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General solution of 2D and 3D 
superconducting quasiclassical 
systems: coalescing vortices and 
nanoisland geometries
Morten Amundsen & Jacob Linder

An extension of quasiclassical Keldysh-Usadel theory to higher spatial dimensions than one is crucial 
in order to describe physical phenomena like charge/spin Hall effects and topological excitations like 
vortices and skyrmions, none of which are captured in one-dimensional models. We here present a 
numerical finite element method which solves the non-linearized 2D and 3D quasiclassical Usadel 
equation relevant for the diffusive regime. We show the application of this on three model systems 
with non-trivial geometries: (i) a bottlenecked Josephson junction with external flux, (ii) a nanodisk 
ferromagnet deposited on top of a superconductor and (iii) superconducting islands in contact with 
a ferromagnet. In case (i), we demonstrate that one may control externally not only the geometrical 
array in which superconducting vortices arrange themselves, but also to cause coalescence and tune 
the number of vortices. In case (iii), we show that the supercurrent path can be tailored by incorporating 
magnetic elements in planar Josephson junctions which also lead to a strong modulation of the 
density of states. The finite element method presented herein paves the way for gaining insight in 
physical phenomena which have remained largely unexplored due to the complexity of solving the full 
quasiclassical equations in higher dimensions.

Nonlinear differential equations (NLDEs) play a pivotal role in virtually all areas of physics. They are used to 
describe completely disparate phenomena ranging from the behavior of ocean waves to the elasticity of materi-
als. Thus, techniques to solve such equations are of general interest as they provide a way to obtain insight in a 
number of different physical systems. NLDEs are known for being notoriously difficult to solve and, more often 
than not, a set of NLDEs describing a particular physical scenario has to be addressed as a distinct problem since 
general techniques to solve such equations are scarce.

In quantum condensed matter physics, mesoscopic systems both in and out of equilibrium represent a very 
important arena where NLDEs are prevalent. A powerful tool used to describe such systems is the quasiclassical 
Keldysh theory, which has been reviewed in several works1–7. The theory is based on a Green function method 
which thus has a natural way of including disorder and other types of self-energies in the system. The quasiclassi-
cal Keldysh theory is capable of treating both ballistic systems and “dirty” systems. In the latter case, quasiparticles 
are elastically scattered within the mean free path lmfp causing the resulting motion to be diffusive. In essence, the 
quasiclassical theory is a perturbation expansion valid when all energy scales in the problem are much smaller 
than the Fermi energy EF. Conversely, all length scales in the system should be much larger than the Fermi wave-
length. This situation is realized in a number of mesoscopic systems, including normal metals, superconductors 
and weakly polarized ferromagnets. Strongly polarized ferromagnets, where the exchange energy splitting h of 
the majority and minority spin bands is comparable in size to the Fermi energy EF, appear to be at odds with the 
applicability of quasiclassical theory. However, there also exists a way in which such systems can be described in 
this framework. When the splitting h is sufficiently large, the two spin-bands may be treated separately so that h 
does not enter the problem at all and one is left with two decoupled spin species8. Such an approach is also suitable 
to address extreme cases such as half-metals using quasiclassical theory, as done recently in refs 9,10.

The equation of motion for the central object in quasiclassical Keldysh theory, the Green function ̌g , is a NLDE 
(known as the Eilenberger11 equation for arbitrary impurity scattering and the Usadel12 equation in the diffusive 
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limit) and must be supplemented by appropriate boundary conditions. Focusing on the diffusive limit, as it is 
often the experimentally relevant one, a variety of options are available depending on the physical situation at 
hand. In the simplest case of perfectly transparent interfaces, the Green function is taken as continuous across the 
interface. This is clearly an idealized scenario and the more realistic Kupriyanov-Lukichev13 boundary conditions 
describe an interface in the tunneling limit where there exists a substantial interface resistance. Boundary condi-
tions for an arbitrary interface transparency were developed in ref. 14. When the interface has magnetic proper-
ties, either because of an intrinsically thin magnetic layer inserted between e.g. two metals or superconductors or 
if one of the regions separated by the interface is magnetic on its own, one must use spin-dependent boundary 
conditions. Pioneered in refs 15,16, these were brought to a more tractable form by Cottet and co-workers in the 
diffusive limit17. However, up until recently there existed a knowledge gap in terms of how to describe strongly 
polarized magnetic interfaces in quasiclassical theory. Eschrig et al. solved this problem in ref. 9.

It is clear that the development of a numerical routine that is able to solve the quasiclassical Keldysh equations 
in higher dimensions than 1D will be of great value in terms of studying a vast number of physical phenomena, 
including various types of Hall effects, spin swapping, and topological excitations such as magnetic skyrmions 
and vortices. None of these phenomena can be captured in an effective 1D model. Furthermore, the ability to 
handle complex higher dimensional geometries numerically allows for the modeling of systems which are more 
closely related to experiments. For instance, superconducting nanoisland systems and vortices in mesoscopic 
structures have received much attention experimentally18–22. These systems require not only solution in 2D or 
3D, but also the description of non-trivial geometries within the numerical framework. Such solutions have been 
investigated using the Ginzburg-Landau formalism in the context of flux patterns and vortex states in super-
conductors23–25. The ability to aid experiments with numerical routines that are both geometry and dimension 
independent would be highly beneficial to their study. Nevertheless, explicit solutions of the full quasiclassical 
equations in two dimensions have rarely been reported26,27. In the linearized regime, corresponding to a weak 
proximity effect, several works have considered the 2D solution of the Usadel equation28–32. Motivated by this, we 
report as the main result of this paper the description of a finite element method that we have developed which 
is capable describing mesoscopic systems in 2D and 3D using quasiclassical theory without any linearization. 
As far as the authors are aware, this is the first work to solve the Usadel equations in 3D. After going through 
the details of this method, we show its application to three model systems. One of our main findings is that in 
a 2D Josephson junction exposed to a magnetic flux, it is possible to control not only the geometrical array in 
which superconducting vortices arrange themselves, but it is also possible to cause coalescence and thus tune the 
number of vortices. In addition, we show that the supercurrent flow through planar junction geometries can be 
tailored by the magnetization pattern and strength and also spatially modulates the proximity-induced density 
of states, which can be probed by STM-measurements. We organize our presentation as follows. First, we intro-
duce the system of coupled NLDEs that define the central equations in quasiclassical theory. The finite element 
method solving these equations in 2D and 3D is described in detail in the next section. We proceed to show the 
application of this method to three different hybrid structures where a superconducting material is coupled to a 
normal metal with external flux, and to a ferromagnet respectively. Finally, we provide a discussion of our results 
and concluding remarks.

Theory
In this section, we write down the quasiclassical equation of motion for ̌g  in the diffusive limit and its belonging 
boundary conditions. The task at hand is then to solve this numerically in 2D and 3D, and we demonstrate how 
this can be accomplished using a finite element method in the next section.

̌g  is an 8 ×  8 matrix satisfying =̌ ̌g 12  with the following structure:
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to completely specify ĝ . The structure of the retarded Green function looks as follows:
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where = εg g ( ) and = εf f ( ) denote the 2 ×  2 normal and anomalous Green function matrices in spin space, 
respectively. The …∼  operation means complex conjugation and reversal of the energy argument ε  →  (− ε ).

The Usadel equation reads:

∇ ∇ + ερ + Σ =ˆ ˆ ˆ ˆ ˆD g g g( ) i[ , ] 0 (3)3

where D is the diffusion coefficient, ρ = ρ ρˆ ˆ ˆdiag( , )3 3 3 , while Σ̂ is a matrix describing the self-energies of the prob-
lem. In general, it can be a functional of the Green function matrix itself, i.e. Σ = Σˆ ˆ ĝ( ). In the specific case of a 
ferromagnetic material, one has
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Σ = = ⋅ σ σ 

ˆ ˆ ˆ ˆ ̲ ̲⁎M M M hdiag( , ), diag( , ) (4)

where 


h describes the magnitude and direction of the magnetic exchange field while  σ = σ σ σ ̲ ̲ ̲ ̲( , , )x y z  is the vec-
tor of Pauli matrices. In the presence of gauge fields, such as a U(1) magnetic vector potential 

��
A describing an 

external magnetic field one has to replace the gradient operator with its covariant equivalent:

∇ → ∇ − ρ
��

ˆ ˆq A gi [ , ] (5)3

where q is the charge of the fermion field. A similar substitution is also made if one wishes to include an SU(2) 
gauge field 

→
 that describes antisymmetric spin-orbit coupling of Rashba or Dresselhaus type. In this work, we 

will use the standard Kupriyanov-Lukichev13 boundary conditions as a realistic description of the interface 
regions. While originally derived for the tunneling regime, these boundary conditions have been shown to give 
good results also for moderately to highly transparent interfaces33, which are considered herein. For an interface 
separating a material 1 on the left side from a material 2 on the right side, they read:

ζ ⋅ ∇ = =  .
̌ ̌ ̌ ̌L g n g g g j2 [ , ], {1, 2} (6)j j j j 1 2

Here, ζ j =  RB/Rj describes the ratio between the interface resistance and the bulk resistance of region j while Lj is 
the length of region j. Here, n is the unit vector normal to the interface pointing from region 1 to 2. At interfaces 
to air, no current is allowed to flow and the boundary condition is

⋅ ∇ =
 ̌n g 0 (7)

where n again represents the unit vector normal to the air interface. Equations (3), (6), and (7) define a system of 
coupled differential equations with belonging boundary conditions and the task is to find the solution ̌g . For 
concreteness, we restrict our attention to an equilibrium scenario where only the retarded Green function matrix 
ĝ R must be found. Even with this restriction, the equations are capable of describing a variety of different meso-
scopic systems. The equation system for ĝ R is identical to the one for ̌g , as can be verified by direct insertion of 
Eq. (1) in the place of ĝ , by replacing all …̌ matrices with their …̂ equivalents. Before proceeding to a description 
of the finite element method we have used to solve this equation set in 2D and 3D, it is useful to introduce a Ricatti 
parametrization34 of ≡ˆ ˆg gR . This parametrization, first applied in ref. 35 in the context of the Usadel equation, 
simplifies the numerical implementation of the equations by exploiting the symmetries and normalization of ̌g . 
One introduces two matrices in spin-space, γ and γ



, which define ĝ  as follows:
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This parametrization satisfies both the proper symmetry relations between the elements of ĝ  as well as the nor-
malization condition =ˆ ˆg 12 .

Equations (3), (6), and (7) comprise a set of second-order coupled partial nonlinear differential equations 
which, when solved, determine the Green function ̌g  of the system. Various physical quantities of interest may 
then be computed, such as the charge current density 

��
JQ and the density of states (DOS), given as:

∫= ε ρ ∇
−∞

∞��
ˆ ̌ ̌J N eD d g g

4
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3
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DOS 1
2

Tr{ (1 )} (10)

Another physical quantity that may be computed is the pair correlation function, Ψ , indicating the degree to 
which superconducting correlations exist in the system. It is given as:

∫Ψ = ε −
−∞

∞
ˆ ˆd g g1

8
[ (1, 4) (2, 3)] (11)

K K

where ĝ i j( , )K  refers to the element in column i and row j of the Keldysh Green function matrix.
A general analytical solution of equations (3), (6), and (7) is impossible. Some progress can be made by lin-

earizing the equations, as is often done when considering a superconducting proximity effect. However, this 
approximation limits the validity of the obtained results and may cause the loss of novel physical phenomena that 
are only captured when the full equations are used. To do so, one must use a numerical approach. So far, only a 
handful of works have managed to solve the 2D Usadel equation numerically. This has been done in the full prox-
imity effect regime for a superconductor/normal metal/superconductor junction in refs 26,27. To the best of our 
knowledge, no work has ever reported a solution of the Usadel equations in 3D.

Implementation of the finite element method. We here present a way to solve the quasiclassical equa-
tions in 2D and 3D using a finite element method. Its detailed description follows below. After its presentation, we 
show its application to 2D and 3D model systems by solving the equations without any approximations.

Inserting 8 into equation 3 results in the following:
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where δ  models the effect of inelastic quasiparticle scattering (the so-called Dynes parameter36). We set δ /Δ =  10−3 
in this paper where Δ is the bulk superconducting gap. In Eq. (12), it is also possible to include self-energies cor-
responding to spin-flip and spin-orbit scattering on impurities which act pair-breaking on superconducting cor-
relations. This typically amounts to a reduction of the magnitude of the superconducting proximity effect and we 
omit these terms in the present work. We also note that the effect of Rashba and Dresselhaus spin-orbit interac-
tions were derived in Ricatti-parametrized form very recently37,38. As γ and γ



 are 2 ×  2 matrices, thus containing 
4 elements each, it is clear that the solution of equation 12 involves solving a system of 8 coupled NLDEs. For 
brevity, we introduce the notation 

χ = γ γ γ γ γ γ γ γ
   ( ) (13)T

11 12 21 22 11 12 21 22

where γ ij and γ
ij are elements of γ and γ



 respectively. Equation 12 may then be written as

∇ χ + γ γ ∇γ ∇γ =α α
 ̲ ̲ ̲ ̲F ( , , , ) 0 (14)2 ( ) ( )

where α  is an element of equation 13 and F (α) is a function that performs the matrix multiplications of equation 12 
and extracts the appropriate element. Similarly, the boundary conditions become in the Riccati parametrization:

ζ
⋅ ∇γ = − γ γ γ − γ + ⋅ γ
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�̲ ̲ ̲ ̲ ̲ ̲n
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where the negative sign should be used for a boundary where region j is to the right of region i, and the positive 
sign for a boundary where region j is to the left of region i. A similar expression is found for ⋅ ∇γ

�
�n

i
 by applying 

the …∼  operation to equation 15. These are Neumann boundary conditions of the type

⋅ ∇χ = γ γα α�
�n B ( , ) (16)( ) ( )

where B(α) works in a similar manner as F (α).
By multiplying equation 14 by a test function η r( ) and integrating over the domain Ω in which the equations 

are defined, one gets what is called the weak formulation of the NLDEs (not to be confused with the weak prox-
imity effect approximation):

∫ ∫ ∫η η− ∇χ ⋅ ∇ + γ γ ∇γ ∇γ + ν ⋅ ∇χ η =
Ω

α

Ω

α

∂Ω

α�� �
� �̲ ̲ ̲ ̲dr dr F dS( , , , ) 0 (17)

( ) ( ) ( )

where the divergence theorem has been used and ∂ Ω is the boundary of Ω. The unit vector ν is an outward point-
ing surface normal, and is either parallel or antiparallel with the normal vector n as defined in the 
Kupriyanov-Lukichev boundary conditions. It may thus be expressed as ν = ν ⋅ 

 n n( ) .
It is assumed that the domain Ω can be discretized into a mesh of Nel elements, i.e., Nel subdomains Ωn, so that 

equation 17 becomes

∫ ∫∑ −∇χ ⋅ ∇η + γ γ ∇γ ∇γ η + ν ⋅ ⋅ ∇χ η =α α α

= Ω ∂Ω

�� �� ��
� �̲ ̲ ̲ ̲dr F n dSn[ ( , , , ) ] ( ) 0

(18)n

N

1

( ) ( ) ( )el

n

So far, no approximations have been made, and provided it is continuous in Ωn, the exact solution of equa-
tion 18 exists in the infinite space of polynomials P(Ωn). To progress further, we will use the Galerkin method, a 
common finite element formulation technique treated in most books on the subject, e.g39. The method consists 
of restricting the space in which solutions are sought, from P(Ωn) to a finite dimensional space of polynomials 
PN(Ωn) consisting of all polynomials of degree N or lower. Normally, N is equal to 1 or 2.

On each element there are defined Nn nodes, containing the degrees of freedom of the system - in this case the 
solution of the Usadel equation at the location of the node - and it is possible to define Nn polynomials, φ r( )j , that 
interpolate between them. These interpolation functions span the space of PN(Ωn) and are used as a basis for the 
approximate solution of equation 18:

∑χ ≈ = φα α

=

αX X
(19)j

N

j j
( ) ( )

1

( )n

where αXj
( ) are the expansion coefficients for the approximate solution of equation α . Furthermore, the test func-

tion η  is selected as
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∑η = φ
= (20)j

N

j
1

n

We now consider the boundary term. Having meshed the domain Ω, it is obvious that some of the element 
domains Ωn intersect with the boundary ∂ Ω. In fact, the boundary is the union of all these intersections. It follows 
that the nodes associated with these intersections also lie on the boundary, and so there are defined interpolation 
functions also here. With the dimensionality of ∂ Ω being one less than Ω, the surface interpolation functions φj

S, 
which are zero everywhere but on the boundary, are found by evaluating the element interpolation functions at 
the surface, i.e., φ = φ

r( )j
S

j
S  where r S is a surface coordinate.

With the approximation given in 19, equation 18 is in general not satisfied, so that for every element the right 
hand side becomes equal to a residual, αRj

( ):
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n

Equation 21 is to be solved for αXj
( ) so that =αR 0j

( ) , however due to the nonlinearities introduced by F (α) and 
B(α) this needs to be done iteratively by Newton-Raphson iterations:

= −α
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α αβ − βX X J R( ) ( ) [ ] ( ) (22)i k i k ij j k
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with Jij the Jacobian matrix in the 8 dimensional parameter space, given as
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Finally, 22 needs to be assembled into a global system of equations by summing over all elements, taking 
element connectivity into account. This involves restructuring and expanding the element matrices into a global 
system matrix:

X X J R= −+
− (24)k k k1

1

where  is an 8M ×  8M matrix, and M is the number of nodes in the system. The integrals over the element 
domains are performed by changing coordinates to a reference element, and integrating numerically by means of 
a Gauss quadrature. This puts restrictions on how distorted a mesh can be, as the Jacobian for the coordinate 
transformation has to exist. In general, a structured mesh where the deviation from the geometry of the reference 
element is small will often give higher accuracy and reduce the computation time as the sparsity of the assembled 
matrices is increased.

Results
Application: 2D and 3D superconductor/ferromagnet junctions. The main advantage of the finite 
element method over the finite difference method, a method commonly used to solve partial differential equa-
tions numerically, is that it is formulated entirely without specifying element type, interpolation functions, spatial 
dimension or the geometry. This gives it the flexibility to solve PDEs on geometries which would be challenging 
to solve with the finite difference method. Here, we have used second order Lagrange polynomials as interpola-
tion functions with quadrilateral (QUAD9) and hexagonal (HEX27) elements in 2D and 3D respectively. We 
illustrate this in the following. For the numerical implementation, we use the finite element library libMesh40 and 
its integration with the PETSc library of numerical equation solvers41,42. In the following, the superconducting 
regions will be treated as reservoirs such that the bulk expression for the Green function =̌ ̌g gBCS will be used. 
The superconductors thus effectively enter the problem as boundary conditions.

2D Josephson junction with external magnetic flux. It is well known that for a Josephson junction where an 
external flux is applied to the intermediate region, the supercurrent exhibits a Fraunhofer interference pattern. 
In refs 26,27 a 2D superconductor/normal/superconductor Josephson junction was studied in the presence of an 
external magnetic flux. The authors revealed that the Fraunhofer interference pattern would qualitatively change 
its dependence on the external flux depending on the width of the junction W relative to its length L. When 
W ≫  L a conventional Fraunhofer pattern was found, when W ≪  L the supercurrent was monotonically decay-
ing. Moreover, it was shown that the Fraunhofer interference pattern was accompanied by a regular array of 
proximity-induced vortices in the transversal direction of the normal metal region. The vortices are not present 
in the narrow width limit. Experimental verification of the appearance of proximity-induced vortices was recently 
reported in ref. 43 which considers Josephson junctions generated by a network of superconducting nanocrystals.

Here, we explore how the vortices disappear from the system as the width is reduced and the system transi-
tions to a vortex-less state. We also determine how a change in the phase difference between the superconducting 
leads affect the vortices, and will show that this does not always correspond to a shift of the vortex array along the 
transverse direction. To illustrate the ease with which the finite element method handles non-trivial geometries, 
we consider a Josephson junction with a bottleneck in the normal metal region, as shown in Fig. 1. We assume 
that the currents in the system are small, so that the magnetic field remains unaffected. As will be shown, it turns 
out to be possible to tune the geometry of the array along which the superconducting vortices align, swapping 
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from a vertical necklace to a horizontal row of vortices and vice versa. Moreover, we demonstrate that changing 
superconducting phase difference, tunable e.g. via a current-bias, causes vortices to merge. This offers an interest-
ing route to exerting external control over topological excitations in superconducting hybrid structures.

Figure 2 shows the results for varying widths of the normal metal with an applied external flux of Φ  =  4Φ 0, 
where Φ = e

h0
2  is the flux quantum. The flux is specified with respect to a rectangular cross section W ×  L. The 

resistance ratio in the Kupriyanov-Lukichev boundary conditions is ζ =  3 in both interfaces with the supercon-
ductors, and the temperature is kBT =  0.001Δ. All lengths are in units of the superconducting coherence length ξ.

It is seen that with no bottleneck, and with W ≫  L, a linear array of vortices along the y-axis is found. This is 
shown in Fig. 2a and is in agreement with refs 26,27. The number of vortices is simply equal to the number of flux 
quanta in the system. Furthermore, the fact that the vortices align themselves in an array implies that they repel, 
a feature they share with the Abrikosov vortices found in type II superconductors. Decreasing the width, pushes 
the vortices closer together which is energetically less favorable. With no phase difference between the supercon-
ducting leads, the phase correlation function is symmetric about both the x- and y-axis. This means that when 
the system becomes too narrow to sustain four vortices, two vortices must simultaneously translate vertically out 
of the system in a way which maintains this symmetry, as seen in Fig. 2b. The two remaining vortices are seen to 
be forced closer together until they eventually meet at the origin, from which it may be inferred that for the given 
flux and geometry, the presence of two vortices is energetically favorable regardless of their separation. In particu-
lar, it is observed that within numerical precision, the vortices are found to completely overlap in Fig. 2c, resulting 
in a single vortex. The winding of the phase of the pair correlation function along a contour around this vortex 
is found to be 4π , implying a topological charge of 2, see inset of Fig. 2c. As the bottleneck is introduced, and the 
width further decreased, the vortices split symmetrically along the x-axis, as shown in Fig. 2d,e. This behavior 
may also be explained by the symmetry of the system, which restrains the positions of the two vortices to be sym-
metric about the origin, on either the x-axis or the y-axis. As the vortices evidently feel a stronger repulsion from 
the edges than from each other, they are pushed together. However once they meet at the origin, they are free 
to separate along the x-axis and thus reduce the energy in the system. By continuing to decrease the bottleneck 
width, Wb, a point where even two vortices may not be sustained is eventually reached. The boundary conditions 
that constitute the superconducting leads enforce a constant pair correlation, and so it becomes increasingly diffi-
cult to maintain the curvature necessary for the vortices to exist as one approaches the superconductors. In other 
words, the vortices may not in a continuous fashion exit the system along the x-axis. Instead, the vortices are seen 
to return to the y-axis, and be expelled vertically.

While the vortices separate along the x-axis for decreasing bottleneck width, the length of the narrowing 
area is large enough to contain them, and so the system behaves as if the width is uniformly decreased. It has 
been verified that by reducing the horizontal extent of the bottleneck, it is possible to create a situation where the 
vortices are pushed to the wide regions of the junction, at which point they become virtually independent of the 
bottleneck width Wb.

We also show the results for varying phase difference between the superconductors, for a geometry with 
Wb =  0.6W, shown in Fig. 3. We find that not only are the positions of the vortices changed by varying the phase 
difference φ , but also the number of vortices is altered. Figure 3a–c show the absolute value of the pair correlation 
function. With no phase difference, two vortices are located symmetrically along the x-axis. As φ  increases from 
0, the two vortices coalesce at the origin. Further increase translates one of the vortices in the negative y-direction, 
until only a single vortex remains. We have confirmed that the spatial rearrangement of the vortex pattern and 
the merging of vortices also takes place even without the bottleneck geometry, i.e. for a rectangular N region. 
The dependence of the vortex positions on the phase difference may be explained by the magnetic field, which in 
the small current approximation, permeates the normal metal unhindered. The current generated by the phase 
difference is altered by the field which in turn influences which locations that are energetically favorable for the 
vortices.

Figure 1. The geometry considered. To the left is shown a general outline of the Josephson junction, and to the 
right a typical mesh used in the numerical analysis.
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The current density for each of the cases considered are shown in Fig. 3d–f. Close to a vortex, where pair corre-
lation is low, currents are induced by the magnetic field and circulate counter-clockwise. Due to the omnipresent 
magnetic field, screening currents circulating clockwise are generated which dominate when pair correlation is 
high. As the pair correlation function is weakened upon approaching the vortex core, one observes an abrupt 
change in the current density pattern at a certain distance from the vortex.

The phase of the pair correlation function is given as θ = Ψ ΨI Rarctan( / ). By integrating ∇ θ  along a contour 
going around a point where the pair correlation function vanishes, a value of 2π  is found. This can be seen directly 
from the phase plots in Fig. 3g–i, as any curve around a zero of the pair correlation function has to traverse two 
discontinuous jumps of value π . In other words, these points have a topological charge of one, showing that they 
are indeed vortices. With the approximation of weak currents we do not however find flux quantization, as this 
requires a self consistent calculation of the magnetic field.

3D ferromagnetic nanoisland. We also demonstrate how the finite element method is capable of dealing with 
fully three-dimensional structures with non-rectangular geometry by considering a superconductor/ferromagnet 
bilayer as depicted in Fig. 4. The ferromagnet is cylindrical with a radius of R =  2ξ  and a height of Lz =  0.4R, and 
is placed atop an assumed infinite superconductor. Such a geometry is inspired by ref. 44 which experimentally 
explores the appearance of magnetic field induced superconductivity in a lattice of ferromagnetic islands placed 
on top of a superconductor. While the experimental setup is far too sophisticated for their results to be recreated 
by the example considered herein, it does demonstrate the relevance of the model.

We use Kupriyanov-Lukichev boundary conditions with a resistance ratio of ζ  =  3. We compute the density 
of states (DOS) for this structure with an exchange field h equal to 0.3Δ, 0.5Δ and 0.7Δ in the vertical direction, 
as shown in Fig. 5a. The results are identical with the one-dimensional solution to the S/F bilayer, displaying an 
enhanced DOS at the Fermi level (ε  =  0) and a spin-split minigap structure45–51. The spatial distribution of the 
DOS is nearly constant for this particular parameter set choice in F as illustrated by Fig. 5b, thus proving the 
correctness of the method.

3D ferromagnet with superconducting islands. To illustrate the 3D capabilities of the method developed on a 
system which cannot be described by an effective 1D model, we consider two variations of a system where two 
superconducting islands are placed on a ferromagnet with dimensions Lx ×  Ly ×  Lz =  10ξ  ×  7ξ  ×  ξ , as shown 
in Fig. 6. To avoid self-consistency iterations, the islands are approximated by bulk BCS superconductors, and 
are included as Kupriyanov-Lukichev boundary conditions with a resistance ratio of ζ  =  1.5. The dimensions 
of the islands are 2.5ξ  ×  2.5ξ . The motivation for these analyses is to study the current flow between the 
superconducting islands and the spatial modulation of the density of states due the proximity effect in the 
presence of a supercurrent. To this end, the islands are given a phase difference of φ = π

2
. The configurations 

considered are:

Figure 2. The absolute value of the pair correlation function for different values of the width W and 
bottleneck width Wb. The length is L =  2ξ . The inset of (c) shows the phase of the pair correlation function.
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(A)  The superconducting islands are placed on the same side of the ferromagnet with a separation of 2.5ξ , as 
shown if Fig. 6a. The ferromagnet has a constant magnetization of h =  5Δ in the vertical direction.

(B)  One of the superconducting islands is moved to the opposite side of the ferromagnet, shown in Fig. 6b. The 
magnetization is pointing in the vertical direction, with a spatial distribution shown in Fig. 6c.

Figure 3. Results based on the solution of the Usadel equation for varying phase difference between the 
superconductors, with L = W = 2ξ, Wb = 0.6W and Φ = 4Φ0. (a–c) The absolute value of the pair correlation 
function, (d–f) the current density, (g–i) the phase of the pair correlation function.

Figure 4. To the left is shown the 3D geometry considered. The superconductor is assumed to have an infinite 
extent and is included only as a boundary condition. The mesh used when solving the Usadel equation in the 
ferromagnet is shown to the right. The radius is R =  2ξ , and the thickness is Lz =  0.4R.
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Configuration A may be realized experimentally by growing the ferromagnetic film on a substrate and placing 
superconducting electrodes on top of it. Configuration B may be created by placing the lower superconducting 
electrode on the substrate and subsequently grow a normal metal film on top of it (a similar type of geometry was 
considered in the context of Fraunhofer patterns in ref. 52). The upper superconducting electrode is then placed 
atop the film. The spatial distribution of the magnetization used in Configuration B can be generated by placing 
a strong ferromagnet on top of the normal film. This will magnetize the film across the thickness, creating a cross 
section approximately equal to the ferromagnet within which the magnetization is constant. The ability of the 
ferromagnet to induce magnetization within the normal film abates quickly as the distance from it increases, thus 
generating the distribution shown in Fig. 6c.

Figure 5. (a) Density of states for the 3D ferromagnet structure for various strengths of the vertical exchange 
field, (b) spatial distribution of the density of states for energy ε  =  0.5Δ and exchange field h =  0.5Δ.

Figure 6. The geometries and magnetization considered. Marked in red are superconducting islands placed 
on a ferromagnet. The dimensions of the ferromagnet is Lx ×  Ly ×  Lz =  10ξ  ×  7ξ  ×  ξ . In subfigure (b) the 
ferromagnet has been made transparent for visualization purposes. (a) Configuration A, (b) Configuration B, 
(c) The spatial distribution of the magnetization, where r is a horizontal radius measured from the center of the 
ferromagnet.
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The results from both configurations are given in Fig. 7. For Configuration A it is seen that the current is 
largely confined to the region between the islands, passing from one to the other, shown in Fig. 7a,g. Due to the 
magnetization being uniform, the supercurrent travels along a path that minimizes the distance, and thus has no 
component pointing along the transversal direction (the y-axis of Fig. 7). However, as the current enters and exits 
the ferromagnet vertically, it is seen to arc into the thickness of the film, as seen in Fig. 7c,e.

Configuration B has a magnetization of = ∆
h r( ) 15  within a horizontal radius r  of one superconducting 

coherence length ξ  from the center of the ferromagnet. This has a significant effect on the supercurrent. The 
supercurrent flows vertically into the system from the lower superconductor, as seen in Fig. 7d. However, rather 

Figure 7. The supercurrent present in both Configuration A and Configuration B. All currents are scaled by 
= ∆J N eD

0 8
0  and all lengths by ξ .
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than flowing directly to the upper superconductor, as would have been the case for a homogeneous magnetiza-
tion, the current is seen to avoid the area of highest magnetization by following a semicircular path, shown in 
Fig. 7b,d,h. The exchange field has a detrimental effect on the superconducting correlations as it breaks up the 
Cooper pairs. For this reason it is natural that the path selected by the supercurrent eventually transitions from 
the shortest route, to a path where the central area is avoided as h increases. In this sense, the exchange field is 
seen to influence the supercurrent in a way which is analogous to the way a resistance influences a normal cur-
rent. It is interesting that this transition has occurred already for h =  15Δ, which is to be considered a somewhat 
weak magnetization, and may provide means for customizing the supercurrent path.

In Fig. 8 we show the density of states (DOS) along two different lines on the surface of the ferromagnet in 
Configuration B, thus simulating the measurement of ∝ DOSI

V
d
d

 by scanning tunneling microscopy. The DOS is 
seen to feature a strong spatial modulation. Along the x-axis, as seen in Fig. 8a, the probed line passes directly 
underneath the upper superconductor. Here the characteristic peaks associated with the superconducting DOS 
are observed at ε  =  ± Δ. Similar peaks are also created on the surface above the lower superconductor. 
Furthermore, a slight suppression of the DOS is found in the same regions, at the level of ε = ±

h r( ), which is 
typical for superconductor/ferromagnet hybrid structures49. The second line is placed opposite the lower super-
conductor, in the y-direction as shown in Fig. 8b. Also here, the characteristic peaks and split gap is found. The 
proximity effect is seen to decay as one moves away from the position of the superconductor, so that the DOS 
approaches that of a normal metal, which is reasonable.

Conclusion
We have demonstrated how the full, spin dependent, Usadel equation may be solved by the finite element method. 
The method excels in solving differential equations for non-trivial geometries and may find use in solving a wide 
range of problems which have not been manageable with other methods. A natural development of the finite 
element method presented herein would be to incorporate the kinetic equations coming from the Keldysh part of 
the quasiclassical equations in non-equilibrium situations. The methodology may also be generalized to handle 
time dependent problems such as domain wall motion. Work is currently ongoing on these subjects which may 
find interesting applications in the field of superconducting spintronics53,54.

Figure 8. The density of states along two different lines on the surface of the ferromagnet. 
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