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We investigate theoretically how the proximity effect in superconductor/ferromagnet hybrid structures with in-
trinsic spin-orbit coupling manifests in two measurable quantities, namely the density of states and critical tem-
perature. To describe a general scenario, we allow for both Rashba and Dresselhaus type spin-orbit coupling.
Our results are obtained via the quasiclassical theory of superconductivity, extended to include spin-orbit cou-
pling in the Usadel equation and Kupriyanov-Lukichev boundary conditions. Unlike previous works, we have
derived a Riccati parametrization of the Usadel equation with spin-orbit coupling which allows us to address
the full proximity regime and not only the linearized weak proximity regime. First, we consider the density of
states in both SF bilayers and SFS trilayers, where the spectroscopic features in the latter case are sensitive to the
phase difference between the two superconductors. We find that the presence of spin-orbit coupling leaves clear
spectroscopic fingerprints in the density of states due to its role in creating spin-triplet Cooper pairs. Unlike
SF and SFS structures without spin-orbit coupling, the density of states in the present case depends strongly
on the direction of magnetization. Moreover, we show that the spin-orbit coupling can stabilize spin-singlet
superconductivity even in the presence of a strong exchange field . > A. This leads to the possibility of a mag-
netically tunable minigap: changing the direction of the exchange field opens and closes the minigap. We also
determine how the critical temperature 7, of an SF bilayer is affected by spin-orbit coupling and, interestingly,
demonstrate that one can achieve a spin-valve effect with a single ferromagnet. We find that 7;. displays highly
non-monotonic behavior both as a function of the magnetization direction and the type and direction of the

spin-orbit coupling, offering a new way to exert control over the superconductivity of proximity structures.

I. INTRODUCTION

Material interfaces in hybrid structures give rise to proxim-
ity effects, whereby the properties of one material can “leak”
into the adjacent material, creating a region with properties
derived from both materials. In superconductor/ferromagnet
(SF) hybrid structures', the proximity effect causes supercon-
ducting correlations to penetrate into the ferromagnetic re-
gion and vice versa. These correlations typically decay over
short distances, which in diffusive systems is of the order
\/D/h, where D is the diffusion coefficient of the ferromag-
net and £ is the strength of the exchange field. However, for
certain field configurations, the singlet correlations from the
superconductor may be converted into so-called long-range
triplets (LRTs)?. These triplet components have spin projec-
tion parallel to the exchange field, and decay over much longer
distances. This results in physical quantities like supercur-
rents decaying over the length scale &y = \/D/T, which is
usually much larger than the ferromagnetic coherence length
Er = /D/h, where T is the temperature. This distance is
independent of A, and at low temperatures it becomes increas-
ingly large, which allows the condensate to penetrate deep into
the ferromagnet. The isolation and enhancement of this fea-
ture has attracted much attention in recent years as it gives rise
to novel physics and possible low-temperature applications by
merging spintronics and superconductivity?.

It is by now well-known that the conversion from singlet
to long-range triplet components of the superconducting state
can happen in the presence of magnetic inhomogeneities*>,
i.e. a spatially varying exchange field, and until recently such
inhomogeneities were believed to be the primary source of
this conversion® '3, although other proposals using e.g. non-

equilibrium distribution functions and intrinsic triplet super-

conductors also exist!®~1°. However, it has recently been es-
tablished that another possible source of LRT correlations is
the presence of a finite spin-orbit (SO) coupling, either in the
superconducting region®” or on the ferromagnetic side*'?2. In
fact, it can be shown that an SF structure where the magnetic
inhomogeneity is due to a Bloch domain wall, as considered
in e.g. Refs. 23-25, is gauge equivalent to one where the
ferromagnet has a homogeneous exchange field and intrinsic
SO coupling?!. It is known that SO scattering can be caused
by impurities?®, but this type of scattering results in purely
isotropic spin-relaxation, and so does not permit the desired
singlet-LRT conversion. To achieve such a conversion, one
needs a rotation of the spin pair into the direction of the ex-
change field”’. This can be achieved by using materials with
an intrinsic SO coupling, either due to the crystal structure in
the case of noncentrosymmetric materials®®, or due to inter-
faces in thin-film hybridszg, where the latter also modifies the
fundamental process of Andreev reflection’®3!. The role of
SO coupling with respect to the supercurrent in ballistic hy-
brid structures has also been studied recently2.

In this paper, we establish how the presence of spin-orbit
coupling in SF structures manifests in two important exper-
imental observables: the density of states D(g) probed via
tunneling spectroscopy (or conductance measurements), and
the critical temperature 7.. A common consequence for both
of these quantities is that neither becomes independent of the
magnetization direction. This is in contrast to the case with-
out SO coupling in conventional monodomain ferromagnets,
where the results are invariant with respect to rotations of the
magnetic exchange field. This symmetry is now lifted due to
SO coupling: depending on the magnetization direction, LRT
Cooper pairs are created in the system which leave clear fin-
gerprints both spectroscopically and in terms of the 7, behav-



ior. On the technical side, we will present in this work for the
first time a Riccati parametrization of the Usadel equation and
its corresponding boundary conditions that include SO cou-
pling. This is an important advance in terms of exploring the
full physics of triplet pairing due to SO coupling as it allows
for a solution of the quasiclassical equations without any as-
sumption of a weak proximity effect. We will also demon-
strate that the SO coupling can actually protect the singlet su-
perconducting correlations even in the presence of a strong
exchange field, leading to the possibility of a minigap that is
magnetically tunable via the orientation of the exchange field.

The remainder of the article will be organised as follows:
In Section II, we introduce the relevant theory and notation,
starting from the quasiclassical Usadel equation, which de-
scribes the diffusion of the superconducting condensate into
the ferromagnet. We also motivate our choice of intrinsic SO
coupling in this section, and propose a new notation for de-
scribing Rashba—Dresselhaus couplings. The section goes on
to discuss key analytic features of the equations in the limit
of weak proximity, symmetries of the density of states at zero
energy, and analytical results needed to calculate the critical
temperature of hybrid systems. We then present detailed nu-
merical results in Section III: we analyze the density of states
of an SF bilayer in IIl A [see Fig. 1(a)], with the case of pure
Rashba coupling considered in Section IIIB, and we study
the SFS Josephson junction in IITC [see Fig. 1(b)]. We con-
sider different orientations and strengths of the exchange field
and SO coupling, and in the case of the Josephson junction,
the effect of altering the phase difference between the con-
densates. Then, in Section III D, we continue our treatment
of the SF bilayer in the full proximity regime by including a
self-consistent solution in the superconducting layer, and fo-
cus on how the presence of SO coupling affects the critical
temperature of the system. We discover that the SO coupling
allows for spin-valve functionality with a single ferromagnetic
layer, meaning that rotating the magnetic field by /2 induces
a large change in T;.. Finally, we conclude in Section IV with a
summary of the main results, a discussion of some additional
consequences of the choices made in-text, as well as possibil-
ities for further work.

II. THEORY
A. Fundamental concepts

The diffusion of the superconducting condensate into the
ferromagnet can be described by the Usadel equation, which
is a second-order partial differential equation for the Green’s
function of the system>3. Together with appropriate bound-
ary conditions, the Usadel equation establishes a system of
coupled differential equations that can be solved in one di-
mension. We will consider the case of diffusive equilibrium,
where the retarded component g® of the Green’s function is
sufficient to describe the behaviour of the system>*3. We
start by examining the superconducting correlations in the fer-
romagnet, and use the standard Bardeen—Cooper—Schrieffer
(BCS) bulk solution for the superconductors. In particular,

we will clarify the spectroscopic consequences of having SO
coupling in the ferromagnetic layer.

In the absence of SO coupling, the Usadel equation? in the
ferromagnet reads

DrV(gRVgR) +i[eps + M, g% =0, (1)

where the matrix p3 = diag(1,—1), and € is the quasiparticle
energy. The magnetization matrix M in the above equation is

=" 0y )

where i = (hy, hy, h;) is the ferromagnetic exchange field, (*)
denotes complex conjugation, 6 = (Gy,0y,0;) is the Pauli
vector, and G, are the usual Pauli matrices. The corresponding
Kupriyanov—Lukichev boundary conditions are®

2L;C;85VeR =[4F,85), )

where the subscripts refer to the different regions of the hybrid
structure; in the case of an SF bilayer as depicted in Fig. 1(a),
j = 1 denotes the superconductor, and j = 2 the ferromagnet,
while V denotes the derivative along the junction 1 — 2. The
respective lengths of the materials are denoted L;, and the in-
terface parameters {; = Rg/R; describe the ratio of the barrier
resistance Rp to the bulk resistance R; of each material.
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FIG. 1: (Color online) (a) The SF bilayer in III A, III B and
IIID. We take the thin-film layering direction along the z-
axis, and assume an xy-plane Rashba—Dresselhaus coupling
in the ferromagnetic layer. (b) The SFS trilayer in III C.

We will use the Riccati parameterisation’” for the quasi-
classical Green’s function g%,

8 —< 2 —N(1+?y)>’ ®)



where the normalisation matrices are N = (1 —vy)~' and
N = (1—7y)~!. The tilde operation denotes a combination of
complex conjugation i — —i and energy € — —¢, with 'y — 7,
N — N. The Riccati parameterisation is particularly useful for
numerical computation because the parameters are bounded
[0,1], contrary to the multi-valued ©-parameterisation®*. In
practice, this means that for certain parameter choices the nu-
merical routines will only converge in the Riccati formulation.
Appendix A contains some further details on this parameteri-
sation.

To include intrinsic SO coupling in the Usadel equation, we
simply have to replace all the derivatives in Eq. (1) with their
gauge covariant counterpalrts:zh38

V()= V() =V()—i4, -]. &)

This is valid for any SO coupling linear in momentum. We
consider the leading contribution; higher order terms, e.g.
those responsible for the SU(2) Lorentz force, are neglected
here. Such higher order terms are required to produce so-
called @ junctions which have attracted interest of late’, and
consequently we will see no signature of the ¢ effect in the
systems considered herein. The object A has both a vector
structure in geometric space, and a 4 X 4 matrix structure in
Spin—Nambu space, and can be written as A = diag(4, —A*)
in terms of the SO field A = (Ay,A,,A;), which will be dis-
cussed in more detail in the next subsection. SO coupling in
the context of quasiclassical theory has also been discussed
in Refs. 38,40. When we include the SO coupling as shown
above, we derive the following form for the Usadel equation
(see Appendix A):

Dy (93y+2(y)N¥(9kY))
= —2igy—ih-(oY—Y0")
+Dr [AAY—YA"A" +2(Ay+YA" )N (A" +7AY)]
+2iDr [(Y)N(Af +YAY) + (Ax +YAF)IN (Ocy) ] ,(5)

where the index k indicates an arbitrary choice of direction
in Cartesian coordinates. The corresponding equation for ¥ is
found by taking the tilde conjugate of Eq. (5). Similarly, the
boundary conditions in Eq. (2) become:

1 - . o
oY1 = TCl(l —NMV2)N2 (Y2 — 1) +iAy + AL,

Y2 = (1 =171)N1 (Y2 —71) +iAy2 +i2A;,  (6)

1
L%,
and the ¥ counterparts are found in the same way as before.
For the details of these derivations, see Appendix A.

We will now discuss the definition of current in the presence
of spin-orbit interactions. Since the Hamiltonian including SO
coupling contains terms linear in momentum (see below), the
velocity operator v; = dH /dk; is affected. We stated above
that the Kupriyanov-Lukichev boundary conditions are sim-
ply modified by replacing the derivative with its gauge covari-
ant counterpart including the SO interaction. To make sure
that current conservation is still satisfied, we must carefully
examine the Usadel equation. In the absence of SO coupling,

the quasiclassical expression for electric current is given by
L=t [ deTrips(ava)"), ™

where g is the 8 x 8 Green’s function matrix in Keldysh space

sR 5K
g=(% %)), (8)

0 &
and Iy is a constant that is not important for this discussion.
Current conservation can now be proven from the Usadel
equation itself. We show this for the case of equilibrium,

which is relevant for the case of supercurrents in Josephson
junctions. In this case g5 = (g% — g4)tanh(g/2T) and we get

I, =1 /m deTr{ps(g®VgR — g"vg*)} tanh(e/2T). (9)

Performing the operation Tr{ps---} on the Usadel equation,
we obtain

DV -Tr{p3(¢" V") +iTr{psleps + M, 8%} =0.  (10)

Now, inserting the most general definition of the Green’s func-
tion gR , one finds that the second term in the above equation
is always zero. Thus, we are left with

V- Tr{p3(g"Vg®)} =0, (11)

which expresses precisely current conservation since the same
analysis can be done for gA Now, let us include the SO cou-
pling. The current should then be given by

1, :10/_ de Tr{p3(§V3)*}, (12)

so that the expression for the charge current is modified by the
presence of SO coupling, as is known. The question is now if
this current is conserved, as it has to be physically. We can
prove that it is from the Usadel equation by rewriting it as

DV-(*V§")
=D[A, 8" V2" + DIA,[A, 8] — ileps + M, §"], (13)
and then performing the operation Tr{ps--- }, one finds:
DV - Tr{ps(2"Vg")} =0, (14)

so we recover the standard current conservation law V- I, = 0.

B. Spin-orbit field

The precise form of the generic SO field A is imposed by
the experimental requirements and limitations. As the name
suggests, spin-orbit coupling couples a particle’s spin with its
motion, and more specifically its momentum. As mentioned
in the Introduction, the SO coupling in solids can originate
from a lack of inversion symmetry in the crystal structure.
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Such spin-orbit coupling can be of both Rashba and Dressel-
haus type and is determined by the point group symmetry of
the crystal*!#2. It is also known that the lack of inversion sym-
metry due to surfaces, either in the form of interfaces to other
materials or to vacuum, will give rise to antisymmetric spin-
orbit coupling of the Rashba type. For sufficiently thin struc-
tures, the SO coupling generated in this way can permeate the
entire structure, but the question of precisely how far into ad-
jacent materials such surface-SO coupling may penetrate ap-
pears to be an open question in general. Intrinsic inversion
asymmetry arises naturally due to interfaces between materi-
als in thin-film hybrid structures such as the ones considered
herein. Noncentrosymmetric crystalline structures provide an
alternative source for intrinsic asymmetry, and are considered
in Ref. 43. In thin-film hybrids, the Rashba spin splitting de-
rives from the cross product of the Pauli vector ¢ with the
momentum k,

Hy=——(axk)-2, (15)
m

where o is called the Rashba coefficient, and we have chosen
a coordinate system with Z as the layering direction. Another
well-known type of SO coupling is the Dresselhaus spin split-
ting, which can occur when the crystal structure lacks an in-
version centre. For a two-dimensional electron gas (quantum
well) confined in the 2-direction, then to first order (k;) = 0,
so the Dresselhaus splitting becomes

B
H,= %(Gyky —0yky), (16)

where [ is called the Dresselhaus coefficient. In our struc-
ture, we consider a thin-film geometry with the confinement
being strongest in the z-direction. Although there may cer-
tainly be other terms contributing to the Dresselhaus SO cou-
pling in such a structure, since real thin-film structures will
have three-dimensional quasiparticle diffusion and we use a
2D form of the SO coupling here, we consider the standard
form Eq. (16) as an approximation that captures the main
physics in the problem. This is a commonly used model in
the literature to explore the effects originating from SO cou-
pling in a system. When we combine both interactions, we
obtain the Hamiltonian for a general Rashba—Dresselhaus SO
coupling,

ky ky
Hpp = %(occy—ﬁcx) — %}(Otﬁx—ﬁcy)- amn

In this work, we will restrict ourselves to this form of SO cou-
pling. It should be noted that our setup may also be viewed as
a simplified model for a scenario where the SO coupling and
ferromagnetism exist in separate, thin layers, in which case
we expect qualitatively similar results to the ones reported in
this manuscript.

As explained in Ref. 21, the SO coupling acts as a back-
ground SU(2) field, i.e. an object with both a vector structure
in geometric space, and a 2 X 2 matrix structure in spin space.
We can therefore identify the interaction above with an effec-
tive vector potential A which we will call the SO field,

HRDE_k'A/m7 (18)

from which we derive that
A = (Bo, — aoy, a0, — foy,0). (19)

At this point, it is convenient to introduce a new notation
for describing Rashba—Dresselhaus couplings, which will let
us distinguish between the physical effects that derive from
the strength of the coupling, and those that derive from the
geometry. For this purpose, we employ polar notation defined
by the relations

o = —asin),
B= acosy, (20)

where we will refer to a as the SO strength, and  as the SO
angle. Rewritten in the polar notation, Eq. (19) takes the form:

A = a(c,cosy +0ysiny)E—a(c,siny +oycosy)y. (21)

From the definition, we can immediately conclude that 3 = 0
corresponds to a pure Dresselhaus coupling, while x = +7/2
results in a pure Rashba coupling, with the geometric interpre-
tation of % illustrated in Fig. 2. Note that A2 = A? = a?, which
means that A% = 2a%. Another useful property is that we can
switch the components A, <> Ay by letting 3 — 37/2 — .

ky

Gy COSY + Oy sin .
* X ySnx Oy SinY, + Gy COs)

,\X ke \X‘

FIG. 2: Geometric interpretation of the SO field (21) in polar
coordinates: the Hamiltonian couples the momentum com-
ponent k, to the spin component (G,cosy, + Gysiny) with a
coefficient +a/m, and the momentum component ky to the
spin component (G, siny + 6, cos) with a coefficient —a/m.
Thus, a determines the magnitude of the coupling, and ) the
angle between the coupled momentum and spin components.

The appearance of LRTs in the system depends on the inter-
play between SO coupling and the direction of the exchange
field. Recall that the LRT components are defined as hav-
ing spin projections parallel to the exchange field, as opposed
to the short-ranged triplet (SRT) component which appears
as long as there is exchange splitting** but has spin projec-
tion perpendicular to the field and is therefore subject to the
same pair-breaking effect as the singlets>?’, penetrating only
a very short distance into strong ferromagnets. Thus if we
have an SO field component along the layering direction, e.g.
if we had A; # 0 in Figs. 1(a) and 1(b), achievable with a non-
centrosymmetric crystal or in a nanowire setup, then a non-
vanishing commutator [A, - o] creates the LRT. However, we
will from now only consider systems where A, = 0, in which



case the criterion for LRT is?! that [A, [A, & - 6]] must not be
parallel to the exchange field i - 6. Expanding, we have

A, [A, h-o]] = 4a* (k-G +h.0,)
— 4a® (hyGy + hyoy) sin 2y, (22)

from which it is clear that no LRTs can be generated for a pure
Dresselhaus coupling % = 0 or Rashba coupling x = +m/2
when the exchange field is in-plane. However, the effect of SO
coupling becomes increasingly significant for angles close to
+71/4 (see Fig. 4 in Section III A). We also see that no LRTs
can be generated for in-plane magnetization in the special case
hy = hy and h; = 0, since h,G), + h,G, can then be rewritten as
hyGx + hyG,, which is parallel to 4. There is no LRT genera-
tion for the case h, = hy, = 0 and h, # 0 for similar reasons. In
general however, the LRT will appear for an in-plane magne-
tization as long as &, # h, and the SO coupling is not of pure
Dresselhaus or pure Rashba type. It is also important to note
that the LRT can be created even for pure Rashba type SO
coupling if the magnetization has both in- and out-of-plane
magnetization components. We will discuss precisely this sit-
uation in Sec. III B.

Once the condition for long-range triplet generation is sat-
isfied, increasing the corresponding exchange field will also
increase the proportion of long-range triplets compared with
short-range triplets. Whether or not the presence of long-
range triplets can be observed in the system, i.e. if they retain a
clear signature in measurable quantities such as the density of
states when the criteria for their existence is fulfilled, depends
on other aspects such as the strength of the spin-orbit coupling
and will be discussed later in this paper. Thus, a main moti-
vation for this work is to take a step further than discussing
their existence®! and instead make predictions for when long-
ranged triplet Cooper pairs can actually be observed via spec-
troscopic or T, measurements in SF structures with spin-orbit
coupling. However, we will also demonstrate that the pres-
ence of SO coupling offers additional opportunities besides
the creation of LRT Cooper pairs. We will show both ana-
lytically and numerically that the SO coupling can protect the
singlet component even in the presence of an exchange field,
which normally would suppress it. This provides the possi-
bility of tuning the well-known minigap magnetically, both in
bilayer and Josephson junctions, simply by altering the direc-
tion of the magnetization.

C. Weak proximity effect

In order to establish a better analytical understanding of the
role played by SO coupling in the system before presenting
the spectroscopy and T results, we will now consider the limit
of weak proximity effect, which means that |y;;| < 1, N ~ 1
in the ferromagnet. The anomalous Green’s function in gen-
eral is given by the upper-right block of Eq. (3), f = 2Ny,
which we see reduces to f = 2y in this limit. It will also prove
prudent to express the anomalous Green’s function using a
singlet/triplet decomposition, where the singlet component is
described by a scalar function fs, and the triplet components

encapsulated in the so-called d-vector*46,

f=(fs+d o)ioy. (23)

Combining the above with the weak proximity identity f = 27,
we see that the components of ¥ can be rewritten as:

1 (idy—d, d,+
=5 n. (24)
d,— fs idy,+d,

Under spin rotations, the singlet component f; will then
transform as a scalar, while the triplet component d =
(dx,dy,d;) transforms as an ordinary vector. Another useful
feature of this notation is that it becomes almost trivial to dis-
tinguish between short-range and long-range triplet compo-
nents; the projection d; =d - h along the exchange field corre-
sponds to the SRTs, while the perpendicular part d, = |d x A
describes the LRTSs, where ﬁ here denotes the unit vector of
the exchange field. For a concrete example, if the exchange
field is oriented along the z-axis, then d, will be the short-
range component, while both d, and d, are long-ranged com-
ponents. In the coming sections, we will demonstrate that the
LRT component can be identified from its density of states
signature, as measurable by tunneling spectroscopy.

In the limit of weak proximity effect, we may linearize both
the Usadel equation and Kupriyanov—Lukichev boundary con-
ditions. Using the singlet/triplet decomposition in Eq. (24),
and the Rashba—Dresselhaus coupling in Eq. (19), the lin-
earized version of the Usadel equation can be written:

l
EDFaffs =efs+h-d, (25)

SDpOd =ed + hf, +2iDpa’Q00d,  (26)

where we for brevity have defined an SO interaction matrix

1 —sin2y O
Qx) = | —sin2y 1 0 . 27)
0 0 2

We have now condensed the Usadel equation down to two
coupled differential equations for f; and d, where the cou-
pling is proportional to the exchange field and the SO interac-
tion term. The latter has been written as a product of a factor
2iDra?, depending on the strength a, and a factor Q(y)d, de-
pending on the angle 7 in the polar notation. The matrix Q(%)
becomes diagonal for a Dresselhaus coupling with x = 0 or
a Rashba coupling with y = £m/2, which implies that there
is no triplet mixing for such systems. In contrast, the off-
diagonal terms are maximal for y = £m/4, which suggests
that the triplet mixing is maximal when the Rashba and Dres-
selhaus coefficients have the same magnitude. In addition to
the off-diagonal triplet mixing terms, we see that the diagonal
terms of Q(y) essentially result in imaginary energy contri-
butions 2iDpa®. As we will see later, this can in some cases
result in a suppression of all the triplet components in the fer-
romagnet.
We will now consider exchange fields in the xy-plane,

h=hcos®i+hsin®y. (28)



Since the linearized Usadel equations show that the presence
of a singlet component f; only results in the generation of
triplet components along £, and the SO interaction term only
mixes the triplet components in the xy-plane, the only nonzero
triplet components will in this case be dy and d,. The SRT
amplitude d) and LRT amplitude d, can therefore be written:

dy = dycosb+d,sinb, (29)
d| = —d,sin®+d, cos0 . (30)

By projecting the linearized Usadel equation for d along the
unit vectors (cos 6,sin®,0) and (—sin6,cos0,0), respectively,
then we obtain coupled equations for the SRTs and LRTs:

i

2

éDpade = [e+2iDra®(1 —sin20 sin2y)] dy

Drpdlf, =¢f,+hdy , 31)

—2iDpa®cos20 sin2y d | +hf; , (32)
éDpafd | =[e+2iDpa*(1+sin20 sin2y)]d
—2iDpa’cos20 sin2y dj . (33)

These equations clearly show the interplay between the singlet
component f;, SRT component d), and LRT component 4 .
If we start with only a singlet component f;, then the presence
of an exchange field & results in the generation of the SRT
component d);. The presence of an SO field can then result in
the generation of the LRT component d, , where the mixing
term is proportional to a® cos 20 sin 2. This implies that in the
weak proximity limit, LRT mixing is absent for an exchange
field direction 6 = /4, corresponding to A, = hy, while it is
maximized if 6 = {0,7/2, 7} and at the same time y, = +n/4.
In other words, the requirement for maximal LRT mixing is
therefore that the exchange field is aligned along either the x-
axis or y-axis, while the Rashba and Dresselhaus coefficients
should have the same magnitude. It is important to note here
that although the mixing between the triplet components is
maximal at 8 = {0,7/2,7}, this does not necessarily mean
that the signature of the triplets in physical quantities is most
clearly seen for these angles, as we shall discuss in detail later.
Moreover, these equations show another interesting conse-
quence of having an SO field in the ferromagnet, which is
unrelated to the LRT generation. Note that the effective quasi-
particle energies coupling to the SRTs and LRTs become

E| =€+ 2iDpa*(1 —sin26 sin2y) , (34)
E, =e+2iDpa*(1+sin20 sin2y) . (35)

When 6 = = £m/4, then the SRTs are entirely unaffected
by the presence of SO coupling; the triplet mixing term van-
ishes for these parameters, and E) is also clearly independent
of a. However, when 8 = —y = £m/4, the situation is dras-
tically different. There is still no possibility for LRT genera-
tion, however the SRT energy E| = €+ 4iDra® will now ob-
tain an imaginary energy contribution which destabilizes the
SRTs. In fact, numerical simulations show that this energy
shift destroys the SRT components as a increases. As we will

see in Section III D, this effect results in an increase in the
critical temperature of the bilayer. Thus, switching between
0 = £1/4 in a system with ¥ ~ +7/4 may suggest a novel
method for creating a triplet spin valve.

When y = +n/4 but 0 # +mn/4, the triplet mixing term
proportional to cos 26 sin2) will no longer vanish, so we get
LRT generation in the system. We can then see from the ef-
fective triplet energies that as 6 — sgn()®/4, the imaginary
part of E vanishes, while the imaginary part of E| increases.
This leads to a relative increase in the amount of SRTs com-
pared to the amount of LRTs in the system. In contrast, as
0 — —sgn(y)m/4, the imaginary part of £, vanishes, and the
imaginary part of E) increases. This means that we would
expect a larger LRT generation for these parameters, up until
the point where the triplet mixing term cos 20 sin2) becomes
so small that almost no LRTs are generated at all. The ratio
of effective energies coupling to the triplet component at the
Fermi level € = 0 can be written as

E(0) 14sin20sin2y
Ej(0)  1—sin20sin2y’

(36)

D. Density of states

The density of states D(€) containing all spin components
can be written in terms of the Riccati matrices as

D(e) =Tr[N(1+vY)]/2, (37)

which for the case of zero energy can be written concisely in
terms of the singlet component f and triplet components d,

D(0) =1~ |£(0)*/2+1d(0)[*/2 . (38)

The singlet and triplet components are therefore directly com-
peting to lower and raise the density of states*’. Furthermore,
since we are primarily interested in the proximity effect in the
ferromagnetic film, we will begin by using the known BCS
bulk solution in the superconductor,

sinh(0)icye™®
—cosh(é) ) ’ (39)

A cosh(0)
88cs ~ \ sinh(0)icye

where 6 = atanh(A/€), and ¢ is the superconducting phase.
Using Eq. (24) and the definition of the tilde operation, and
comparing gR in Eq. (3) with its standard expression in a bulk
superconductor Eq. (39), we can see that at zero energy the
singlet component f;(0) must be purely imaginary and the
asymmetric triplet d,(0) must be purely real if the supercon-
ducting phase is ¢ = 0.

By inspection of Eq. (26), we can see that a transformation
hy <+ hy along with dy <+ d, leaves the equations invariant.
The density of states will therefore be unaffected by such per-
mutations,

D[hz(mb,())]ZD[hZ(b,a,O)], (40)
while in general

D[h:(a707b)]#D[h:(hova)]' 41)



However, whenever one component of the planar field is ex-
actly twice the value of the other component, one can confirm
that the linearized equations remain invariant under a rotation
of the exchange field

h=(a,2a,0) = h=(a,0,2q), (42)

with associated invariance in the density of states.

E. Critical temperature

When superconducting correlations leak from a supercon-
ductor and into a ferromagnet in a hybrid structure, there will
also be an inverse effect, where the ferromagnet effectively
drains the superconductor of its superconducting properties
due to tunneling of Cooper pairs. Physically, this effect is
observable in the form of a reduction in the superconducting
gap A(z) near the interface at all temperatures. Furthermore,
if the temperature of the hybrid structure is somewhat close
to the bulk critical temperature ¢ of the superconductor, this
inverse proximity effect can be strong enough to make the su-
perconducting correlations vanish entirely throughout the sys-
tem. Thus, proximity-coupled hybrid structures will in prac-
tice always have a critical temperature 7, that is lower than the
critical temperature T, of a bulk superconductor. Depending
on the exact parameters of the hybrid system, 7, can some-
times be significantly smaller than 7, and in some cases it
may even vanish (7, — 0).

To quantify this effect, it is no longer sufficient to solve the
Usadel equation in the ferromagnet only. We will now also
have to solve the Usadel equation in the superconductor,

Dsd2y = —~2iey— A(0y —Y0y7) — 20NNY(y) . (43)
along with a self-consistency equation for the gap A(z),
A() COSh(l/NO}\.)

A®Z) = Nok / de Re{f,(z,€)} tanh (2’; ;ﬁi) 44
0

where Ny is the density of states per spin at the Fermi level,
and A > 0 is the electron-electron coupling constant in the
BCS theory of superconductivity. For a derivation of the gap
equation, see Appendix B.

To study the effects of the SO coupling on the critical tem-
perature of an SF structure, we therefore have to find a self-
consistent solution to Eq. (5) in the ferromagnet, Eq. (6) at
the interface, and Eqs. (43) and (44) in the superconductor.
In practice, this is done by successively solving one of the
equations at a time numerically, and continuing the procedure
until the system converges towards a self-consistent solution.
To obtain accurate results, we typically have to solve the Us-
adel equation for 100-150 positions in each material, around
500 energies in the range (0,2A¢), and 100 more energies in
the range (2A¢,®,), where the Debye cutoff @, = 76A for
the superconductors considered herein. This procedure will
then have to be repeated up to several hundred times before
we obtain a self-consistent solution for any given temperature

of the system. Furthermore, if we perform a conventional lin-
ear search for the critical temperature T, /T, in the range (0, 1)
with a precision of 0.0001, it may require up to 10,000 such it-
erations to complete, which may take several days depending
on the available hardware and efficiency of the implementa-
tion. The speed of this procedure may, however, be signifi-
cantly increased by performing a binary search instead. Using
this strategy, the critical temperature can be determined to a
precision of 1/212*! 220.0001 after only 12 iterations, which
is a significant improvement. The convergence can be fur-
ther accelerated by exploiting the fact that A(z) from iteration
to iteration should decrease monotonically to zero if T > T¢;
however, the details will not be further discussed in this paper.

III. RESULTS

We consider the proximity effect in an SF bilayer in IIT A,
using the BCS bulk solution for the superconductors. The
case of pure Rashba coupling is discussed in III B, and the
SFES Josephson junction is treated in III C. We take the thin-
film layering direction to be oriented in the z-direction and
fix the spin-orbit coupling to Rashba—Dresselhaus type in the
xy-plane as given by Eq. (19). We set Lp/Es = 0.5. The co-
herence length for a diffusive bulk superconductor typically
lies in the range 10 — 30 nm. We solve the equations using
MATLAB with the boundary value differential equation pack-
age bvp6c and examine the density of states D(€) for en-
ergies normalised to the superconducting gap A. For brevity
of notation, we include the normalization factor in the coeffi-
cients a and [ in these sections. This normalization is taken
to be the length of the ferromagnetic region Lg, so that for in-
stance o0 = 1 in the figure legends means oLy = 1. Finally, in
Section III D, we calculate the dependence of the critical tem-
perature of an SF bilayer as a function of the different system
parameters.

A. SF Bilayer

Consider the SF bilayer depicted in Fig. 1(a). In section
II B we introduced the conditions for the LRT component to
appear, and from Eq. (22) it is clear that no LRTs will be gen-
erated if the exchange field is aligned with the layering direc-
tion, i.e. h || £, since Eq. (22) will be parallel to the exchange
field. Conversely, the general condition for LRT generation
with in-plane magnetisation is both that &, # h, and that the
SO coupling is not of pure Rashba or pure Dresselhaus form.
However, it became clear in Section IIC that the triplet mix-
ing was maximal for equal Rashba and Dresselhaus coupling
strengths, and in fact the spectroscopic signature is quite sen-
sitive to deviations from this.

In Ref. 50, the density of states for an SF bilayer was shown
to display oscillatory behavior as a function of distance pene-
trated into the ferromagnet. The physical origin of this stems
from the non-monotonic dependence of the superconducting
order parameter inside the F layer, which oscillates and leads
to an alternation of dominant singlet and dominant triplet cor-



relations as a function of distance from the interface. When
the triplet ones dominate, the proximity-induced change in the
density of states is inverted compared to SN structures, giving
rise to an enhancement of the density of states at low-energies
in this so-called mt-phase where the proximity-induced super-
conducting order parameter is negative.

For SF bilayers without SO coupling and a homogeneous
exchange field, one expects to see a spectroscopic mini-
gap whenever the Thouless energy is much greater than the
strength of the exchange field. The minigap in SF structures
closes when the resonant condition  ~ E, is fulfilled, where
E, is the minigap occuring without an exchange field, and a
zero-energy peak emerges instead*®. The minigap E, depends
on both the Thouless energy and the resistance of the junc-
tion. For stronger fields we will have an essentially feature-
less density of states (see e.g. Ref. 49 and references therein).
This is indeed what we observe for o = = 0 in Fig. 5. With
purely out-of-plane magnetisation £ || £, the effect of SO cou-
pling is irrespective of type: Rashba, Dresselhaus or both will
always create a minigap. With in-plane magnetisation how-
ever, the observation of a minigap above the SO-free resonant
condition & > E, indicates that dominant Rashba or domi-
nant Dresselhaus coupling is present. The same is true for
SFES trilayers, and thus to observe a signature of long-range
triplets the Rashba—Dresselhaus coefficients must be similar
in magnitude, and in the following we shall primarily focus
on this regime. To clarify quantitatively how much the Rashba
and Dresselhaus coefficients can deviate from each other be-
fore destroying the low-energy enhancement of the density of
states, which is the signature of triplet Cooper pairs in this sys-
tem, we have plotted in Fig. 3 the density of states at the Fermi
level (¢ = 0) as a function of the spin-orbit angle y and the
magnetization direction 6. For purely Rashba or Dresselhaus
coupling (y = {0,4£m/2}), the deviation from the normal-
state value is small. However, as soon as both components are
present a highly non-monotonic behavior is observed. This
is particularly pronounced for  — +m/4, although the con-
version from dominant triplets to dominant singlets as one ro-
tates the field by changing 6 is seen to occur even away from
x = tm/4.

With either & = hf # 0, or equivalently 2 = hj # 0, LRTs
are generated provided o # 0, and in Fig. 6 we can see that
the addition of SO coupling introduces a peak in the density
of states at zero energy, which saturates for a certain cou-
pling strength. This peak manifests as sharper around € = 0
than the zero-energy peak associated with weak field strengths
of the order of the gap (i.e. as evident from oo = 3 =0 in
Fig. 6), which occurs regardless of magnetisation direction or
texture*34°. By analysing the real components of the triplets,
for a gauge where the superconducting phase is zero, we can
confirm that this zero-energy peak is due to the LRT compo-
nent, in this case dy, also depicted in Fig. 6, in agreement
with the predictions for fextured magnetisation without SO
coupling®. However, it is also evident from Fig. 6 that in-
creasing the field strength rapidly suppresses the density of
states towards that of the normal metal, making the effect
more difficult to detect experimentally. The way to amelio-
rate this situation is to remember that the introduction of SO

coupling means the direction of the exchange field is crucially
important, as we see in Fig. 4, and this allows for a dramatic
spectroscopic signature for fields without full alignment with
the x- or y-axes.
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FIG. 3: Zero-energy density of states D(0) as a function of the
spin-orbit angle y and magnetization angle 6. We have used
a ferromagnet of length Lr /&g = 0.5 with an exchange field
h/A =3 and a spin-orbit magnitude a&g = 2.

Fig. 4 shows how the density of states at zero energy varies
with the angle O between h, and h, at zero energy; with
0 = 0 the field is aligned with &,, and with 6 = 7/2 it is
aligned with h,. We see that the inclusion of SO coupling
introduces a nonmonotonic angular dependance in the den-
sity of states, with increasingly sharp features as the SO cou-
pling strength increases, although the optimal angle at ap-
proximately 8 = 71/32 and = 91/32 varies minimally with
increasing SO coupling. Clearly the ability to extract max-
imum LRT conversion from the inclusion of SO coupling is
highly sensitive to the rotation angle, with near step-function
behaviour delineating the regions of optimal peak in the den-
sity of states and an energy gap for strong SO coupling. It is
remarkable to see how D(0) vs. 8 formally bears a strong re-
semblance to the evolution of a fully gapped BCS®* density of
states D(€) vs. € to a flat density of states as the SO coupling
decreases.

These results can again be explained physically by the lin-
earized equations (31)—(33). Since the case o = 3 corresponds
to = —7/4 in the notation developed in the preceding sec-
tions, Eq. (36) implies that £, (0) > E;(0) when 6 < 0, while
E, (0) < E;(0) when 8 > 0. In other words, for negative 6,
the SO coupling suppresses the LRT components, and the ex-
change field suppresses the other components. Since the sin-
glet and SRT components have opposite sign in Eq. (38), this
renders the density of states essentially featureless. However,
for positive 0, both the SO coupling and the exchange field
suppress the SRT components, meaning that LRT generation
is energetically favoured. Note that E | /E) — 0 as 6 — +m/4,
which explains why the LRT generation is maximized in this
regime. Since the triplet mixing term in Eq. (33) is propor-



tional to (cos26 sin2y), the LRT component vanishes when
the value of O gets too close to +7/4. Furthermore, since
E) has a large imaginary energy contribution in this case, the
SRTs are also suppressed at 6 = +m/4. Thus, despite LRTs
being most energetically favored at this exact point, we end up
with a system dominated by singlets due to the SRT suppres-
sion and lack of LRT production pathway. Nevertheless, one
would conventionally expect that exchange fields of a mag-
nitude & > A as depicted in Fig.4 would suppress any fea-
tures in the density of states, while we observe an obvious
minigap. Thus, the singlet correlations become much more
resilient against the pair-breaking effect of the exchange field
when spin-orbit coupling is present.

To identify the physical origin of this effect, we solve the
linearized equations (31)—(33) along with their corresponding
boundary conditions for the specific case € =0, 8 = —x =
7/4. We consider a bulk superconductor occupying the space
x < 0 while the ferromagnet length Lz is so large that one in
practice only needs to keep the decaying parts of the anoma-
lous Green’s function. We then find the following expression
for the singlet component at the SF interface in the absence of

SO coupling:
o sinh(arctanh(A/€)) /Dp
D= —. 45
Is Wiy V' (45)

With increasing #, the singlet correlations are suppressed in
the conventional manner. However, we now incorporate SO
coupling in the problem. For more transparent analytical re-
sults, we focus on the case 2(a&)? > h/A. This condition can
be rewritten as 2Dpa? > h. In this case, a similar calculation
gives the singlet component at the SF interface in the presence
of SO coupling:

Dra?
2h

=1 (46)
Clearly, the SO coupling enhances the singlet component in
spite the presence of an exchange field since v/Dra?/h > 1.
This explains the presence of the conventional zero energy
gap for large SO coupling even with a strong exchange field.
A consequence of this observation is that SO coupling in fact
provides a route to a magnetically tunable minigap. Fig. 4
shows that when both an exchange field and SO coupling is
present, the direction of the field determines when a minigap
appears. This holds even for strong exchange fields # > A as
long as the SO coupling is sufficiently large as well.

We recall that the LRT Cooper pairs, defined as the com-
ponents of d perpendicular to 4, may be characterized by a
quantity d, which is defined by the cross product of the two
vectors: d, = |d x h|. We saw above that the spectroscopic
signature of LRT generation is strongly dependent on the an-
gle of the field, and this angle is a tunable parameter for suffi-
ciently weak magnetic anisotropy. In Fig. 7 we see an example
of the effect this rotation can have on the spectroscopic signa-
ture of LRT generation: when the exchange field is changed
from A = (6A,3A,0) — (6A,5A,0), i.e. changing the direction
of the field, we see that a strong zero-energy peak emerges
due to the presence of LRT in the system. This large peak

emerges despite the stronger exchange field that would ordi-
narily reduce the density of states towards the normal state,
i.e. as in Fig. 6 for h = Ay — 3Ay. If one were to remove
the SO coupling, the low-energy density of states would thus
have no trace of any superconducting proximity effect, which
demonstrates the important role played by the SO interactions
here. Finally, for completeness we include an example of the
effect of rotating the field to have a component along the junc-
tion in Fig. 8. Comparing the case of 2 = (0,3A,6A) in Fig. 8
with A = (6A,3A,0) in Fig. 7, we see that the two cases are
identical, as predicted in the limit of weak proximity effect,
and increasing the magnitude of the out-of-plane z component
of the field has no effect on the height of the zero-energy peak,
which is instead governed by the in-plane y component.

1.75

=B=0
1.5 o=
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P h=6A(cos(0), sin(0), 0)
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FIG. 4: The dependence of the density of states of the SF
bilayer at zero energy on the angle 0 between the x and
y components of the magnetisation exchange field h/A =
6(cos(0),sin(0),0) for increasing SO coupling. As the
strength of the SO coupling increases we see increasingly
sharp variations in the density of states from an optimal peak
at around 8 ~ 71t/32 and 6 ~ 91/32 to a gap around 6 = /4.
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FIG. 5: Density of states D(€) for the SF bilayer with energies normalised to the superconducting gap A and SO coupling
normalised to the inverse ferromagnet length 1/Lp. The table shows the spectroscopic effect of increasing SO coupling
with o0 = B when the magnetisation & = 3AZ, i.e. with the field perpendicular to the interface, and the effect of increasing
difference between the Rashba and Dresselhaus coefficients for both 2z = 3AZ and & = 3Ay. Although the conditions for
LRT generation are fulfilled in the latter case, it is clear that no spectroscopic signature of this is present.
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FIG. 6: Density of states D(€) for the SF bilayer with energies normalised to the superconducting gap A and SO coupling
normalised to the inverse ferromagnet length 1/Lg. The table shows the spectroscopic effect of equal Rashba-Dresselhaus
coefficients when the magnetisation is oriented entirely in the y-direction, and also the correlation between the SO-induced
zero-energy peak with the long-range triplet component |Re(dy)| = Re(d, ). It is clear that the predominant effect of the
LRT component, which appears only when the SO coupling is included, is to increase the peak at zero energies. Increasing
the field strength rapidly suppresses the density of states towards that of the normal metal.



Re(dy) for 4 = (64, 54, 0)

FIG. 7: Density of states D(¢€) in the SF bilayer for energies normalised to the superconducting gap A and SO coupling
normalised to the inverse ferromagnet length 1/Lr. The table shows the spectroscopic features of the SF bilayer with
rotated exchange field in the xy-plane. Again we see a peak in the density of states at zero energy due to the LRT
component, i.e. the component of d perpendicular to &, d, . The height of this zero-energy peak is strongly dependent
on the angle of the field vector in the plane, as shown in Fig. 4. For near-optimal field orientations increasing the SO
coupling leads to a dramatic increase in the peak of the density of states at zero energy.
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FIG. 8: Density of states D(¢) in the SF bilayer for energies normalised to the superconducting gap A and SO coupling
normalised to the inverse ferromagnet length 1 /L. The table shows the spectroscopic features of the SF bilayer with a
rotated exchange field in the xz = yz-plane. Note that when the field component along the junction is twice the component
in the y-direction, here & = (0,3A,6A), the density of states is equivalent to the case A = (6A,3A,0) illustrated in Fig. 7,
as predicted in the limit of weak proximity effect.
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B. SF bilayer with pure Rashba coupling

There exists another experimentally viable setup where the
LRT can be created. In the case where pure Rashba SO cou-
pling is present, originating e.g. from interfacial asymmetry,
the condition for the existence of LRT is that the exchange
field has a component both in-plane and out-of-plane. Al-
though the LRT formally is non-zero, it is desirable to clarify
if and how it can be detected through spectroscopic signatures.

From an experimental point of view, it is known that PdNi
and CuNi'! can in general feature a canted magnetization
orientation relative to the film-plane due to the competition
between shape anisotropy and magnetocrystalline anisotropy.
This is precisely the situation required in order to have an ex-
change field with both an in-plane (xy-plane in our notation)
and out-of-plane (z-direction) component. In our model, the
ferromagnetism coexists with the Rashba SO coupling, which
may be taken as a simplified model of two separate layers
where the SO coupling is induced e.g. by a very thin heavy
metal and PdNi or CuNi is deposited on top of it.

To determine how the low-energy density of states is influ-
enced by the triplet pairing, we plot in Fig. 9(a) D(0) as a
function of the misalignment angle ¢ between the film-plane
and its perpendicular axis [see inset of Fig. 9(b) for junc-
tion geometry]. In order to correlate the spectroscopic features
with the LRT, we plot in Fig. 9(b) the LRT Green’s function
|d_ |. Tt is clear that the LRT vanishes when @ =0 or ¢ =7/2.
This is consistent with the fact that for pure Rashba coupling,
purely in-plane or out-of-plane direction of the exchange field
gives d; = 0 according to our previous analysis. However,
for ¢ € (0,m/2) the LRT exists. Its influence on D(0) is seen
in Fig. 9(a): an enhancement of the zero-energy density of
states. For any particular set of junction parameters there is
an optimal value of the SO coupling, and in approaching this
value the density of states is correlated with Re{d }. Beyond
this optimal value, they are anticorrelated, as evident from Fig.
9 as the SO coupling increases, but the angular correlation re-
mains. We note that the magnitude of the enhancement of
the density of states is substantially smaller than what we ob-
tained with both Rashba and Dresselhaus coupling. At the
same time, the magnitude of the enhancement is of precisely
the same order as previous experimental works that have mea-
sured the density of states in S/F structures®?>!.

Note that it is only the angle between the plane and the tun-
neling direction which is of importance: the density of states
is invariant under a rotation in the film-plane of the exchange
field. The SO-induced enhancement of the zero-energy den-
sity of states reaches an optimal peak before further increases
in the magnitude of the Rashba coupling results in a suppres-
sion of both the short- and long-ranged triplet components,
causing the low-energy density of states enhancement to van-
ish. The correlation with the LRT component |d, | corre-
spondingly changes to anticorrelation, evident in Fig. 9. Nev-
ertheless, the strong angular variation with D(0) remains al-
though D(0) < 1 for all @ [see inset of Fig. 9(a)]. Increasing
the exchange field & further suppressed the proximity effect
overall.

The main effect of the SO coupling is that D(0) depends on

the exchange field direction. As seen for the case of o0 = 0
in Fig. 9(a), there is no directional dependence without SO
coupling. Thus, depending on the exchange field angle be-
tween the in-plane and out-of plane direction, measuring an
enhanced D(0) at low-energies is a signature of the presence
of LRT Cooper pairs in the ferromagnet. More generally, mea-
suring a dependence on the exchange field direction ¢ would
be a direct consequence of the presence of SO coupling in the
system, even in the regime of e.g. moderate to strong Rashba
coupling where the triplets are suppressed.
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FIG. 9: (Color online) (a) Plot of the zero-energy density
of states D(0) in an S/F structure with pure Rashba spin-
orbit coupling. We have set #/A =4 and L/Es = 0.5. Inset:
stronger SO coupling oo = 1.5, demonstrating that the angu-
lar variation of D(0) remains, although the enhancement due
to triplets is absent. (b) Plot of the magnitude of the LRT
anomalous Green’s function |d, | at € = 0. As seen, its en-
hancement correlates with an accompanying increase in the
density of states for the same angle ¢, and beyond an optimal
SO coupling value there is anticorrelation between the density
of states peak and |d |. The only angle of importance is the
angle @ between the out-of-plane and in-plane component of
the exchange field, shown in the inset.

C. Josephson junction

By adding a superconducting region to the right interface
of the SF bilayer we form an SFS Josephson junction. It is
well known that the phase difference between the supercon-
ducting regions governs how much current can flow through
the junction®?, and the density of states for a diffusive SNS
junction has been measured experimentally with extremely
high precision®>. Here we consider such a transversal junc-
tion structure as depicted in Fig.1(b), again with intrinsic SO
coupling in the xy-plane (Eq. 19) in the ferromagnet and with
BCS bulk values for each superconductor. In IIIC 1 we con-
sider single orientations along the principal axes of the system
(x,y,z) of the uniform exchange field and in IIIC2 we con-
sider a rotated field. Experimentally, the density of states can
be probed at the superconductor/ferromagnet interface if one



of the superconductors is a superconducting island, and the
scanning tunneling microscope approaches from the top, next
to this superconductor island.

Let us first recapitulate some known results. We saw in Sec-
tion II that the spin-singlet, SRT and LRT components com-
pete to raise and lower the density of states at low energies.
Their relative magnitude is affected by the magnitude and di-
rection of both the exchange field and SO coupling and results
in three distinctive qualitative profiles: the zero-energy peak
from the LRTs, the singlet-dominated regime with a minigap,
and the flat, featureless profile in the absence of superconduct-
ing correlations. In the Josephson junction, the spectroscopic
features are in addition sensitive to the phase difference ¢ be-
tween the superconductors. In junctions with an interstitial
normal metal, the gap decreases as ¢ = 0 — 7, closing entirely
at ¢ = 7 such that the density of states is that of the isolated
normal metal; identically one>>3*. Without an exchange field
the density of states is unaffected by the SO coupling. This
is because without an exchange field the equations governing
the singlet and triplet components are decoupled and thus no
singlet-triplet conversion can occur. From a symmetry point
of view, it is reasonable that the time-reversal invariant spin-
orbit coupling does not alter the singlet correlations.

Without SO coupling and as long as the exchange field is
not too large, changing the phase difference can qualitatively
alter the density of states from minigap to peak at zero en-
ergy (see Fig. 10), a useful feature permitting external con-
trol of the quasiparticle current flowing through the junction.
The underlying reason is that the phase difference controls the
relative ratio of the singlet and triplet correlations: when the
singlets dominate, a minigap is induced which mirrors their
origin in the bulk superconductor.

As in the bilayer case, there is a resonant
condition*®*%indicating an exchange field strength be-
yond which the minigap can no longer be sustained and
increasing the phase difference simply lowers the density of
states towards that of the normal metal. Amongst the features
we outline in the following subsections, one of the effects of
adding SO coupling is to make this useful gap-to-peak effect
accessible with stronger exchange fields, i.e. for a greater
range of materials. At the same time, the SO coupling cannot
be foo strong since the triplet correlations are suppressed
in this regime leaving only the minigap and destroying the
capability for qualitative change in the spectroscopic features.

1. Josephson junction with uniform exchange field in single
direction

Consider first the case in which the exchange field is
aligned in a single direction, meaning that we only consider an
exchange field purely along the principal {x,y,z} axes of the
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system. If we again restrict the form of the SO-vector to (19),
aligning £ in the z-direction will not result in any LRTs. In this
case the spectroscopic effect of the SO coupling is dictated by
the singlet and short-range triplet features, much as in the SF
bilayer case (Fig. 5). This is demonstrated in Fig. 10, where
again we see a qualitative change in the density of states as
the exchange field increases, with the regions of minigap and
zero-energy-peak separated by the resonant condition & ~ E,
without SO coupling.

We will now examine the effect of increasing the exchange
field aligned in the x- or, equivalently, the y-direction. In this
case, we have generation of LRT Cooper pairs. If & is suffi-
ciently weak to sustain a gap independently of SO coupling,
introducing weak SO coupling will increase the gap at zero
phase difference while maintaining a peak at zero energy for
a phase difference of 0.757 (see Fig. 10). Increasing the SO
coupling increases this peak at zero energy up to a saturation
point. As the exchange field increases sufficiently beyond the
resonant condition to keep the gap closed, increasing the SO
coupling increases the zero-energy peak at all phases, again
due to the LRT component, eventually also reaching a satu-
ration point. As the phase difference ¢ = 0 — 7, the density
of states reduces towards that of the normal metal, closing en-
tirely at ¢ = T as expected*>34>3 . As the value of the density
of states at zero energy saturates for increasing SO coupling,
fixed phase differences yield the same drop at zero energy re-
gardless of the strength of SO coupling.

We note in passing that when the SO coupling field has a
component along the junction direction (z), it can qualitatively
influence the nature of the superconducting proximity effect.
As very recently shown in Ref. 43, a giant triplet proximity
effect develops at ¢ = 7 in this case, in complete contrast to the
normal scenario of a vanishing proximity effect in m-biased
junctions.

2. Josephson junction with rotated exchange field

With two components of the field 4, e.g. from rotation, it is
again useful to separate the cases with and without a compo-
nent along the junction direction. When the exchange field lies
in-plane (the xy-plane), and provided we satisfy the conditions
hy # hy and o} # 0, increasing the SO coupling drastically in-
creases the zero energy peak as shown in Fig. 11, again due to
the LRT component. This is consistent with the bilayer behav-
ior, where the maximal generation of LRT Cooper pairs occurs
at an angle 0 < 0 < w/4. As the phase difference approaches
T, the proximity-induced features are suppressed in the centre
of the junction. This can be understood intuitively as a con-
sequence of the order parameter averaging to zero since it is
positive in one superconductor and negative in the other.
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FIG. 10: The table shows the density of states D(€) in the SFS junction with increasing SO coupling and exchange field
in a single direction, with D(€) normalised to the superconducting gap A and SO coupling normalised to the inverse
ferromagnet length 1/Lp. With no SO coupling and very weak exchange field we see a phase-dictated gap-to-peak
qualitative change in the density of states at zero energy. When the field is strong enough to destroy this gap, i.e. above
the resonant condition, increasing the phase difference simply lowers the density of states towards that of the normal
metal, which is achieved at a phase difference of ¢ = . With the addition of SO coupling we see a clear difference in
the density of states due to the long range triplet component, which is present when the field is oriented in y but not in z.
When LRTs are present with weak exchange fields, a phase-dictated gap-to-peak feature is retained and increased as the
strength of SO coupling increases the gap, with the peak shown here at a phase difference of 0.75x. For stronger exchange
fields, increasing the SO coupling produces the minigap when there is no LRT component, whereas the existence of an
LRT component again introduces an increasing peak at zero energy when no minigap is present.
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FIG. 11: Density of states D(g) in the SFS junction for energies normalised to the superconducting gap A and SO coupling
normalised to the inverse ferromagnet length 1/Lp. The table shows the spectroscopic effects of increasing SO coupling
in SFS with rotated exchange field. In the absence of SO coupling, the density of states is flat and featureless at low
energies. Increasing the SO coupling again leads to a strong increase in the peak of the density of states at zero energy,
while increasing the phase difference reduces the peak and shifts the density of states weight toward the gap edge for
higher SO coupling strengths. With a component of the field in the junction direction a qualitative change in the density
of states from strongly suppressed to enhanced at zero energy can be achieved by altering the phase difference between
the superconductors. This change can occur in the presence of stronger exchange fields when SO coupling is included.
Increasing the exchange field destroys the ability to maintain a gap in the density of states and the LRT component of the
SO coupling increases the zero-energy peak as it did in the bilayer case.
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The 2D plots in this paper of the local density of states are
given for the centre of the junction (z = 0), where one natu-
rally expects the relative proportion of LRTs to be greatest.
However, it is interesting to note that the large peak at zero
energy — the signature of the LRTs — is maintained through-
out the ferromagnet. This is shown in Fig. 12, for the case
oo=P=1and h=(1.5A,3.5A,0), where the maximal peak
for ¢ = 0 is almost twice the normal-state value. In compar-
ison, the depletion of this peak is surprisingly small at the
superconductor interfaces.

0.5 065 0 065 1.3

1.3
Z/LF e/A

FIG. 12: Spatial distribution of the density of states D(g)
throughout the ferromagnet of an SFS junction with phase dif-
ference ¢ = 0, spin-orbit coupling o = f = 1 and magnetisa-
tion h = (1.5A,3.5A,0).

With one component of the exchange field along the junc-
tion and another along either x or y, a phase-dictated gap-to-
peak transition at zero energy is possible with stronger fields
than with the field aligned in a single direction, as shown in
Fig. 11. Notice that in this case increasing the phase differ-
ence ¢ = 0 — 0.5 gives an increase in the peak at zero energy
before reducing towards the normal metal state. For higher
field strengths we find once again that increasing the SO cou-
pling increases the peak at zero energy, up to a system-specific
threshold, and increasing phase difference reduces the density
of states towards that of the normal metal.

It is also useful to consider how the zero-energy density
of states depends simultaneously on the phase-difference and
magnetization orientation. To this end, we show in Fig. 13 a
contour plot of the density of states at the Fermi level (¢ = 0)
as a function of the superconducting phase difference ¢ across
the junction and the magnetization direction 6. The proxim-
ity effect vanishes in the centre of the junction at ¢ = 7 for
any value of the exchange field orientation, giving the normal-
state value. Just as in the bilayer case (Fig. 3), we see that the
proximity effect is strongly suppressed for the range of an-
gles 6 > 0. When rotating the field in the opposite direction,
6 < 0, strongly non-monotonic behavior emerges. For zero
phase-difference, the physics is qualitatively similar to the bi-
layer situation. In this case, we proved analytically that the
LRT is not produced at all when 8 = —7t/4. Accordingly, Fig.
13 shows a full minigap there.

Whether or not a clear zero-energy peak can be seen due to
the LRT depends on the relative strength of the Rashba and
Dresselhaus coupling. In the top panel, we have dominant
Dresselhaus coupling in which case the low-energy density
of states show either normal-state behavior or a minigap. In-
terestingly, we see that the same opportunity appears in the
present case of a Josephson setup as in the bilayer case: a
magnetically tunable minigap appears. This effect exists as
long as the phase difference is not too close to T, in which
case the minigap closes. In the bottom panel correspond-
ing to equal magnitude of Rashba and Dresselhaus, however,
a strong zero-energy enhancement due to long-range triplets
emerges as one moves away from 6 = —n/4. With increasing
phase difference, the singlets are seen to be more strongly sup-
pressed than the triplet correlations since the minigap region
(dark blue) vanishes shortly after ¢/ ~ 0.6 while the peaks
due to triplets remain for larger phase differences.
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FIG. 13: Zero-energy density of states D(0) as a function of
the phase-difference ¢ and magnetization angle 6, both tun-
able parameters experimentally. The other parameters used
are Lp /& = 0.5, h/Ay = 3, afs = 2. In the top panel, we
have dominant Dresselhaus strength () = 0.157) while in the
bottom panel we have equal magnitude of Rashba and Dres-
selhaus (y = /4).



D. Critical temperature

In this section, we present numerical results for the criti-
cal temperature 7, of an SF bilayer. The theory behind these
investigations is summarized in Section IIE, and discussed
in more detail in Appendix B. An overview of the physical
system is given in Fig. 1(a). In all of the simulations we per-
formed, we used the material parameter NoA = 0.2 for the su-
perconductor, the exchange field 7 = 10A¢ for the ferromag-
net, and the interface parameter { = 3 for both materials. The
other physical parameters are expressed in a dimensionless
form, with lengths measured relative to the superconducting
correlation length &g, energies measured relative to the bulk
zero-temperature gap Ag, and temperatures measured relative
to the bulk critical temperature 7. This includes the SO cou-
pling strength a, which is expressed in the dimensionless form
a&s. The plots presented in this subsection were generated
from 12-36 data points per curve, where each data point has
a numerical precision of 0.0001 in 7,/T,,. The results were
smoothed with a LOESS algorithm.

Before we present the results with SO coupling, we will
briefly investigate the effects of the ferromagnet length Lp
and superconductor length Lg on the critical temperature, in
order to identify the interesting parameter regimes. The criti-
cal temperature as a function of the size of the superconductor
is shown in Fig. 14.

oo Lpfeg =100 —— Lifég=050 — LefEg=0.25
1.00
0.75-
8
£ 050
3
'_
0.25-
0.00-
05 0.6 0.7 0.8 0.9 1.0
Ls/&s

FIG. 14: Plot of the critical temperature 7T, /T,; as a function
of the length Lg /&g of the superconductor for a&s = 0. Be-
low a critical length Lg, superconductivity can no longer be
sustained and 7, becomes zero. For larger thicknesses of the
superconducting layer, 7. reverts back to its bulk value.

First of all, we see that the critical temperature drops to zero
when Lg/Es = 0.5. This observation is hardly surprising;
since the superconducting correlation length is &g, the criti-
cal temperature is rapidly suppressed once the length of the
junction goes below &g. After this, the critical temperature in-
creases quickly, already reaching nearly 50% of the bulk value
when Lg/&s = 0.6, demonstrating that the superconductivity
of the system is clearly very sensitive to small changes in pa-
rameters for this region.
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The next step is then to observe how the behaviour of the
system varies with the size of the ferromagnet, and these re-
sults are presented in Fig. 15.

--- Lgl/€s=0.575 —— Lg/fg=0.550 — Lg/&s=0.525

1.00

0.754
8

t 0.50
S
[

0.25+

0.00+

T T T T T
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FIG. 15: Plot of the critical temperature T /T, as a function
of the ferromagnet length Ly /&g for a&s = 0. Increasing the
thickness of the ferromagnet gradually suppresses the T of the
superconductor, causing a stronger inverse proximity effect.

We again observe that the critical temperature increases with
the size of the superconductor, and decreases with the size of
the ferromagnet. The critical temperature for a superconduc-
tor with Lg /&g = 0.525 drops to zero at Lr /&g = 0.6, and stays
that way as the size of the ferromagnet increases. Thus we
do not observe any strongly nonmonotonic behaviour, such
as reentrant superconductivity, for our choice of parameters.
This is consistent with the results of Fominov et al., who only
reported such behaviour for systems where either the interface
parameter or the exchange field is drastically smaller than for
the bilayers considered herein®.

We now turn to the effects of the antisymmetric SO cou-
pling on the critical temperature, which has not been studied
before. Figs. 16 and 17 show plots of the critical temperature
as a function of the SO angle 7 for an exchange field in the z-
direction. The critical temperature is here independent of the
SO angle . This result is reasonable, since the SO coupling is
in the xy-plane, which is perpendicular to the exchange field
for this geometry. We also observe a noticeable increase in
critical temperature for larger values of a. This behaviour can
be explained using the linearized Usadel equation. Accord-
ing to Eq. (26), the effective energy E, coupling to the triplet
component in the z-direction becomes

E. =€+ 4iDpa® ; (47)

so in other words, the SRTs obtain an imaginary energy shift
proportional to a>. However, as shown in Eq. (25), there is
no corresponding shift in the energy of the singlet component.
This effect reduces the triplet components relative to the sin-
glet component in the ferromagnet, and as the triplet prox-
imity channel is suppressed the critical temperature becomes
restored to higher values.
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FIG. 16: Plot of the critical temperature T /7., as a function of
the SO angle ¥, when Lg/&s = 1.00, Lp /&g = 0.2, and £ || Z.
Increasing the SO coupling causes 7. to move closer to its
bulk value, since the triplet proximity effect channel becomes
suppressed.
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FIG. 17: Plot of the critical temperature T, /T, as a function
of the SO angle y, when Lg/Es = 0.55, L /Es=0.2,and & || Z.

The same situation for an exchange field along the x-axis
is shown in Figs. 18 and 19. For this geometry, we observe a
somewhat smaller critical temperature for all @ > 0 and all %
compared to Figs. 16 and 17. This can again be explained by
considering the linearized Usadel equation in the ferromagnet,
which suggests that the effective energy E, coupling to the x-
component of the triplet vector should be

E, =¢+2iDpa*, (48)

which has a smaller imaginary part than the corresponding
equation for E,. Furthermore, note the drop in critical temper-
ature as j — +m/4. Since the linearized equations contain a
triplet mixing term proportional to sin2y, which is maximal
precisely when ¢ = £m/4, these are also the geometries for
which we expect a maximal LRT generation. Thus, this de-
crease in critical temperature near j, = +n/4 can be explained
by a net conversion of singlet components to LRTs in the sys-
tem, which has an adverse effect on the singlet amplitude in
the superconductor, and therefore the critical temperature.
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FIG. 18: Plot of the critical temperature 7, /T, as a function
of the SO angle ), when Lg /&5 =1.00, Lr /s =0.2, and || £.
The critical temperature depends on the relative weight of the
Rashba and Dresselhaus coefficients.
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FIG. 19: Plot of the critical temperature T /T, as a function
of the SO angle ), when Lg/&s =0.55, Lr /€5 =0.2, and h || £.

In Figs. 20 and 21 we present the results for a varying
exchange field A ~ cos0 X+ sin6 ¥ in the xy-plane. In this
case, we observe particularly interesting behaviour: the crit-
ical temperature has extrema at |y| = |6] = n/4, where the
extremum is a maximum if 0 and  have the same sign, and
a minimum if they have opposite signs. Since 6 = +n/4
is precisely the geometries for which we do not expect any
LRT generation, triplet mixing cannot be the source of this
behaviour. For the choice of physical parameters chosen in
Fig. 21, this effect results in a difference between the minimal
and maximal critical temperature of nearly 60% as the mag-
netization direction is varied. As shown in Fig. 20, the effect
persists qualitatively in larger structures as well, but is then
weaker.
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FIG. 20: Plot of critical temperature T./T,, as a function of
the exchange field angle 6, when Lg/&s = 1.00, Lr /&5 = 0.2,
and a€g = 2. In contrast to ferromagnets without SO coupling,
T, now depends strongly on the magnetization direction. This
gives rise to a spin-valve like functionality with a single fer-
romagnet featuring SO coupling.
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FIG. 21: Plot of critical temperature 7./T,, as a function of
the exchange field angle 6, when Lg/Es = 0.55, Lp /Es = 0.2,
and a&g = 2.

Instead, these observations may be explained using the theory
developed in Section II. When we have a general exchange
field and SO field in the xy-plane, Eq. (34) reveals that the
effective energy of the SRT component is

E; =€+ 2iDpa’(1 —sin20 sin2y) . (49)

Since the factor (1 —sin20 sin2y) vanishes for® =y = +1/4,
we get E)) = ¢ for this case. This geometry is also one where
we do not expect any LRT generation, since the triplet mix-
ing factor cos20 sin2y = 0, so the conclusion is that the SO
coupling has no effect on the behaviour of SRTs for these
parameters—at least according to the linearized equations.
However, since 1 —sin26 sin2y, = 2 for 6 = —y = +n/4, the
situation is now dramatically different. The SRT effective en-
ergy is now E = €+ 4iDpa?, with an imaginary contribution
which again destabilizes the SRTs, and increases the critical
temperature of the system. We emphasize that the variation of
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T. with the magnetization direction is present when ¥ # /4
as well, albeit with a magnitude of the variation that gradually
decreases as one approaches pure Rashba or pure Dresselhais
coupling.

E. Triplet spin-valve effect with a single ferromagnet

The results discussed in the previous section show that the
critical temperature can be controlled via the magnetization
direction of one single ferromagnetic layer. This is a new re-
sult originating from the presence of SO coupling. In conven-
tional SF structures, 7, is independent of the magnetization
orientation of the F layer. By using a spin-valve setup such
as FSFY7-1 it has been shown that the relative magnetization
configuration between the ferromagnetic layers will tune the
T, of the system. In contrast, in our case such a spin-valve
effect can be obtained with a single ferromagnet (see Figs. 20
and 21): by rotating the magnetization an angle ©t/2, T, goes
from a maximum to a minimum. The fact that only a single
ferromagnet is required to achieve this effect is of practical
importance since it can be challenging to control the relative
magnetization orientation in magnetic multilayered structures.

IV. SUMMARY AND DISCUSSION

It was pointed out in Ref. 21 that for the case of transver-
sal structures as depicted in Fig. 1(b), pure Rashba or pure
Dresselhaus coupling and arbitrary magnetisation direction
are insufficient for long range triplets to exist. However, al-
though these layered structures are more restrictive in their
conditions for LRT generation than lateral junctions they are
nevertheless one of the most relevant for current experimental
setups'®!139 and herein we consider the corresponding ex-
perimentally accessible effects of SO coupling as a comple-
ment to the findings of Ref. 21. We have provided a detailed
exposition of the density of states and critical temperature for
both the SF bilayer and SFS junction with SO coupling, high-
lighting in particular the signature of long range triplets.

We saw that the spectroscopic signature depends nonmono-
tonically on the angle of the magnetic exchange field, and that
the LRT component can induce a strong peak in the density
of states at zero energy for a range of magnetization direc-
tions. In addition to the large enhancement at zero energy, we
see that by carefully choosing the SO coupling and exchange
field strengths in the Josephson junction it is again possible to
control the qualitative features of the density of states by al-
tering the phase difference between the two superconductors
e.g. with a loop geometry™>.

The intrinsic SO coupling present in the structures con-
sidered herein derives from their lack of inversion symme-
try due to the e.g. junction interfaces, so-called interfacial
asymmetry, and we restricted the form of this coupling to the
experimentally common and, in some cases, tunable Rashba-
Dresselhaus form. A lack of inversion symmetry can also de-
rive from intrinsic noncentrosymmmetry of a crystal. This
could in principle be utilised to provide a component of the
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SO-field in the junction direction, but to date we are not
aware of such materials having been explored in experiments
with SF hybrid materials. However, analytic and numerical
data suggest that such materials could have significant impor-
tance for spintronic applications making use of a large triplet
Cooper pair population*3.

It is also worth considering the possibility of separating the
spin-orbit coupling and the ferromagnetic layer, which would
arguably be easier to fabricate, and we are currently pursuing
this line of investigation. In this case, we would expect similar
conclusions regarding when the long-range triplets leave clear
spectroscopic signatures and also regarding the spin-valve ef-
fect with a single ferromagnet, as found when the SO cou-
pling and exchange field coexist in the same material. One
way to practically achieve such a setup would be to deposit
a very thin layer of a heavy normal metal such as Au or Pt
between a superconductor and a conventional homogeneous
ferromagnet. The combination of the large atomic number Z
and the broken structural inversion symmetry at the interface
region would then provide the required SO coupling. With a
very thin normal metal layer (of the order of a couple of nm),
the proximity effect would be significantly stronger, and thus
analysis of this regime is only possible with the full Usadel
equations in the Riccati parameterisation developed herein.

The current analysis pertains to thin film ferromagnets.
Upon increasing the length of ferromagnetic film one will in-
crease the relative proportions of long-range to short-range
triplets in the middle of the ferromagnet. For strong ferro-
magnets where the exchange field is a significant fraction of
the Fermi energy, the quasiclassical Usadel formalism may no
longer describe the system behaviour appropriately, since it
assumes that the impurity scattering rate is much larger than
the other energy scales involved, and the Eilenberger equation
should be used instead®?.

In the previous section, we also observed that the presence
of SO coupling will in many cases increase the critical tem-
perature of a hybrid structure. This effect is explained through
an increase in the effective energy coupled to the triplet com-
ponent in the Usadel equation, which destabilizes the triplet
pairs and closes that proximity channel. However, for the
special geometry 6 = —y = +mn/4, the linearized equations
suggest that the SRTs are unaffected by the presence of SO
coupling, and this is consistent with the numerical results. We
also note that for the geometries with a large LRT generation,
such as 0 = 0 and y = +7t/4, the LRT generation reduces the
critical temperature again. Thus, for the physical parameters
considered herein, we see that there is a very slight increase
in critical temperature for these geometries, but not as large as
for the geometries without LRT generation.

One particularly striking result from the critical temper-
ature calculations is that when the Rashba and Dresselhaus
contribution to the SO coupling is of similar magnitude, one
observes that the critical temperature can change by as much
as 60% upon changing 6 = —1t/4 to 8 = +1/4, i.e. by a 90°
rotation of the magnetic field. This implies that it is possible
to create a novel kind of triplet spin valve using an SF bilayer,
where the ferromagnet has a homogeneous exchange field and
Rashba—Dresselhaus coupling. This is in contrast to previous

suggestions for triplet spin valves, such as the one described
by Fominov et al., which have required trilayers with differ-
ent homogeneous ferromagnets®3. The construction of such a
device is likely to have possible applications in the emerging

field of superconducting spintronics?.
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Appendix A: Riccati parametrization of the Usadel equation
and Kupriyanov-Lukichev boundary conditions

The 4 x 4 components of the retarded Green’s function g
are not entirely independent, but can be expressed as

R , + flz,+
8(z,€) = <J§*(é,8 fg*((zz, 3) ’

which suggests that the notation can be simplified by intro-
ducing the tilde conjugation

§(z,+e) =¢"(z,—¢).

Moreover, the normalization condition g2 =1 further con-
strains the possible form of ¢ by relating the g components
to the f components,

gg—fr=1, 8f—r8=0.
Remarkably, if we pick a suitable parametrization of ¢, which
automatically satisfies the symmetry and normalization re-
quirements above, then both the Usadel equation and the
Kupriyanov-Lukichev boundary conditions can be reduced
from 4 x 4 to 2 x 2 matrix equations. In this paper, we em-

ploy the so-called Riccati parametrization for this purpose,
which is defined by

. (N 0\ [14+% 2y
§= o —~)\ 2v 1+%)°

where the normalization matrices are N = (1 —y) "' and N =
(1—%y)~!. Solving the Riccati parametrized equations for
the function Y(z,€) in spin space is then sufficient to uniquely
construct the whole Green’s function g(z,€). It is noteworthy
that § — 1 when y — 0, while the elements of ¢ diverge to
infinity when Y — 1; so we see that a finite range of variation
in y parametrizes an infinite range of variation in g.

We begin by deriving some basic identities, starting with
the inverses of the two matrix products Ny and YN:

Ny =y N =y 1w =y"-¥;
(W) =N =1y =y 7.

(AL)

(A2)

(A3)

(A4)

(AS5)
(A6)



By comparison of the results above, we see that Ny = yN.
Similar calculations for other combinations of the Riccati ma-
trices reveal that we can always move normalization matrices
past gamma matrices if we also perform a tilde conjugation in
the process:

Ny=yN, Ny=yN, Ny=%N, Ny=9N. (A7)

Since we intend to parametrize a differential equation, we
should also try to relate the derivatives of the Riccati matri-
ces. This can be done by differentiating the definition of N
using the matrix version of the chain rule:

— N[V +1@FIN - (A8)

Performing a tilde conjugation of the equation above, we get
a similar result for d,N. Thus, the derivatives of the normal-
ization matrices satisfy the following identities:

O:N = N[0 )V + V()N , (A9)
0:N = N[(0:9)y+7(0:7)] N . (A10)

In addition to the identities derived above, one should note that
the definition of the normalization matrix N = (1 —yy)~! can
be rewritten in many forms which may be of use when sim-
plifying Riccati parametrized expressions; examples of this
include Yy=1—N"!and I =N —Nvy.

Now that the basic identities are in place, it is time to
parametrize the Usadel equation in the ferromagnet,

DpV(gVg)+ileps+M,8] =0, (A1)

where we for simplicity will let Dp = 1 in this appendix. We
begin by expanding the gauge covariant derivative V(gV3),
and then simplify the result using the normalization condition
&% = 1 and its derivative {g, 9,8} = 0, which yields the result

V(gvg) :az,\(gazg)_iaz,\(g fg) (A12)

_i[AZ’ gazg] - [ ' & g] :
We then write ¢ in component form using Eq. (A1), and also
write A in the same form using A = diag(A, —A*). In the rest
of this appendix, we will for simplicity assume that A is real,
so that A = diag(A,—A); in practice, this implies that A can
only depend on the spin projections 6, and 6. The derivation
for the more general case of a complex A is almost identical.
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The four terms in Eq. (A12) may then be written as follows:

0:(80:8)
az(gang_f;azf) az(gazf_]fazg) :| . (A13)
a~(g~azf_fazg) az(gazg - fazf) ’

d:(¢A8)
— [ az(gA&+]iAf) az(gAf+]ng> :| . (Al4)
| —0:(8Af + fAg) —0:(§AZ+ fASf) |~
[4, g0.8]
__{A7 gazf_fazg} _[Aa gazg_fazf] ’
4, gAg]
[A, gAg+ fAT]

AN Al6
[A, gAG+ fAS] (A16)

-+ /- {A,gAf+ng}]
| {A,gAT + fAg) '

Substituting these results back into Eq. (A12), we can find the

upper blocks of the covariant derivative V - (§V§),
V- (Vg™

0:(89:8 — fazf) —i0;(gA8 + fAzJ;)

[

—1

AZ7gaZg_faZf~]_[Aa gég"i_f‘if] ) (Al7)
V- (8Vg)) "
= az(gazf_ fazg) - iaz(gAzf+fAzg)
_i{Azagazf_fazg}_{évglif"‘fég}‘ (A18)

In this context, the notation M (nm) refers to the n’th row and
m’th column in Nambu space. Since the Green’s function g
and background field A also have a structure in spin space, the
(1,1) element in Nambu space is the upper-left 2 x 2 block of
the matrix, and the (1,2) element is the upper-right one.
There are two kinds of expressions that recur in the equa-
tions above, namely the components of gd.g, and the compo-
nents of gAg. After we substitute in the Riccati parametriza-
tion g = 2N — 1 and f = 2N, these components take the form:

[gazg]“’l) =g0;8g _fazf

=2N[(9Y)¥—Y(3F)]N ; (A19)
[gazg]“’z) = gazf _fazg

=2N[(0;Y) —Y(OVVN : (A20)
[8Ag)") = gAg + FAT

=4AN(A+YAT)N —2{A,N}+A;  (A2])
[8Ag)1Y = gAf + fAg

= AN(AY+YA)N —2{A, Nv} . (A22)

If we explicitly calculate the commutators of A with the two
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matrices 29,8 and gAg, then we find:

= [A7 208 _fazﬂ
=2N(1 = ¥)AN [(9:v)¥—¥(9:7)]N
—2N[(9:7)7—Y(9: V)] NA(L —Y))N ;

={A, gd.f — f9.8}

= 2N(1 —)AN [(9.y) —Y(o: )YV
+2N[(9:7) — YOV NA(1 = )N ;
A, gAg)"Y) = (A, gAg+ fAF)

— 4AN(A+YATIN

— 4N(A +YAT)NA

—2[A%, N];

4, g9,

(A23)

4, g9.8)1?

; (A24)

(A25)

={A, gAf + fAg}
=4AN(AY+YA)N
+4N(Ay+YA)NA
—4ANYA — 2{A% NY} .

(A, gAg)1?)

(A26)

If we instead differentiate the aforementioned matrices with
respect to z, we obtain:

= az(gazg*fazf)
= 2N[(97Y) +2(3:Y) N¥(3:) AN
— 2NY[(92) + 2(9-V)NY(O7)IN

[0.(29.¢)) 1)
(A27)

[az(gazg)](l’2> = az(gazf_fazg)

= 2N[(9%y) +2(3:Y)N¥(9-y)|N

— 2NY[(329) + 2(QVNY(ONYN :  (A28)
d:(gAg + fAf)

= 2N(1+YY)AN[Y(3) + (I Y)VIN

+ON[Y(D7) + (O:7)WINA(1 +Y))N

+4NYAN([(0;7) +¥(9Y)VIN

+4N[(9:y) +¥(0.7)YINAYN ;

[0:(242)] ")) =

(A29)

0.(848)) %) =
=2N(1+Y))AN[(9;Y) + (3. 7)VIN
+2N[@:1) + YOANNAC + N
+4NYAN[Y(9y) + (9. 7)YIN
AN + Q1) TNATY

d:(gAf + fAg)

(A30)

Combining all of the equations above, we can express
Egs. (A17) and (A18) using Riccati matrices. In order to iso-
late the second-order derivative Bgy from these, the trick is
to multiply Eq. (A17) by v from the right, and subsequently

subtract the result from Eq. (A18):

NHV-(gV)]" D — [V (gVg)] Yy}

= 92y+2(0:Y)N¥(9-y)

_zi(Az‘FyAz?)N(az ) (az ) (A +YAZY)
—2(AY+YAN(A+7AY) —A>y+74% . (A3D)

If we finally rewrite [V - (Vg)](") and [V - (V$)](1?) in the
equation above by substituting in the Usadel equation (A11),
then we obtain the following equation for the Riccati matrix :

92y =—2iey—ih- (oy—yo") — 2(3-Y)NY(2.Y)
+2i(A; +YAZY)N(97Y) +2i(0 )N (A +FAy)
+2(AY+YA)N(A +¥Ay) + A%y — A% . (A32)

The corresponding equation for ¥ can be found by tilde con-
jugation of the above. After restoring the diffusion coeffi-
cient D, and generalizing the derivation to a complex SO
field A, the above result takes the form shown in Eq. (5).
After parametrizing the Usadel equation, the next step is
to do the same to the Kupriyanov—Lukichev boundary condi-
tions. The gauge covariant version of Eq. (2) may be written

20,808,V én = 81,82], (A33)

which upon expanding the covariant derivative V3 becomes

1 R A
581, &) +i8nlAz, 8] , (A34)

gnaz§z1 = )

where we have introduced the notation Q, = 1/L,{, for the
interface parameter. We will now restrict our attention to the
(1,1) and (1,2) components of the above,

—fih+Af)
(A35)

fn0z fn— Qi(g182 — 8281
+lgn[Aza gl +ifa{As fu}

8n = %Qn(gle —&fi — fi&2+ f281)
+ign{Az, fu} +ifalAz, &l - (A36)

Substituting the Riccati parametrizations g, = 2N, — 1 and
fa = 2N,Y, in the above, we then obtain:

8n928n —

8n0zfn — fn0

Na[(0Yn)¥n — Y (9:7n) INw = QuN1 (1 —1172)N2
— QN> (1 =111
— iNpA(1 =Y ¥ )Nu

+ 2iNa (A + Y2 A¥n)Nu ,  (A37)

= QN1 (1 =71%2)2Na
— QN (1 =171V
+ Ny (14 YT ) AY2 N,
+ iNYRA (L + 3 Yn)Ns

Nn [(az'yn) —Yn (az’?n)'Yn]Nn

(A38)



If we multiply Eq. (A37) by 7, from the right, subtract this
from Eq. (A38), and divide by N,, from the left, then we obtain
the following boundary condition for v,:

O Yn = (1 —=Y172)N2 (Y2 — )
+ (1 =271)N1 (Yo — 1)
+i{Az, Ya} -

When we evaluate the above for n = 1 and n = 2, then it sim-
plifies to the following:

oyt =Q(1-=v)M(v2—1) +i{A;, i},
Y2 = (1 =vY)N (2 —711) +i{A;, 12}
The boundary conditions for d,¥; and 9., are found by tilde
conjugating the above. If we generalize the derivation to a

complex SO field A, and substitute back Q, = 1/L,, in the
result, then we arrive at Eq. (6).

(A39)

(A40)
(A41)

Appendix B: Derivation of the self-consistency equation for A

For completeness, we present here a detailed derivation of
the self-consistency equation for the BCS order parameter®*
in a quasiclassical framework. Similar derivations can also be
found in Refs. 52,65-68. In this paper, we follow the conven-
tion where the Keldysh component of the anomalous Green’s
function is defined as

FE (r;r 1) = —i(ws(r,1), Wy (r,1)]),  (BD)

where Y5 (r,t) is the spin-dependent fermion annihilation op-
erator, and the superconducting gap is defined as

Alr,1) = My, (1) v (1)), (B2)

where A > 0 is the electron—electron coupling constant in the
BCS theory. For the rest of this appendix, we will also assume
that we work in an electromagnetic gauge where A is a purely
real quantity. Comparing Eqs. (B1) and (B2), and using the
fermionic anticommutation relation

V()W (r0) = =y (r)w(r1), (B3)

we see that the superconducting gap A(r,7) can be expressed
in terms of the Green’s functions in two different ways,

ik

Ar,t) = SH(n6 1), (B4)
A(r,t) = —%Fﬁ(r,t; r,t). (BS)

We may then perform a quasiclassical approximation by first
switching to Wigner mixed coordinates, then Fourier trans-
forming the relative coordinates, then integrating out the en-
ergy dependence, and finally averaging the result over the
Fermi surface to obtain the isotropic part. The resulting equa-
tions for the superconducting gap are

A(r,t) = %Nok/dEfﬁ(Lt,E), (B6)

Alr1) = —%Nok / de fK (r,1,¢), (B7)
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where f(’fc, is the quasiclassical counterpart to Fé;,, € is the

quasiparticle energy, and Ny is the density of states per spin at
the Fermi level.

In the equilibrium case, the Keldysh component gX can be
expressed in terms of the retarded and advanced components
of the Green’s function,

¢5 = (8" - ¢") tanh(e/2T), (B8)

and the advanced Green’s function may again be expressed in
terms of the retarded one,

¢ = —p3g"'ps, (B9)

which implies that the Keldysh component can be expressed
entirely in terms of the retarded component,

g% = (8" — p38"'p3) tanh(e/2T).

If we extract the relevant anomalous components fﬁ and f ﬁ
from the above, we obtain the results

f = U (&) + £l (r,—#)] tanh (e/2T)
I = 1ff (. +8) + £f (r,—€)] tanh(e/2T) .

We then switch to a singlet/triplet-decomposition of the
retarded component %, where the singlet component is de-
scribed by a scalar function f;, and the triplet component by
the so-called d-vector (d,dy,d;). This parametrization is de-
fined by the matrix equation

fR = (fs +d'g)i0ya

or in component form,

£ R _ (idy—de det s B14)

i d,—f, idy+d. ]’
Parametrizing Eqgs. (B11) and (B12) according to Eq. (B14),
we obtain

(B10)

(B11)
(B12)

(B13)

fh(r,8) = [de(r, +€) + fi(r, +¢)

+d,(r,—€) — f;(r,—€)|tanh(g/2T),  (B15)
fﬁ(lv g) = [d;(r,+€) — fs(r, +€)

+d,(r,—¢€) + fs(r,—¢€)]tanh(e/2T). (B16)

The triplet component d, can clearly be eliminated from the
above equations by subtracting Eq. (B15) from Eq. (B16),

I8 =15 =2[fi(r,e) — fi(r,—€)] tanh(g/2T),

and a matching expression for the superconducting gap can be
acquired by adding Eqgs. (B6) and (B7),

B17)

1
2A(r) = ZNox / de[ff (r,e) — ff (r,¢)] tanh(g/2T) . (B18)
By comparing the two results above, we finally arrive at an

equation for the superconducting gap which only depends on
the singlet component of the quasiclassical Green’s function:

A(r) = %Nol / de [fy(r,€) — fs(r,—€)|tanh(e/2T). (B19)
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If the integral above is performed for all real values of €,
it turns out to be logarithmically divergent e.g. for a bulk su-
perconductor. However, physically, the range of energies that
should be integrated over is restricted by the energy spectra
of the phonons that mediate the attractive electron—electron
interactions in the superconductor. This issue may therefore
be resolved by introducing a Debye cutoff ®., such that we
only integrate over the region where || < ®.. Including the
integration range, the gap equation is therefore

A(z):%Nok / de[fs(r,€) — f;(r,—€)]tanh(e/2T) . (B20)

—We

The equation above can however be simplified even further.
First of all, both fi(€) — fy(—¢€) and tanh(e/2T) are clearly
antisymmetric functions of €, which means that the product
is a symmetric function, and so it is sufficient to perform an
integral over positive values of €,

A(z):%NoK / de[f(r,€) — fs(r,—€)]tanh(e/2T). (B21)
0

However, because of the term f(r, —€), we still need to know
the Green’s function for negative values of € before we can
calculate the gap. On the other hand, the singlet component
of the quasiclassical Green’s functions also has a symmetry
when the superconducting gauge is chosen as real

fS(L 8) = _fv* (L —8)7

which implies that

fs(r,€) — fi(r,—€) = 2Re{ fs(r,€)}.

Substituting Eq. (B23) into Eq. (B21), the gap equation takes
a particularly simple form, which only depends on the real
part of the singlet component f(r,€) for positive energies €:

(B22)

(B23)

A(r) = N /Cde Re{f;(r,€)} tanh(e/2T). (B24)
0

Let us now consider the case of a BCS bulk superconductor,
which has a singlet component given by the equation

(B25)

so that the gap equation may be written as
[ A
A= No / de Re { } tanh(e/2T).  (B26)
€2 _ A2
0

The part in the curly braces is only real when |g| > A, which
means that the equation can be simplified by changing the
lower integration limit to A. After also dividing the equation
by ANpA, we then obtain the self-consistency equation

o
| . tanh(e/27)
Noh Vel —A?
A
For the zero-temperature case, where T — 0 and A — A, per-
forming the above integral and reordering the result yields

(B27)
®. = Agcosh(1/NoA) . (B28)

Using the above equation for ®., and the well-known result
(B29)

where Y~ 0.57722 is the Euler—Mascheroni constant, we can
finally rewrite Eq. (B24) as:

Agcosh(1/Noh)
A(r) = N()?\,/ds Re{f;(r,€)} tanh <
0

T €/Ag
2V T /T,

) . (B30)

This version of the gap equation is particularly well-suited for
numerical simulations. One advantage is that we only need to
know the Green’s function for positive energies, which halves
the number of energies that we need to solve the Usadel equa-
tion for. The equation also takes a particularly simple form
if we use energy units where A9 = 1 and temperature units
where T, = 1, which is common practice in such simulations.
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