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Abstract: This paper investigates the feasibility of using pseudospectral (PS) optimal control
in real-time path planning for marine surface vehicles in environments where both obstacles
and unknown disturbances are present. In particular, the simplified kinematic equations of an
underactuated marine surface vehicle exposed to unknown ocean currents are considered, and
the software package DIDO is used to compute the optimal path via PS optimization, initially
assuming the ocean current is zero. In that case, the resulting path is minimum-length (similar to
Dubins path) but not minimum-time. The main contribution concerns the addition of a nonlinear
observer, which estimates online the effects of the ocean current on the vehicle, and that of a
guidance system which generates appropriate reference trajectories in order to minimize the
position error and track the optimal trajectory successfully. It is shown that through occasional
replanning, according to the information about the ocean current parameters coming from the
observer, the updated path converges to the minimum-time path. Two different implementations
of the approach are presented and illustrated through numerical simulations.
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1. INTRODUCTION

Autonomous vehicles depend on their ability to exploit the
available knowledge of their environment and plan their
actions accordingly. In this context, for an underactuated
marine surface vehicle an important challenge is to plan
paths such that the vehicle accomplishes its mission in
a safe and efficient way. Among other things this in-
volves: a) considering the vehicle’s kinematic and dynamic
constraints, b) keeping a minimum distance (clearance)
from static and dynamic obstacles, and c) compensating
for unknown factors that are always present in real-life
applications and can be the cause for large position errors.
A lot of research has been dedicated to these three aspects
and several notable solutions are available in the existing
literature.

Often the first step is to determine a set of successive
waypoints on a given map, which are subsequently con-
nected resulting in a final path comprised of piecewise lin-
ear and/or curved segments. Designing paths that satisfy
kinematic and dynamic constraints is related to proper-
ties such as geometric continuity, parametric continuity,
minimum turning radius, and maximum parametric speed.
Second-order geometric continuity (denoted as G2) is a
prerequisite for curvature continuity, which ensures contin-
uous lateral acceleration, see also Tsourdos et al. (2011).
Second-order parametric continuity (denoted as C2) en-

sures smooth propagation of the path parameter along the
final path, a necessary property for operations that involve
temporal constraints and path/trajectory tracking. Inter-
estingly, it was shown by Barsky and DeRose (1989) that
two curves meet with nth-degree geometric continuity Gn

if and only if their arc length parametrizations meet with
Cn continuity. The minimum turning radius, or maximum
curvature, sets a limit on how small the turning circle
of the vehicle can be, whereas the maximum parametric
speed is related to the maximum speed with which the
vehicle can perform path tracking. In addition, quantities
such as path length and computational time required to
generate the path are very important in real-time appli-
cations. An overview of additional path properties and
evaluation criteria can be found in (Lekkas, 2014).

Most of the time, a path cannot satisfy all desired prop-
erties and the designer has to compromise and select the
one most fitting for a given task. For instance, Dubins
(1957) showed that the shortest path for a car-like ve-
hicle with prescribed minimum turning radius consists
of straight lines and circular arcs, however this path in-
cludes curvature discontinuities. Clothoids avoid the cur-
vature discontinuities but the computational cost is much
higher (Tsourdos et al., 2011). Fermat’s spiral segments
are curvature-continuous and very fast to compute (Lekkas
et al., 2013) but paths consisting of straight lines and
curved segments are not always the desired option, espe-



cially when environmental forces act on the vehicle and a
minimum-time approach is preferred. Natural cubic splines
are C2 but can introduce wiggling and zigzagging, hence
making the path longer and also more difficult to guarantee
collision avoidance.

There are several approaches to collision avoidance and
the works by LaValle (2006); Thrun et al. (2005); Choset
et al. (2005) are standard references in the field. Two main
approaches can be observed:

1) The aforementioned waypoint-based approach is to
place the waypoints in locations such that, when
connected by piecewise segments, the final path is
obstacle-free. Many methods have been used for
choosing the locations of the waypoints, such as prob-
abilistic methods (rapidly-exploring random trees,
probabilistic roadmaps, etc.), deterministic roadmap
methods (such as the Voronoi diagram) and others.

2) Optimization methods, where waypoints are not in-
volved at all. The equation describing the motion
control of the system is employed and the obstacles
are taken into account by using suitable constraints
that do not allow the system’s states (for instance,
the vehicle’s position) to reach the values that would
allow for a collision to occur.

In this paper, which is an outcome of the work described
in Roald (2015), we implement and extend a methodology
that belongs to the second category above. More specifi-
cally, we investigate the use of pseudospectral optimal con-
trol, developed by Ross and Fahroo (2003), for real-time
path planning and tracking of underactuated surface ve-
hicles in environments where both obstacles and unknown
ocean currents are present. Pseudospectral (PS) optimal
control is an attractive option because it has been reported
to reduce computational time considerably, an important
practical aspect where optimal control methods are usually
least competitive. In Bollino et al. (2007), the authors
gave an overview of the path-planning problem within an
optimal control framework, with focus on pseudospectral
control. We use the DIDO software package to implement
the optimal path-planning computation. DIDO has been
used in a recent work by Hurni and Kiriakidis (2015) for
similar purposes, that is, minimum-time path planning for
an AUV in uncertain current. In that work, the authors’
approach was to exploit knowledge of extreme variations
of current in order to achieve worst-case planning.

In this paper, we consider a different implementation ac-
cording to which the information from the vehicle’s on-
board sensors (measuring position and velocity) can be
used in order to estimate the ocean current online and to
replan the desired minimum-time path. The main contri-
bution involves augmenting DIDO in order to incorporate
online estimation and rejection of unknown ocean currents.
This is achieved via the indirect adaptive integral Line-of-
Sight (LOS) guidance law developed by Fossen and Lekkas
(2015).

2. THEORETICAL BACKGROUND

This section gives an overview of the theoretical back-
ground behind pseudospectral methods, based on which

DIDO operates. The presentation follows mainly those of
Ross and Fahroo (2003) and Gong et al. (2008).

2.1 Problem Formulation

We consider a system with the following continuous dy-
namics:

ẋ = f(x(t),u(t), t), t0 < t < tf
x(t0) = x0,

where x is the state of the system, t0 and tf the initial and
final time respectively, u : [t0, tf ]→ A ⊆ Rm is the control
function, and f : R × (t0, tf ) × A → Rd is the controlled
dynamics (Khalil, 2002; Falcone and Ferretti, 2013). When
the admissible controls are defined as A := {u : (t0, tf )→
A,measurable}, then for any control u ∈ A the solution is
well defined (in a weak sense). In order to find the optimal
solution, the following cost function is defined:

J[x(·),u(·), tf ] := E(x(tf ), tf ) +

∫ tf

t0

F(x(t),u(t), t) dt,

(1)

where the term E(x(tf ), tf ) represents the terminal cost
and F(x(t),u(t), t) the running cost. The terminal cost
depends only on the terminal time and pose, while the
running cost varies with state, control action and time,
see Falcone and Ferretti (2013).

2.2 Legendre Pseudospectral Approximations

The Legendre PS method uses the basic discretization
principles of PS methods. In simple terms, the Legendre
PS method is just another way of discretizing the prob-
lem to cast a smooth nonlinear optimization problem. It
accomplishes this using Legendre polynomials and Gauss-
Lobatto quadratures. Assume B is the problem to be
solved. The following briefly summarize how a PS method
attempts to find a solution (Gong et al., 2008):

• Application of Pontryagin’s minimum principle to the
initial problem B gives a set of necessary conditions.
These conditions can be expressed in terms of a
boundary-value problem, which is a problem of solv-
ing a generalized equation. This process is referred to
as dualization and it results in the problem Bλ.

• The goal of PS methods is to solve problem B by
discretizing it to problem BN . An optimal solution
of the discretized problem BN must automatically
satisfy the discretized necessary conditions BλN . This
transformation requirement is also called the covector
mapping principle and results in an approach simpler
than tackling Bλ, which would involve developing and
solving for the necessary conditions.

• Based on the aforementioned points, it can be said
that the Legendre pseudospectral method belongs to
the category of direct optimization methods, for which
discretization takes place first.

The initial problem B is described as follows:

Minimize (1) subject to

ẋ = f(x,u, t), (2)

g(x,u, t) ≤ 0, (3)

h(x,u, t) = 0, (4)



where it is assumed that all the nonlinear functions
(f ,g,h) are continuously differentiable w.r.t. their argu-
ments and their gradients are Lipschitz-continuous over
the domain. By using the approximation and techniques
from (Ross and Fahroo, 2003) described below, the initial
problem B is discretized into problem BN . The first step is
to select N +1 cardinal functions φl (l = 0, 1, . . . , N) over
the interval [t0, tf ] such that they satisfy the Kronecker
delta function:

φl(tk) = δlk =

{
1 if l = k
0 if l 6= k

, k = 0, 1, . . . , N, (5)

where the grid points are called nodes.

After a choice of Gauss-Lobatto points has been made,
the state and control functions are approximated by Nth
degree polynomials (Ross and Fahroo, 2003):

x(t) ≈ xN (t) :=

N∑
l=0

xlφl(t), (6)

u(t) ≈ uN (t) :=

N∑
l=0

ulφl(t), (7)

where φl are the Lagrange interpolating polynomials of
order N and (5) holds. In the Legendre PS method, the
grid points are the shifted Legendre-Gauss-Lobatto (LGL)
points. The shift is achieved by mapping the physical
domain t ∈ [t0, tf ] to a computational domain τ ∈ [−1, 1]
using the affine transformation:

τ(t) =
2t− (τf + τ0)

(τf − τ0)
(8)

where τ denotes both the transformation and the trans-
formed variable. The Lagrange interpolating polynomials
in this case are defined as:

φl(t) =
1

N(N + 1)LN (tl)

(t2 − 1)L̇N (t)

t− tl
l = 0, 1, ..., N,

(9)
where LN is the Legendre polynomial of degree N , and tl
are the zeros of L̇N . Moreover, it can be verified that (5)
holds.

Therefore xl = xN (τl), ul = uN (τl) where τl = τ(tl) so
that τN ≡ τf . By differentiating (6) and evaluating it at
the node points tk the result is:

ẋn(τk) =
dxN

dτ

∣∣∣
τ=τk

=
dxN

dt

dt

dτ

∣∣∣
tk

(10)

=
2

τf − τ0

N∑
l=0

Dklxkl ≡
2

τf − τ0
dk (11)

where Dkl = φ̇l(tk) are entries of the (N + 1) × (N + 1)
differentiation matrix called D. This differentiation matrix
is represented as:

D := [Dkl] =



LN (tk)

LN (tl)

1

tk − tl
l 6= k

−N(N + 1)

4
l = k = 0

N(N + 1)

4
l = k = N

0 otherwise

(12)

This causes the approximation of the state dynamics to
become:

τf − τ0
2

f(xk,uk)−
N∑
l=0

Dklxl = 0, k = 0, 1..., N. (13)

Then the cost function J is approximated using the Gauss-
Lobatto integration rule:

J [XN ,UN , τ0, τf ] = E(xo,xN , τ0, τf ) +
τf − τ0

2

N∑
l=0

F (xk,uk)wk,

(14)

where

XN = [x0;x1; ...;xN ], UN = [u0;u1; ...;uN ] (15)

and wk are the LGL weights given by

wk :=
2

N(N + 1)

1

LN (tk)2
, k = 0, 1, ..., N. (16)

Combining the equations above gives the discretized ver-
sion of problem B, i.e. problem BN , which can be de-
scribed as follows:

Find the (N + 1)(Nx +Nu) + 2 vector

XNP = (XN ;UN ; τ0; τf ) (17)

that minimizes (14) subject to

τf − τ0
2

f(xk,uk)−
n∑
l=0

Dklxl = 0, (18)

g(x,u, τ) ≤ 0, (19)

h(x,u, τ) = 0. (20)

Although the PS methods have many advantages like
high accuracy and computational savings, they also have
some drawbacks. One of the drawbacks is that constraints
are only enforced at the LGL node points and at the
specific event times. As a result, the constraints are not
always satisfied between these node points. This may cause
problems if there are too few nodes. One example is that
the calculated path may cut the corner of an obstacle
because the nodes on either side of it are in the clear space,
thus resulting in infeasible paths.

2.3 DIDO: A MATLAB Application Package

DIDO is a MATLAB application package used to solve
optimal control problems based on pseudospectral opti-
mal control theory. Although the pseudospectral method
can be used to discretize the Hamilton-Jacobi-Bellman
equation, DIDO solves the optimal control problem by
using the Legendre pseudospectral discretization method
to transform the problem into an equivalent discretized
optimization problem, and then solves this using a well-
developed Nonlinear Program (NLP) solver. The NLP
solver used is based on Sequential Quadratic Programming
(SQP) and called SNOPT, which is described in detail by
Gill et al. (2005).

3. VEHICLE MODEL AND TRACKING ERROR

3.1 Kinematic Marine Surface Vehicle Model

The vehicle kinematic equations for horizontal plane mo-
tion are originally expressed in terms of the relative surge



0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

time [s]

b 
[ra

d/
s]

Control Action

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
1

2

3

4

5

time [s]

s
 [r

ad
]

Heading angle

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x−axis [m]

y−
ax

is 
[m

]

Optimized Paths: Car vs Boat

 

 
Dubins boat
Dubins car
Start point
End point

Fig. 1. Optimized path: Dubins car (blue) vs Dubins boat
(magenta). A large sideslip angle can alter the result
significantly. The red line depicts the final desired
heading angle ψd.

and sway velocities ur = u−uc and vr = v− vc according
to Fossen (2011):

ẋ = ur cos(ψ)− vr sin(ψ) + Vx (21)

ẏ = ur sin(ψ) + vr cos(ψ) + Vy (22)

ψ̇ = r (23)

where ψ and r are the yaw angle and rate, respectively. The
body-fixed ocean current velocities (uc, vc) and North-East
current velocities (Vx, Vy) satisfy:

[uc, vc]
> = R>(ψ)[Vx, Vy]>, (24)

where R>(ψ) denotes the rotation matrix from the inertial
frame to the body-fixed reference frame. When computing
the optimal path in DIDO, in order to reduce the com-
putational cost as much as possible, we assume negligible
sideslip angle due to turning :

βr = atan2(vr, ur) = 0, (25)

and consider a simplified model of a marine surface vehicle.
For the sake of accuracy, it should be mentioned that the
vehicle should have absolute total velocity U =

√
u2 + v2

higher than that of the ocean current, in order for it to
be able to move against the current. This was discussed in
detail in (Fossen and Lekkas, 2015) and can be described
as follows:

xn

yn

xe

ye

xb

yb

Vx

Vy

Uc

�c

xn

1

Fig. 2. Illustration of the path-tracking problem solved in
this paper. The vehicle (solid line), which is under
the influence of an unknown constant disturbance of
magnitude Uc and direction βc, is tracking a virtual
vehicle (dashed line) moving on a curved path.

Ur ≥ U − Uc > 0. (26)

Notice that the pair (Vx, Vy) is constant in NED, while the
body-fixed current velocities (uc, vc) depend on the head-
ing angle ψ. Because of (25), however, we get vr = 0. It is
also worth noting that the absolute sway velocity v is not
zero in the presence of ocean currents because v = vc. This
agrees with intuition because for the underactuated vehicle
to stay on the path while an ocean current component is
pushing it away from it, a heading correction is necessary
to counteract that component. Fig. 1 illustrates the differ-
ences in optimal path planning between a boat-like vehicle
with sideslip angle and a car-like vehicle without sideslip
angle.

3.2 Virtual Vehicle Kinematics and Tracking Error

We consider a 2-D continuous parametrized curved path
(xp(θ), yp(θ)) that connects the successive waypoints
(xk, yk) for k = 1, 2, ..., ζ. In this case, the path-tangential
angle is varying and can be computed as:

γp = atan2(y′p(θ), x
′
p(θ)), (27)

where (·)′(θ) = ∂(·)/∂θ. For the path-tracking scenario, it
is reasonable to assume that a virtual vehicle is navigating
with a speed Ut > 0 on the desired path, therefore its
position pnt = (xt, yt) is computed by:

ẋt = Ut cos (γp), (28)

ẏt = Ut sin (γp). (29)

The objective of the surface vehicle in this case is to track
the virtual particle, that is p − pt → 0. An illustration
of the problem can be seen in Fig. 2. Consequently, the
position error for a given vehicle position (x, y) is given
by: [

xe
ye

]
= R>(γp)

[
x− xt
y − yt

]
, (30)

and therefore the along-track and the cross-track errors
become (see also Fig. 2):



xe = (x− xt) cos(γp) + (y − yt) sin(γp), (31)

ye = −(x− xt) sin(γp) + (y − yt) cos(γp). (32)

Note that using the virtual vehicle approach not only
makes it easier and more intuitive to generate desired
position references but also helps to avoid singularities
when defining the cross-track error, more details are given
in Lapierre et al. (2003).

4. OCEAN CURRENT COMPENSATION

It was shown in (Lekkas and Fossen, 2014) that the
derivatives of (31)–(32) are computed as follows:

ẏe =Ur sin(ψ + βr − γp) + Uc sin(βc − γp)︸ ︷︷ ︸
θy

(33)

ẋe =ur cos (ψd − γp) + vr sin (γp − ψd)
+ Uc sin (γp + βcx)︸ ︷︷ ︸

θx

−Ut, (34)

where βcx = atan2(Vx, Vy) and θx, θy denote the varying
components of the ocean current force in the body-fixed
frame. The following adaptive observers for the estimates

ŷe, x̂e, θ̂y and θ̂x were designed in (Lekkas and Fossen,
2014):

˙̂ye = − Ur(ŷe + αy)√
∆2 + (ye + αy)2

+ θ̂y + k1(ye − ŷe), (35)

˙̂
θy = k2(ye − ŷe), (36)

˙̂xe = −kxx̂e + θ̂x + αx + k3(xe − x̂e), (37)

˙̂
θx = k4(xe − x̂e), (38)

where ki > 0 represent tuning constants, Ur is the relative
speed and ∆ is the user-specified lookahead distance of the
Line-of-Sight (LOS) guidance scheme (Fossen et al., 2003).
Here, αx and αy are control inputs computed as follows:

αx = −θ̂x, (39)

αy = ∆
(θ̂y/Ur)√

1− (θ̂y/Ur)2.
(40)

In order for the surface vehicle to converge to the path
and track the virtual vehicle, the indirect adaptive LOS
guidance law generates the following heading angle and
relative surge speed reference trajectories (Lekkas and
Fossen, 2014):

ψd = γp − βr + arctan

(
− 1

∆
(ye + αy)

)
, (41)

urd =
√

1 + ξ2t

(
−vr

ξt√
1 + ξ2t

+ Ut + αx − kxxe,

)
,

(42)

where ξt := f(ur, vr,∆, ye, αy) and kx > 0 is a tuning con-
stant. Eqs.(41)–(42) constitute the guidance system, which
feeds reference trajectories to the control system in order
to minimize the position error. The current components
θy and θx, which are estimated by the observers, can also
be used to compute the ocean current vector (Lekkas and
Fossen, 2014). This is done by the following equations:

θy = Uc sin(βc − γp) (43)

θx = Uc cos(βc − γp) (44)

⇓

Ûc =
√
θ̂2y + θ̂2x (45)

β̂c = γp + arctan

(
θ̂y

θ̂x

)
(46)

where (̂·) represents the estimates given by the observers.
These estimates are used to produce new optimized paths
based on more accurate information about the ocean
current.

5. PATH-PLANNING IMPLEMENTATION AND
SIMULATIONS

5.1 Implementation Descriptions

In order to test the feasibility of using PS optimal control
for path planning of marine surface vehicles in environ-
ments where obstacles and unknown currents are present,
two versions of the problem were implemented. Both im-
plementations start in the following way: The current is
unknown and thus initially assumed to be zero. The algo-
rithm computes the optimal path and the vehicle begins
to track the virtual vehicle. As the surface vehicle moves,
the nonlinear observer estimates the ocean current com-
ponents and corrects the heading angle and surge speed in
order to minimize the tracking error. From then on, the
differences are the following:

V1: The path does not change, i.e. in this version the
vehicle converges to the path computed initially as
optimal. In this case, the solution is the same as a
Dubins path, but approximated through PS optimal
control.

V2: Based on the new information, the algorithm recom-
putes the optimal path starting from the vehicle’s pose
at that time instant. The vehicle is assigned to track the
recomputed path each time the replanning process takes
place.

If the computational cost was trivial, the ideal case would
be to implement V2 and recompute the path at each
time step. However this is hardly the case in real appli-
cations, especially when optimization-based solutions are
concerned. Therefore, V1 represents the solution which is
optimal w.r.t. to the path length, i.e. minimum length. V2
initially coincides with V1 but attempts to incorporate
all incoming ocean current information in order to replay
and finally approximate the minimum-time solution. The
larger the number of times the path is replanned, the more
refined the approximation becomes, but there are limits
to how frequent it is feasible or even meaningful to do the
replanning. One obvious reason is the computational cost
required, while another reason is that the environmental
conditions might vary continuously and fast, hence making
it impractical to change the target path all the time. A
third reason is that minimum-time paths also set specific
requirements on the vehicle’s speed, which might not al-
ways be possible or practical to satisfy. A mixed solution is
to replan at given time intervals, hence computing a path
that lies between minimum length and minimum time,
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Fig. 3. Following the path in the case where the ocean
current is estimated online. The replanning occurs
when the vehicle is approx. at position pr = (50, 80).

which is how V2 has been implemented in this paper.

5.2 Simulation Results

Fig. 3 shows the vehicle following the replanned path. In
this case, initially the ocean current is unknown and there-
fore DIDO is given the values Vx = Vy = 0 m/sec. Note
that due to the simplified dynamics, the first part of the
path is identical to Dubins’ path, that is, the minimum-
length path. The replanning occurs when the surface ve-
hicle is approximately at position pr = (50 m, 80 m). By
that time the ocean current has been estimated and the
new minimum-time path still resembles a Dubins path,
which is now rotated w.r.t the minimum-length segment.
In Fig. 4, the minimum-time path (solid red curve, it
assumes the ocean current is known from the beginning) is
compared with the minimum-length path (solid blue curve,
assumes the ocean current remains unknown) described
in V1 and the path resulting from the mixed approach
(dashed green curve), where occasional replanning takes
place as described in V2 and shown in Fig. 3. It is worth
noting that the occasionally replanned path of V2 ini-
tially, when no information on the current is available,
overlaps with the minimum-length path, whereas later
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Fig. 4. Path shape for the three cases where the ocean
current is respectively known (solid red curve), com-
pletely unknown (solid blue curve) and occasional
replanning takes place (dashed green curve).
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Fig. 5. Path planning and following in the presence of
obstacles (green areas). The light blue areas illustrate
the clearance constraints. The ocean current flows
from North-West to South-East.

on it changes and converges to the minimum-time path.
Fig. 5 demonstrates the efficiency of the presented path
planning and guidance systems in the presence of both
ocean currents and obstacles. It is possible to introduce
clearance constraints by expanding the obstacles virtually,
which is illustrated by the light blue areas around the
obstacles. Fig. 6, on the other hand, shows the catastrophic
errors that could occur if the external disturbances are not
taken into account, i.e. if LOS guidance without integral
action is implemented.
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6. CONCLUSIONS

This paper dealt with the implementation of a pseudospec-
tral (PS) optimal control approach for path planning and
tracking for marine surface vehicles in environments where
both obstacles and unknown ocean currents are present.
The software package DIDO was used for computing the
optimized path.

The main contribution was the addition of a nonlinear
observer in order to estimate the unknown ocean currents
and compute progressively the minimum-time (contrary
to minimum-length) path through occasional replanning.
In addition to recomputing the path via PS optimiza-
tion, a suitable guidance system was employed to ensure
the underactuated vehicle was successful in tracking the
path without errors. Two different implementations were
presented and tested through numerical simulations. The
results so far indicate that PS optimal control is a promis-
ing method for such applications due to its accuracy and
reduced computational cost.
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