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Electric field control of magnon-
induced magnetization dynamics in 
multiferroics
Vetle Risinggård*, Iryna Kulagina* & Jacob Linder

We consider theoretically the effect of an inhomogeneous magnetoelectric coupling on the magnon-
induced dynamics of a ferromagnet. The magnon-mediated magnetoelectric torque affects both the 
homogeneous magnetization and magnon-driven domain wall motion. In the domains, we predict 
a reorientation of the magnetization, controllable by the applied electric field, which is almost an 
order of magnitude larger than that observed in other physical systems via the same mechanism. The 
applied electric field can also be used to tune the domain wall speed and direction of motion in a linear 
fashion, producing domain wall velocities several times the zero field velocity. These results show that 
multiferroic systems offer a promising arena to achieve low-dissipation magnetization rotation and 
domain wall motion by exciting spin-waves.

Multiferroic materials are materials that exhibit simultaneously two or more ferroic order parameters (ferroelec-
tric, (anti)ferromagnetic, ferroelastic and ferrotoroidic order)1. The term multiferroics has also been used more 
generally to refer to materials that exhibit a magnetoelectric coupling—that is, materials with a free energy func-
tional that contains terms dependent on both the magnetization and the polarization2–4.

If the cross-terms in the free energy only depend on the magnetization itself—and not its derivatives—the 
material is said to exhibit the homogeneous magnetoelectric effect. The first detailed investigation of this effect 
was made by Dzyaloshinskii5 for Cr2O3. An essential aspect of the homogeneous magnetoelectric effect is that 
an effect that is first order in both the polarization and the magnetization (linear magnetoelectric effect) cannot 
occur in materials where the free energy has time-reversal and spatial inversion symmetry6.

If the cross-terms in the free energy depend on the gradient of the magnetization, the material is said to 
exhibit the inhomogeneous magnetoelectric effect, or the flexoelectric effect. The existence of this effect was first 
pointed out by Bar’yakhtar et al.7. The inhomogeneous magnetoelectric effect can be present even in inversion 
symmetric systems. The study of the inhomogeneous magnetoelectric effect has seen a revival after the work of 
Mostovoy8 on the rare earth manganites. Several authors have contributed to an extension of these results to the 
dynamic regime9–16.

In this work, we determine how the magnetization dynamics of multiferroic materials are influenced by inject-
ing spin-waves. Magnon spintronics is an emerging subfield of the field of spintronics which applies spin-waves 
for information transport and processing17,18. By carrying spin currents using magnons rather than electrons, 
large scale charge transport and the associated Joule heating is avoided. Magnons can propagate over centim-
eter distances in low-damping magnetic insulators19, while spin-currents carried by electrons are limited by 
the spin-diffusion length, which is on the order of microns. Magnons also offer exciting possibilities exploiting 
wave-based and nonlinear phenomena, such as the majority gate20–22 and parallel computing23.

One of the principal advantages of magnon spintronics is the wide variety of available magnetic materials and 
interactions, and the large number of other magnetic excitations such as domain walls, vortices and skyrmions. 
For instance, there are obvious opportunities for creating nonvolatile memories based on magnons interacting 
with domain walls24,25 or skyrmions26,27. The properties of such systems can be tuned by exploiting higher order 
magnetic interactions such as the Dzyaloshinskii–Moriya interaction (DMI)28,29, not to mention magnon band 
structure engineering in magnonic crystals18.

We will first consider the effect of an inhomogeneous magnetoelectric coupling on magnetization dynamics 
induced by magnon injection. We demonstrate analytically and numerically that this term produces a reorien-
tation of the time-averaged magnetization, see Fig. 1. A similar reorientation has been identified previously by 
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Manchon et al.30 for a Dzyaloshinskii–Moriya ferromagnet and by Linder31 for a topological insulator–ferro-
magnet heterostructure. Unlike these previous results, the magnitude and direction of the reorientation of the 
magnetization that is due to the inhomogeneous magnetoelectric effect is controllable by the applied electric field; 
not fixed by the material constants. Moreover, the effect is quantitatively much larger than in the Dzyaloshinskii–
Moriya case.

Second, we determine how the inhomogeneous magnetoelectric effect alters magnetic domain wall motion. 
The case of magnetic field-driven domain wall motion has been considered previously by Chen et al.32, whereas 
Dzyaloshinskii33 and Logginov et al.34,35 have considered domain wall motion driven by an inhomogeneous elec-
tric field. Magnon-induced domain wall motion in ordinary ferromagnets was first considered by Mikhailov and 
Yaremchuk36, and more recently by Yan et al.24 who showed that conservation of angular momentum will drive 
the domain wall towards the spin-wave source. In response to puzzling numerical results showing domain wall 
motion away from the spin-wave source, Yan et al.37 have developed a theory of linear momentum transfer from 
spin-waves to domain walls. Linear momentum transfer has later been used to explain the dependence of the 
direction of domain wall motion in Dzyaloshinskii–Moriya ferromagnets on the sign of the material dependent 
DMI constant38. Interestingly, we find that for magnon-induced domain wall motion the inhomogeneous mag-
netoelectric effect enables electric field control of both the sign and magnitude of the domain wall velocity, see 
Fig. 2. The domain wall velocity scales linearly with the applied electric field.

Magnon-induced dynamics in homogeneously magnetized multiferroics
As shown in Fig. 1, we consider a ferromagnetic wire that exhibits the inhomogeneous magnetoelectric effect. In 
the continuum limit, the magnetization can be described by a vector field m(r, t). The free energy of this system 
can be written as
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Here, A is the exchange stiffness, m is the saturation magnetization, K is the easy axis anisotropy constant and 
K⊥ is the hard axis anisotropy constant. The easy axis of magnetization is taken to be along the length of the wire 
and is dominated by shape anisotropy. If the wire cross-section is not circular, the shape anisotropy will also 
contribute a perpendicular hard axis anisotropy. The effective constant K⊥ can also contain contributions from 
magnetocrystalline anisotropy. The final term is the inhomogeneous magnetoelectric interaction. E is the applied 
electric field and P is the induced electric polarization8,

γ= ∇ ⋅ − ⋅ ∇ .P m m m m[ ( ) ( ) ] (2)0

Figure 1.  Magnetization reorientation by the magnon-mediated magnetoelectric torque. When an 
electric field is applied to a homogeneously magnetized sample, nothing happens. When a magnetic 
inhomogeneity is introduced in the form of spin-waves, the interaction between the applied electric field 
and the induced electric polarization produces a shift in the time-averaged magnetization that is linear in the 
applied electric field.

Figure 2.  Controlling the domain wall velocity by the magnon-mediated magnetoelectric torque. In 
the absence of an applied electric field, the magnetic domain wall travels towards the spin-wave source. The 
magnitude of the velocity is determined by the spin-wave excitation amplitude, the distance from the source 
and the spin-wave frequency. By application of an electric field the domain wall can be made to stop and change 
direction of motion. The velocity of the domain wall is linear in the electric field.
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γ0 is the inhomogeneous magnetoelectric coupling constant.
We describe the time dynamics of the magnetization using the Landau–Lifshitz–Gilbert (LLG) equation39–41,

γ α
∂ = × − × ∂m m H m m

m
, (3)t t

where H(r, t) is the effective magnetic field acting on the magnetization, γ is the gyromagnetic ratio and α is the 
Gilbert damping parameter. We assume that γ <​ 0 and α <​ 0. The effective magnetic field is given by the func-
tional derivative of the free energy with respect to the magnetization, H =​ −​δF/δm. This gives rise to the effective 
field
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where we have assumed that the electric field is independent of position.

Perturbation theory.  We calculate the magnon-induced dynamics perturbatively by considering devia-
tions from a homogeneous magnetization parametrized in the small excitation parameter h. For this purpose the 
magnetization is most conveniently written out in a spherical frame as shown in Fig. 3. To second order in h the 
magnetization is42
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(1)/(2)  is the first (second) order spin-wave excitations in the θ- (φ)-direction. For small h the linear terms 

dominate, reproducing the usual spin-wave expansion24. The second order excitations take into account the fact 
that the magnetization along the r-direction is reduced for stronger excitation30. Δ​mθ/φ(r) correspond to a 
steady-state reorientation of the magnetization that might be induced by the spin-waves. Since spin-waves in an 
ordinary ferromagnet do not induce such deviations, these deviations must be of second order in h or higher30. 
The second equality follows from the micromagnetic normalization criterion m · m =​ m2 and is accurate to second 
order in h. For ease of notation, we have written =θ φ θ φr rs t s t( , ) ( , )/

(1)
/ .

Static magnetization.  For simplicity, we assume that our system is one-dimensional so that ∇ = ∂ ex x and 
∇ = ∂x

2 2. We consider now in turn the equations of our perturbation theory. By inserting the ansatz (5) into the 
LLG equation (3) using the effective field (4) we get two nontrivial equations to zeroth order,
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Figure 3.  For the spin-wave perturbation theory the magnetization is most conveniently written out 
in a spherical coordinate system. When the magnetization is homogeneous, θ and φ are assumed to be 
independent of position and time. In the case of a domain wall our objective is to consider the dynamic 
response of a nonuniform magnetization texture. Consequently, θ and φ must be position- and time-
dependent.
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These are the θ- and the φ- component, respectively. The zeroth order equations give the static magnetization 
direction. We see that one solution is to set both angles to zero, θ =​ 0 and φ =​ 0. This solution is unchanged by 
adding an integer multiple of π to either angle.

Spin-wave amplitudes.  As in any perturbation theory43, the first and higher order equations vanish identically 
when the excitation parameter h goes to zero. Thus, h →​ 0 leaves us with the static problem. For first and higher 
orders of the perturbation theory the excitation parameter h is merely a convenient accounting device and can 
be treated as h →​ 1. To first order in h we once more get two nontrivial equations corresponding to the θ- and 
φ-components,
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To solve these equations we make the assumption that the time-dependence is purely harmonic, sθ/φ(x, t) =​ sθ/φ(x) 
×exp(−​iωt). Equations (6) and (7) can be recast into one single equation by introducing the auxiliary variable 
ψ(x) =​ sθ(x) +​ icsφ(x). We multiply equation (6) by ic and subtract equation (7). By requiring that the coefficient of 
sφ is ic times that of sθ we get a second order equation in c. Solving this equation we find that 

γ γ ω ω= − ± +⊥ ⊥c K K m m[ ( ) ]/2 2 2 2 1/2 . Although both signs are allowed mathematically, we must choose the one 
that makes sense physically. By choosing the minus sign we get real wave numbers in the intermediate steps lead-
ing up to the dispersion relation in equation (10). Thus, keeping to this choice we find the equation
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for ψ(x). This equation is solved by the ansatz that ψ(x) is a damped harmonic, ψ(x) =​ ρ exp(ikx) exp(−​ηx/Γ​). 
Here, ρ is the amplitude of the excited spin-waves at the spin-wave source; η =​ sgn(x), and by choosing k >​ 0 
we ensure that ψ represents damped waves traveling away from a source at the origin. If we substitute our 
ansatz for ψ back into equation (8) and separate the real and imaginary part we find expressions for the 
damping length44
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and for the dispersion relation24
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The dispersion relation we have obtained is the usual dispersion relation for an ordinary ferromagnet. We do 
not observe the linear shift reported by Mills and Dzyaloshinskii13 because the spin-wave propagation direc-
tion is parallel to the direction of the static magnetization. We make further comments on the case where the 
wave vector, the applied electric field and the static magnetization are mutually orthogonal at the end of this 
section.

Having obtained a solution for ψ we need a second condition to solve for the spin-wave components. A rea-
sonable condition is that they should be real, which gives
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Magnetization reorientation.  Only the θ- and the φ-components contribute nontrivial equations to second order 
in h,
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As we have already obtained expressions for the spin-wave components from the first order equations, these 
are ordinary differential equations on Δ​mθ and Δ​mφ. By assumption, these are time-independent and we remove 
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the time-dependence from the right-hand side by averaging over one spin-wave period 2π/ω. The fact that the 
spin-waves are exponentially damped provides us with the boundary conditions limx→±∞Δ​mθ/φ(x) =​ 0. The 
resulting solutions are
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where we have switched to Cartesian coordinates for clarity.
This demonstrates the existence of a magnon-mediated magnetoelectric torque acting on the homogeneous 

magnetization. Within the limits of validity of a perturbative theory, the magnitude of this torque scales linearly 
with the applied electric field. Its direction is controlled by the direction of the applied field. In the absence of a 
perpendicular anisotropy the relative magnitude of the two reorientation components is
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For relevant damping lengths and wave numbers Δ​mz dominates Δ​my by a factor of ~106 when the electric field 
is applied in the y-direction and vice versa when the electric field is applied in the z-direction.

Induced polarization.  The induced time-averaged electric polarization is directly proportional to the reorienta-
tion of the magnetization

η γ
=

Γ
∆ .P mm2

(17)
0

However, while the reorientation of the magnetization changes sign at the origin (position of the source), the 
polarization does not due to the extra factor of η =​ sgn(x).

Although the polarization is directly proportional to the magnetization reorientation, their behavior in the 
limit α →​ 0 differs due to the extra factor of 1/Γ​. In the limit where the damping is large (α →​ ∞​ and Γ​ →​ 0) all 
dynamics is quenched, and both Δ​m and P go to zero. However, in the limit where there is no damping (α →​ 0 
and Γ​ →​ ∞​) the time-averaged polarization goes to zero, as pointed out by Mostovoy8, but we still observe a finite 
magnetization reorientation.

Simplified mechanism.  The simplest possible system that exhibits a magnon-mediated magnetoelectric torque 
is a homogeneously magnetized sample. The spin-wave propagation in this system is illustrated by the damping-
less spin-chain in Fig. 4. Writing the magnetization of this chain as m(x, t) =​ mex +​ sy(x, t)ey +​ sz(x, t)ez we get a 
contribution

γ γ= ∂ − ∂ = − ∂H e e eE m s E s2 ( ) 2x y x y x x y xme 0 0

Figure 4.  A spin-wave in a homogeneously magnetized sample. In the inset (down left) the weight of the 
stroke in the circle indicates the average time spent in that part of the circle over one period.
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to the effective field from the inhomogeneous magnetoelectric effect when E =​ Eey. If this contribution to the 
effective field had been constant on the time-scale of the spin-waves, it would only have changed the precession 
frequency. However, it is not. The torque exerted on the magnetization is

γ γγ× = ∂ − ∂ .m H e eE s s s s2 ( )y x y z z x y yme 0

When averaging over one oscillation period the z-component vanishes; thus, the magnetization experiences a net 
torque in the positive y-direction (γ <​ 0),

γ γγ× = − ∂ .m H eE s s2 (18)z x y yme 0

As illustrated in the inset of Fig. 4, this torque opposes the precession of the spin when it moves in the negative 
y-direction and boosts the precession of the spin when it moves in the positive y-direction. When the spins pre-
cess in the counterclockwise direction, sz >​ 0 in the half-period where the spins are slowed by the magnetoelectric 
torque and sz <​ 0 in the half-period where the spins are accelerated by the magnetoelectric torque. If we average 
over one period, the spins spend more time having sz >​ 0 than sz <​ 0, so the end result is that the system has 
acquired a net magnetic moment in the positive z-direction.

This mechanism can also be used to explain the results of Manchon et al.30 and Linder31, as is easily seen by 
repeating the calculation above using the effective fields employed in these papers. As such, it represents a uni-
fying framework for magnon-mediated torques on the homogeneous magnetization. In particular, it identifies 
the following criterion for a system to exhibit similar magnon-mediated torques: That the effective field should 
contain a gradient of one of the transverse magnetization components.

Upon introducing the expansion (5) of the magnetization in h, we stated that the reorientations of the mag-
netization Δ​mθ/φ(r) are of second order in h or higher since spin-waves in an ordinary ferromagnet do not induce 
such deviations. The fact that equation (18) is second order in the spin-wave amplitudes provides justification that 
Δ​mθ/φ(r) are in fact exactly of second order.

Full numerical solution.  To get further insight into the properties of the magnon-mediated magnetoelectric 
torque we solve the LLG equation numerically using an adaptive centered implicit scheme for time and space 
discretization in Maple45. We use the effective field given in equation (4) and material constants corresponding to 
the iron garnets (BiR)3(FeGa)5O12 (R =​ Lu, Tm) considered by Logginov et al.34,35, see Table 1. We solve the system 
on a grid that is 8 μ​m long at grid-points spaced 4 nm apart. The system is initially homogeneously magnetized 
in the x-direction. Spin-waves are excited by applying a magnetic field H(t) =​ H0 sin(2πf t)ey to 24 grid-points at 
either side of the origin. The excitation amplitude is H0 =​ 0.2 T and the excitation frequency is kept at 5 GHz. To 
avoid spin-wave reflection at the sample ends, we implement absorbing boundary conditions by increasing the 
Gilbert damping to |α| =​ 1 inside 1 μ​m wide regions at either end of the sample44. The electric field is applied in 
the y-direction, E =​ Eey, and we set the perpendicular anisotropy to zero.

Figure 5(a) illustrates the symmetry of the effect. These steady-state magnetization profiles have been obtained 
for an applied electric field of ±​1.5 V/cm. As can also be seen from equation (16) the sign of the torque is deter-
mined by the propagation direction of the spin-waves, thus the resulting magnetization is antisymmetric about 
the spin-wave source. The torque also scales linearly with the applied electric field, so switching the sign of the 
field switches the sign of the magnetization reorientation.

Figure 5(b) through Fig. 5(d) shows a plots of the time-averaged analytical expression (16) versus the cor-
responding numerical profile for three different field values. The perturbation theory successfully predicts the 
magnitude and spatial decay of the torque. As can be seen from equation (16), the decay length of the magnet-
ization reorientation is half that of the spin-waves as the reorientation is second order in h. The perturbative 
calculation predicts that the torque should scale linearly with the applied electric field. Plotting the magnetiza-
tion shift at a fixed position (x =​ 0.25 μ​m) as a function of the applied electrical field we indeed observe a linear 
field-dependence, see Fig. 5(e).

Comment on the linear shift of the dispersion.  Mills and Dzyaloshinskii13 have pointed out that the 
inhomogeneous magnetoelectric effect will produce a shift of the spin-wave frequency with respect to that of an 
ordinary ferromagnet on the form

ω∆ = − × ⋅ .E M kC ( ) (19)s

Parameter Value Unit

Gyromagnetic ratio, γ −​26 GHz/T

Magnetization, m 6 kA/m

Exchange stiffness, A 5 pJ/m

Easy axis anisotropy, K 0.5 kJ/m3

Gilbert damping parameter, α −​0.05 1

Inhomogeneous magnetoelectric coupling, γ0 0.1 psm/A

Table 1.   Material constants used in the numerical solution of the LLG equation. These values correspond to 
the iron garnets (BiR)3(FeGa)5O12 (R =​ Lu, Tm) considered by Logginov et al.34,35.
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Here E is the applied electric field, Ms is the saturation magnetization, k is the spin-wave wave vector and C is 
some positive constant. Liu and Vignale14,15 have established in a microscopic calculation that yttrium iron garnet 
(YIG; Y3Fe5O12) hosts the inhomogeneous magnetoelectric effect and that the phase shift should be observable. 
This experiment was carried out by Zhang et al.16, showing good agreement between theory and experiment. In 
the notation of Liu and Vignale15 the constant C is written

γ
=C

eJ
E

,
so

where γ is the gyromagnetic ratio, e is the electron charge, J =​ 1.6 · 10−22 Jm/A2 is the YIG exchange coupling and 
the energy Eso =​ 4.8 · 10−19 J is inversely proportional to the strength of the YIG spin-orbit coupling.

In the notation of Mills and Dzyaloshinskii13, which is closer to our notation, the constant C can be writ-
ten C =​ −​|γ|b, where b is the inhomogeneous magnetoelectric coupling constant b =​ b1 +​ b2 used by Mills and 
Dzyaloshinskii. Thus, for YIG we can calculate γ0 =​ b1 =​ b2 to be

γ = = . ⋅ .−eJ
E2

2 7 10 sm/A0
so

23

While this value is large enough to produce a measurable spin-wave phase shift, it is far too small to produce a 
measurable reorientation of the time-averaged magnetization in YIG without exceeding the dielectric breakdown 
field. However, by turning this argument around, the difference of about ten orders of magnitude indicates that 
it should be possible to observe gigantic phase shifts if one were to redo the experiment of Zhang et al. using the 
iron garnets of Logginov et al.

Writing out the frequency shift as a triple product on the form of equation (19), as was done by Mills and 
Dzyaloshinskii13, emphasizes the importance of the experimental geometry in order to observe this effect. Such 
geometrical considerations will also be of importance for observing the magnetization reorientation, as is easily 
seen by repeating the perturbative calculation leading up to equations (15) and (16) for perpendicular m and k. 
In this geometry, which is the geometry of Liu and Vignale15 and of Zhang et al.16, no magnetization reorientation 
is observed.

Figure 5.  Numerical results for magnon-mediated magnetoelectric torque. When the electric field is applied 
in the y-direction the magnetization reorientation takes place in the z-direction. (a) Symmetry of the effect. 
Steady-state magnetization profiles obtained for E =​ ±​1.5 V/cm. The sign of the torque is determined by the 
propagation direction of the spin-waves, thus the resulting magnetization is antisymmetric about the spin-
wave source (x =​ 0). The torque also scales linearly with the applied electric field, so switching the sign of the 
field switches the sign of the magnetization reorientation. (b) through (d) Time-averaged analytical fit to the 
numerical profiles. The analytical theory successfully predicts the magnitude and spatial decay of the torque. 
The decay length of the spin-waves is twice that of the torque. (e) Linear dependence on applied field. Plotting 
the magnetization shift at a fixed position (x =​ 0.25 μ​m) as a function of the applied electrical field we observe a 
linear field-dependence.
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Further insight can be gained by a closer inspection of the magnetization curves in Fig. 6(a). Here, an electric 
field-dependent phase shift can be observed which does not follow from the first order dispersion relation (10), 
but which is a higher order effect. This field-dependent difference in wavelength is easily recognized in the power 
spectrum shown in Fig. 6(b), which reveals an increase in wavenumber (decrease in wavelength) at E =​ 1.5 V/cm 
as compared to zero applied field.

Proposals for experiments.  The effect we predict is dependent on a reasonable value for the inhomogene-
ous magnetoelectric coupling constant. One particular class of such materials are the rare earth manganites con-
sidered by Mostovoy8, which have a spiral magnetization. Another class of materials which potentially hosts the 
inhomogeneous magnetoelectric effect is the iron garnets studied by Logginov and co-workers34,35, which admit a 
homogeneous magnetization. We have used material values corresponding to these garnets in the numerical part 
of this work. The mechanism behind the experimental observations of Logginov et al. is currently debated35,46. 
Whether or not it turns out that these iron garnets host an inhomogeneous magnetoelectric effect is irrelevant to 
the main message in the present paper. We only use these compounds as an example.

In materials with the Dzyaloshinskii–Moriya interaction the crystal structure favors a canted spin structure28,29. 
Sergienko and Dagotto3,47 have suggested how the inverse mechanism, a form of exchange striction, can give rise 
to the inhomogeneous magnetoelectric effect. This model is usually applied to large magnetic structures such as 
magnetic spirals and domain walls, which are on the energy scale of the demagnetization field. To carry this—or 
any other ionic displacement mechanism48—over to weaker magnetic inhomogeneities such as spin-waves is not 
trivial. It is not obvious that a coupling constant measured using a domain wall34 should be applicable to spin-waves, 
although that is what we assume by using these values.

To detect the magnon-mediated magnetoelectric torque we propose to either measure the magnetization 
reorientation directly or to measure the induced polarization. As pointed out previously, the reorientation 
scales linearly as a function of the electric field and decays exponentially away from the source. Using the 
example values from Fig. 5(e), a reorientation on the order of 480 A/m should be unproblematic at a distance 
of 0.25 μ​m away from the source for an applied electric field of 1.5 V/cm. Polar MOKE (magneto-optic Kerr 
effect) techniques have previously been successfully applied to measure magnetization reorientations on the 
order of 56 A/m by Fan et al.49 during their study of the spin-orbit torque. As pointed out in the previous 
section, the wave vector of the spin-waves must be parallel to the saturation magnetization to observe the 
magnetization reorientation due to the magnetoelectric torque. An experimental set-up must then use the less 
sensitive longitudinal MOKE50, as illustrated in Fig. 7. However, the effect should still be within the reach of 
current experimental techniques.

The second possibility is to measure the induced polarization. When averaging over the period of oscil-
lation of the spin-waves, we find that the time-averaged polarization is proportional to the induced mag-
netization shift, see equation (17). For the material values we have considered, a reorientation of 480 A/m 
corresponds to a time-averaged polarization on the order of 40 μ​C/cm2. To measure the polarization, the 
MOKE laser in Fig. 7 would have to be replaced by localized electrodes on the top and on the bottom of the 
structure.

Magnon-induced domain wall motion in a multiferroic
As shown in Fig. 2, we consider the same ferromagnetic wire as in the previous section, but assume now that it 
contains a Néel domain wall. (Bloch domain walls induce no electric polarization and are immune to magne-
toelectric effects7,8).

Figure 6.  Higher order phase shift due to the magnon-mediated magnetoelectric torque. (a) Visibility of 
phase shift in magnetization profiles. Steady-state magnetization profiles obtained for E =​ 1.5 V/cm and in 
the absence of an applied electric field. A higher order correction of the ordinary ferromagnetic dispersion 
relation induces a phase shift when the electric field is applied. (b) Power spectral density of the magnetization 
profiles in (a) computed from the data to the right (left) of the source. In the presence of an applied electric 
field the power spectrum exhibits two peaks. The peak to the left is an artifact introduced by the magnetization 
reorientation. The one to the right—which corresponds to the spin-wave—is slightly displaced towards higher 
wavenumbers (smaller wavelengths) as compared to the zero field case.
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Perturbation theory.  We first perform analytical calculations for the magnon-induced domain wall dynam-
ics using a perturbation theory, completely analogous to what we did for the homogeneously magnetized ferro-
magnet. However, this time we let the angles θ and φ from Fig. 3 be time- and position-dependent.

Static magnetization.  Just as before, we obtain the equations of our perturbation theory by inserting the ansatz 
(5) into the LLG equation (3) using the effective field (4). To zeroth order in h there is no time-dependence in the 
problem, and we obtain two nontrivial equations,

θ θ θ φ∂ = + ⊥A K Kcos sin ( sin ), (20)x
2 2

γ θ φ γ θ φ φ φ∂ − ∂ − = .⊥E E K
m

( ) sin ( ) cos 2 cos sin 0
(21)y x z x0 0 2

Equation (20) gives us the well known Walker domain wall profile51 for θ. Thus, the ground state of the system is a 
head-to-head or a tail-to-tail Néel wall. For φ =​ nπ, n =​ 0, 1, 2, …​, which minimizes the perpendicular anisotropy 
energy, equation (21) demands that Ez =​ 0, that is, no electric field component along the hard axis. For K⊥ =​ 0 
equation (21) can be solved to give φ =​ nπ +​ arctan(Ez/Ey), n =​ 0, 1, 2, …​. We conclude that unless the electric 
field is applied perpendicular to the hard axis, the inhomogeneous magnetoelectric torque and the perpendicular 
anisotropy torque will compete. For simplicity, we set K⊥ ≡​ 0 and Ez ≡​ 0 in the remainder of this section.

Spin-wave amplitudes.  Assuming that the domain wall position X(t) is second order in h42, we obtain two non-
trivial equations to first order in h,
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We can get rid of the angle θ using the identities sin θ =​ sech ξ and cos θ =​ tanh ξ which are valid for a Walker 
domain wall52. Here, ξ =​ [x −​ X(t)]/λ and λ = A K/  is the domain wall width. Using the same trick as before, we 
can recast these two equations into one equation by introducing the auxiliary variable ψ(x) =​ sθ(x) +​ icsφ(x). 
However, this time we find that ξ γγ γ γ λ ω ξ λω= 
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This is a Schrödinger-like equation, but in the presence of an electric field the potential deviates from the reflec-
tionless potential of Yan et al.24. The equation is even in ξ, so there is no dependence on the topological charge 
of the wall. However, the factor (−​1)n (n =​ 0, 1, 2, …​) reveals that the potential is chirality-dependent. Chirality 
dependence was also observed for domain wall motion driven by a magnetic field by Chen et al.32.

Figure 7.  Longitudinal MOKE measurement of the magnetization reorientation. Spin-waves are injected 
using a coplanar waveguide as used in PSWS (propagating spin-wave spectroscopy56,57) and the electric field 
is generated by a parallel plate capacitor. The magnetization reorientation decays exponentially away from the 
spin-wave source, but scales linearly with the applied electric field.
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Full numerical solution.  The complicated potential in equation (24) makes it difficult to continue the analyt-
ical calculation. However, by solving the LLG equation numerically we can get further insight into the domain wall 
dynamics. We continue to use the iron garnet values from Table 1. We solve the system on an asymmetric grid that 
is 6.5 μ​m long at grid-points spaced 4 nm apart. The initial profile is a domain wall with positive topological charge 
(∂​xθ >​ 0) and positive chirality (φ =​ 0) centered at the origin. Spin-waves are excited by applying a magnetic field 
H(t) =​ H0 sin(2πf t)ey to 24 grid-points at either side of x =​ 1.2 μ​m. The excitation amplitude is H0 =​ 0.2 T and the 
excitation frequency is kept at 5 GHz. To avoid spin-wave reflection at the sample ends, we implement absorbing 
boundary conditions by increasing the Gilbert damping to |α| =​ 1 inside 1 μ​m wide regions at either end of the 
sample44. The electric field is applied in the y-direction, E =​ Eey, and the perpendicular anisotropy is set to zero.

Figure 8(a) is a reproduction of the well-known results of Yan et al.24. In the absence of an applied electric 
field the domain wall moves towards the spin-wave source in order to conserve angular momentum. Figure 8(b) 
shows that the magnon-mediated magnetoelectric torque can be used to reverse the velocity of the domain wall 
and make it travel away from the spin-wave source. The domain wall velocity is a linear function of the applied 
electric field, as shown in Fig. 8(c). At a critical applied electric field the domain wall stops and its direction of 
motion is reversed.

As suggested by Yan et al.37, domain wall motion away from the spin-wave source is caused by linear momen-
tum transfer, with linear momentum formally defined as the generator of magnetic translations53,54. To identify 
the momentum of a magnetization texture is not trivial, and an essential first step is to realize that the linear 
momentum of a ferromagnetic soliton is not directly related to its velocity, but to its configuration. This gives the 
conserved momentum of a domain wall some counter-intuitive properties—for instance, the momentum of a 
stationary domain wall can be nonzero37,53. Following Tchernyshyov53 we calculate the conserved linear momenta 
of a magnetization texture consisting of circularly polarized spin-waves superposed on a Walker domain wall 
(axially symmetric system). The conserved linear momentum attributable to the domain wall and the spin-waves 
is, respectively

φ γ= +P C m2 / , (25)DW
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where C denotes the momentum of the reference magnetization profile. Conservation of momentum, 
0 =​ dP/dt =​ dPDW/dt +​ dPSW/dt, allows us to solve for the rate of change of the azimuthal angle,
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where the dot denotes a time-derivative. Thus, a change in the linear momentum (wavenumber) of the spin-waves 
generates domain wall rotation. This suggests that an effective description of the induced dynamics can be made 
in terms of an applied magnetic field37,38. In an axially symmetric system (no perpendicular anisotropy) the col-
lective coordinate equations of a Walker domain wall subject to an applied magnetic field read55,

α φ γ+ = − H(1 ) , (27)2

α
λ

αγ+ = +
X H(1 ) ,

(28)
2

(γ <​ 0, α <​ 0). This gives

Figure 8.  Numerical results for electric field-controlled domain wall motion in a multiferroic. The applied 
electric field can control both the direction and the velocity of the domain wall. (a) Zero applied field. In the 
absence of an applied electric field the domain wall moves towards the spin-wave source to conserve angular 
momentum. (b) Applied electric field. With an applied electric field the domain wall can be made to move away 
from the spin-wave source. (c) Linear dependence of the domain wall velocity on the applied electric field. The 
domain wall velocity is a linear function of the applied electric field. For some critical field the domain wall 
stops and its direction of motion is reversed.
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The resulting domain wall velocity, X , is small since it is proportional to the Gilbert damping. In the case of a 
domain wall driven by an applied magnetic field, the domain wall velocity can be increased drastically at small 
driving fields by breaking the axial symmetry of the system using a perpendicular anisotropy. Wang et al.38 argued 
that the above effective description of linear momentum transfer can be carried over to this case and that an equa-
tion similar to equation (29) is valid even in the presence of a perpendicular anisotropy. Using this description 
they were able to explain domain wall motion driven by linear momentum transfer from spin-waves in a 
Dzyaloshinskii–Moriya ferromagnet.

In the present case, the axial symmetry of the system is broken by the applied electric field. Since we have not 
been able to solve equation (24) for the spin-wave amplitudes, we are not able to repeat the analysis leading up to 
equation (29) in the presence of the inhomogeneous magnetoelectric effect. However, we argue that—just as for 
the Dzyaloshinskii–Moriya ferromagnet—the underlying physics is the same and that linear momentum transfer 
from the spin-waves leads to domain wall motion that can be described using an effective Zeeman field.

The mechanism of momentum transfer from the spin-waves to the domain wall is somewhat similar to the 
one suggested by Wang et al.38 for linear momentum transfer in the presence of the Dzyaloshinskii–Moriya inter-
action. As can be seen in Fig. 9(a) the application of an electric field does not cause significant spin-wave reflec-
tion off the domain wall. However, in the presence of an electric field the wavelength changes upon spin-wave 
transmission through the domain wall. This is captured by the power spectrum in Fig. 9(b). The reduction of the 
spin-wave wavenumber upon transmission implies that the transmitted spin-waves carry less linear momentum. 
This change in linear momentum is absorbed by the domain wall.

Since the effective Zeeman field is linear in the momentum transfer37,38 and the domain wall velocity is a linear 
function of the applied magnetic field below Walker breakdown32,51, the linear dependence of the domain wall 
velocity on the electric field in Fig. 8(c) must be taken as a sign that the momentum transfer is linear in the applied 
electric field, just as it is linear in the DMI constant38. This is not too surprising, given the linear dependence on 
the electric field found in equation (24). The dependence of the momentum transfer on the electric field can also 
be observed in a sequence of power spectrums like the one in Fig. 9(b) taken at increasing electric fields. As the 
electric field is increased, the wavenumber of the spin-waves to the right of the domain wall is shifted away from 
the zero field peak, which is just what we pointed out for the homogeneously magnetized case in Fig. 6(b).

Conclusion
To conclude, we have demonstrated analytically and numerically that the inhomogeneous magnetoelectric effect 
induces a magnon-mediated reorientation of a homogeneous magnetization, and we have provided an explana-
tion of the mechanism behind this effect. This reorientation is not fixed by material constants like the ones dis-
covered for Dzyaloshinskii–Moriya ferromagnets by Manchon et al.30 and for topological insulator–ferromagnet 
heterostructures by Linder31, but is tunable by the applied electric field. Its magnitude increases linearly with the 
electric field and an effect on the order of 8% of the saturation magnetization should not be problematic. This 
is almost an order of magnitude larger than the reorientation reported by Manchon et al. for Dzyaloshinskii–
Moriya ferromagnets.

Figure 9.  Electric field-dependent linear momentum transfer to the domain wall. (a) Phase shift difference 
before and after domain wall transmission. Steady-state magnetization profiles obtained for E =​ 1.5 V/cm and 
in the absence of an applied electric field. To the right of the wall (before transmission through the domain 
wall) there is a pronounced phase shift between the spin-waves in the two magnetization profiles. To the left 
of the wall (after domain wall transmission) the wavelengths of the spin-waves are practically identical. (b) 
Power spectral density of the magnetization profiles in (a) computed from the data to the right (left) of the 
source. The spurious peak in the power spectrum is now absent as there is no reorientation of the y-component 
of the magnetization. Whereas the position of the peak in the power spectrum is unchanged upon spin-wave 
transmission through the domain wall in the zero field case, the peak is shifted towards smaller wavenumbers in 
the presence of an applied electric field. This corresponds to a transfer of linear momentum to the domain wall.
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We have also shown that the sign and magnitude of the velocity of a magnon-driven domain wall can be con-
trolled by the applied electric field in the presence of the inhomogeneous magnetoelectric interaction. Domain 
wall motion towards the spin-wave source is due to angular momentum conservation while domain wall motion 
away from the source is due to linear momentum transfer. The mechanism of linear momentum transfer is quite 
similar to the mechanism suggested by Wang et al.38 for Dzyaloshinskii–Moriya ferromagnets, and the domain 
wall velocity scales linearly with the electric field.
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