitious Preissmann slot used to describe
pressurized flows.

chosen introducing the so-called Preissmann slot. It is an artificial modification
of the cross section of a tube, see Figure 5, right, to merge free surface flow and
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pressurized flow in a combined model. In the case of free surface flow the physical
geometry is used. In the case of pressurized flow a narrow slot is added to the
model, so that the height of water is extended beyond the tube diameter d. This
widely used technique, see, e.g., [7, 14, 16], allows us to consider both regimes in a
single model.

With suitable choices of the term f , it is natural to consider the following ex-
tension of (3.1) to describe the dynamics of water in a curved pipe:

(3.3)

 ∂ta+ ∂xq = 0,

∂tq + ∂x

(
q2

a + p(a)
)

= −f(x)κ(x) q ,

with p defined by the pressure law (3.2) satisfies (p). Referring to the case depicted
in Figure 5 and to [2, Section 3.2], calling r the radius of the pipe and d the width
of the Preissmann slot, we have

(3.4) h(a) =



√
2
π a, a ∈

[
0, π2 r

2
]
,

2r −
√

2r2 − 2
π a, a ∈ (π2 r

2, π r2 − 1
2π d

2] ,

a
d −

1
2π d+ 2r − π r2

d , a ∈ (πr2 − 1
2π d

2,+∞) .

Straightforward computations show that the pressure law (3.2) with h defined as
in (3.4) satisfies (p), so that the results in Section 2 can be applied also to (3.3).

3.2. A Pipe with a Varying Section. The dynamics of a fluid in a pipe with a
slowly varying section a = a(x) is described by the well known equations

(3.5)


∂t(a ρ) + ∂x(a q) = 0,

∂t(a q) + ∂x

(
a
(
q2

ρ + p(ρ)
))

= 0,
or

∂tρ+ ∂xq = − q
a ∂xa,

∂tq + ∂x

(
q2

ρ + p(ρ)
)

= − q2

a ρ ∂xa,

where p = p(r) is the pressure law and, as in the previous section, ρ = ρ(t, x) is
the fluid density and q = q(t, x) is its linear momentum density. The equivalence
between the two systems (3.5) is proved in [6, Lemma 2.6]. This problem has been
widely considered in the literature, see, for instance, [4, 6, 8, 9, 13, 15].

The system on the right in (3.5) clearly shows that a sudden change in the pipe
section, i.e., a discontinuity in the function a, yields a Dirac delta function as source
term in both equations. Similarly to what was done in Section 2, it is then natural

Figure 6. Left: a single junction between two pipes. Middle: a
sequence of junctions. Right: a pipe with a smoothly varying
section.

to select a class of solutions to (3.5) in the case of a single junction as in Figure 6,
left,

a(x) =

{
a−, x < 0 ,

a+, x > 0 ,

pass to the case of a piecewise constant section a = a(x) as in Figure 6, center,
and, in the limit, re-obtain equations (3.5). We refer to [6] for the details.
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