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Abstract

Using 1H High-Resolution Magic Angle Spinning Magnetic Resonance Spectro-
scopy, tissue samples of both healthy mouse prostate and different grades of mouse
prostate cancer in a transgenic mouse model were analysed to investigate which
metabolites are present at different stages of mouse prostate cancer. The trends in
the metabolic changes were compared to human prostate cancer, and found to be of
similar nature, with elevation of lactate, alanine, creatine, taurine and glycine, and
decreased levels of citrate, glycerophosphocholine, phosphocholine and choline.

Differences in the metabolism of the four distinct lobes of the mouse prostate were
also investigated, and large variations between the lobes were identified. The ven-
tral prostate of mice seems to be the one that mimics human prostate cancer the
best, despite being claimed to have no human counterpart based in previous histol-
ogy. The large differences between the lobes imply that great care should be taken
when measuring metabolite levels, as inconsistencies could lead to misinterpreting
results.

Future work should include histopathology to secure proper classifications of the
mouse prostate cancer, and comparison with human disease could be improved by
performing absolute quantification and including more metabolites.
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Sammendrag

Vevsprøver av både frisk museprostata og ulike grader av prostatakreft i mus ble
analysert ved hjelp av 1H høyoppløselig magisk vinkelspinning magnetisk reso-
nans spektroskopi for å undersøke hvilke metabolitter som er tilstede ved ulike
grader av kreft. Endringer i metabolittkonsentrasjoner fra frisk prostata til de mest
aggressive tumorene ble sammenlignet med tilsvarende funn fra prostatakreft hos
menn, som viste seg å være av samme karakter. Disse felles-trekkene innebar
forhøyede verdier av laktat, alanin, creatine, taurin og glysin, og lavere verdier for
sitrat, glyserofosfokolin, fosfokolin og kolin.

Forskjeller mellom metabolismen til de fire ulike prostatalappene hos mus ble også
undersøkt, og store ulikheter mellom lappene ble oppdaget. De ventrale prostata-
lappene hos mus ser ut til å være de som ligner utviklingen av prostatakreft hos
mennesker best, til tross for at denne prostatalappen er ansett som den eneste uten
en menneskelig motpart basert på tidligere histologiske sammenligninger. De store
variasjonene i metabolittkonsentrasjoner innebærer at man må være svært nøye når
metabolittnivåene skal måles for å unngå feiltolkning av resultater.

Fremtidig arbeid bør innebære histopatologi for å forsikre seg om at vevsprøvene
fra musene med prostatakreft er korrekt klassifisert. I tillegg vil absolutt kvantifis-
ering av metabolittkonsentrasjoner, samt å inkludere flere metabolitter i analysen,
forbedre og forenkle sammenligningen med prostatakreft hos menn.
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1 | Introduction

Prostate Cancer (PCa) is the most frequently diagnosed cancer among men in
developed countries, and it is the second leading cause of cancer deaths among
the same male population(1). Great improvements to both diagnostics, such as
Prosate-Specific Antigen (PSA) screening(2, 3), and treatments have been seen in
the last years, which have consequently reduced disease mortality(1). The more
extensive screening of PCa and increased rate of diagnosis(1) have also led to
overdiagnoses(4), with subsequent overtreatment and increased incidence of side
effects depending on treatment method, involving urinary incontinence, erectile
dysfunction and bowel problems(5). The aggressiveness of human PCa varies be-
tween the patients, and the aggressiveness will determine if and how the disease
will be treated; more reliable diagnostic and monitoring tools will facilitate per-
sonalised treatment options for patients after diagnosis. Further improvement in
the field of PCa is therefore needed, and clinically relevant and reliable models of
the disease are important tools in order to achieve this.

Studies of PCa are performed both in vitro on cell cultures(6) and in vivo with
animals. Mice are often used in this research, and the models are either made
by transplantation of PCa cells(7, 8) or they are genetically engineered to develop
PCa(9). The TRAMP model was the first genetically engineered mouse model of
PCa(9), and is widely used. The model holds similar traits to the morphological
progression of human PCa, and with the rapid development of cancer in 100% of
the mice, TRAMP mice form an effective and solid platform for studies of the dis-
ease.

1.1 Related work

Little work has been done in order to investigate the metabolic characteristics of
PCa in TRAMP mice, furthermore, the metabolic profiles of the different lobes of
the mouse prostate have not been investigated. Previous projects have studied the
citrate concentrations in the Ventral Prostate (VP) of TRAMP mice(10), and in-
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1.2. Approach and aim of the project 2

vestigated the metabolic features of the TRAMP prostate using tissue samples that
were randomly chosen among the four different prostate lobes of each mouse(11).

In an introductory project(12), the metabolic profile of 14 prostate cancer tissue
samples from TRAMP mice were compared to a prostate tissue sample from a
c57 mice that served as a healthy control. Indications of altered metabolism in
the different grades of PCa in TRAMP mice were found, as well as indications of
differences in the metabolism of the mouse prostate lobes. This project is a con-
tinuation of this, comprising more samples and more extensive analysis.

1.2 Approach and aim of the project

The aim of this project is to further investigate if and how the TRAMP model re-
sembles human disease in order to add knowledge to the already existing literature
on the TRAMP model. Further, the heterogeneity of the mouse prostate lobes from
both healthy and TRAMP mice will be looked into.

1H HR-MAS Magnetic Resonance Spectroscopy (MRS) is the chosen laboratory
technique. This method provides the desired information about the metabolic pro-
files while it enables following histology/histopathology of the exact same tissue
samples, thus increasing the amount of information these mouse tissue samples
will provide. In the continuation of the work with this project, these two techniques
combined offers great potential of a solid understanding of the mouse prostate in
both healthy and diseased mice, and histology of the samples is planned after the
completion of this thesis.

Principal Component Analysis (PCA) will be used to look for clustering or trends
within the data. PCA is exploratory in nature, and will identify patterns within the
data without any prior information. Based on findings in the PCA, clusters of data
points can be identified. Clustering occurs because the data points share similar
metabolic signatures in some important metabolites. The metabolites are identi-
fied using a loadings plot, and can be quantified through integration, yielding the
relative concentrations of the metabolites in the four lobes of the mouse prostate
within the different cancer classifications and healthy controls.

The findings from this project will determine whether the TRAMP model is metabol-
ically similar to human disease. This could have major implications in the recom-
mendations for the use of this model for future studies, such as preclinical tests of
new PCa drugs. This study is the first to investigate metabolic profiles of the dif-
ferent lobes of the mouse prostate, and the findings will be important to any future
urological research employing mouse models.
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1.3 Outline

The thesis is organised into the following chapters:

Background Relevant background material for the experiments and analysis
is presented in this chapter.

Methods In this chapter, the methods used all the way from the harvesting
of samples to the analysis of the data sets are described.

Results The results from the analysis are presented through figures.

Discussion Interpretation of the results and the consequences of these are
presented along with future plans.

Conclusion A summarising outlook of the findings.



2 | Background

The following section provides the necessary background for this project, without
delving too deep into the topics, but enough to sufficiently justify the chosen meth-
ods. Where appropriate, the literature is referenced for a more detailed description
of the background theory. Parts of the following chapter contains adapted material
from the initial project(12), revised to reflect the project continuation.

2.1 The prostate

2.1.1 Human prostate

The prostate is part of the male reproductive system, and the human prostate is
located between rectum and the penis, right below the bladder. It surrounds the the
urethra, and is often described as walnut-sized. The main function of this gland is
to secrete an alkaline fluid which contributes to the seminal fluid. This prostatic
secretion protects the genetic material in the semen, in addition to increasing both
the mobility and survival of the sperm cells.

Fig. 2.1 A) shows the anatomy of the human prostate, which is divided into four
glandular regions based on their individual histology(13). These are called the pe-
ripheral zone, the central zone, the transition zone and the anterior fibromuscular
stroma.

2.1.2 Mouse prostate

The mouse prostate is located in a similar position to the human prostate, but unlike
the human prostate, the mouse prostate consists of four distinct lobes, as shown in
fig. 2.1 B). These anatomical structures are named after their spatial orientation;
the Anterior Prostate (AP), the Dorsal Prostate (DP), the Lateral Prostate (LP) and
the VP. The DP and LP are often referred to as one; the dorsolateral prostate(14).
Analysis of the gene expressions of the Dorsolateral Prostate (DLP) and the two
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2.2. Cancer 5

other lobes indicates that the DLP is analogous to the peripheral zone of the human
prostate(15), despite some differences in histology(14). The AP is considered as
the mouse counterpart to the central zone of human prostate, while the VP lacks
any human counterpart.

Anterior fibromuscular

stroma

Transition

zone

Central

zone

Peripheral

zone

Seminal

vesicle

Ductus

deferens

Anterior

prostate

Dorsal

prostate

Lateral prostate

Ventral prostate

A) Human prostate B) Mouse prostate

Figure 2.1: Illustration of A) human prostate and B) mouse prostate. The figure was
adapted from (16) with permission.

2.2 Cancer

Cancer is a collective term which include all diseases caused by cells that uncon-
trollably proliferate. This results from defects in regulatory circuits of the cells,
which in normal cells prohibit such a high proliferation rate.

There are several characteristics which together form the basis for how the devel-
opment of cancerous cells are possible, as described by Hanahan and Weinberg(17,
18), and fig. 2.2 sums up the ten hallmarks that are common for all types of cancer.
Through genetic alterations, cells that possess these characteristics have evolved
mechanisms that enable them to avoid normal cell regulation. These mechanisms
include upregulation of receptors for growth factors, as is the case for the hallmark
of sustained proliferative signaling. Evading growth suppressors will further aid
the proliferation of cancerous cells, as tumour suppressors are designed to hinder
fast cell proliferation. In combination with rest of the hallmarks, these traits enable
cancer cells to maintain their growth and to evade programmed cell death, leading
to tumour survival.

Cancer cells are less differentiated than normal cells(19), and in combination with
the fast cell growth and avoidance of cell death, cancer cells will invade and destroy
surrounding tissues. Invasion can occur via blood vessels and lymph channels,
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which facilitates the spread of cancer throughout the body, potentially resulting in
metastases at other sites.

Figure 2.2: An overview of the ten hallmarks of cancer which form the basis for all
cancers. Illustration from Løveng(12), adapted from Hanahan and Weinberg(17) with
permission.

Tumours and cancers are not always the same, but some tumours are cancerous.
Benign tumours are non-cancerous, meaning that they are the results of abnor-
mal cell growth, but they are not capable of spreading. Malignant tumours are
cancerous and will invade surrounding areas as well as spreading to other sites
in the body, and this spread is referred to as metastasis. Several grading systems
exist both for benign and malignant tumours, and their role is to indicate how
differentiated the tumour is compared to that of the original tissue. The less differ-
entiated the cancer is, the more aggressive will it be. This classification is based
on histopathology, and in cancers these classifications help guide the treatment as
well as being used to predict the prognosis for each patient.

2.2.1 Prostate cancer

Human PCa is cancer that evolves in the prostate gland, and is the most frequently
diagnosed cancer among men in the western world, and the second most common
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reason for male cancer deaths(1). In Norway, close to 5000 new cases were diag-
nosed in 2015, but when comparing 5 year survival, PCa was the third least deadly
cancer(20).

The majority of the PCa arise in the peripheral zone, a little more than 20% arise
in the transition zone, and less than 10% arise in the central zone(21). Cancer
in the transition zone is linked to better prognoses than cancer in the peripheral
zone(22). Cancer in the anterior fibromuscular stroma seems to be originating
from the transition zone(23).

The progression of PCa is associated with Prostatic Intraepithelial Neoplasia (PIN)
as the preinvasive stage(24), before it develops into Well Differentiated (WD) and
then Poorly Differentiated (PD) cancer, with metastasis to bone, lungs and liver,
among other(25).

A reason for the numerous diagnoses is more widespread use of screening pro-
cesses due to improved diagnostic tools, such as PSA testing. These tests has led
to earlier detection of PCa, but elevated PSA levels can also be associated with be-
nign tumours. Misdiagnoses and overtreatment of PCa are therefore a consequence
of the increased number of tests performed, and further development of diagnos-
tic tools for both detecting the disease as well classify the aggressiveness of the
cancer is therefore needed. Many different potential biomarkers of PCa have been
proposed, such as citrate and spermine(26), lactate and alanine(27) and different
proteins(28). All of these propose more accurate diagnosis, better monitoring of
PCa progression, and improved customisation of treatments.

2.3 Cell cycle and changes in metabolism

Among the hallmarks of cancer is the alteration of the metabolism(18, 17). As
cancer cells proliferate at a much higher speed than normal cells, their need for
both energy and building blocks to produce new cells is much higher in cancerous
tissue than what is required in normal tissue. The alterations are though quite
complex and far from fully understood, so further analysis of the mechanisms in
tumours compared to healthy tissue is much needed.

Regardless of how well understood the cell cycle and metabolic mechanisms are,
alterations can be detected through analysis of the metabolite concentrations at a
defined location. The metabolites that are detected will say something about which
processes are conducted within the tissue, as they are linked to different pathways
as intermediates or products.
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2.3.1 Glycolysis

Glycolysis is the biochemical pathway in which the 5 carbon compound glucose
is converted into the three carbon compound pyruvate. This is done through a
series of ten steps, where the net yield of energy is two Adenosine Triphosphate
(ATP) molecules per molecule of glucose(29). Fig. 2.3 illustrates briefly how two
pyruvate molecules is made from a glucose molecule, and the three options for
further reactions. In some mammalian cells and tissues, the glycolytic pathway is
the sole source of metabolic energy, sperm being one of these.

Glucose

glycolysis

2 Pyruvatehypoxic or 

anaerobic 

conditions

hypoxic or 

anaerobic 

conditions

aerobic 

conditions
2CO2

2 Lactate2 Ethanol + 2CO2

2 Acetyl-CoA

Figure 2.3: Overview of how a glucose molecule is oxidised into 2 pyruvate molecules
through glycolysis. Depending on the conditions, these two molecules can be further
oxidised to yield more energy.

2.3.2 The Tricarboxylic acid cycle

The Tricarboxylic Acid (TCA) cycle, also called the citric acid cycle or Krebs cy-
cle, is the enzyme driven cyclic process in which acetyl-CoA made from pyruvate
condenses with Oxaloacetate (OAA) to form citrate, which then is oxidised into
two CO2 molecules in addition to the energy carrier GTP and fuel (NADH/FADH2)
for the electron transport chain which further generates ATP(29). An illustration of
the cycle is shown in fig. 2.4. The intermediates of the TCA cycle are also needed
in other pathways of cells, and some of the produced intermediates are therefore
removed from the cycle. Succinyl-CoA for instance, is required for producing
e.g. cytochromes and chlorofyll, while α-ketoglutarate and oxaloacetate are both
precursors for many amino acids.
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Citrate

Isocitrate

α-Ketoglutarate

Succinyl-CoA
Succinate

Fumarate

Malate

Oxaloacetate

Acetyl-CoA

CO2

CO2

NADH

NADH

NADH

FADH2

GTP

(ATP)

Figure 2.4: Overview of intermediates and product of the TCA cycle. Two CO2 molecules
along with energy carriers are produced before the cycle starts over again.

2.3.3 Choline phospholipid synthesis

The choline phospholipid synthesis is one of two branches of the Kennedy pathway(30),
in which Phosphatidylcholine (PtdCho) is produced de novo from choline, with
phosphocholine as an intermediate. Fig. 2.5 gives an overview of the pathway. Pt-
dCho is among the main components of the membranes in mammalian cells(29),
and the building of new cells will therefore require production of this compound.
The steps in this process is enzyme driven.
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Choline     transporters

Cell membrane

Choline

PC GPC

PtdCho

Figure 2.5: One of the two branches of the Kennedy pathway, where phosphatidylcholine
(PtdCho) is synthesised from choline. The process is reversible.

2.3.4 Important metabolites associated with prostate cancer

As cancer cells behave differently to normal cells, their requirements to thrive are
also different. The high proliferation in cancerous tissue leads to an increased
need of energy and building blocks, and the environment within the prostate will
therefore be altered.

Citrate is found in high levels in normal prostate, as it is a main component of the
prostatic fluid(31), and since citrate is a product in itself in the prostate, the TCA
cycle is not utilised as an energy source(32). The increased need of energy in PCa
will exploit the great energy yield of the TCA cycle, and the citrate concentration
within the prostate will decrease as a result of this altered metabolism. Reduced
levels of citrate is therefore linked to PCa(33).

The high proliferation rate will demand more PtdCho to build cell membranes. In-
creased expression of choline transporters is therefore detected in PCa(34), which
will lead to identification of higher choline and phosphocholine concentrations(35).
As Glycerophosphocholine (GPC) is a product of the breakdown of PtdCho, it says
something about the turnover of the phospholipid synthesis, and is also found to
be elevated in PCa(36).

Increased levels of lactate is also linked to PCa(27), partly because of hypoxic
environments within tumours which will lead to anaerobic fermentation of glucose
as illustrated in fig. 2.3, but also due to the Warburg effect, implying that cancer
cells choose a less favourable energy pathway in order to keep more carbon atoms
to produce building blocks(37).
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Changes in the concentrations of other metabolites related to these syntheses di-
rectly or indirectly are also found, including polyamines, alanine, glutamate, glu-
tamine, succinate(36, 38).

2.4 Mouse models of prostate cancer - The TRAMP model

Animal models of PCa are extremely helpful tools for studying the disease, diag-
nostic tools and treatments, but modelling PCa in mice is difficult. A reason for
this is that mice do not usually develop PCa spontaneously(39) as humans do. Ge-
netically engineered mouse models are have therefore been developed(9), with the
TRAMP(40) model being one of the most widely used(41). It has proven to be a
versatile model for PCa, with similar traits as the progression of human PCa which
develops from well differentiated to poorly differentiated, and with metastasis to
other sites(42).

The model is based on the wild-type laboratory mouse model C57BL/6 (c57),
and was developed using the prostate steroid binding protein C3-1 and Simian
virus 40 (SV40) early region. C3-1. However, it is not specific to the prostate, so
probasin minimal promoter was fused to SV40 early region and resulted in variable
expression. Selecting the lines with higher transgene expression in ventral and
dorsal lobes lead to the TRAMP model(40).

The model shows prostatic disease with a frequency of 100%, and in combination
with rapid progression, the TRAMP model offers an effective and reliable model
of PCa. The origin of cancer in the prostate of the TRAMP model is commonly
found in the dorsolateral prostate, which is resembling the peripheral zone of the
human prostate where the majority of human PCa origins.

A newer trait of the TRAMP mice that has been discovered, is the indications
of subtypes within the TRAMP model(43). This is based on the differences in the
progression of the disease in the model that leads to either WD and to PD PCa. The
PD tumours seems to be developed spontanously at early age in the VP(43, 44) and
without any early PIN detection, suggesting that the mechanisms behind the WD
and PD PCas are different. The suggested subtype involves the mice who develop
fast-growing neuroendocrine carcinoma, usually originating in the VP(43).

2.5 Magnetic resonance spectroscopy

The phenomenon which forms the basis of MRS is that the nuclei have a spin, or a
magnetic moment, that will align with an external magnetic field, and these spins
will absorb and emit Radio Frequency (RF) pulses. This phenomenon were first
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described by Bloch(45) and Purcell(46) already in 1936, and MR has since then
evolved into an important tool within many different fields. MRS can be used to
identify the different compounds in a sample, as well as to determine the molecular
structure of the sample.

The nuclei needs an odd number of protons or neutrons to have a spin that can be
observed with MR, and nuclei like 1H, 13C and 31P are commonly studied(47). If
the nuclei have an even number of both protons and neutrons, their spins will even
each other out, causing the total spin of the nuclei to be zero.

The intrinsic spin s = 1
2 for the proton(48), allowing two possible states ms =

±1
2 . The magnetic moment µ defines the energy shift ∆E experienced within an

external magnetic field B by ∆E = −µs ·B with the magnetic moment

µs = gS
e

2mp

S, (2.1)

where S is the the spin vector S = (Sx, Sy, Sz), gS ≈ 2 is the g-factor of the
system, e is the proton charge and mp is the proton mass.

For general systems,
µs = γS, (2.2)

where γ is the gyromagnetic factor of the system.

The spins will be randomly distributed, but when an external magnetic field is
applied the spins will align either parallel or antiparallel to the field. For a spin-12
particle, this corresponds to a splitting of the energy levels into one lower energy
parallel spin state and one higher energy antiparallel spin state. This splitting of
energy levels is known as the Zeeman effect(49). The spins will oscillate between
the two states with a statistical bias towards the energetically favourable parallel
state given by the Boltzmann factor

F (parallel)

F (antiparallel)
= exp

{

− ∆E

kBT

}

, (2.3)

where F is the population function, kB is the Boltzmann constant and T is the
temperature. This results in a net ensemble magnetisation ~M 6= ~0. With increasing
external magnetic flux density |B|, the energy splitting between the states caused
by the Zeeman effect also increases, such that more nuclei will be in the parallel
spin state at thermal equilibrium. From ∆E = −µs · B, this causes the system
magnetisation | ~M | to increase proportionally to the external magnetic field.

Under the influence of an external magnetic field B = (0, 0, B0) directed along the
z-axis, the spin precesses in the xy-plane with a characteristic frequency, known as
the Larmor-frequency(48).
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This can be seen by calculating the time-evolution of the spin operator, Ŝ =
(Ŝx, Ŝy, Ŝz)

d

dt
〈Ŝ〉 = −i~

〈

[Ĥ, Ŝ]
〉

+

〈

dŜ

dt
.

〉

. (2.4)

Here,
Ĥ = −µ̂s ·B = −γB0Ŝz = −ωŜz, (2.5)

where ω is the Larmor frequency. Using the commutator rules for angular momen-
tum operators,

d

dt
〈Sx〉 = −ω〈Sy〉,

d

dt
〈Sy〉 = ω〈Sx〉,

d

dt
〈Sz〉 = 0. (2.6)

These equations describe a projection in the xy-plane rotating with an angular
frequency ω0,

〈Sx〉(t) = A ℜ ei(ωt+φ) 〈Sy〉(t) = A ℑ ei(ωt+φ), (2.7)

where A is the magnitude and φ is the phase offset. Unlike the ~Mz-component,
~Mxy = ~0 under influence of an external field because phase decoherence between

the randomly distributed phases of spins in this plane causes the magnetisation in
the plane to average to 0.

After the spins have aligned along the external magnetic field, RF pulses at the
Larmor frequency ω = γB0 are aimed at the sample, exciting the system to higher
energy states by forcing an increased amount of antiparallel spins. The absorbed
waves also induces phase coherence in the xy-plane, which yields a net ensemble
magnetisation ~Mxy 6= ~0. In other words, these effects combined causes the preces-
sional motion of the net ensemble magnetisation to partially or fully collapse onto
the xy-plane given a RF energy density. The Larmor precession and the transition
that occurs during excitation is illustrated in fig. 2.6.
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Figure 2.6: Illustration of the net magnetisation of an ensemble of spin- 1
2

particles sus-
pended in a magnetic field B0ẑ. The magnetisation precesses around the z-axis, and apply-
ing an increasingly strong RF signal causes the magnetisation to gradually collapse onto
the xy-plane from reduced parallel/antiparallel spin ratio and increased phase coherence
in the Larmor precession of the individual spins.

After the RF signal has ceased, the magnetisation vector continues to have a ro-
tating projection in the xy-plane. This rotating component produces RF-radiation
at the excitation frequency. This emission reduces the energy of the system, more
spins align in the lower energy parallel state and the Mz magnetisation gradually
returns to its normal state in a process known as T1-relaxation.

In this process, the magnetisation in z-direction recovers in an exponential way,

~Mz(t) = | ~M |
(

1− exp

{

− t

T1

})

ẑ, (2.8)

where T1 is the characterising relaxation constant for different types of tissue, and
is defined as the time at which e−1 of the excess fraction of antiparallel states due
to the RF-signal has returned to parallel. Some of the energy is also lost to heating
up surrounding lattice.

Another effect of removing the RF source is dephasing of the spins so that the mag-
netisation smears in the xy-plane, causing a reduction in the signal over time. This
happens because of random spin-spin-interactions between a particle and its neigh-
bours, temporarily modifying the local magnetic field around a single nucleon.
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This shifts the Larmor-frequency of the nucleon in relation to the natural Larmor-
frequency induced by the external magnetic field. Consequently, global spin decor-
relation and signal decay occurs. This dephasing is known as T2-relaxation, and
follows an exponential decay curve,

~Mxy(t) = | ~M | exp
{

− t

T2

}

[ℜ eiωt ℑ eiωt]× [x̂ ŷ]T , (2.9)

with the characterising constant T2 describing the time where the signal strength
has been reduced by a factor e−1. This decay model is known as Free Induction
Decay (FID) and assumes a perfectly homogeneous external magnetic field B0ẑ.

The signal often decays faster than the FID-model predicts, which can be ex-
plained with the addition of extra dephasing sources in the shape of magnetic inho-
mogeneities, such as spatial variations in magnetic susceptibility, inhomogeneous
field generated by the magnets, implants and other factors.

The combined effect from FID spin-spin interaction model and the additional
dephasing from other sources is called T2*-relaxation characterised by 1/T ∗

2 =
1/T2[FID] + 1/T2[other]

The FID contributions are purely random events, but the fixed dephasing from
other sources can be amended by exploiting the Spin-Echo (SE) effect. If re-
versibility of the fixed contributions is assumed, a phase-inversion at some time
TE/2 will cause the dephasing caused by fixed sources cancel out and only the
T2-attenuated inverted signal remains at time TE/2+TE/2 = TE, known as the echo
time.

2.5.1 Chemical shift

The chemical shift is the resonant frequency of a nucleon in a molecule related to
the frequency of a nucleon in a reference molecule. The chemical shift artefact
occurs when the local intramolecular environment such as lattice electron clouds
partially screens the external field seen by the nuclei and perturbs the nuclear mag-
netodynamics, causing a shift in the Larmor frequency.

Factors impacting the measured shift include the local electron density and neigh-
bour electronegativities. Different levels of screening from these effects create
shifts in the Larmor frequency characteristic for the particular molecular structure.
This artefact is exploited to obtain insight into the molecular composition of the
sample. Some nuclei within a specific molecule can experience significantly dif-
ferent shifts, giving rise to multiple scattered peaks which all identify the same
molecule.
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The chemical shift δ is defined as δ =
νsample−νref

νref
, where νsample is the sample

nucleon resonant frequency and νref is the reference resonant frequency of the nu-
cleon in the reference molecule. It is customary to state the chemical shift as parts
per million (ppm) due to its low order of magnitude.

2.5.2 High resolution magic angle spinning MRS

HR-MAS MR is a type of spectroscopy that enables high resolution spectra to
be be obtained with MRS of solid tissue(50). Normally, solid tissue MRS will
produce spectra with quite broad peaks, caused by anisotropic interactions with a
dependence on the orientation with respect to the external field. The effect is mag-
nified by reduced mobility/motility of the cells compared to cells in liquids in that
the ensemble average fails to cancel the effect simply by not being able to include
a fully sampled distribution of all orientations. Thus, many of the interactions, in
particular dipole-dipole interactions, are not properly averaged by internal motion,
inducing angle dependent artefacts in the resulting spectra.

By tilting the sample to the magic angle and rotating about the new axis, the con-
tributions from these interactions will be neglected, leading to narrowing of the
peaks in the spectra and increased spectral resolution. The narrower the peaks,
the easier to evaluate the spectrum and the quantitative analysis is significantly
improved. An illustration of the principle is shown in fig. 2.7.

B0ẑ

54.73◦

z

Figure 2.7: Illustration of HR-MAS MRS, where the sample is spun around an axis at an
angle of 54.7◦ with respect to the magnetic field B0.
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2.5.3 Pulse sequences

There are several different sequences available for MR experiments, and the infor-
mation one can obtain from each of them varies significantly, thus it is necessary
to choose the sequence best suited for the characteristics of interest.

NOESY

1D and 2D Nuclear Overhauser Effect Spectroscopy (NOESY) is a homonuclear
technique suitable for measuring cross-relaxation rates from 1H in close proxim-
ity to other 1H. In this method, the Nuclear Overhauser Effect (NOE) is used
to measure correlations caused by transfer of spin polarisation by cross relax-
ation through intermolecular spin-lattice relaxation paths(51, 52) during mixing.
NOESY is commonly used to study molecular structures.

The fundamental NOESY sequence is composed of three 90◦ pulses. The first
pulse induces transversal magnetisation that evolves in a T1 period. Further, an-
other 90◦ pulse induces longitudinal magnetisation and in the following NOE mix-
ing period, cross-relaxation occurs. Finally, a 90◦ pulse creates transverse magneti-
sation for detection. An example spectrum from a NOESY-experiment is show in
fig. 2.8 A).

1D NOESY applies selective inversion or saturation to one peak and detects the
NOE elsewhere. The sequence efficiently suppresses solvent signal, and McKay(53)
provides a comprehensive review of 1D NOESY, discussing the importance and
subtleties of the pulse sequence as well as outlining the benefits and drawbacks.

CPMG

Carr-Purcell-Meiboom-Gill (CPMG) is a pulse sequence that consists of succes-
sive 180◦ pulses following a 90◦ pulse at time intervals separated by 2τ . The se-
quence exploits the SE effect to cancel the dephasing effect from effects other than
the stochastic FID. At intervals of period 2τ following the first inversion pulse,
the individual phases refocus and generate a transient peak in the signal. The am-
plitude decay between successive peaks measures the T2 rate. This allows for the
inspection of T2 relaxation times in the sample (T2-filtering). In addition, transver-
sal diffusion can be studied by varying the delay τ (54). An example spectrum from
a CPMG-experiment is show in fig. 2.8 B).



2.5. Magnetic resonance spectroscopy 18

11.522.533.544.55

ppm

NOESY

11.522.533.544.55

ppm

CPMG

A)

B)

Figure 2.8: Example spectra from 1H HR-MAS MRS acquisition using A) NOESY and
B) CPMG pulse sequences.

JRES

J-resolved (JRES) is a hetero- and homonuclear experiment that separates the J-
coupling from the chemical shift for multiplets by detecting the multiplet splitting(55).
The experiment is able to detect and represent chemical shift and multiplicity in
two dimensions, simplifying the analysis of complicated patterns by providing
separation of multiplets in two axes.

The basic JRES sequence consists of a single 90◦ pulse to induce transversal mag-
netisation before the variable mixing time evolves the spins through chemical cou-
pling and J-coupling. After half of the period, a 180◦ pulse is applied. This re-
verses the effect of the chemical shifts, but not the J-coupling at the end of mixing,
at which the decay acquisition starts. (56) An example spectrum from a JRES-
experiment is show in fig. 2.9. It has found applications in metabolomics(57).
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A) B)

C)

Figure 2.9: All three images (A)-C) are of the same 2D JRES spectrum, and illustrates
how one can adjust the amount of information that is visible.

2.6 Spectral preprocessing methods

2.6.1 Asymmetric least squares baseline correction

Asymmetric Least Squares (ALS) uses a penalised weighted least squares ap-
proach to minimise systems of the form

argmin
x

||diag(w)(Ax− y)||2 + λ2||Fx||2, (2.10)

where A is the design matrix, λ is the penalty parameter, w is weights vector, x
is the solution vector and y is the input vector. || · || denotes the Euclidean vector
norm and f(x) = Fx is a linear function of the solution vector, indicating the
cross-coupling between the solution components and giving rise to off-diagonal
elements characteristic for the type of penalty imposed on the system.

This type of least squares formulation is readily solved by sparse software on mod-
ern computers in many applications.

Asymmetric weighting schemes for this method have been proposed in order to do
baseline correction in spectrogram analysis. The idea is to use a switching weight

wi =

{

1− p xi < yi

p yi ≤ xi,
(2.11)
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where p is the asymmetry parameter combined with a Whittaker smoother with
second order differences penalisation(58). In this smoother, λ determines the
smoothness of the solution vector. This establishes a smooth baseline solution that
can be used to eliminate background noise in y. Due to the solution dependence of
the weighting factor, an iterative approach has to be employed. The feasibility and
rapid convergence of this baseline correction method has been demonstrated by
Eilers et al.(59) and we refer to Leslie R. Euceda et al.(60) for further discussion
of its use in HR-MAS spectroscopy.

2.6.2 Probabilistic quotient normalisation

Probabilistic Quotient Normalisation (PQN), or median-fold change normalisation
is a common method for normalising 1D Nuclear Magnetic Resonance (NMR)
spectra(61).

A set of n perfectly phased, shimmed and baseline corrected(i.e., non-biased) 1D
NMR spectra x can be expressed as

x = ACS+E, (2.12)

where S are the spectra as rows, A = diag{α1, α2, ..., αn} is a diagonal matrix of
dilution constants, C is the concentrations matrix and E is the noise matrix(62).
The objective is to obtain C from x, which requires an estimation of A−1,

C = A−1(x−E)S−1. (2.13)

One common method uses the total spectral integrals to find the dilutions that nor-
malise the concentrations(63). This method is hampered by spectra with an abun-
dance of a certain compound. The large peaks caused by these compounds impacts
the spectral integral, causing the computed concentrations from spectra with iden-
tical true concentrations outside the peak to appear variable. PQN circumvents this
by computing the signal ratio for each shift to a reference spectrum and normalis-
ing each spectrum by the median ratio across all the shifts. This greatly neutralises
the global dampening effect created by some overabundant compound in the sam-
ple and improves the concentration estimates.

2.6.3 Mean centred Pareto scaling

Prior to Multivariate Analysis (MVA), score transforms are often required. It is
common to shift the data to zero mean or median and scale by some value related
to the variance of the data.
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Pareto scaling(64) is an autoscaling MVA pretreatment method which normalises
the data through a z-scoring transformation by mean centring and scaling by the
square root of the standard deviation,

x̃ik =
xik − x̄k√

sk
, (2.14)

where xik is the i-th sample of the k-th variable, x̄k and sk is the mean and standard
deviation of variable k respectively and x̃ik score transformation. Many methods
exist for scoring data in preparation of MVA; Pareto scaling retains data structure,
reduces the relative importance of large features and is useful for enhancing small
and medium variations in the data(65).

2.7 Principal component analysis

Pearson(66) was the first to describe PCA in 1901, and since then it has been
further developed(67). It is an unsupervised MVA method for reducing the dimen-
sionality of large data sets and enhancing data patterns using variance metrics of a
set of multidimensional observations xi collected as row vectors in a tall matrix X .
The method projects the observations onto axes using a set of unit loading vectors
wk by the score transformation tik = wk ·xi in such a way that scores along axis k
inherits maximum variance from X under the constraint that the axis is orthogonal
to axes 1...k − 1. For axis k, the loading vector wk can be computed as

wk = argmax
||w||=1

wT X̂T X̂w, (2.15)

where X̂ = X −
∑k−1

i=1 Xwiw
T
i is the data set with the preceding k− 1 Principal

Component (PC)s removed.

A scores plot is an image visualising two PCs of a data set to identify clusters that
can be used as a basis for classification. Along with the scores plot it is useful to
display a loadings plot to visually inspect which linear combinations produce the
clusters.
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This chapter covers the experimental methods and data analysis protocols used
working with this project. Fig. 3.1 outlines the steps that were performed.

Harvest mouse urogenital system

Microdissect prostate

Sample preparation

HR-MAS experiment

Preprocessing of spectra

PCA

Peak integration

Figure 3.1: Outline of the experimental methods and data analysis that were part of this
project.

22
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3.1 Tissue samples

Tissue samples were obtained from both TRAMP and C57BL/6 (c57) mice. The
background strain of the TRAMP model is c57, and one can therefore expect them
to serve as a suitable healthy control. The mice were bred and housed at the Com-
parative Medicine Core facility, NTNU, St Olavs hospital, with unlimited access
to standard rodent food (SDS RM1) and water. Both the TRAMP and the c57 mice
are homozygote.

At the age of 32 ± 6 weeks (see table B.1 in the appendix for specifics) the mice
were anaesthetised using isoflurane (Baxter, Norway) before they were euthanized
by cervical dislocation. They were then dissected as shown in fig. 3.2 A-B, be-
fore the urogenital system was transferred into a dish (fig. 3.2 C-D), filled with
phosphate buffered saline (10 Oxoid Phosphate Buffered Saline Tablets, Thermo
Fischer Scientific Inc, USA dissolved in 1 l distilled water). The different lobes
and any tumours were separated through microdissection1. All samples were snap-
frozen in liquid nitrogen within 20 minutes, and stored in liquid nitrogen until they
were prepared for HR-MAS MRS.

1

2

3

4

A) B) D)

C)

Figure 3.2: A) shows a c57 mouse where 1 indicates the bladder and 2+3 are the two
testicles. The prostate is located behind these structures. B) is a TRAMP mouse with a
large tumour marked as 4, which covers the other anatomical structures that where visible
in the healthy control. C) shows a normal looking urogenital system of a c57 mouse, while
D) shows a urogenital system of a TRAMP mouse with a large tumour indicated by the
red arrow. All photos: Deborah Katherine Hill.

1Performed by Dr. Deborah Katherine Hill
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A two-tier grading system was used to classify samples from the TRAMP mice,
where the two grades that were used were WD or PD. Since histopathology of
the samples were not performed, this classification was based on how the prostate
looked while dissecting, and not through histological images as is common. When
visible tumours were present somewhere in the prostate, the samples were classi-
fied as PD. All other TRAMP mice were in this project classified as WD, as the
ages at termination implies that cancer will have developed (100% of TRAMP
mice develop cancer by 18 weeks of age(40)), though we might not always know
in which parts of the prostate. A total of n = 100 samples from 27 mice were
analysed, and how these were distributed between the different lobes and classifi-
cations is summarised in table 3.1. Histology will be performed on the HR-MAS
samples, but it was not possible to complete this within the time constraint of this
thesis.

Table 3.1: Overview of all the tissue samples from both the TRAMP and c57 mice. The
samples from the TRAMP mice is divided into the two cancer classifications Poorly Differ-
entiated (PD) and Well Differentiated (WD). Number of samples of LP = Lateral Prostate,
AP = Anterior Prostate, DP = Dorsal Prostate and VP = Ventral Prostate is listed for both
TRAMP and c57 mice. The tumour samples are from tumours in TRAMP mice that had
grown to such an extent that it was difficult to with certainty determine where they arose,
though the literature suggest that these PD tumours arise in the VP(43, 44).

TRAMP
PD WD c57 Sum

LP 3 10 9 22
AP 1 10 9 20
DP 3 13 9 25
VP 3 11 10 24
Tumour 9 9
Sum 19 44 37 100

3.2 Sample preparation

A work station custom built for HR-MAS MRS sample preparation, shown in
fig. 3.3, was used to prepare one sample at a time. The work station is made
of polystyrene foam with a hole in the middle. Liquid nitrogen is poured into
this hole to keep the sample frozen during sample preparation, preventing it from
degrading. A metal plate is cooled down by soaking it in liquid nitrogen before it
is placed directly on top of the hole, and a plexiglass plate is covering the rest of
the work station to prevent the nitrogen from evaporating. A disposable weighing
boat is then placed on top of the metal plate.
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Figure 3.3: Workstation designed for HR-MAS MRS sample preparation. The
polystyrene foam holds liquid nitrogen, and a cooled metal plate is placed on top. Plex-
iglass covering the rest of the work station prevents the nitrogen from evaporating. This
ensures that degradation of the samples does not occur by keeping the sample frozen.

Into a disposable insert, ∼ 6µl of a deuterium solution, consisting of deuterium
oxide (D2O 99.9%, CDN Isotopes, Quebec, Canada) mixed with sodium formate
(HCOONa 99.998%, Sigma-Aldrich Chemie GmbH, Steinheim, Germany) to a
concentration of 25mM HCOONa, were transferred. The samples were then cut to
fit the inserts using a scalpel, as illustrated in fig. 3.4 A). The weight of the samples
were noted (mean weight were 9.1± 2.4 mg) in a lab sheet (fig. A.1 in appendix).
The weights of both the samples and the added deuterium solution are listed in
table B.1 in the appendix. The insert containing tissue and deuterium solution, as
shown in fig. 3.4 B), was sealed before it was transferred into a rotor (fig. 3.4 C)).
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A) B)

C)

Figure 3.4: A) Picture of how the samples were cut to fit into the inserts. Photo: Geir
Mogen/NTNU. B) An insert containing tissue sample and deuterium solution, ready to be
put into a rotor. Photo: Silje Løveng C) A rotor (white) next to an empty insert. Photo:
Tonje Haukaas.

3.3 HR MAS MRS experiments

A Bruker Avance DRX600 spectrometer (Bruker BioSpin GmbH, Germany) equipped
with a 1H/113C MAS probe was used for the 1H HR-MAS MRS experiments. The
rotors were transferred by a Sample PRO (Bruker BioSpin GmbH, Germany) into
the magnet where they were spun at 5 kHz and kept at 5◦C.

Tuning and matching were performed for each sample to ensure a sharp and cen-
tred wobble signal. The magnet was locked to the signal from the D2O solution
surrounding the tissue in order to prevent drift in in the spectra.

Shimming was performed by adjusting the current through the shim coils until the
shape and width of the formate peak was satisfactory. Average shim was 1.13 ±
0.48 Hz.

P1 (the 90◦ pulse) was determined by estimating a value for 4 · P1, which equals
a 360◦ pulse. Changing this value until the signal was ∼ 0 gave the P1. O1 was
also adjusted for each sample to achieve good suppression of the water signal. This
was done by trial and error until the water signal was sufficiently weak. Both P1
and O1 are listed for all samples in table B.1 in the appendices.

NOESY (noesygppr1d, Bruker Biospin, GmbH, Germany), CPMG (cpmgpr1d,
Bruker Biospin, GmbH, Germany) and JRES (jresgpprqf, Bruker Biospin, GmbH,
Germany) spectra were acquired for all samples, with parameters specified in table
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3.2 and the pulse sequence diagrams in fig. 3.5 A)-C), which were obtained from
the built in PulseProg feature in TopSpin 3.1 (Bruker BioSpin, GmbH, Germany).
The average time spent inside the magnet was 100± 27 min.

Table 3.2: Overview of HR-MAS MRS acquisition parameters (D = relaxation delay,
AQ = acquisition time, NS = number of scans and SW = spectral width) for all three
pulse sequences. JRES parameters are presented as F2/F1, with F2 being the horizontal
axis and F1 the vertical axis in the JRES spectra.

Pulse sequence D (s) AQ (s) NS SW (ppm)
NOESY 4.00 2.74 128 -10 to 20
CPMG 4.00 3.07 256 -5 to 15
JRES 2.00 0.41/0.26 1 -3.5 to 13/-0.25 to -0.38

A)

B)

C)

FID

FID

FID

Figure 3.5: Pulse sequence diagrams with time intervals and FIDs indicated.A) The
NOESY experiment. B) The CPMG experiment. C) The JRES experiment.
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3.4 Preprocessing of data

Preprocessing needs to be performed in order to reduce the effects that any instru-
mental or experimental artefacts will introduce. In TopSpin 3.1 (Bruker BioSpin,
GmbH, Germany) automatic phase correction was applied on all spectra. MAT-
LAB R2016a (The MathWorks, Inc., USA) was used for the rest of the prepro-
cessing.

For this project the CPMG spectra were chosen, as this will reduce the effect of
larger molecules such as lipids with its T2 filtering, enabling easier detection of
smaller molecules.

First step in the preprocessing was shifting the spectra with respect to the creatine
peak to achieve better alignment. The spectra were then cut to a suitable Region of
Interest (ROI) where the metabolites one wanted to study would be located. Based
on similar experiments previously performed(36)(68), the ROI was set to 1.2−4.7
ppm.

The creatine and glycine peaks were used as reference when creating the ppm
scale, which was done by assigning these two peaks to the ppm values 3.03 and
3.55, respectively.

Baseline correction was done in two steps. First, the lowest point in all the spec-
tra was set to zero, and then ALS correction was performed on all spectra. The
smoothing parameter γ was set to 10−7, and the asymmetry parameter p was set
to 10−5.

Ethanol was detected as a contaminant in some spectra. One of the peaks from
ethanol were cut of when the ROI was chosen, and the second peak at ∼ 3.63−3.67
ppm was removed by eliminating the data at this interval.

To improve the peak alignment, icoshift(69) was applied for the data of c57 sam-
ples. When icoshift was tested with the data set for all n = 100 samples, the
algorithm introduced glaring artefacts such as evident misalignment due to large
variations within the dataset. Within the c57 samples there were less variations,
and the application of icoshift gave improved alignment of the metabolite peaks.
In the analysis of the data, peak alignment was therefore not used when studying
all n = 100 samples at once, but for analysis investigating only the c57 samples,
the icoshifted c57 data set was used.

Identification of the metabolites within the spectra was mostly done based on ex-
isting literature from similar experiments(36)(68) and on information from the Hu-
man Metabolome Database(70), but Chenomx Profiler (Chenomx, Inc,. Edmon-
ton, Canada) was also used.
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Built-in functions of the PLS Toolbox (Eigenvector Research, Inc., Washington,
USA) for MATLAB were used to perform the normalisation and scaling. PQN
was chosen as this has been proven to be a robust method for metabonomics
studies(61). Pareto scaling was then applied, as this scaling method will affect
dominating metabolites more than the ones that are less abundant(71). This will
prevent these dominating metabolites to be the only ones showing in the results
of the PCA, as the variations in the less abundant metabolites will be accentuated.
Despite this accentuating, one does not risk to amplify any noise in the spectra with
pareto scaling(64), and the shape of the data will be close to the original one(71).
The data was also mean-centered to reduce the multicolinearity and get a better fit
of the model(72).

3.5 Spectral analysis

3.5.1 Principal component analysis

The PLS Toolbox was used for the PCA. Analysis was performed on the complete
data set with all n = 100 samples, and for c57 and TRAMP mice separately.
Built-in cross-validations in the PLS toolbox were found to be a good choice, and
contiguous blocks with number of splits s = 5 were therefore used.

Scores plots for all n = 100 samples combined were made both with labels of
classification (c57, WD, PD) and of lobes, as well as both of these labels com-
bined. Scores plots for c57 were labelled with lobes, and for TRAMP the labels
were the lobes and tumour.

3.5.2 Quantification - Peak integration

Relative concentrations of metabolites that were prominent in the PCA were found
through peak integration, which was performed in MATLAB. For the metabolites
that show up as more than one peak in the spectra, the mean of the integration
across the different peaks was used. Even though lactate have two peaks within
the ppm range that was chosen as the ROI for this project, only the peak at ∼ 4.1
ppm was included, as the other peak at ∼ 1.35 ppm was overlapping with lipids.

3.6 Histology

Histology images of the different lobes of both healthy and diseased mouse prostate
were obtained from previously Haemotoxylin Eosin Saffron (HES) stained tissue
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sections(43)2, as histology of the actual tissue samples used in this thesis was
not performed at the time of writing. This was done in order to look for differ-
ences in the luminal spaces of diseased prostate, as are found in healthy mouse
prostate(14). Any variations in citrate concentrations of different lobes may be
explained by such differences, as this is where citrate is accumulated(73).

For minimum 48 hours, the Genitourinary (GU) tract had been fixed in 10% forma-
lin before it was embedded in paraffin. Tissue sections were then cut to a thickness
of 4µm. Using an automatic slide-stainer (Sakura Tissue-Tek Prisma, the Nether-
lands), the tissue sections were then stained with hematoxylin (ChemiTeknik, Nor-
way), erythrosin (Sigma-Aldrich, Norway) and saffron (ChemiTeknik, Norway).

An Olympus BX41 microscope (Olympus Optical Co. (Europa), GMBH, Ham-
burg, Germany) with 10x magnification was used for the acquisition of the images.
Images were acquired of all four lobes from both a c57 mouse (31.3 weeks at ter-
mination), from a TRAMP mouse with WD PCa (31.6 weeks at termination), and
from a PD tumour of a TRAMP mouse (13.7 weeks at termination, tumour in VP).

2Performed by Dr. Deborah Katherine Hill.



4 | Results

In this section the results will be presented, first with example spectra from differ-
ent samples, and then with figures showing the outcome of the PCA and the peak
integration.

4.1 Spectral data

The spectra with highest correlation within the classes PD, WD and c57 are pre-
sented in fig. 4.1. The PD spectrum is of a tumour centre, the WD is from an AP
and the c57 is a DP. Differences in the metabolite peaks are evident. In fig. 4.2
A)-C) the spectra with the highest correlation within the DP and VP samples of
the PD, WD and c57 are plotted, and this figure too is included to show differences
in the spectra. Fig. 4.3 shows a representative spectrum where metabolites have
been assigned to the corresponding peaks, with the metabolites listed in table 4.1.
The spectrum is obtained from a VP in a c57 mouse.

31
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Figure 4.1: The best corresponding spectra from each of the three classes PD, WD and
c57 plotted together. The PD spectrum is of a tumour centre, the WD is from an AP and
the c57 is a DP. Baseline correction, shifting of spectra with respect to creatine peak and
removal of ethanol (3.63− 3.67 ppm) have been performed on all the spectra.
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Figure 4.2: The best corresponding spectra of DP and VP samples from each of the three
classes A) PD, B) WD and C) c57. Baseline correction, shifting of spectra with respect to
creatine peak and removal of ethanol (3.63 − 3.67 ppm) have been performed on all the
spectra.
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Figure 4.3: A representative spectrum with the main metabolites assigned, with the as-
signed metabolites listed in table 4.1. The spectrum is obtained from a VP sample of a c57
mouse. Baseline correction, shifting of spectra with respect to creatine peak and removal
of ethanol (3.63− 3.67 ppm) have been performed on all the spectra.

Table 4.1: List of the metabolites that are assigned in the spectrum in fig. 4.3.

Peak Metabolite Peak Metabolite
1 Lactate 9 Choline
2 Alanine 10 Phosphocholine
3 Acetate 11 GPC
4 Glutamate 12 Taurine
5 Glutamine 13 Myo-inositol
6 Succinate 14 Glycine
7 Citrate 15 β-glucose
8 Creatine

4.2 Principal Component Analysis

This section will present the results of the PCA of the whole dataset and of TRAMP
and c57 separated. Both scores plot and loadings plot will be shown for all relevant
PCs. In PC5 and higher the variance within the data sets were too small to tell if
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the variations were random, and no clear grouping could be seen. These PCs were
therefore not included in in this exploratory project.

All samples combined

Scores plots and loadings plots for the PCA that included all n = 100 samples are
shown in subsection 4.2.1. The samples were first labelled by cancer classification
(PD, WD and c57). Fig. 4.4 A) shows the scores plot for the first and second PCs,
while the corresponding loadings plots are shown in B)-C), respectively. In the
loadings plots, the horizontal axis is the same ppm scale as the original data sets
had. The peaks that are at positive PC values in the loadings plots represent the
metabolites that are high in the samples located at positive values for the same PC
in the scores plot. In fig. 4.5 A) results of the third and fourth PCs are plotted, with
the loadings plots for PC3 and PC4 in fig. 4.5 B)-C). Scores plot for PC2 and PC3
combined are given in fig. 4.6 A), while the combination of PC2 and PC4 can be
seen in fig. 4.6 B). The same results were also labelled after which prostate lobe
the samples were from, and fig. 4.7 A)-B) and 4.8 A)-B) shows these scores plots.
A third way of labelling the samples are shown in fig. 4.9, where the samples were
labelled both with prostate lobe as well as if its TRAMP or c57. The loadings plots
accompanying all these scores plots are the same as for the other scores plots (fig.
4.4 B)-C) and 4.5 B)-C) where all n = 100 samples are included. Fig. 4.10 shows
an example of another type of loadings plot, in which the loadings of two PCs are
combined, that were used as a complement to the previously mentioned type of
loadings plot. In this figure it is the PC2 and PC4 that are plotted. The most
prominent metabolites are assigned directly in the figure. These loadings plots
were used to identify the metabolites that caused the largest variations, and they
make it easier to identify which samples that correlates with these metabolites. In
these loadings plots, the metabolites at a certain location in the loadings plot are
high in samples that are located in the corresponding area in the scores plot.
Lobes in c57

The results of the PCA that was performed on only c57 samples to investigate dif-
ferences between the different prostate lobes are given in subsection 4.2.2. The
scores plot for the two first PCs along with their loadings plots are shown in fig.
4.11 A)-C). The scores plot for the third and fourth PCs are given in fig. 4.12 A),
with the loadings plots of the two PCs in fig. 4.12 B)-C). Fig. 4.13 A) and B)

shows the scores plots for PC2 combined with PC3 and PC2 combined with PC4,
respectively. The loadings plots shown for the other scores plots of c57 samples
also corresponds to these last two scores plots.
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Lobes/tumour in TRAMP

In subsection 4.2.3 the results of the PCA of the TRAMP samples are presented.
Scores plot for PC1 and PC2 with corresponding loadings plots are shown in fig.
4.14 A)-C), and scores plot for PC3 and PC4 are shown in fig. 4.15 A) with
their loadings plots in B)-C). Finally, fig. 4.16 gives the scores plot for A) PC2
combined with PC3 and B) PC2 combined with PC4. The loadings plots in the
two previous figures for the TRAMP samples applies for these two last scores
plots as well.
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4.2.1 Figures from the PCA of all samples
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Figure 4.4: A) The scores plot for all n = 100 samples plotted with their scores on PC1
along the horizontal axis and PC2 on the vertical axis. The samples are labelled as c57
and the two classes of TRAMP, where the PD samples are shown as red diamonds, WD
samples are the green squares and the blue pyramids are the c57 samples. The dotted
circle shows the 95% confidence level, which indicates the 2 standard deviations limit in
the inherited variance. B) shows the loadings plot for PC3 and C) shows the loadings plot
for PC4. The metabolite peaks pointing in the direction of positive PC x are high in the
samples that are located at positive PC x in the scores plot, and the peaks at negative PC x
are high in samples at negative PC x in the scores plot.
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Figure 4.5: A) The scores plot for all n = 100 samples plotted with their scores on PC3
along the horizontal axis and PC4 on the vertical axis. The samples are labelled as c57
and the two classes of TRAMP, where the PD samples are shown as red diamonds, WD
samples are the green squares and the blue pyramids are the c57 samples. The dotted
circle shows the 95% confidence level, which indicates the 2 standard deviations limit in
the inherited variance. B) shows the loadings plot for PC1 and C) shows the loadings plot
for PC2. The metabolites pointing in the direction of positive PC x are high in the samples
that are located at positive PC x in the scores plot, and the peaks at negative PC x are high
in samples at negative PC x in the scores plot.
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Figure 4.6: The figure shows two different scores plot with all n = 100 samples, labelled
by classification. A) shows the PC2 along with PC3, while B) is the scores plot for PC2
and PC4. The PD samples are shown as red diamonds, WD samples are the green squares
and the blue pyramids are the c57 samples. The dotted circle shows the 95% confidence
level, which indicates the 2 standard deviations limit in the inherited variance.
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Figure 4.7: The figure shows two different scores plot with all n = 100 samples, labelled
by prostate lobe. A) shows the PC1 along with PC2, while B) shows PC3 and PC4. The AP
samples are plotted as red diamonds, the DP samples are the green squares, LP samples
are the blue pyramids, VP samples are the turquoise nablas while the pink stars are the
tumour samples. The dotted circle shows the 95% confidence level, which indicates the 2
standard deviations limit in the inherited variance.
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Figure 4.8: The figure shows two different scores plot with all n = 100 samples, labelled
by prostate lobe. A) shows the PC2 along with PC3, while B) shows PC2 and PC4. The AP
samples are plotted as red diamonds, the DP samples are the green squares, LP samples
are the blue pyramids, VP samples are the turquoise nablas while the pink stars are the
tumour samples. The dotted circle shows the 95% confidence level, which indicates the 2
standard deviations limit in the inherited variance.
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Figure 4.9: The scores plot for all n = 100 samples plotted with their scores on PC2 along
the horizontal axis and PC4 on the vertical axis. The samples are labelled by prostate lobe,
where the TRAMP samples are separated from the c57 samples by being plotted as only
the contours of the markers, while the c57 samples are coloured in. The AP samples
are plotted as red diamonds, the DP samples are the green squares, LP samples are the
blue pyramids, VP samples are the turquoise nablas while the pink stars are the tumour
samples. The dotted circle shows the 95% confidence level, which indicates the 2 standard
deviations limit in the inherited variance.

Figure 4.10: Loadings plot of PC2/PC4 for the PCA performed on all n = 100 samples.
The colouring represent ppm, and the metabolites at a certain location in the loadings plot
are high in the samples that are located at the corresponding area in the scores plots with
PC2 and PC4 (fig. 4.6 B), 4.8 B), 4.9). The most prominent metabolites in the plot are
labelled directly in the figure.
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4.2.2 Figures from the PCA of c57 samples
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Figure 4.11: A) The scores plot for the PCA of only the c57 samples plotted with their
scores on PC1 along the horizontal axis and PC2 on the vertical axis. The samples are
labelled by prostate lobe, where the AP samples are plotted as red diamonds, the DP
samples are the green squares, LP samples are the blue pyramids and the VP samples are
the turquoise nablas. The dotted circle shows the 95% confidence level, which indicates
the 2 standard deviations limit in the inherited variance. B) shows the loadings plot for PC1
and C) shows the loadings plot for PC2. The metabolite peaks pointing in the direction of
positive PC x are high in the samples that are located at positive PC x in the scores plot,
and the peaks at negative PC x are high in samples at negative PC x in the scores plot.
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Figure 4.12: A) The scores plot for the PCA of only the c57 samples plotted with their
scores on PC3 along the horizontal axis and PC4 on the vertical axis. The samples are
labelled by prostate lobe, where the AP samples are plotted as red diamonds, the DP
samples are the green squares, LP samples are the blue pyramids and the VP samples are
the turquoise nablas. The dotted circle shows the 95% confidence level, which indicates
the 2 standard deviations limit in the inherited variance. B) shows the loadings plot for PC3
and C) shows the loadings plot for PC4. The metabolite peaks pointing in the direction of
positive PC x are high in the samples that are located at positive PC x in the scores plot,
and the peaks at negative PC x are high in samples at negative PC x in the scores plot.



4.2. Principal Component Analysis 45

-1 -0.5 0 0.5 1

Scores on PC 2 (23.78%)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

S
c
o
re

s
 o

n
 P

C
 4

 (
2
.2

7
%

)

Scores plot PC 2/PC 4

AP

DP

LP

VP

95% Confidence Level

-1 -0.5 0 0.5 1

Scores on PC 2 (23.78%)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

S
c
o
re

s
 o

n
 P

C
 3

 (
1

5
.1

7
%

)

Scores plot PC 2/PC 3

AP

DP

LP

VP

95% Confidence Level

A)

B)

Figure 4.13: Two different scores plot for the PCA of only the c57 samples, labelled by
prostate lobe. A) shows the PC2 along with PC3, while B) shows PC2 and PC4. The AP
samples are plotted as red diamonds, the DP samples are the green squares, LP samples are
the blue pyramids and the VP samples are the turquoise nablas. The dotted circle shows
the 95% confidence level, which indicates the 2 standard deviations limit in the inherited
variance.
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4.2.3 Figures from the PCA of TRAMP samples
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Figure 4.14: A) The scores plot for the PCA of only the TRAMP samples plotted with
their scores on PC1 along the horizontal axis and PC2 on the vertical axis. The samples
are labelled by prostate lobe, where the AP samples are plotted as red diamonds, the DP
samples are the green squares, LP samples are the blue pyramids, the VP samples are
the turquoise nablas and the pink stars are the tumour samples. The dotted circle shows
the 95% confidence level, which indicates the 2 standard deviations limit in the inherited
variance. B) shows the loadings plot for PC1 and C) shows the loadings plot for PC2. The
metabolite peaks pointing in the direction of positive PC x are high in the samples that
are located at positive PC x in the scores plot, and the peaks at negative PC x are high in
samples at negative PC x in the scores plot.
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Figure 4.15: A) The scores plot for the PCA of only the TRAMP samples plotted with
their scores on PC3 along the horizontal axis and PC4 on the vertical axis. The samples
are labelled by prostate lobe, where the AP samples are plotted as red diamonds, the DP
samples are the green squares, LP samples are the blue pyramids, the VP samples are
the turquoise nablas and the pink stars are the tumour samples. The dotted circle shows
the 95% confidence level, which indicates the 2 standard deviations limit in the inherited
variance. B) shows the loadings plot for PC3 and C) shows the loadings plot for PC4. The
metabolite peaks pointing in the direction of positive PC x are high in the samples that
are located at positive PC x in the scores plot, and the peaks at negative PC x are high in
samples at negative PC x in the scores plot.
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Figure 4.16: Two different scores plot for the PCA of only the TRAMP samples, labelled
by prostate lobe. A) shows the PC2 along with PC3, while B) shows PC2 and PC4. The AP
samples are plotted as red diamonds, the DP samples are the green squares, LP samples are
the blue pyramids and the VP samples are the turquoise nablas. The dotted circle shows
the 95% confidence level, which indicates the 2 standard deviations limit in the inherited
variance.

4.3 Peak Integration

The relative concentrations of metabolites that were found through integration
across chosen peaks of the spectra are presented as bar plots in this section. Each
bar represents the mean concentration within the given classes and lobes, with
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empirical standard deviation indicated with error bars.

Relative concentrations of chosen metabolites (lactate, glycine, alanine, taurine,
GPC, phosphocholine and citrate), based on the most prominent metabolites in the
PCA, are shown in fig. 4.17 A) for all c57, PD and WD samples. The metabolites
with the lowest concentrations in this figure are plotted together in 4.17 B) to better
visualise the differences between the bars.

In fig. 4.18 A) the relative concentrations of the same metabolites as previously
listed are shown for each lobe of only the c57 samples, and in B) the ones with
lowest concentrations are plotted again to better see the variances in bar height.

The five metabolites that showed the most variations in concentrations between
different lobes in fig. 4.18 are plotted again in fig. 4.19 A)-E), this time for both
c57, WD and PD and for all four lobes. The PD tumour samples are excluded.
A reminder of the mouse prostate anatomy can be seen in fig. 4.19 F). Fig. 4.20
shows the relative concentrations of these five metabolites for PD tumour samples,
with c57 VP samples for comparison as it is suggested that this is where the PD
tumours originate(43)(74)(44).
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Figure 4.17: A) Relative concentrations of metabolites within PD, WD and c57 samples,
found through integration across the spectra, of important metabolites in different classes
of samples. Blue bars represent the data for c57, green bars are the WD samples, and
yellow are PD samples. Corresponding standard deviation is plotted along with all bars.
The metabolites that are plotted are lactate (lac), glycine (gly), alanine (ala), taurine (tau),
glycerophosphocholine (GPC), phosphocholine (PC), choline (cho), creatine (crea) and
citrate (cit). B) The metabolites with lower concentrations in the top spectra plotted to
better see the variations between the different lobes.
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Figure 4.18: A) Relative concentrations of important metabolites in the prostate lobes of
c57 mice, found through integration across the spectra. The mean value for AP samples
are shown in dark blue, DP samples are lighter blue, LP samples are green and yellow
bars are the VP samples. Corresponding standard deviation is plotted along with all bars.
The metabolites that are plotted are lactate (lac), glycine (gly), alanine (ala), taurine (tau),
glycerophosphocholine (GPC), phosphocholine (PC), choline (cho), creatine (crea) and
citrate (cit). B) The metabolites with lower concentrations in the top spectra plotted to
better see the variations between the different lobes.
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Figure 4.19: Relative concentrations of metabolites within the different prostate lobes of
PD, WD and c57 mice, found through integration across the spectra, of important metabo-
lites in different lobes of all three classes. PD tumour samples are excluded. Blue bars
represent the mean concentration for c57, green bars are the WD samples, and yellow are
PD samples. Corresponding standard deviation is plotted along with all bars. The metabo-
lites that are plotted are A) lactate (lac), B) citrate, C) glycerophosphocholine (GPC), D)

phosphocholine (PC) and E) choline. In F) an illustration of the mouse prostate anatomy
is shown.



4.4. Histology 53

lac cit GPC
PC cho

Relative metabolites tumour

tumour

c57 VP

Figure 4.20: Relative concentrations of metabolites in PD tumour (pink) compared to
c57 VP (yellow), found through integration across the spectra. Corresponding standard
deviation is plotted along with all bars. The metabolites that are plotted are lactate (lac),
citrate (cit), glycerophosphocholine (GPC), phosphocholine (PC) and choline (cho).

4.4 Histology

Histology images that were obtained from a previous study on TRAMP and c57
mice are presented in this section. Representative images of the four lobes of
the prostate in a TRAMP mouse are shown in 4.21 A)-D), and an image of a PD
tumour can be seen in 4.21 E). Images of the four different lobes from a c57 mouse
are shown in fig. 4.22 A)-D).
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Figure 4.21: Histology images of HES stained tissue sections from TRAMP mice. A) is
the AP, B) is the DP, C) is the LP and D) is the VP. All four slices are from the same
mouse with PCa classified as WD. E) shows an image of a PD tumour from a different
mouse.
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Figure 4.22: Histology images of HES stained tissue sections from the four different lobes
of the prostate in a c57 mouse. A) shows the AP, B) shows the DP, C) is the LP and D) is
the VP.
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5.1 Interpretation of figures from PCA

In all the loadings plots for PC1 (fig. 4.4 B), 4.11 B), 4.14 B)) lipid signals domi-
nate for positive PC1 values, while close to all other metabolites that do not overlap
with these lipids are located below zero, which makes PC1 hard to use for anything
constructive. It is difficult to deduce anything useful from the lipid signals, because
the signals could originate from contamination of the prostate samples with subcu-
taneous fat that was not completely removed during the microdissection. Looking
at the scores plots, the samples seem quite evenly distributed along the PC1 axis,
though the PD samples seem to be less spread out. This substantiates the theory of
some subcutaneous fat being included in the samples, as avoidance of including fat
is easier in relation to tumours because they are more distinct, in addition to some
of the samples being taken from the centre of a tumour far from any surrounding
fat.

5.1.1 Cancer and non-cancer

The remaining PCs show some clear trends in the data. For PC2 there are some
definite clustering of the PD samples below zero (fig. 4.4 A), and while WD and
c57 samples are partly overlapping, c57 are definitely higher. Looking at the load-
ings plot in fig. 4.4 C), this implies that c57 are high in myo-inositol and phos-
phocholine, PD samples are high in lactate, alanine, taurine and glycine, while the
WD samples should have levels of these metabolites that are somewhere between.

For the loadings plot of PC3 (fig. 4.5 B)), two metabolites stand out; GPC for
positive scores and phosphocholine for negative. In the scores plot in 4.5 A), all PD
samples are close to zero, but slightly to the negative side, along the PC3 axis. The
WD samples are a bit more spread, while the c57 samples are all spread out from
the lowest to the highest along PC3. The content of GPC should therefore be a bit
lower than the phosphocholine levels for the PD samples, while the concentrations

56
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of the two metabolites will vary more for both WD and c57 samples. .

Scores on PC4 is also varying within the classifications, but a clear trend is seen
with the c57 samples tending to be low on PC4, WD samples are a bit higher, and
PD scores are the highest. Citrate is dominating below zero in the loadings plot
in C), and will therefore be much higher in c57 than for the other two. Lactate,
alanine, creatine, taurine and glycine are important for higher PC4 scores, which
mean they are higher in WD and highest in PD.

Fig. 4.6 shows the same trends as have been described, but it reveals that PC2/PC3
clusters PD samples very well, while PC2/PC4 separates all three classes some-
what better. This suggests that the metabolites associated with PC3, in combina-
tion with the PC2 metabolites, are more important for finding features that sep-
arates PD cancer from both WD and the healthy prostate of c57 mice, while the
dominating metabolites in PC4 will help separating all three types nicely, but with-
out a clustering that is as obvious as the one of the tumour samples in the PC2/PC3
combination.

5.1.2 Lobes and tumours

In fig. 4.7 A)-B) it becomes evident that the different lobes and tumour samples are
quite different. A clear clustering of the tumour samples can be seen at low PC2
scores in A, meaning that these samples have the highest levels of the metabolites
from the loadings plot (lactate, alanine, taurine, glycine). The other lobes are
harder to separate nicely, though there are some clustering of VP samples close
to the tumour samples and there is a group of outliers of LP samples. In B) the
lobes are more separated, with all LP samples below zero on PC3, VP and tumour
samples lies close to zero. DP and AP samples varies a bit, but are tending to
higher values, in particular the AP samples. Levels of phosphocholine and GPC
varies therefore quite a lot for lobes and tumour. Along the PC4 axis, VP samples
are low and tumours are high, while the other lobes are located around zero. VP
samples are therefore higher in citrate than the others, while tumours are higher in
lactate, alanine, creatine, taurine and glycine.

When the samples are labelled with both lobe and c57/TRAMP in the scores plot
for PC2/PC4 in fig. 4.9, clustering of samples from same lobe and same mouse
model is seen, e.g. the LP samples from c57 that are all high on PC2, and VP
samples from c57 which are found at lower PC4 scores than the VP samples from
TRAMP.

The PCA of only the c57 samples show much of the same, where LP samples
are much higher on PC2 than the others (fig. 4.11), which indicates that they are
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high in phosphocholine. PC3 separates VP samples nicely from the others, and the
loadings plot in 4.12 B) tells that this is due to higher levels of citrate. AP samples
tend to be a bit higher on PC3 than the others (high in phosphocholine). In the
loadings plot for PC4 in fig. 4.12 C), citrate, taurine and glycine are dominating
for positive scores, where close to all VP samples are located along with a mix of
other lobes.

For the PCA of the TRAMP samples, fig. 4.14 A) too shows some differences
between the lobes along the PC2 axis, where tumour samples are lowest, AP sam-
ples are the highest, and the other ones lie quite close to each other. Cholines and
myo-inositol are high in samples at positive PC2 scores, and lactate, alanine and
taurine are in samples at negative scores. The scores plot of PC3/PC4 indicates
trends too, with the VP samples low on PC3 scores and tumours are high, with
the three other lobes overlapping at around zero. Lactate, alanine, creatine, taurine
and glycine are the metabolites which are high for positive PC3 score, and citrate
and cholines are high at negative scores. Taurine and glycine are dominating the
loadings plot for PC4 (fig. 4.15 C), which seems to separate AP and DP, while the
other lobes are varying around zero. The scores plot in fig. 4.16 A) shows a nice
clustering of both the AP samples, the tumour samples and the VP samples, while
the DP and LP samples are more overlapping. Similar trends are seen in fig. 4.16
B).

5.2 Interpretation of figures from peak integration

The bar plots substantiate what the scores plots in chapter 4.2 showed; that there
are differences in the metabolites both between non-cancer and the two cancer
classifications, and between the different lobes.

5.2.1 Cancer and non-cancer

Fig. 4.17 A)-B) shows that lactate, glycine, alanine, taurine and creatine are all
positively correlated with PCa, where the highest concentrations are seen in the PD
samples. Choline is highest in WD samples, and lowest in c57, but it can still be
said to be positively correlated with PCa as it is higher in for both of the two cancer
classifications than in c57. GPC, phosphocholine and citrate are all negatively cor-
related with PCa. This is partly consistent with existing literature(11)(10). Choline
has been found to be negatively correlated with PCa in TRAMP compared to c57.
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5.2.2 Mouse prostate lobes

The relative concentrations in c57 mice are clearly varying between the different
lobes, as fig. 4.18 shows. The concentrations of GPC and phosphocholine are
especially striking when looking at A), but looking at fig. B), lactate, citrate and
choline have some large variations too. There are also variations in the remaining
metabolites (glycine, alanine, taurine and creatine) that is worth noticing, as the
percentage differences between the lobes of these metabolites are quite high here
as well.

Variations in metabolite concentrations are also seen in TRAMP mice, see fig. 4.19
A)-E). An interesting feature that becomes visible in these plots is that metabolic
changes that is seen between c57 and the two cancer classifications all lobes are
included in the analysis are not necessarily the same within the four lobes. For
example, lactate is expected to be positively correlated with PCa, and that is the
case in both DP, LP and VP, but in AP samples it is actually negatively correlated.
The same can be seen for GPC, which should be negatively correlated, but in the
VP it is the opposite. For citrate, the VP is the only lobe which behaves exactly
as expected, while the others do not follow any obvious trends from healthy to the
most aggressive cancer (PD). The much higher concentrations of citrate in the VP
than in the other lobes can explain why the overall picture gives the impression
that citrate is negatively correlated with PCa, while in three of the four lobes that
trend is not that clear.

5.2.3 PD tumour

The concentrations of lactate and citrate in PD tumours are higher than in the VP
of c57 (fig. 4.20), which are consistent with what was found for the overall picture
in fig. 4.17 and previous findings(11).

It has been stated earlier that the choline phospholipid metabolism of PCa in
TRAMP mice is altered in a different way than in human disease(11) where the
cholines are positively correlated(36)(75), while a decrease of choline levels where
found for PCa in TRAMP mice. In fig. 4.20 the concentrations of GPC, phospho-
choline and choline are all elevated in PD tumours, in a similar way to human PCa.
This suggests that the choline phospholipid metabolism in PD tumours might be
different than in WD PCa, and the PD tumours might be a better fit to mimic
human PCa with respect to this particular metabolism. In the paper where they
conclude with reduced choline concentrations in association with TRAMP PCa,
the lobes from each prostate were chosen randomly, and the result of this will the
correspond to the results from fig. 4.17, where all lobes are combined.
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5.3 Consequences of detected differences

The gross standard deviations in the metabolite concentrations for all n = 100
samples in fig. 4.17 can to some extent be explained with the large variations in
concentrations within each lobe. For the bar plots where the lobes are separated,
however, there are some large standard deviations too. This implies, especially
if you look at it in relation to the scores plots from the PCA, that even within a
specific lobe there are large variations in metabolite levels. The citrate level in the
VP, for instance, may seem to vary a lot based on the standard deviations in both
fig. 4.18 B) and 4.19 B), and it could therefore be important to be careful not to
have too few samples included in further studies to prevent misinterpretations, as
the mean levels of the metabolites potentially can be greatly affected by natural
fluctuations within lobes. It is worth noting that these variations imply that an
increased number of samples n not will reduce the standard deviations, as the
standard deviations shown in these plots have their origin in inherent features of
the samples, intersample variability and uncertainty in measurement which will
be constant regardless of how many samples are included. However, n = 100
samples form a sound basis for testing hypotheses with strong statistical power as
the standard error in the group mean estimates will be low at this point(76).

The sometimes large variations in metabolite concentrations between the different
lobes of the prostate in both healthy c57 mice and in diseased TRAMP mice will
clearly effect the results of any studies involving the mouse prostate. E.g. the
effect of a PCa treatment which exploits a specific process within the cells might
be misinterpreted, as the effect of the treatment on the different lobes could be quite
different. It is important to at least be aware of these differences, and it might be
necessary to even focus the investigations on one specific lobe, or include all lobes
but keep them separate for the analysis of metabolite concentrations.

Since differences in the metabolite levels between the DP and LP have been de-
tected, it could be a mistake to combine these two lobes as the DLP. In the scores
plots from the PCA the two lobes are less separated than the other lobes, but some
of the plots separates even these two very well, such as in fig. 4.13. In combination
with the differences in metabolite concentrations from the peak integration, there
is little doubt that one should be careful with treating the DP and the LP as the
same with respect to their metabolite contents.

The variations between the lobes of the c57 mice also raises the question of what
one should consider as normal or healthy, particularly when one is using absolute
quantification. The absolute measure of a metabolite concentration can strongly
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depend on in which lobe the measurement is done, and it emphasises the need for
controlling which lobe one is analysing.

The differences between the WD PCa and the PD PCa will too have an impact on
any results, and the differences should be taken into consideration. The WD and
PD PCa might respond and these differences could support the suggestions of sub-
types within the TRAMP model(43, 44) where the PD tumours arise in one of the
subtypes, while a more slow development from PIN lesions to WD to PD cancer
defines another subtype.

5.4 Histology

HES stained tissue sections of the prostates are useful to help explain some of
the differences in metabolite levels that were detected on HR-MAS. This analysis
will be repeated on histology sections of the actual tissue that HR-MAS was per-
formed on in this thesis, but at the time of writing, the histology has not yet been
performed.

The histology images in fig. 4.22 A)-D) and 4.21 A)-E) show similar features as
previous investigations have shown in healthy mouse prostate(14). An obvious
difference between the four lobes and the tumour is the luminal space, which there
is more of inside the VP than in the other lobes. As citrate is accumulated in the
luminal space in human(73), a reason for the higher citrate levels in the VP might
be the size of the luminal space. When looking at the image of the tumour in fig
4.21 E), there is very little luminal space, meaning that there is less space left for
accumulating citrate. Altered metabolism may, and probably does, still count for
some of the differences in citrate concentrations though, and not only the changes
in the luminal space(73).

5.5 Comparison to human disease

All metabolites that were identified to be important for detecting differences be-
tween cancer and non-cancer in mice in the principal component analysis have
been found to play the same role in human disease(36). When investigating all
n = 100 samples at once, the same trends for which metabolites that are elevated
and which are down-regulated in PCa are seen in both human and mice, implying
that the metabolic changes are similar. As the different lobes are not always be-
having similarly though, it is interesting to see whether any of the lobes mimics
human PCa better than the others.

Based on what can be seen in fig. 4.17, the relative concentrations of the metabo-
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lites in the VP samples are the only ones that follow the same trends as human
PCa for all five metabolites. If it is correctly assumed that the PD tumour samples
were from tumours originating in the VP, the relative concentrations in fig. 4.20
adds even more weight to this, as the trends are the same here. The VP may there-
fore be the lobe that mimics the progression of human PCa best with respect to
the metabolic profiles. As the VP is considered to be the only lobe of the mouse
prostate without any human counterpart, this suggestion is surprising, but in con-
sequence all the more important.

5.6 Further perspectives

An important step forward would be to perform histopathology on all TRAMP
samples that were used for the HR-MAS MRS, especially on the ones that were
classified as WD, to confirm if there actually is cancer there and if the classifica-
tions are suitable. With this knowledge one can be even more certain about the
differences between the WD and PD cancers in TRAMP prostate.

As changes in the polyamines are associated with PCa, and therefore suggested
as a biomarker for the disease(26, 77, 78), investigation into these metabolites in
relationship to the c57 and TRAMP prostates will be interesting. To do so, the
NOESY spectra will have to be analysed, as the polyamines are not visible in the
CPMG spectra. Involving more metabolites in the integration for the different
lobes and PD tumour will also be interesting in order to improve the comparison
both between the lobes and between the cancer classifications.

Concentrations of metabolites are often treated in terms of ratios, such as the cit-
rate to creatine peak(10), the GPC to phosphocholine peak(79), or the choline to
creatine peak(80). Similar calculations would therefore faciliate comparison of
findings within the lobes with what is found in human disease.

Absolute quantification of the spectra could be performed to improve the compar-
ison to human PCa, as absolute concentrations for the progression of the disease
in humans are known(36). Absolute concentrations could also be used to inves-
tigate more closely which lobe of the mouse prostate that are more similar to the
human prostate, as the levels in the TRAMP mice might even be in a completely
different order in some or all of the lobes. For absolute quantification, the NOESY
spectra will have to be used, as the CPMG spectra are T2 filtered, which affects
the peak areas. The same HR-MAS MRS procedure as was performed during this
project will then be applied to a reference sample with known content of a certain
metabolite, which then can be used to quantify the spectra.

As the PQN and Pareto scaling are among the most widely used normalisation
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methods in preprocessing of MRS data, these methods were used in this project
as well. Investigations into the effect of different methods have though been per-
formed, where Quantile Normalisation(81, 82) and Histogram Matching(62) have
outperformed other commonly used methods. For the absolute quantification of
the metabolites one of these methods should therefore be applied instead.



6 | Conclusion

The overall trends for the PCa progression in mice are similar to what is found
in human disease, where metabolic changes are detected in relation to both en-
ergy and phospholipid metabolism. Lactate, alanine, creatine, glycine and taurine
are all positively correlated with the disease in both human and mice, and cit-
rate, GPC, phosphocholine and choline are negatively correlated. This implies
that TRAMP cancer is metabolically similar to human PCa, which suggests that
the model can provide clinically relevant information from studies that investigate
metabolic changes in prostate cancer, such as therapeutic effects.

Trends caused by the same metabolites as mentioned above are causing clustering
in the data also within the different lobes of the mouse prostate. Peak integration
revealed that the metabolite concentrations varies greatly between the four differ-
ent lobes of the mouse prostate, both for the c57 and the TRAMP mice. Special
care should therefore be taken when measuring metabolic changes in response to
e.g. treatments of PCa, as the differences in concentrations of metabolites may
lead to misinterpretation of the results. The differences between the DP and LP in
metabolite concentrations also imply that one should be careful with treating these
two lobes as the same, which have been common practice based on their similari-
ties in histology. Surprisingly, the VP seems to be the prostate lobe that mimics the
progression of PCa in humans best, despite being considered not to have a human
counterpart based on histology.

Histology images reveals that the luminal spaces the four lobes of the prostate in
TRAMP mice are similar to those of c57 mice, and the large differences in citrate
concentrations may partly be due to this.

Performing histopathology on the TRAMP samples that were used in this project
would be an useful addition to this project to validate the presence, and extent, of
cancer in all TRAMP samples, and to confirm if the classifications are suitable.

Using the NOESY spectra instead of the CPMG spectra, absolute quantification
and metabolite peak ratios can be calculated in order to improve comparison to
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human disease. Including more metabolites, such as the polyamines, is also of
great interest, as these are considered possible biomarkers of PCa. Applying the
Quantile Normalisation instead of other widely used methods will also improve
the analysis, as it has been proven to outperform other methods.

In summary, this work has uncovered some important considerations when using
mouse models of prostate cancer. While the TRAMP cancer shows metabolic sim-
ilarities to human PCa, there is also significant variation in the metabolic profiles
of different prostate lobes, both in TRAMP and healthy (c57) mice. The different
metabolic profiles of mouse prostate lobes have great implications for future stud-
ies that utilise mouse models of PCa, as the results of this thesis show that without
careful tissue selection, natural variations in metabolite levels between lobes may
be misleading when interpreting results.
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A | Lab sheet for HR-MAS MRS

experiments

Figure A.1: The layout of the sheet that was used to make notes during sample preparation
and HR-MAS MRS.
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B | Sample information and

parameters for the HR-MAS

MRS

The following table details sample information for the HR-MAS MRS experi-
ments.
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