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We investigate the superfluid phases of a Rashba spin-orbit coupled Bose-Einstein condensate residing on
a two dimensional square optical lattice in the presence of an effective Zeeman field Ω. At a critical value
Ω = Ωc, the single-particle spectrum Ek changes from having a set of four degenerate minima to a single
minimum at k = 0, corresponding to condensation at finite or zero momentum, respectively. We describe this
quantum phase transition and the symmetry breaking of the condensate phases. We use the Bogoliubov theory
to treat the superfluid phases and determine the phase diagram, the excitation spectrum and the sound velocity
of the phonon excitations. A novel dynamically unstable superfluid regime occurring when Ω is close to Ωc is
analytically identified and the behavior of the condensate quantum depletion is discussed. Moreover, we show
that there are two types of roton excitations occurring in the Ω < Ωc regime and obtain explicit values for the
corresponding energy gaps.

PACS numbers:

Introduction. The recent realization of ultracold spin-orbit
coupled (SOC) quantum gases [1] has attracted high interest
and resulted in considerable research efforts both on the the-
oretical and experimental side [2–6], in part due to the possi-
bility to tune the spin-orbit interactions [7] in contrast to solid
state materials. Ultracold quantum gases with spin-orbit cou-
pling manifest novel types of superfluid and magnetic ground-
states and have also been predicted to host topological excita-
tions like Majorana fermions [8].

The SOC Bose-Einstein condensate (BEC) has intrinsic
features that make it different from the standard BEC: the
interaction among atoms make a SOC BEC stable since it
cannot exist in the free regime [9], the SOC also breaks the
Galileian invariance so that the superfluid properties change
in different reference frames [10]; for a review see [11]. Sev-
eral works have considered different types of SOC in the con-
tinuous limit: pure Rashba, mixed and symmetric Rashba-
Dresselhaus, in two and three dimensions [12–14]. The ex-
otic properties of the Mott insulating phase arising from the
superfluid-Mott insulator (SF-MI) transition [15, 16] were
also considered in the case of an optically induced lattice.
However, an analytical quantitative description of the SF
phase for a SOC BEC in an optically induced lattice is still
missing.

In this work, we consider a Bose-Einstein condensate with
Rashba SOC residing on a 2D square optical lattice and prove
that the SOC qualitatively affects the features of the superfluid
phase. The system’s parameters are the Zeeman-coupling Ω,
the strength of the spin-orbit coupling λ , the hopping t, and
the intra- and interspecies interactions U,U ′. We discuss the
origin and magnitude of these terms in more detail later on.
We will in this paper show three main results: I) with λ � t
the existence of the SF is related to the ratio Ω/U and not to
t/U like in the usual Bose-Hubbard models; II) Ω can trig-
ger a breakdown of SF in a window near the critical value
Ωc ≡ 2λ 2/t, in this regime the excitation spectrum assumes
complex values, indicating a dynamical instability toward a
phase-separation [17]; III) in the regime Ω < Ωc, the excita-
tion spectrum has, besides the usual gapless phonon minimum

localized at the condensation momentum, three gapped roton
minima with different gap energies ∆⊥ and ∆‖. We provide
analytical evidences of all these results.

Bose-Hubbard formulation. It is possible to induce on a
dilute atomic boson gas system, through laser-atom interac-
tions, a spin-momentum interaction such that the effective
system has two coupled levels. In this sense one may speak
of pseudospin- 1

2 bosons. The confinement on a 2D plane
and the periodic potential on it can be experimentally realized
through the action of counter-propagating lasers. Our starting
point is a two species Bose-Hubbard type Hamiltonian [16]
H = H0 +Hint:

H0 = ∑
〈i, j〉,αβ

[−tα b†
iα b jα δαβ + iλb†

iα ẑ · (σσσ ×dddi j)αβ b jβ ]

+ ∑
iαβ

[δb†
iα(σy)αβ biβ −Ωb†

iα(σz)αβ biβ −µb†
iα biα δαβ ],

Hint = ∑
iα

U
2

b†
iα b†

iα biα biα +∑
i

U ′b†
iAb†

iBbiAbiB (1)

Above, i is the lattice site index, α and β run over the two
species A,B, that correspond to the pseudospin ± 1

2 , µ is the
chemical potential, tα is the hopping term, λ is the strength
of the spin-orbit coupling, ẑ is the unit vector in z-direction,
dddi j is the nearest neighbor (NN) vector between lattice sites
i and j, σσσ is the Pauli matrix vector, δ is the detuning pa-
rameter, Ω is the shift in chemical potential due to the Zee-
man interaction between spin and magnetic field. The square
optical lattice is assumed to lie in the xy-plane. The interac-
tion part Hint contains the intra- and interspecies interactions
U,U ′, we allow these coefficients to be different. We set h̄ = 1
in what follows. We diagonalize the non-interacting Hamilto-
nian H0 using the quasi-momentum basis {bkα ,b

†
kα}: biα =

1√
NS

∑k bkα eik·rrri ., Ns is the total number of sites. We focus on
equal hopping coefficients tA = tB ≡ t and δ = 0 for the sake
of obtaining more tractable analytical expressions that allow
for deeper physical insights. The energy bands are: Ek,± =

−2t(coskx + cosky)−µ±
√

Ω2 +4λ 2(sin2 kx + sin2 ky). The
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spectrum Ek,± is invariant under parity (kx→−kx,ky→−ky)
and under permutation of kx and ky, (kx→ ky,ky→ kx), so the
total symmetry group of Ek,± is Z2⊗Z2⊗S2. The value of
Ω strongly affects the shape of Ek,−: with Ω > Ωc ≡ 2λ 2/t it
has one minimum at (0,0); with Ω<Ωc it has four degenerate
minima at (±k0,±k0),

k0 = arcsin
√[

1−
(
Ω/Ωc

)2]/[1+2
(
t/λ
)2]

. (2)

At the critical value Ω = Ωc, it has one minimum at (0,0)
behaving as a fourth order power in momentum. We note
that without a lattice structure the minima degeneracy of Ek,−
is continuous in the (kx,ky) plane, whereas it is discrete in
our case so that the SF phase is expected to be more robust
towards quantum fluctuations. We define the operator basis
{dk,−,dk,+} that respectively annihilates a boson in the lower
band Ek,− and in the upper band Ek,+. These are related to
{bkA,bkB} via the unitary matrix P . We are interested in a
low-energy description of the system at T = 0 and thus we
consider populated only the lowest energy band Ek,−. This
condition is qualitatively satisfied taking Ω > max{U,U ′}. In
fact, 2Ω < (Ek,+−Ek,−) < 2Ω+ 8λ , and max{U,U ′} is an
estimate of the energy at disposal to scatter from the lower
band to the upper band. We define Ek,− ≡ Ek. With this as-
sumption dk,+→ 0 and the operators bkA and bkB are directly
proportional to dk,− ≡ dk: bkA = αkdk and bkB = βkdk, where
we set αk ≡P1,1 and βk ≡P2,1. The coefficients αk ∈ R
and βk ∈ C are the probability amplitudes for a particle in the
band Ek to be of the A or B type. From the unitarity of P it
follows that α(k)2 + |β (k)|2 = 1;

αk =

√
(1/2)

[
1+
(
1+(2λ/Ω)2 (sin2 kx + sin2 ky)

)−1/2]
βk =

[(
sinky− isinkx

)
/
√

sin2 kx + sin2 ky
]

sinθk (3)

We define cosθk ≡ αk for later purposes. The interaction
Hamiltonian as a function of the operators {dk,d

†
k} reads:

Hint = ∑
k+k′=p+p′

U
2NS

(αkαk′αpαp′ +β ∗k β ∗k′βpβp′)d
†
kd†

k′dpdp′

+ ∑
k+k′=p+p′

U ′

NS
αkβ ∗k′αpβp′d

†
kd†

k′dpdp′ (4)

We note that the scattering coefficients in (4) are invariant
under parity. We discard the upper energy band Ek,+ which
corresponds to map the original {A,B} components into an
effective one-component system with momentum-dependent
interaction coefficients Eq. (4).

In the regime Ω < Ωc the non-interacting energy spec-
trum Ek has four degenerate minima which raises the issue
of whether the condensation takes place at one or more mo-
menta. As we discuss after the evaluation of the ground
state energy (6), the condensation momentum is unique when
U > U ′: this is the so called plane wave phase. Our analysis
and results are restricted to this case.

The shape of Ek changes varying Ω across Ωc, this deter-
mines a quantum phase transition. With Ω>Ωc the condensa-
tion momentum is K0 = 0, the corresponding state preserves

the parity symmetry in momentum space; with Ω < Ωc the
condensation momentum is K0 6= 0, this is a symmetry bro-
ken phase because the corresponding condensate state breaks
the parity symmetry in momentum space. A natural choice
for the order parameter of this QPT is |βK0 |2 that passes from
a non zero value with Ω < Ωc to zero with Ω > Ωc, varying
continuously.

To treat the condensate phase we apply the Bogoliubov the-
ory which is very well suited to capture the SF properties but
not to investigate the SF-MI transition [16], the latter being
outside the scope of the present work. Let K0 denote the
condensation momentum which is zero or finite according to
the value of Ω. We then have d†

K0
dK0 = NK0 � 1 and sub-

sequently apply the Bogoliubov approximation d†
K0
∼ dK0 ∼√

NK0 . We perform a mean-field approximation of Eq. (4) by
taking into account the particle number fluctuations out of the
condensate to the first order [20]. The final Hamiltonian is:

H = E0 +

′

∑
k

(
akd†

kdk +bkdkd2K0−k +b∗kd†
kd†

2K0−k

)
(5)

the symbol ′ indicates that K0 is excluded from the sum. With
n = (NA +NB)/NS we have:

E0/NS = nEK0 +n2 [(U/2)
(
α4

K0
+ |βK0 |4

)
+U ′α2

K0
|βK0 |2

]
ak = Ek−EK0 +nU [2α2

kα2
K0

+2|βk|2|βK0 |2−α4
K0
−|βK0 |4]

+nU ′[α2
k |βK0 |2 +α2

K0
(|βk|2−2|βK0 |2)+2αkαK0ℜ(βkβ ∗K0

)]

bk = (n/2)U(α2
K0

αkα2K0−k +β ∗2K0
βkβ2K0−k)

+nU ′αK0β ∗K0
(αkβ2K0−k +α2K0−kβk) (6)

E0 is the ground state energy. Considering Ω < Ωc we
can compare E0 with the ground state energy obtained by
supposing that the condensate state is equally populated
by atoms with momenta K0 and −K0 (striped phase), this
is obtained taking into account in the interaction Hamilto-
nian Eq. (4) values of the momenta {k,k′,p,p′} equal to
{±K0 ,±K0 ,±K0 ,±K0 }, {±K0,∓K0,±K0,∓K0}, or
{±K0,∓K0,∓K0,±K0}. With U > U ′ the favored phase is
the plane wave phase whereas with U ′ >U the boundary be-
tween the two phases is

Ω/Ωc =
√

2t/
√
((x+1)/(x−1))(λ 2 +2t2)−λ 2, (7)

with x = U ′/U (see Fig. 1). We have checked that possible
condensate phases that populate e.g. all the four minima of Ek
always have a higher ground state energy.

We diagonalize the mean field Hamiltonian Eq. (5) making
sure to preserve the boson commutation relations [18], obtain-
ing the excitation spectrum and the final Hamiltonian:

Ek =
1
2

(
ak−a2K0−k +

√
(ak +a2K0−k)2−16|bk|2

)
(8)

H = E0 +
1
2

′

∑
k
(Ek−ak)+

′

∑
k

EkC†
kCk (9)
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Ck,C
†
k are the bosonic annihilation and creation operators of

the excitations Ek. In the non-interacting limit U =U ′= 0, we
have bk = 0 and ak =Ek−EK0 , so Ek reduces to Ek−EK0 . We
see that EK0 = 0 so that the excitation spectrum is gapless at
the condensation momentum, moreover the square root term
of Eq. (8), which is responsible for the phonon excitations,
has reflection symmetry across K0. Eq. (8) is the general
form of the excitation energies. Before to analyze the features
of the excitation spectrum (8) in the two regimes Ω < Ωc and
Ω > Ωc, we determine the effective mass of the particles of
our model and also the values of λ , Ω, t, U , U ′ that place our
system in the SF phase.

Effective masses, superfluidity criterium. The effective
masses are the eigenvalues of ∂ 2E|K0 ; with Ω < Ωc, this ma-
trix is non-diagonal so that the effective masses correspond to
motion along a rotated set of orthogonal axis x′ and y′. These
are:

m∗± = 2
[
(t3/λ 2)sink0 tank0[(1+(λ/t)2)±1]

]−1 (10)

To give a physical interpretation of Eq. (10) we normalize
each quantity choosing λ as the unit of energy and consider
the cases t̃ ≡ t/λ � 1, t̃� 1. Summarizing:

For t̃� 1 : m∗− = t̃/R,m∗+ = 1/(t̃R),

For t̃� 1 : m∗− = Ω̃/R,m∗+ = Ω̃/R (11)

with Ω̃ = Ω/λ and R =
(
1−(Ω/Ωc)

2
)
. The criterium that we

use in order to determine the parameter values ensuring that
our system is in a SF phase, and not in a MI one, comes from
the one-component Bose-Hubbard model. There, m∗ ∼ 1/t
and the superfluidity is ensured with m∗U < 1 [19]. Consid-
ering the same condition m∗±U < 1 we see that with t̃� 1 the
parameter guiding the SF is Ω and not t. Moreover, we see
that with Ω→Ω−c the SF is always strongly disfavored. With
Ω > Ωc, Ek has only one minimum in (0,0) and the effec-
tive mass is isotropic m∗ = [2t(1−Ωc/Ω)]−1. With λ → 0
(Ωc → 0), this reduces to the usual result for the standard
Bose-Hubbard model m∗ = 1

2t ; also in this case with Ω→Ω+
c

SF is disfavored.
The general formula for the sound velocity from Eq. (8) is:

cx,± = ∂kx ak
∣∣
K0
±
√

aK0

[
∂ 2

kx
(ak−2|bk|)

∣∣
K0

]
(12)

It can be shown that if ∂ 2
kx
(ak−2|bk|)

∣∣
K0

< 0, Ek becomes
complex around K0, so looking at the sound velocity is a nat-
ural tool to find possible instabilities of Ek.

Ω > Ωc, excitation spectrum, sound velocity, instability. In
this case Ek features only a minimum at k = 0, so that K0 = 0
and β0 = 0. Then:

Ek =

√[
Ek−EK0 +nU(2α2

k−1)+nU ′(1−α2
k)
]2−n2U2α4

k

A phonon excitation appears in the limit k→ 0 with sound
velocity c≡ cx = cy:

c =
√

2nU
[
t−2(λ 2/Ω)−n(λ/Ω)2 (U−U ′)

]
. (13)

When λ → 0, c→
√

2nUt that is the one-component Bose-
Hubbard result for c. Approaching the critical value Ω →
Ω+

c , both Ek and c become imaginary under the condition:
n(U −U ′)/2Ω > (Ω/Ωc−1), this is one of our main results.
The imaginary eigenvalues are indicative of a novel dynamical
instability for the superfluid phase on an optical lattice when
including SOC. A physical interpretation of this instability is
related to the real underlying two component {A,B} system
that seems to enter a phase-separation regime [17]. This can
be understood by considering the left panel of Fig. 2 where
we plot the relative population of the atomic species A (spin
up) and B (spin down) in the condensate. Due to the Zeeman
coupling, Eq. (1), the atoms of the species A are energetically
favored respect to the species B in the condensed phase. The
two atomic species coexist in the condensate until Ω reaches
the value Ωc at which point the species B is expelled from the
BEC.

0 2 4 6 8 10
0

0.5

1

Stripe Phase

PWP K0 6= 0
PWP K0 = 0

U ′
U

Ω
Ωc

−2 0 2
0

0.5

1

kxa

Ek
λ

FIG. 1: (Color online) Left panel: The red (grey) stripe denotes the
instability region. With Ω < Ωc and U ′ < U the stable phase is the
plane wave phase (PWP) with finite condensation momentum. With
U ′ >U the PWP and the striped phase are competing. With Ω > Ωc
the favored phase is the PWP with condensation momentum equal to
zero. Increasing U ′/U the phase boundary between the Striped Phase
and the PWP tends to 1. Right panel: projection of the excitation
spectrum Ek on ky = k0 showing the phonon excitation and roton
gap. t̃ = 0.08, Ω̃ = 0.55, n = 1, Ũ = 0.12, Ũ ′ = 0.11.

Ω < Ωc, sound velocities, instability, roton excitation.
In this case Ek has four degenerate minima localized at
(±k0,±k0); without loss of generality we assume that the
condensation momentum is equal to K0 = (k0,k0). The ex-
citation spectrum has a cusp at K0, proving the existence of
phonons. The slope differs slightly on the positive and nega-
tive direction of the kx, respectively ky, axis, this is associated
with the anisotropy of the effective masses. The sound veloc-
ity cx,± = cy,± is given in the footnote [21], its structure is in
agreement with [14] that considered the continuum case (no
optical lattice). From the explicit analytical form of the sound
velocity it is possible to determine the values of Ω such that
cx,± becomes complex and the excitation spectrum becomes
dynamically unstable. We consider two regimes t̃ > 1 and
t̃ < 1:

t̃ > 1 : Ω̃c(1− t̃−2/8)< Ω̃ < Ω̃c,

t̃ < 1 : Ω̃c
(
1−n(t̃/8)(Ũ−Ũ

′
)
)
< Ω̃ < Ω̃c (14)

Thus, just as in the case Ω > Ωc, an instability appears
when Ω is close to the critical value Ωc. In addition to the
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|βK0 |2

Ω
Ωc
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0
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Ω
Ωc

1
−
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FIG. 2: (Color online) Left panel: the relative population of A and
B atoms in the condensate phase: nA0 ≡ |αK0 |2, nB0 ≡ |βK0 |2. The
dashed vertical line corresponds to the value of Ωc, with Ω > Ωc,
nA0 = 1, nB0 = 0. Right panel: quantum depletion (percentage of the
total particle number); the depletion grows approaching the instabil-
ity region, red (grey), but it is nevertheless small. The parameters of
the plot are: t̃ = 1, Ω̃c = 2, n = 1, Ũ = 0.1, Ũ ′ = 0.05, Ns = 104.

phonon minimum occuring at the condensation momentum, a
peculiar feature resulting from the presence of spin-orbit cou-
pling is the presence of additional roton minima. Such ob-
jects are absent in multicomponent Bose-Einstein condensates
without spin-orbit interactions and may be understood as a
consequence of the degenerate nature of the minima in the ex-
citation spectrum Ek without interactions. We find that the ro-
ton gaps are not degenerate in spite of the single-particle spec-
trum minima being degenerate. The excitation spectrum Eq.
(8) has the usual phonon minimum localized at K0 whereas
we find that the positions of the roton minima are close to the
positions of the degenerate minima of the single-particle spec-
trum as long as one considers weak interaction parameters
U ,U ′. In fact discarding the second order terms in U and U ′,
Eq.(8) approximately reduces to ak far from the condensation
momentum K0. With K0 = (k0,k0), the positions of the ro-
ton excitations are then: (k0,−k0),(−k0,k0),(−k0,−k0). The
roton gaps ∆(k) are:

∆⊥ ≡ ∆(k0,−k0) = ∆(−k0,k0) = nU
(
2α4

K0
−2α2

K0
+1
)

∆‖ ≡ ∆(−k0,−k0) = nU−n(U +U ′)2α2
K0

(
1−α2

K0

)
. (15)

All gaps are always positive as long as U > U ′, which is the
regime we are considering (plane-wave phase). As seen, there
exist two types of gaps ∆⊥ and ∆‖: one gap for the roton ex-
citations closest to the condensation momentum (∆⊥) and one
gap for the roton excitation farthest away from it (∆‖). The de-
generacy of the minima in the non-interacting case is partially
lifted when adding interactions U and U ′.

Quantum depletion. The BEC depletion at a temperature
T is the average relative number of particles not belonging
to the BEC: 1− n0 = (1/N)∑k6=K0

〈d†
kdk〉, the operators dk

as in Eq. (6), n0 ≡ 〈d†
K0

dK0〉/N. At T = 0 only the quan-
tum fluctuations contribute to the depletion. Performing a
basis change from dk to the quasiparticle operators Ck (see
e.g. section 4 in Ref. [18]) it allows to obtain: 1− n0 =
∑k6=K0

1/2N
(
|ak+a2K0−k|/

√
(ak +a2K0−k)2−16|bk|2−1

)
.

Inside the instability region, the above expression of the quan-
tum depletion loses its meaning because the sum above be-
comes complex. In the right panel of Fig 2, we present a
numerical evaluation of the quantum depletion, the depletion
increases slightly upon approaching the dynamical unstable
region but nevertheless remains small for a system of finite
size, we also numerically evaluate the depletion as a function
of t/λ with Ω closed to the instability region, both on the left
and right side, and found that it is always lesser than 10%. In
the thermodynamic limit, the BEC does not exist at the edges
of the instability region but the quantum depletion rapidly de-
creases in the neighborhood of the edges in such a way the
instability region is still well defined.

Summary. In summary, we have established a phase-
diagram for the superfluid state of a SOC BEC in the presence
of a 2D square optical lattice. We have identified an insta-
bility regime in a window of values for the Zeeman-coupling
Ω near a critical value Ωc where the excitation energies be-
come complex. We have also derived analytical expressions
for the roton excitations appearing in the system, and shown
that there are two types of inequivalent roton gaps.
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K0

=−n∆U sin4θk0 ∂kx θ
∣∣
k0

,

cx,± = ∂kx ak
∣∣
K0
±
(
nU− n

2 ∆U sin2 2θk0

) 1
2

·
[
∂ 2

kx
E
∣∣
k0
−n∆U

(
1
2 ∂ 2

kx
θ
∣∣
k0

sin4θk0 +2∂kx θ
∣∣2
k0

cos4θk0

)] 1
2 ,

∂kx θk
∣∣
k0

=
t/Ω

1+2(2λ/Ω)2

√[
1+ 1

2

(
Ω
2λ

)2
][

1+2
( t

λ
)2
]
,

∂ 2
kx

θk
∣∣
k0

= Ωt2

8λ 3

(
3√

2sink0
−

√
2

sink0 cos2
k0

− 4t2 sink0√
2λ 2 cos2

k0

)
.
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