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We investigate the magnetization dynamics that arise when a thin-film ferromagnet is deposited on a topolog-
ical insulator (TI), focusing in particular on domain-wall motion via current and the possibility of a spin-wave
torque acting on the magnetization. We show analytically that the coupling between the magnetic domain wall
and the TI removes the degeneracy of the wall profile with respect to its chirality and topological charge. More-
over, we find that the threshold for Walker breakdown of domain wall motion is substantially increased and
determined by the interaction with the TI, allowing for higher attainable wall velocities than in the conven-
tional case where the hard axis anisotropy determines the Walker threshold. Finally, we show that the allowed
modes of spin-wave excitations and the ensuing magnetization dynamics in the presence of a TI coupling en-
able a magnonic torque acting even on homogeneous magnetization textures. Our results indicate that the
TI-ferromagnet interaction has a similar effect on the magnetization dynamics as an intrinsic Dzyaloshinskii-
Moriya interaction in ferromagnets.

Introduction. In the mission of finding a viable alternative
that is comparable to, and even exceeding, conventional semi-
conductor/transistor based technology, spintronics has proven
itself as a real contender1,2. It offers fast read/writing speeds,
non-volatility, and remarkably low power consumption when
the spin degree of freedom is decoupled from charge. One par-
ticularly promising route which may encapsulate all of these
qualitites is that of domain wall motion3. Transport of spin
textures such as domain walls is possible to accomplish both
via electric current4–9 and interactions with spin-waves10–12.
In order for domain wall motion to serve as a key constituent
in spintronics based applications, it is necessary to find ways
to obtain rapid transport of such spin textures in a stable way
that preserves the topological profile of the domain wall, i.e.
without deformation13. In this regard, the prospect of using
spin-waves to induce magnetization dynamics has recently
garnered a lot of attention due to the reduced dissipation as
compared to the Joule heating arising from current-induced
domain wall motion.

Driven not only by the prospect of finding ways to opti-
mize magnetization dynamics, but also the considerable in-
terest from a fundamental physics viewpoint, the influence
of a topological insulator surface on magnetization dynam-
ics have recently been considered theoretically14–20. Most
interestingly, a very recent experiment21 demonstrated that
the spin-transfer torque may be greatly amplified to unprece-
dented values by using a coupling to a TI. This begs the ques-
tion if the same could be possible for inhomogeneous mag-
netic textures such as domain walls. Motivated by this, we
consider in this work the coupling between a magnetic ma-
terial with a domain wall to a topological insulator (TI) and
show that this generates several of the desired features men-
tioned above, thus enhancing the functionality associated with
domain wall motion. We demonstrate three key results. First
of all, the presence of the TI acts as a stabilizer on the do-
main wall profile and removes the degeneracy of the domain
wall chirality and topological charge. This is similar to what
happens in spin-orbit coupled ferromagnets22–25, but impor-
tantly it does not require the presence of any electric current
in our case. Secondly, we show that the resulting threshold
for Walker breakdown, corresponding to a domain wall which

FIG. 1: (Color online) Proposed experimental setup: a domain wall
ferromagnet is deposited on the surface of a topological insulator
and its dynamics can be manipulated via either a. injection of a spin-
polarized current or b. propagating spin-waves as excited e.g. by an
external rf magnetic field.

deforms as it propagates, is not only made independent on
the hard axis field of the ferromagnet but also quantitatively
raised compared to the conventional case by the coupling to
the TI. Raising the threshold value is pivotal as it allows for
higher attainable domain wall velocities before deformation
sets in. The fact that it is independent on the hard axis field is
of importance since artificially enhancing the Walker thresh-
old by applying a hard-axis field is not a practical solution
for devices22. Finally, we demonstrate that the coupling to a
TI allows for a spin-wave induced torque even on a homo-
geneous magnetization texture, in analogy to what is made
possible in magnets with a very weak Dzyaloshinskii-Moryia
interaction27. This remarkable equivalence is a unique feature
pertaining to topological insulators and results in the possibil-
ity to control the magnetization with magnons in a fashion that
does not require any electric current and thus is accompanied
by a very low dissipation.

Domain-wall ferromagnet on a topological insulator.
The free energy describing the magnetization texture m =
M/M0 of a ferromagnet deposited on the surface of a topo-
logical insulator (TI) may be written as F = FFM +FTI where
the first term is the free energy of the texture on its own and
the second term describes the coupling between the magneti-
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zation and the TI. They read FFM = 1
2

∫
dr(A∇2m−K ′m2

z+

K⊥m
2
y), where A is a measure of the exchange stiffness

whereas K ′ and K⊥ denote the easy and hard axis anisotropy
energies. Moreover, we have20 FTI = η

∫
dr(m · ∇mz) +

F ′[mz]. In the latter expression, η describes the coupling be-
tween the magnetic texture m in the FM and the surface-states
in the TI whereas the consequence of F ′[mz] is to renormalize
the effective anisotropy constantK ′ → K. One can show that
η ∝ JJ⊥ where J and J⊥ are the in-plane and out-of-plane
exchange couplings20. The equilibrium profile of the domain
wall is determined by minimization of the free energy and
should also satisfy m × Heff = 0 where Heff = − δF

δM is the
effective field and δ denotes the functional derivative. Note
that the out-of-plane domain wall profile is permitted when
the combined effort of a strong uniaxial magnetocrystalline
anisotropy combined with its effective enhancement due to
the coupling term F ′[mz] from the TI together overcome the
shape anisotropy field. Let us use denote the tilt angle of the
domain wall as φ and its topological charge as σ, in which
case we find that the equilibrium solution takes the standard
form13 m = (sin θ cosφ, sin θ cosφ, σ cos θ), but with one
additional criterium:

sησ cosφ = +1 (1)

must be satisfied where sη = sign(η). In the absence of the
exchange coupling to the TI, any combination of σ = ±1 and
φ = 0, π are ground-state solutions, even in the presence of a
hard magnetic axisK⊥, but this degeneracy is now lifted such
that the TI stabilizes one particular topological profile of the
magnetic domain wall.

Such an effect also occurs in recently studied spin-orbit
coupled domain wall ferromagnets22–25, albeit as a non-
equilibrium effect contingent on the presence of an electric
current in that case. In contrast, the selection of a particu-
lar domain wall profile which is energetically favorable here
occurs in equilibrium without any applied spin-polarized cur-
rent. This has important ramifications for the resulting equa-
tions of motion describing domain wall motion, as we now
proceed to demonstrate. Assume in what follows for con-
creteness that η > 0 (our findings are equally valid for
η < 0). We employ a collective-coordinate framework in
terms of the soft modes X and φ of the DW dynamics, where
X = X (t) is the domain wall center of mass coordinate and
φ = φ(t) is its tilt angle. As long as φ remains constant,
the domain wall propagates as a rigid soliton and does not
deform. Above a certain critical value of the applied current
density in the ferromagnet, Walker breakdown sets in as φ̇
becomes non-zero and the domain wall starts to rotate. In or-
der to use domain walls as information carriers in spintronics-
based applications, it is desirable to delay the onset of Walker
breakdown as much as possible in order to achieve the high-
est possible domain wall velocities without causing deforma-
tion of the magnetization texture. Inserting the above ansatz
for m into the full LLG equation which includes the spin-
transfer torque of a current flowing through the ferromagnet,
∂tm = −γm ×Heff + αm × ∂tm + j∂xm − βjm × ∂xm
where j is a measure of the applied current density in the fer-
romagnet and θ = 2 arctan[e−(x−X )/∆] (∆ =

√
A/K is the

domain wall width), we obtain the following equations of mo-
tion after performing an integration over space:

σẊ + αφ̇ = −σj̃ − K̃⊥ sin 2φ+ ση̃ sinφ,

φ̇− ασẊ = βj̃σ. (2)

Here, we have for compactness expressed the equations in
terms of normalized coordinates which are all proportional to
the original parameters, i.e. j̃ ∝ j, K̃⊥ ∝ K⊥, η̃ ∝ η. We
will later discuss the explicit magnitude of these terms. Sev-
eral conclusions may be drawn from the above set of coupled
equations. First of all, it is seen that the exchange coupling η̃
to the TI induces a term∝ sinφ analogously to spin-orbit cou-
pled ferromagnets in the presence of a current23,24. Thus, this
term acts as an effective spin-orbit torque, but importantly it
is here present even without application of a current. This ex-
plains why the equilibrium topological profile of the magnetic
texture is stabilized only for specific chiralities. To show that
this term has important consequences also out-of-equilibrium,
i.e. in the presence of an electric current flowing through the
ferromagnet, we note that in the region of interest in terms of
applications (below Walker threshold, such that φ̇ = 0) one
has:

σαK̃⊥ sin 2φ = (β − α)j̃ + η̃α sinφ. (3)

As long as this equation is satisfied, the domain wall will
propagate without deformation. Without the exchange cou-
pling η̃, it is seen that Walker breakdown will occur when
|j̃| > |j̃c| ≡ |αK̃⊥/(β − α)|7 since the l.h.s. and r.h.s. of
the equation no longer has any crossing point when this is sat-
isfied. This changes in the presence of the TI coupling η̃. In
fact, the criterium which guarantees a solution of Eq. (3) now
becomes completely independent on the hard axis field K̃⊥.
When αη̃ is larger than (β − α)j̃, the l.h.s. and r.h.s. both
have maxima and minima with opposite signs and a crossing
point is ensured. Thus, there is no Walker breakdown if:

|j̃| < αη̃/|β − α|. (4)

We emphasize that this equation is the lower limit which guar-
antees the absence of Walker breakdown, in contrast to the
threshold current without the TI coupling which is determined
by K̃⊥ which represents the absolute upper limit for the cur-
rent. In fact, solutions of Eq. (3) could still exist for higher
currents, but no analytical expression may be derived for this
regime. Eq. (4) is valid both with and without a hard-axis
field. This is advantageous since it relaxes the requirements
on the anisotropy properties of ferromagnetic materials used
for domain wall motion. As pointed out in Ref.22, artificially
enhancing the Walker threshold by applying a hard-axis field
is not a practical solution for devices. The coupling to the
TI provides a way around this problem. The stronger the ex-
change coupling η̃ between the TI and the FM, the more sta-
ble the topological profile of the domain wall becomes and the
higher the Walker breakdown limit reaches. The ratio

R = η̃/K̃⊥ = JJ⊥/(2π~vF∆K⊥d) (5)

is a measure of how effective the TI coupling is with regard
to the Walker threshold. Here, vF is the Fermi velocity of the
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TI surface and d is the thickness of the ferromagnet. Using
K⊥ = 104 J/m3, d = 2 nm, ∆ = 5 nm, vF = 105 m/s,
we find that R � 1 for an exchange coupling J, J⊥ = 30
meV (ab initio calculations28 of FM/TI interfaces estimate
that exchange field gaps as large as ∼ 50 meV could be ob-
tained for Bi2Se3/MnSe) and that it would continue to rise
quadratically with increasing couplings {J, J⊥}. The obser-
vation of this effect would entail probing the displacement of
the domain wall as a function of applied current density as
can be experimentally imaged e.g. by using a wide-field Kerr
microscope22. The occurence of Walker breakdown, with its
inherent decrease of domain wall velocity, would then be ob-
served at much higher current densities when the ferromag-
netic film is coupled to a TI surface. Ferromagnetic thin films
with a thickness down to 1.3 nm displaying a perpendicu-
lar anisotropy easy axis have been experimentally realized in
Ref.26. The ratio of the Walker breakdown limits when us-
ing proximity-coupling to a TI compared to the conventional
hard-axis anisotropy is seen from Eq. (5) to scale as 1/K⊥,
indicating that ferromagnets with a relatively small K⊥ can
be made suitable for hosting domain wall motion without
suffering from early Walker breakdown by utilizing the TI-
coupling. In this way, the effect predicted here could enable
use of new types of ferromagnetic materials for domain wall
motion which previously were inadequate due to a low Walker
threshold.

Let us also comment on the role of including
Dzyaloshinskii-Moriya (DM) interactions29 that may be
generated due to inversion symmetry breaking in thin-film
structures. The presence of DM-interactions could be
expected to act as a chirality-selector similarly to the TI
exchange coupling and thus enhance the predicted effects.
This is supported by the results reported in Ref.30 which
studied the role of DM-interactions on domain wall motion in
a thin-film setup, albeit without any coupling to a TI, where it
was found under simplifying assumptions that an extra term
∝ D sinφ appears in the equation for the Walker threshold (D
is the DM-interaction magnitude). This would be equivalent
to the η̃ sinφ term derived in Eq. (3) which suggests that
DM-interactions would further enhance the Walker threshold
limit. It should be noted that for very strong DM-interactions,
the domain wall configuration itself becomes energetically
disfavorable31 which is not the case we are interested in for
the present manuscript.

Domain wall motion is also known to be possible via
magnons, in effect by inducing spin-waves that propagate
through and interact with the domain wall. This can be ac-
complished both via an external rf magnetic field or via a
thermal gradient and renders possible domain wall motion
even in electrically insulating systems. A spin-wave pertur-
bation on top of the magnetic domain wall background may
be represented via m = m0 + e−ıωt(sθ θ̂ + sφφ̂) where ω is
the frequency and {sθ, sφ} are the components of the spin-
wave transverse to the local magnetization texture defined by
r̂ ‖ m0. Inserting this ansatz into the LLG equation, one ob-

tains the following equations of motion for the spin-waves:

ıωsθ/γ = −A∂2
xsφ + sφ∆[A∆(2 cos2 θ0 − 1)− η sin θ0],

ıωsφ/γ = A∂2
xsθ − sθA∆2(2 cos2 θ0 − 1). (6)

In the limit η → 0, this is consistent with Ref.11 and the two
equations can be combined into a single equation for a wave
sθ− ısφ satisfying a Schrödinger-like equation. In the present
case, the exchange coupling to the TI breaks the symmetry be-
tween the equations and influences the resulting domain wall
motion induced by the magnons. For an inhomogeneous mag-
netic texture, the equations above do not offer any transparent
analytical solution, but it is clear from Eq. (6) that the spin-
wave modes sφ,θ couple in a very different manner compared
to isolated ferromagnets11. However, as one moves away from
the domain wall center (i.e. for an effective homogeneous fer-
romagnet coupled to a TI) we show that, remarkably, prop-
agating spin-waves will still act with a spin-transfer torque
on the magnetization solely due to the exchange coupling η.
Such an effect is not present for an isolated ferromagnet where
η = 0 and thus offers a new way to induce magnetization
dynamics via spin-waves. A similar effect was very recently
shown to take place in ferromagnets hosting Dzyaloshinskii-
Moryia interactions27. In our case, no such interactions are
required and we demonstrate that the magnon-induced torque
is controlled by both the topological charge and the sign of the
exchange coupling η to the TI.

Magnon-induced torque due to the FM/TI coupling. We
set the equilibrium orientation to m0 ‖ z so that the magneti-
zation may be written generally as m = (δmx + sx, δmy +
sy, σ) with σ = ±1. In comparison with the previous consid-
ered case, this corresponds to the magnetization texture away
from the domain wall center. Here, δmx,y are the changes
in the magnetization texture due to the spin-wave perturba-
tions whereas sx,y describe the spin-waves themselves. The
spin-waves vary on a much shorter time-scale than the mag-
netization texture which is slow in comparison27. The first
step is to obtain an expression for the spin-waves. By in-
serting m into the LLG equation, writing the effective field
as Heff = A∂2

xm + Kmz ẑ + η(∂xmxẑ − ∂xmzx̂), we ob-
tain ∂tsx = −ασ∂tsy − γσεsyHk + γσA∂2

xsy and ∂tsy =
ασ∂tsx + γσsxHk − γσA∂2

xsx by linearizing the equations
in sx,y and dropping higher-order terms in δmx,y and sx,y .
Combining these into a single equation for a spin-wave sφ ≡
sx + ısy , we obtain:

(1− ıασ)∂tsφ(x, t) = ıHkσsφ(x, t)− ıγσA∂2
xsφ(x, t).

(7)

This is a separable partial differential equation with ex-
act solution sφ(x, t) = (A0e

√
cx + B0e−

√
cx)c0ekt where

{A0, B0, C0} are determined from initial conditions and we
defined k = γσ(Ac − Hk)/(ı + ασ). The complex con-
stant c may be determined by demanding that this solution
describes oscillating spin-waves such that k = ıω where ω is
the spin-wave frequency. This means that Re{k} = 0 while
Im{k} = ω, which gives the solution:

c = −q2 + ıωα/(γA) (8)
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where q is the wavevector of the magnons satisfying ω2 =
γ2(Aq2+Hk)2. The imaginary part of c is related to the decay
length of the spin-waves as they propagate away from their
source. This can be seen from the spatially dependent part of
the spin-wave wavefunction sφ(x, t) since when α � 1 we
have e±

√
cx ' e±ıqx±x/(2ξ) where ξ = qγA/(ωα) is the de-

cay length. Note that the sign of the last term in the exponent
has to be chosen so that the spin-waves are attenuated away
from the source. With the solution for the spin-waves in hand,
we can now consider the equations of motion for the magnon-
torque induced changes in magnetization δmx,y . This can be
done by averaging the LLG equations over a spin-wave pre-
cession period, so that any linear terms in sx,y or their deriva-
tives equal zero. The δmx,y are constants over this short time-
interval, and one finally arrives at:

A∂2
xδmy = Hkδmy + ση〈sy∂xsx〉,

A∂2
xδmx = Hkδmx + ση〈sx∂xsx〉. (9)

The averages 〈. . .〉 are both proportional to e−|x−x0|/ξ, where
x0 is the source where the spin-waves are generated. Eqs. (9)
have the same functional form as the magnon-induced torques
in Ref.27 and thus generate both a field-like and damping-like
torque on the magnetization due to the coupling η to the TI.
It is remarkable that the exchange interaction between a TI
and ferromagnet generates the same type of magnon-induced
torque as the Dzyaloshinskii-Moryia interaction. This result
is a unique property of how the TI surface couples to the lo-
cal magnetic moments in the ferromagnetic region due to the
spin-momentum locking of the TI surface electrons and does
not appear for exchange couplings to conventional metallic
systems. The torque increases in magnitude with η and van-
ishes all-together when η → 0 since the boundary conditions
then only allow the trivial solutions δmx,y = 0. The experi-
mental observation of this effect would be constituted e.g. by

measuring a reoriented (i.e. tilted) magnetization vector of a
homogeneous ferromagnet due to the torque induced by the
spin-waves, thus offering a way to control the magnetization
direction of the system.

Conclusion. In summary, we have demonstrated that the
exchange coupling between a textured ferromagnet and the
surface of a topological insulator (TI) provides a venue for
improved domain wall motion and spin-transfer torques, both
via current-induced motion and spin-waves. In the current-
induced case, we found that the coupling to the TI acts as a
selector for specific topological profiles of the domain wall
and that it rendered the Walker threshold insensitive to the
hard-axis anisotropy in the ferromagnet which could be ad-
vantageous for practical applications. In particular, it could
enable use of new types of ferromagnets to host domain wall
motion which previously were inadequate due to a small hard
axis anisotropy which in turn would lead to an early onset
Walker breakdown. Moreover, we demonstrated that the al-
lowed spin-wave modes propagating through a domain wall
would be qualitatively altered compared to an isolated ferro-
magnet as the coupling to the TI breaks the symmetry that
allows formation of circularly polarized waves. On the other
hand, spin-waves propagating sufficiently far away from the
domain wall center where the magnetization is homogeneous
would induce a torque which is proportional to the strength of
the TI exchange coupling, thus offering a new way to induce
magnetization dynamics via spin-waves by utilizing topolog-
ical insulators. Our results indicate that the TI-ferromagnet
interaction has a similar effect on the magnetization dynamics
as an intrinsic Dzyaloshinskii-Moriya interaction in ferromag-
nets.
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