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The recent experimental demonstration of spin-polarized supercurrents offer a venue for establishment
of a superconducting analogue to conventional spintronics. Whereas domain wall motion in purely mag-
netic structures is a well-studied topic, it is not clear how domain wall dynamics may influence supercon-
ductivity and if some functional property can be harnessed from such a scenario. Here, we demonstrate
that domain wall motion in superconducting systems offers a unique way of controlling the quantum state
of the superconductor. Considering both the diffusive and ballistic limits, we show that moving the do-
main wall to different locations in a Josephson junction will change the quantum ground state from being
in a 0 state to a π state. Remarkably, we also show that domain wall motion can be used to turn on and off
superconductivity: the position of the domain wall determines the critical temperature Tc and thus if the
system is in a resistive state or not, causing even a quantum phase transition between the dissipationless
and normal state at T = 0. In this way, one achieves dynamical control over the superconducting state
within a single sample by utilizing magnetic domain wall motion.

PACS numbers:

The research fields of spintronics and superconductivity,
once disparate, have in recent years been moved closer to
one another due to several key discoveries. The unification
of these two fields might seem futile at first glance since fer-
romagnets are spin-polarized whereas the main constituent of
a superconductor, the Cooper pair, resides in a spinless sin-
glet state in conventional Bardeen-Cooper-Schrieffer theory1.
Nevertheless, it turns out that the mutual interplay between
magnetism and superconductivity opens a rich vista of new
physics far beyond the notion that ferromagnetic order has
a detrimental influence on superconducting order. Even set-
ting aside for the moment the possibility of intrinsically un-
conventional spin-triplet superconductors like Sr2RuO4

2 and
uranium-based heavy-fermion compounds3–5 such as UGe2,
URhGe, and UCoGe, it has been realized over the last years
that proximate structures of ferromagnets and perfectly con-
ventional s-wave superconductors can sustain long-ranged
and spin-polarized superconducting correlations, even in ex-
treme environments such as half-metallic compounds6.

The core principles which make possible such an unlikely
synthesis between magnetic and superconducting order are
the Pauli principle and symmetry breaking7,8. The former
dictates that Cooper pairs in superconductors not necessarily
are confined to a spinless state, but that a spin-polarized state
may arise as long as the overall wavefunction of the pair sat-
isfies fermionic interchange statistics. Such a change in spin-
polarization of the Cooper pair can be triggered by consider-
ing hybrid structures comprised of ferromagnets and super-
conductors. Since translational symmetry is explicitly broken
at the interface region, the Cooper pair wavefunction becomes
a mixture of its original bulk state and a state with new sym-
metries generated at the interface region10,11. Cooper pairs
with electrons that carry the same spin would not be subject
to paramagnetic pair-breaking and could in principle propa-
gate for large distances ∼ 100 nm inside the ferromagnet re-
gardless of the strength of the exchange field, limited only
by coherence-breaking processes such as inelasticity, spin-flip

scattering, and thermal decoherence.
Precisely such behavior can occur in textured ferromag-

nets, to be contrasted with monodomain ferromagnets. In
fact, such long-ranged and spin-polarized superconducting
correlations may arise even from conventional s-wave super-
conductors when a magnetic inhomogeneity of some sort is
present12. A number of proposals have been put forth in
this regard, ranging from multilayered magnetic structures,
domain wall ferromagnets, and interfaces with spin-active
scattering13–17. Experiments have quite recently been able to
unambiguously verify the existence of long-ranged supercur-
rents flowing through textured magnetic structures6,18,19. By
now, it is then established that the superconducting proxim-
ity effect in ferromagnets may become long-ranged and spin-
polarized under suitable circumstances. Although this is cer-
tainly interesting from a fundamental physics viewpoint, it
begs the question: can these spin-polarized superconducting
correlations be utilized for some practical purpose?

Spin-polarized resistive currents are known to play an in-
strumental role in the field of spintronics. One of their hall-
marks in this context is the ability to transfer angular momen-
tum to the magnetic order parameter in a material, an effect
known as spin-transfer torque20,21. One of the most actively
pursued research directions in this field is as of today control-
lable domain wall motion, which may be accomplished via
several routes22 such as spin-polarized currents, magnons, and
external magnetic fields. Now, such domain walls provide the
necessary ingredient to generate spin-polarized superconduct-
ing correlations as they represent an inhomogeneous magne-
tization texture. Therefore, one may envision that the gener-
ation of spin-polarized supercurrents may be used to obtain a
superconducting spin-transfer torque acting on the magnetiza-
tion of a ferromagnet. In particular, the dissipationless nature
of the supercurrent flow offers an interesting venue in terms
of reduced energy loss and Joule heating, one of the main ob-
stacles, for efficient domain wall motion.

In this work, we will demonstrate that domain-wall motion
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in superconducting junctions offer a novel way of exerting
control of the quantum ground state of the system. Varying
the position of a domain wall with a realistic magnetization
profile taking into account magnetic anisotropy and spin stiff-
ness, we demonstrate that the position of the domain wall con-
trols whether the junction is in a 0- or π-state. In this way, it
becomes possible to exert dynamic control over the quantum
ground state within a single sample: the motion of the domain
wall manipulates the proximity effects responsible for the os-
cillatory nature of the superconducting order parameter in the
ferromagnetic (F) region, as well as the magnetic correlations
and destruction of superconductivity in the superconducting
(S) layers. Moreover, we will show that the domain wall
dynamics can result in an effective superconducting switch,
where the system changes from a resistive state to a dissipa-
tionless one. We compute the critical temperature of a domain
wall nanostructure in the ballistic regime in an entirely self-
consistent manner, which is necessary when it is unknown a
priori what the ground state of the system is. We find suitable
spin switch candidates that transition from a superconducting
state to a normal one, even at T = 0, as the domain wall
is shifted. These results show that superconducting spintron-
ics via magnetic domain wall motion can be used not only to
change the superconducting quantum state, but even turn su-
perconductivity itself on and off.

We first outline the theoretical framework used in our
calculations to compute the superconducting quantum ground
state. Next, we present analytical and numerical results for
0-π transitions both in the ballistic and diffusive regime
of transport, including the possibility of switching from a
resistive to dissipationless state simply by moving the domain
wall. We then give a detailed discussion of our results,
including candidate materials for the predicted effects, and
experimental feasibility of our proposed setup. Finally, we
summarize our findings.

Domain walls in Josephson junctions
To model a realistic domain wall, we minimize the free en-
ergy functional for an inhomogeneous ferromagnet including
exchange stiffness and anisotropy:

F =

∫
dx[A(∂xM)2/2−KeasyM

2
z +KhardM

2
x ]. (1)

Here,A is the exchange stiffness whileKeasy andKhard are the
anisotropy energies associated with the easy and hard axes of
the magnetization, M, respectively. The result26 is M(x) =
[0, sin θ(x), cos θ(x)] where θ(x) determines the domain wall
profile and is given by:

θ(x) = 2 arctan{exp[(x−X)/λ]}, (2)

where λ is the domain wall width, determined byA andKeasy.
We have also introduced the position of the center of the do-
main wall X , which will play an important role in what fol-
lows. With the magnetization texture in hand, we now insert
it into the corresponding equations of motion for the Green’s
function which in turn enables us to compute the supercur-
rent in the system. In the diffusive regime, we make use of
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FIG. 1: Proposed setup. A magnetic domain wall is present in a
ferromagnetic layer of width L, separating two conventional s-wave
superconductors. Inducing domain-wall motion to a new position
can alter the quantum ground state of the junction, triggering a 0-π
transition. Moving the domain-wall changes the critical temperature
Tc and may even reduce it to zero (middle figure), thus destroying
superconductivity. The domain-wall can be moved via an applied
current, external field, or spin-wave excitations to specific locations
by artificially tailored pinning sites e.g. via geometrical notches in
the sample.

the quasiclassical Usadel equation27 with the above magneti-
zation profile M(x):

D[∂̂, Ĝ[∂̂, Ĝ]] + i[ερ̂3 + diag[h · σ, (h · σ)τ ], Ĝ] = 0. (3)

Here D is the diffusion constant, h||M is the exchange field,
ε is the quasiparticle energy, ∂̂ is the derivative operator, Ĝ
represents the total Green’s function and ρ̂3 and σ are 4×4
and 2×2 Pauli matrixes, respectively. The Usadel equation is
supplemented by the Kupriyanov-Lukichev28 boundary con-
ditions at interfaces along the x-axis;

2ζĜ∂̂Ĝ = [ĜBCS(φ), Ĝ], (4)

in which ĜBCS is the bulk solution and ζ controls the interface
opacity. For stability in the numerical computations, we use
the so-called Ricatti parametrization29 of the Green’s func-
tion. Finally, the supercurrent may be computed according
to the formula:

Isuper = j0

∫ ∞
0

dε Tr
{
ρ̂3

(
ǧ
∂ǧ

∂x

)K}
. (5)

where j0 = −N0|e|D/16 is a normalization constant where
N0 is the normal-state density of states and e is the electron
charge. The key observation is that when the Josephson cur-
rent Isuper changes sign, a 0-π transition has taken place.
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We now turn to the ballistic regime to investigate the trans-
port and thermodynamic properties of SFS nanojunctions
with controllable domain walls. We utilize the microscopic
Bogoliubov-de Gennes (BdG) technique30 which enables us
to fully isolate the superconducting pairing correlations in the
system and investigate the precise behavior of the proximity-
induced supercurrent. In terms of the quasiparticle amplitudes
unσ and vnσ with excitation energy εn, and spin σ, the BdG
equations are compactly written as, H− hz −hx + ihy 0 ∆
−hx − ihy H+ hz ∆ 0

0 ∆∗ −(H− hz) −hx − ihy
∆∗ 0 −hx + ihy −(H+ hz)

Ψn

= εnΨn, (6)

where we define the vector Ψn ≡ (un↑, un↓, vn↑, vn↓)
T . The

pair potential ∆(x) must be determined self-consistently by
solving the BdG equations together with the condition,

∆(x) =
g

2

∑
n

[un↑(x)v∗n↓(x) + un↓(x)v∗n↑(x)] tanh
( εn

2T

)
,

(7)

where the sum is restricted to those quantum states with
positive energies below an energy cutoff, specified below.
The single particle Hamiltonian H is expressed as, H =
1/(2m)(−∂2

x + k2
x + k2

y) − µ + U(x), where µ is the Fermi
energy, and U(x) is the spin-independent interface scattering
potential which we take to be of the form U(x) = UB [δ(x +
L/2) + δ(x − L/2)], where L is the width of the ferromag-
netic region. The terms 1/(2m)(k2

x + k2
y) in the Hamiltonian

represent the energy of the transverse modes.
To determine the self-consistent ground state of the SFS

system, one must calculate the free energy, F , given by,

F = −2T
∑
n

ln
[
2 cosh

( εn
2T

)]
+
〈|∆(x)|2〉

g
, (8)

where 〈. . .〉 denotes spatially averaging over the entire
system, and the pair potential is self consistently calculated
in Eq. (7). The supercurrent can be found by taking the
derivative of the free energy with respect to the phase
difference φ: jx = 2e(∂F/∂φ). Note that we have not made
any assumption of a weak proximity effect in the above -
the results are obtained by solving the full proximity effect
equations numerically.

Inducing a 0-π transition via domain-wall motion
The underlying physics for this phenomenon may be most eas-
ily understood in the limit of a thin domain-wall. In that case,
one may think of the ferromagnetic region as an effective bi-
layer with two ferromagnets in an antiparallel configuration.
Whether the junction is in a 0- or π-state is determined by the
total phase-shift picked up by an Andreev bound-state carry-
ing the supercurrent through the ferromagnet. This phase-shift
depends on the exchange field orientation and the length of the
junction. When the ferromagnet consists of two regions with
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FIG. 2: Josephson current in the diffusive limit.. Supercurrent-
phase relation for two different parameter sets: (a) h/∆ = 5, λ/L =
0.02, L/ξ = 1.7 and (b) h/∆ = 8, λ/L = 0.05, L/ξ = 1.5. (c)
Critical supercurrent as a function of domain wall position for the
same parameter set as in (b). Inset: the appearance of a second
harmonic in the Josephson relation near the 0-π transition. In all
cases, we have used an interface parameter ζ = 4, corresponding to
a weakly transparent interface in terms of tunneling, and a tempera-
ture T/Tc = 0.1.

antiparallell magnetization, the phase-shift is partially com-
pensated when the bound-state first propagates through one
ferromagnet and then the second one with opposite magne-
tization direction. In fact, when the layers have exactly the
same width, the junction is essentially equivalent to an SNS
system31. However, if the layers are allowed to have different
thicknesses, the phase-shift picked up by the Andreev bound-
state will allow for a π-state to be formed as long as h and/or
L are sufficiently large to induce a π-phase difference as the
bound-state makes a full round-trip between the superconduc-
tors. We can then qualitatively understand why moving the
domain wall will induce 0-π transitions: the position of the
wall determines the effective phase-shift experienced by the
Andreev bound-state as it propagates between the supercon-
ductors. When the domain wall is thick, the analogy to a bi-
layer breaks down since the spin-rotation takes place over a
much longer distance. In our approach, we have access to an
arbitrary domain wall profile and have verified that the domain
wall position still determines whether the junction is in a 0- or
π-state in the case where the domain wall extends over a large
part of the junction.

We start by demonstrating the possibility of having 0-π
transitions induced by moving the domain wall in the diffu-
sive regime. In Fig. 2(a) and (b), we have computed the
supercurrent-phase relation using two different parameter sets
for the sake of showing that this effect does not just occur for
special fine-tuned parameters. Fig. 2(c) illustrates the criti-
cal current as a function of the domain wall position X in the
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FIG. 3: Free energy in the ballistic limit. Control of the quantum
state with domain wall motion: (a) depicts the condensation free en-
ergy as a function of domain wall motion for both of the self consis-
tently determined π and 0 states. Here λ/L = 0.02, and L/ξ = 1.5.
(b) corresponds to L/ξ = 1 with all other parameters the same as
(a). The center of the junctions corresponds to X/L = 0

ferromagnet. In all plots, the transition is clearly seen: the
current-phase relation is inverted whereas the critical current
decays towards zero and then rises to finite values. We note
that our calculation is done for a scenario where the system
has relaxed to equilibrium with the domain wall at position X
in the junction, thus corresponding to several measurements
of the current (yet within one single sample) with the domain
wall at rest in different positions. We will later discuss pre-
cisely how this may be accomplished experimentally. An al-
ternative measuring scheme would consist of doing measure-
ments on distinct samples with domain walls at pinned, prede-
termined locations by means of geometrical notches or other
sources of pinning potentials in the ferromagnet36.

For the ballistic results, in all cases we have assumed a su-
perconducting correlation length corresponding to kF ξ = 100
and measure all temperatures in units of Tc0, the transition
temperature of bulk S material. We consider T = 0.01,
except when calculating the critical temperature, and fix the
energy cutoff at 0.04, in units of µ. Scattering at the inter-
faces is characterized by parameter ZB ≡ mUB/kF , which
is unity throughout the calculations unless otherwise noted,
corresponding to a moderately transparent interface in terms
of tunneling. We have found however that the domain wall
position leading to the 0-π transition is weakly dependent on
ZB . This follows from the fact that the magnitude of the ex-
change interaction h shifts the energy spectrum for spin-up
and spin-down quasiparticles by an amount −h and +h re-
spectively. Thus, the oscillatory period of the superconducting
correlations in F are primarily determined from the difference
of the spin-up and spin-down wavevectors, and not the spin-
independent interface scattering.

In the ballistic regime, Fig. 3 demonstrates the thermody-
namics of the 0-π transition, which follows from the free en-
ergy. We characterize the ground state by finding FS , the free
energy of the whole system in the self consistent state, and
FN , the normal state (∆ ≡ 0) free energy. The normalized
condensation free energy is then ∆F ≡ (FS − FN )/(2E0),
where E0 is the condensation energy of bulk S material at
T = 0. By comparing the condensation energies of the 0 and

FIG. 4: Josephson current in the ballistic limit. Supercurrent-
phase relation for two different ferromagnet widths: (a) h/∆ =
5, λ/L = 0.02, L/ξ = 1 and (b) L/ξ = 1.5. In both cases there is a
clear appearance of a second harmonic in the Josephson relation near
the 0-π transition. (c) Critical supercurrent as a function of domain
wall position for the same F thickness used in (a).

π state configurations as a function of the domain wall posi-
tion, we can therefore immediately identify the ground state
of the system. For both Fig. 3(a) and (b), we see that when
the domain wall is located near the center of the ferromagnet
(X = 0), the 0-state is the ground state. However, when the
domain wall is moved closer to the interface, the ground state
is the π-state.

Next, in Fig. 4 we examine the charge transport and
calculate the Josephson current for the same thicknesses
in Fig. 3(a) and (b). The free energy profiles in Fig. 3
revealed that the 0-π crossover occurs at X/L ≈ −0.14 and
X/L ≈ −0.2 for L = 1.5ξ and L = ξ respectively. This
is consistent with the supercurrent behavior of Fig. 4, where
for those domain wall positions, the current phase relation
acquires additional harmonics at the 0 − π transition. An ex-
perimentally relevant quanitity related to the above results is
the critical current. We therefore show in Fig. 4(c) the critical
current as a function of domain wall position for the cases
considered in (a). This quantity is determined by finding the
maximum value of the magnitude of the Josephson current
over the entire ∆φ interval, for each X . The critical current
then has a minimum at the 0-π transition corresponding to
the cusp at X/L ≈ −0.2. Note that the observed behavior
is robust in the sense that it is found in both the ballistic and
diffusive limit, and for differing thicknesses. This should
facilitate making contact with experiment.
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FIG. 5: Controlling Tc with domain wall motion. (a) Turning su-
perconductivity on or off: Critical temperature as a function of do-
main wall position for several different exchange fields (see legend).
We assume transparent interfaces and, λ/L = 0.02, dS = 0.95ξ
and L/ξ = 1. In (b) we show the corresponding Cooper pair am-
plitude for the ground states when T = 0 and for an exchange field
of h/∆0 = 7. Its spatial dependence reveals the transition from the
π to 0 state near the minimum of the Tc curve in (a) occurring at
X/L ≈ −0.1, where the system has transitioned to a normal resis-
tive state.

Superconducting on-off switch via domain-wall motion
We next demonstrate that one can obtain a superconducting
switch controlled by the position of the domain wall. This
effect is revealed in the experimentally relevant critical tem-
perature, which is computed by linearizing the BdG equations
(6) near the transition, yielding an eigenvalue problem that
is solved using an extension to previous methods.32 Penetra-
tion of the superconducting condensate into the ferromagnet
results in the breaking of Cooper pairs by the exchange field
and leads to a decrease of the superconducting transition tem-
perature.

We illustrate in Fig. 5(a) the rich variety of switching be-
havior that can arise when varying the domain wall position.
Increasing the exchange field tends to increase the number of
Tc oscillations, reflecting the increase in the period of oscilla-
tions in the Cooper pairing amplitude that resides in the ferro-
magnet. The critical temperature is typically indifferent to h
near the center of the junction, where the curves coalesce. As
the domain wall shifts away from the center, Tc of the system
drops abruptly to zero and the system transitions to a normal
resistive state in a way that depends strongly on h. This is
highly suggestive of a superconducting switch where super-
conductivity is turned off or on depending on the location of
the domain wall. The application of an external field may also
introduce additional interesting reentrance effects33. It is im-

portant to note that this switching effect is not exclusive to
Josephson junctions, as we have found that the same effect
occurs in a S/F bilayer structure as well.

In analogy with the critical current behavior, the critical
temperature contains fingerprints of the 0−π transition,
occurring at around the minimum of the Tc curves. This point
is illustrated in Fig. 5(b), where we show the spatial behavior
of the Cooper pair amplitude for h/∆0 = 7. Five differing
domain wall positions are considered: two above and two
below X/L ≈ −0.1, where the system is normal and the pair
amplitude vanishes. Clearly, the domain wall position relative
to this transition point dictates whether the ground state of the
system is the 0 or π state.

Implications for experiments
It is known22 that domain wall motion may be induced both
via application of a current-induced spin-transfer torque and
via external magnetic fields23. Besides these conventional
techniques, another possibility was recently unveiled which
might be suitable for our purposes. It was demonstrated
in Ref. 24 that domain-wall motion could be obtained via
excitation of spin-waves, resulting in a purely magnonic
spin-transfer torque. Such spin-waves could be excited via
application of a local ac magnetic field H = H0 sin(ωt)ẑ,
giving rise to domain wall motion toward the spin-wave
source. Application of such local fields has been successfully
implemented experimentally previously25, and might be
feasible in our setup as well. Current-induced domain wall
motion is also an alternative, although it might require an
additional polarizing ferromagnetic layer in order to achieve
an efficient spin-transfer torque. It has been demonstrated
that spin-triplet supercurrents can induce magnetization
dynamics34 and spin-transfer torques35, and it is thus rea-
sonable to expect that domain wall motion can be induced
by a supercurrent spin-transfer torque as well. Once domain
wall motion has been induced via e.g. one of the above
mentioned venues, it is possible to control where the motion
terminates, and thus obtain a new ground-state configuration,
by artificially tailoring pinning sites which effectively traps
the domain wall. This can be accomplished experimentally
by e.g. making geometrical notches at the desired locations
of the ferromagnetic film/wire36. Based on the above dis-
cussion, there should then be several alternatives available
experimentally in order to move the domain wall in the
proposed Josephson junction and thus tune the quantum
state of the system to either a 0- or π-junction and even turn
superconductivity on and off. In terms of candidate materials
for observation of the predicted effects, one would need two
standard s-wave superconductors, such as Nb or Al, and a
magnetic region supporting a domain wall with a width of
order 1 − 10 nm. Such domain walls are known to occur in
thin magnetic films Pt/Co/AIOx, PtI(Co/Pt)n, and (Co/Ni)n
(see e.g. Ref. 37 for a review). Moreover, although we have
in our work considered a Bloch-type of domain wall, we do
not expect any qualitative change for Neel or head-to-head
domain walls, whose textures may be obtained by a rotation
in spin space, since the physical principle remains the same.
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This is advantageous in the sense that generic domain walls,
as opposed to a specific type of wall texture, will suffice to
experimentally observe the influence on superconductivity
predicted here.

Conclusion
We have shown that domain wall motion in superconducting
junctions provides a unique way to both tune the quantum
ground state between 0− and π−phases and also turn on
and off superconductivity itself. In particular, we find that
the domain wall motion may even trigger a quantum phase
transition between a resistive and dissipationless state. Our
results point towards new ways to merge superconductivity
and spintronics in order to achieve functional properties by
utilizing domain wall motion.

Methods
Self-consistent calculation in the ballistic limit. It is convenient numerically to de-
termine the Josephson current using the previously calculated quasiparticle amplitudes
and energies. Starting with the quantum mechanical expectation value of the momentum
density, we can can express the current jx in terms of the quasiparticle amplitudes as,

jx = −
ie

m

∑
n,σ

[
unσ

∂u∗nσ
∂x

fn + vnσ
∂v∗nσ
∂x

(1− fn)− c.c.
]
, (9)

where fn is the Fermi function, fn = 1/(exp(εn/(2T )) + 1), and the σ can be
either be either spin-up or spin-down (↑ or ↓) relative to the z-quantization axis. Taking
the divergence of the current in Eq. (9) and using the BdG equations (6), we find,

∂jx

∂x
= 2ie∆(r)

[
u
∗
n↑(x)vn↓(x)fn − u∗n↓(x)vn↑(x)(1− fn)

]
−2ie∆

∗
(r)

[
un↑(x)v

∗
n↓(x)fn − un↓(x)v

∗
n↑(x)(1− fn)

]
. (10)

Thus, when the self-consistency condition is satisfied (Eq. (7)), the right hand side van-

ishes, and the current is conserved. If the self-consistency condition is not strictly satis-

fied, the terms on the right act effectively as sources of current.

Our numerical procedure for calculating the supercurrent involves first assuming a

piecewise constant form for the pair potential in each S layer, Fourier transforming the

real-space BdG equations (Eq. (6)), and then diagonalizing the resultant momentum-

space matrix. Once the momentum space wavefunctions and energies are found, they

are transformed back into real-space and the pair potential is self consistently determined

via (7). The newly calculated ∆(x) is then inserted back into the BdG equations and the

above process is repeated. We generally solve ∆(x) self consistently within about one

coherence length of each side of the domain wall/superconductor interface. This leads to

the necessary constant current within that region. Deeper within the S regions, we take

the self-consistently found |∆(x)| and prescribe a phase difference ∆φ across both S

banks. This provides the necessary source of current, and acts as an effective boundary

condition.
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