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Abstract

The differential scattering cross section for diffuse scattering of X-rays from thin
film structures is discussed within the framework of the distorted wave Born ap-
proximation (DWBA). In contrast to the standard Born approximation (BA), the
distorted wave approach succeeds in calculating scattering from surfaces near the
critical angle of reflection. The method is particularly useful for studying average
surface properties.

Compromises made in the derivation of the model substantially simplify the
final expression, but also limit its range of validity, which depends on the surface
root mean square roughness σ and the momentum transfer between the incident
and scattered X-rays perpendicular to the surface, Qz . The approximation is valid
so long as Qzσ � 1. However, this is also the only regime where it is necessary to
go beyond the simpler Born approximation.

A computer simulation software based on the DWBA is implemented in Python.
The implemented DWBA depends on the fractal dimension of the surface features
through a parameter h (D = 3 − h) and an in-plane correlation cut off length ζ.
The various effects of changing key model parameters, among them ζ and h, is
demonstrated. Comparison between experimental data and the DWBA model
looks promising although there are some challenges in relation to determining
the fractal dimension.

Finally, the feasibility of implementing the DWBA model in a multi-parameter
fitting algorithm is discussed.

iii



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Thin Film X-ray Theory 4
2.1 Snell’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Index of Refraction for X-Rays . . . . . . . . . . . . . . . . . 6
2.2 Fresnel Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Matrix Formalism for Multilayer Structures . . . . . . . . . . . . . . 10

3 Scattering in the Distorted-Wave Born Approximation 13
3.1 Gaussian Random Surfaces . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 The Height-Height Correlation Function . . . . . . . . . . . . . . . 15
3.3 DWBA for Diffuse X-Ray Scattering From a Rough Surface . . . . . 17
3.4 Multiple Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Experimental 26
4.1 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Scan Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 W1 Beamline Characteristics . . . . . . . . . . . . . . . . . . . . . . . 28

5 Computer Simulation 33
5.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Computing Fourier Transform Integrals . . . . . . . . . . . 33
5.1.2 Fourier Integrals in the Model . . . . . . . . . . . . . . . . . 37

5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Results and Discussion 40
6.1 Model - General Observations . . . . . . . . . . . . . . . . . . . . . . 40

iv



Contents v

6.1.1 Small Angle Rocking Scan . . . . . . . . . . . . . . . . . . . . 40
6.1.2 Changing Model Parameters . . . . . . . . . . . . . . . . . . 42

6.1.2.1 Surface Roughness . . . . . . . . . . . . . . . . . . . 42
6.1.2.2 Refractive Index . . . . . . . . . . . . . . . . . . . . 42
6.1.2.3 Hurst Exponent and Correlation Cut Off Length . 44

6.2 Comparison With Experiment . . . . . . . . . . . . . . . . . . . . . 46
6.3 Outlook to Multi-parameter Fitting . . . . . . . . . . . . . . . . . . . 54

7 Conclusion 55

References 56

Appendix 59

A DWBA - General Expression 59

B Fast Fourier Transform 63



Chapter 1

Introduction

The first recorded use of reflectivity to characterize surfaces dates back to 1954
when Professor Lyman G. Parratt of Cornell University had an article published
in Physical Review that presented X-ray studies of copper evaporated on glass [1].
Since then the technique has been extended to a wide range of both solid and
liquid interfaces [2–4].

The wavelength of X-rays (1− 8 Å) makes it feasible to study average features
and properties of a sample at a comparable length scale within the irradiated vol-
ume, which is typically in the mm scale. In X-ray reflectivity a sample is struck by
a narrow beam and the scattered signal is studied. The signal is built up of two
components: the specular and the diffuse. The specularly scattered beam strictly
obeys the law of reflection, i.e. that the incoming angle equals the outgoing. The
diffuse signal comprises the scattering in all other directions and arises because
of surface roughness. Most of the radiation is scattered in an approximate conical
shape near the direction of the specular reflection.

Parratt’s model, based on dispersion theory, only comprises the specular sig-
nal. However, in more recent years the Born approximation, based on quantum
scattering theory, has been employed in reflectivity [5]. It successfully models
both the specular and the diffuse components of the reflected signal, but breaks
down at small angles of total reflection. It turns out that scattering in this regime
can be modeled by the distorted wave Born approximation, which additionally takes
into consideration a perturbation potential related to surface roughness [6, 7].

The aim of this thesis is to study the distorted wave Born approximation to
some detail. Specifically, the theory necessary to understand the model is pre-
sented in the first two chapters. Care is taken to highlight physical assumptions
and mathematical approximations along the way. Then we look at some experi-
mental considerations. The following chapter discusses a computer implementa-
tion of the model, in which there is emphasis on solving Fourier integrals, before
we move on to look at how key model parameters affect the simulations. The
model is then compared to experimental data, and finally there is a discussion re-
garding the possibility of using the model in a multi-parameter fitting algorithm
to compare simulations with experimental data more efficiently.
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2 Chapter 1. Introduction

Note that is this thesis, the term reflectivity is used to describe scattering from
surfaces in general, and not just specular scattering.

With the exception of fig. 1.1, all figures are property of the author.

1.1 Motivation

Synchrotrons and linear accelerators around the world constitute an important
part of modern-day materials science. They are huge facilities dedicated to the
acceleration of charged particles that can be used to produce brilliant beams of
X-rays and neutrons. The economic costs involved in the their construction and
upkeep1 leave little doubt about the impact of this type of research. Figure 1.1
shows the Swiss Light Source synchrotron (SLS) at the Paul Scherrer Institute in
Switzerland.

Figure 1.1: The Swiss Light Source synchrotron at the Paul Scherrer Institute in Switzer-
land is a third-generation synchrotron light source. With an energy of 2.4 GeV, it provides
photon beams of high brightness for research in materials science, biology and chemistry.
The circular building in the upper picture is the actual synchrotron. Inside there is an elec-
tron storage ring, 288 m in circumference, that provides electromagnetic radiation to more
than a dozen beamlines.

1The annual operating costs of the Swiss Light Source were estimated to 23 million Swiss Francs in
1999, on top of a total investment expenditure of 159 million Swiss Francs.
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While many types of radiation can be used to probe materials, this thesis fo-
cuses on X-rays. When X-rays interact with matter, any given photon has a certain
chance to be scattered by the electron cloud surrounding the atoms. The scattered
radiation can be used to garner information about crystalline structure, grain sizes
and preferred orientation to name a few examples. Moreover, X-ray reflectivity is
a method that gives information about the thickness, roughness, and density of
thin film structures when used together with appropriate theoretical models (i.e.
computer simulations). Figure 1.2 shows an example of what experimental data
may look like in the case of X-ray reflectivity. Specifically, the figure shows a small
angle rocking scan of a 43 nm TiO2 thin film on a Si substrate.
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Figure 1.2: Small angle rocking scan of a 43 nm TiO2 thin film on a Si substrate. The data
was obtained in Hamburg, Germany, at Hamburger Synchrotronstrahlungslabor (HASY-
LAB) at Deutsches Elektronen-Synchrotron (DESY).



Chapter 2

Thin Film X-ray Theory

X-ray reflectivity is a powerful method for investigating surfaces and thin film
structures. Typically, experimental data is compared to a computer model, and
then the model parameters are adjusted until there is a close resemblance between
the two. This chapter gives an introduction to the physics behind X-ray reflectiv-
ity.

2.1 Snell’s Law

Snell’s law [8] states that when an electromagnetic wave passes through an inter-
face between two media of different refractive indices, n0 and n1, the following
relation is fulfilled:

sin θ0
sin θ1

=
n1
n0

=
v0
v1
, (2.1)

where θ0 and θ1 are the angles between the normal to the interface and the wave in
each media as shown in fig. 2.1, and v0 and v1 are the phase speeds of the waves.
This has implications for reflectivity because the fraction of light that is reflected
by the surface depends on these two angles.

An electromagnetic wave is associated with a wave vector, k, which is related
to the wavelength λ by

k =
2π

λ
k̂, (2.2)

where k̂ is a unit vector in the direction of propagation. In this text the compo-
nents of k are denoted by kx, ky , and kz , where z is normal to the sample surface
and kx is the projection of k on the surface, cf. fig. 2.2. Figure 2.2 also shows the
momentum transfer vector, denoted by Q. In the illustrated case Q = k1−k0 is the
momentum transfer between the incoming and outgoing (reflected) wave. Note
that the magnitude of kx is constant and independent of changes in the refractive

4



2.1. Snell’s Law 5

Figure 2.1: When an electromagnetic wave passes through an interface between two me-
dia of different refractive indices, n0 and n1, it changes direction. The process is described
mathematically by Snell’s law, cf. eq. (2.1).

Figure 2.2: The wave vectors of an incoming and reflected wave, denoted ki and kr , with
respect to a surface in the (x, y)-plane. Q = k1 − k0 is the momentum transfer vector.
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index. This can be shown using the well known Planck-Einstein equation [9],

E = ~ω, (2.3)

which gives the relation between the energy E and frequency ω of a photon. Un-
der the assumption that the energy of the photon is conserved over the transition
into a new media and the relation ω = 2πv/λ, we can write

k1
k0

=
v0
v1

=
n1
n0
, (2.4)

where k0 and k1 are the magnitudes of the incoming and outgoing wave vectors
in the media characterized by n0 and n1, respectively. By plugging this equation
into Snell’s law it should be clear that

k0,x = k1,x. (2.5)

Substituting for k1 =
√
k21,x + k21,z in eq. (2.4) and using the result of eq. (2.5)

yields

kz,1 = −
√
k20
n1
n0

2
− kx. (2.6)

Furthermore, if n0 = 1.0 for the topmost medium (air or vacuum), it can be shown
that

kz,j = −
√
k20n

2
j − kx, (2.7)

where j is the index of any subjacent layer. This is an essential relation in calcu-
lating the reflectivity from multilayer structures.

2.1.1 Index of Refraction for X-Rays

The index of refraction is a measure of the speed of light in a given medium.
Specifically, the parameter can be written as

n =
c

v
, (2.8)

where c is the speed of light in vacuum, and v is the phase speed of the light in
the medium. n depends on the wavelength of the radiation in question, and in the
case of X-rays, v is actually greater than c, meaning that n is below unity. In this
case it is common to express the refractive index as

n = 1− δ + iβ. (2.9)

The imaginary part β is related absorption and leads to a reduction in the radi-
ation intensity with increasing distance traveled in the medium. Specifically, the
reduction in intensity I is given by

I = I0e
−αs, (2.10)
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where s is the distance traveled in the medium, and α is the absorption coefficient
given by

α =
4πβ

λ
. (2.11)

A thorough description of refractive indices is given in [8].
Since the refractive index is slightly less than one, a beam incident on a flat

interface can be totally reflected if the angle between the surface and the incident
beam is less than a certain critical angle αc, which is approximately equal to

√
2δ.

When n0 > n1, cf. fig. 2.1, this phenomena is called total internal reflection. If
n0 < n1, it is called total external reflection.

2.2 Fresnel Equations

The Fresnel equations give relations between the reflected, transmitted, and in-
cident amplitudes of an electromagnetic wave as it passes through an interface
between two media of different refractive indices. Figure 2.3 shows a ray of light
incident on an interface between two media of refractive indices n0 and n1. Part of
the beam is transmitted, and the remainder is reflected back. The depicted wave
is polarized in the transverse electric mode (TE) in which the electric component is
parallel to the interface (s-polarization). It is assumed that any incident wave ex-
hibits this kind of polarization. Note that X-ray synchrotrons predominantly emit
horizontally (TE) polarized radiation.

Maxwell’s equations impose boundary conditions on the incident, transmit-
ted, and reflected wave. Their electric components are denoted by

Ei = Eie
iki·rŷ (2.12a)

Et = Ete
ikt·rŷ (2.12b)

Er = Ere
ikr·rŷ, (2.12c)

respectively. The factor eωt has been neglected as the frequency of each wave is
the same assuming the energy is conserved. Faraday’s law [10] states that,∮

C

E · dl = − ∂

∂t

∫
S

B · dS, (2.13)

where dl is an infinitesimal line segment of the closed contour C bounding the
area S, cf. fig. 2.4. Thus we can write

(l0 + l1 + l2 + l3) · (E0 + E1) = − ∂

∂t

∫
S

B · dS = 0, (2.14)

which leads to the general conclusion that in the limit l0 = l2 → 0 where S → 0

E0,tangential = E1,tangential, (2.15)
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Figure 2.3: A wave vector ki (i.e. electromagnetic wave) incident on an interface between
two media of refractive indices n0 and n1. Part of the wave is transmitted (kt), and the
remainder is reflected back (kr). The depicted wave is polarized in the transverse electric
mode in which the electric component is tangential to the interface.

Figure 2.4: The rectangular closed contour C spanning over an interface between two
media of different refractive indices, n0 and n1. Note that S is the area within the contour.
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where E0,tangential and E1,tangential are the tangential components of the electric
field right above and below the boundary. Consequently, the tangential compo-
nent of the electric field is continuous at the boundary, meaning that

Ei + Er = Et, (2.16)

where r has been set equal to zero at the boundary (cf. eqs. (2.12a) to (2.12c)).
The magnetic components, given by

Bi = (Bi cos θix̂−Bi sin θiẑ) eiki·r (2.17a)

Bt = (Bt cos θtx̂−Bt sin θtẑ) eikt·r (2.17b)

Br = (−Br cos θrx̂−Br sin θrẑ) eikr·r, (2.17c)

obey the law of conservation of magnetic flux [10],∮
S

B · dS = 0, (2.18)

where dS is an infinitesimal part of the surface S with surface nomral S. Conse-
quently, with S superimposed on the boundary,

B0 · S = B1 · S, (2.19)

which gives

B0,normal = B1,normal, (2.20)

where B0,normal and B1,normal are the components of the magnetic field normal
to the boundary on each side of the interface. Equation (2.20) can also be re-
expressed using the tangential components of the magnetic field. It then yields

B0,tangential

µ0
=
B1,tangential

µ1
, (2.21)

where µ0 and µ1 are the magnetic permeabilities on the two sides of the interface.
Applying this result to the system in fig. 2.3 yields

Bi
µ0

cos θi −
Br
µ0

cos θi =
Bt
µ1

cos θt, (2.22)

which can be simplified using the common occurrence that µ0 ≈ µ1 ≈ µvacuum [11].
Combining eqs. (2.16) and (2.22) and the relation between magnetic and electric
fields, E = vB = cB/n, where c is the speed of light in vacuum and n = n1/n0,
the reflection and transmission amplitude coefficients for TE polarization become

rTE =
Er
Ei

=
cos θi − n cos θt
cos θi + n cos θt

(2.23a)

tTE =
Et
Ei

=
2 cos θi

cos θi + n cos θt
. (2.23b)

rTE and tTE for a Si substrate is shown in fig. 2.5.
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Figure 2.5: The reflection and transmission amplitude coefficients for a Si substrate at
small angles between the surface and the incident beam. The wavelength λ = 1.1808 Å
δ = 4.43× 10−6 and β = 6.06× 10−8. The critical angle is

√
2δ ≈ 0.17 °.

2.3 Matrix Formalism for Multilayer Structures

In the case of multilayer structures the incoming X-rays are multiply reflected by
several interfaces, and the reflected amplitude, Er, ends up with contributions
from each interface. The Fresnel equations derived in the previous section as-
sumed one interface (i.e. air and a substrate). In this section the equations are
reworked to be valid also for multilayer structures with several interfaces.

We introduce a multilayer-friendly notation for the electrical and magnetic
fields, cf. fig. 2.6. Assuming TE polarization, continuity of the electrical field yields

E−j e
k−j ·r + E+

j e
k+
j ·r = E−j+1e

k−j+1·r + E+
j+1e

k+
j+1·r. (2.24)

Since the model now extends over multiple interfaces, we no longer assume r = 0.
Equation (2.24) can be simplified to yield

E−j e
k−j,zz + E+

j e
−k−j,zz = E−j+1e

k−j+1,zz + E+
j+1e

−k−j+1,zz. (2.25)

Similarly, continuity of the magnetic field gives

B−j cos θie
k−j,zz +B+

j cos θie
−k−j,zz = B−j+1 cos θte

k−j+1,zz +B+
j+1 cos θte

−k−j+1,zz.
(2.26)

By combining eqs. (2.25) and (2.26) and for simplicity writing k−j,z = kj,z and
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k−j+1,z = kj+1,z it can be shown that

E−j =
1

2

(
E−j+1

kj+1,z + kj,z
kj,z

e−i(kj+1,z−kj,z)z + E+
j+1

kj+1,z − kj,z
kj,z

ei(kj+1,z+kj,z)z

)
(2.27a)

E+
j =

1

2

(
E−j+1

kj+1,z − kj,z
kj,z

e−i(kj+1,z+kj,z)z + E+
j+1

kj+1,z + kj,z
kj,z

ei(kj+1,z−kj,z)z
)
,

(2.27b)
or, expressed as matrices,[

E−j
E+
j

]
=

[
m11 m12

m21 m22

] [
E−j+1

E+
j+1

]
(2.28)

where

Figure 2.6: The multilayer approach requires an extra wave vector (k+
j+1) per interface

in addition to those associated with the incident (k−j ), transmitted (k−j+1), and reflected
(k+
j ) waves. It corresponds to the reflected amplitude from subjacent layers. j denotes the

medium index, and + and − correspond to incoming and outgoing waves, respectively.
nj , σj , and zj refer to the refractive index, surface roughness, and depth of each layer.



12 Chapter 2. Thin Film X-ray Theory

m11 =
kj+1,z + kj,z

2kj,z
e−i(kj+1,z−kj,z)z

m12 =
kj+1,z − kj,z

2kj,z
ei(kj+1,z+kj,z)z (2.29)

m11 =
kj+1,z − kj,z

2kj,z
e−i(kj+1,z+kj,z)z

m12 =
kj+1,z + kj,z

2kj,z
ei(kj+1,z−kj,z)z.

This is known as the matrix formalism, and it gives the stacking reflected and
transmitted amplitudes for each layer. For example, a structure containing N lay-
ers requires N + 1 matrices like eq. (2.28)1. For the substrate it is common practice
to set E−N+1 = 1 and E+

N+1 = 0 to close the system of equations. This is valid
assuming the part of the beam that enters the substrate is not reflected. The for-
malism can also be used to model a graded interface by using an arbitrary number
of slices, as opposed to simply separating layer-by-layer.

Reflection and transmission amplitude coefficients for the j’th layer are

rTE =
E+
j

E−j
(2.30a)

tTE =
E−j+1

E−j
. (2.30b)

Equation (2.7) is used to calculate all the instances of kj,z that are required.
The above discussion looked at scattering from perfectly flat surfaces. For

rough surfaces, it is found that [12] eq. (2.28) becomes E−j
E+
j

 =

 m11e
−(kj+1,z−kj,z)2

σ2j
2 m12e

−(kj+1,z+kj,z)
2
σ2j
2

m21e
−(kj+1,z+kj,z)

2
σ2j
2 m22e

−(kj+1,z−kj,z)2
σ2j
2

 E−j+1

E+
j+1

 (2.31)

where σj is the root mean square (r.m.s.) roughness of the j’th interface as shown
in fig. 2.6. σ > 0 leads to a decrease of the reflection and transmission amplitude
coefficients due to non-specular scattering which is discussed in the next chapter.

1A simple air-substrate model has no ”layers”.



Chapter 3

Scattering in the
Distorted-Wave Born
Approximation

When an X-ray strikes a perfectly flat surface, the only measurable reflected sig-
nal goes out at an angle that fulfills the law of reflection, i.e. θi = θr. This is
called specular reflection. However, most real-world samples exhibit some sur-
face roughness such that a portion of the incoming beam is reflected in other di-
rections depending on the underlying texture. Surface roughness gives rise to an
off-specular (diffuse) component to the reflected signal.

The intensity of the specular reflection can be calculated as the square norm
of the reflection amplitude coefficient, which in turn is found through eq. (2.31).
While measuring the specular reflectivity as a function of incident angle is suffi-
cient to find the surface and interface roughness parameters σj , it does not give
any information about the in-plane correlation length, which is the length over
which rough features are correlated, or the fractal dimension of the surface. How-
ever, the diffuse signal does contain such information. The distorted-wave Born
approximation (DWBA) gives a reasonably precise model for diffuse scattering
near the critical angle while keeping the computational complexity low enough
for practical use. Well above the critical angle the Born approximation (BA) is
commonly employed as the added complexity of the DWBA is not necessary. Both
models share the same origin in quantum scattering theory.

This chapter presents an expression of the DWBA for use in X-ray thin film
studies. Specifically, the differential scattering cross section is found for diffuse
scattering from a substrate, and then for thin films and multilayer structures. In
preparation for this, the chapter begins with a description of the average proper-
ties of rough surfaces.

A presentation of the general expression for the BA and the DWBA can be
found in appendix A.

13



14 Chapter 3. Scattering in the Distorted-Wave Born Approximation

3.1 Gaussian Random Surfaces

The average properties of a surface, which is to be investigated, are based on anal-
ysis of X-rays that originate from a finite size area. The area, which corresponds to
the area illuminated by the incoming beam, covers a large number of microscopic
formations and structures that are more or less correlated. The surface roughness
can resemble patterns, or have a fractal structure. This section briefly shows how
such surfaces can be described mathematically.

The rough surface of a substrate, given by z(x, y), can be described by a height
distribution function ω(z) where the average surface height (z = 0) is chosen such
that ∫ ∞

0

ω (z) dz =

∫ 0

−∞
ω (z) dz =

1

2
. (3.1)

The function ω(z) gives the probability distribution of the various heights across
the surface. A common assumption in the derivation of the DWBA for X-ray scat-
tering is that the rough surface is taken to be a Gaussian random surface, meaning
that

ω (z) =
e−z

2/2σ2

σ
√

2π
, (3.2)

where σ is the r.m.s. roughness.
In the coming derivation of the DWBA, it is at one point necessary to take a

configurational average in the z-direction of the form 〈exp {i[sz(x, y)− s′z(x′, y′)]}〉,
where s is a complex variable. As [sz(x, y)−s′z(x′, y′)] is a Gaussian random vari-
able (under the assumption of a Gaussian random surface), this configurational
average yields [6] 〈

ei[sz(x,y)−s
′z(x′,y′)]

〉
= e−g(x,y)/2, (3.3)

where

g(x, y) =
〈

[sz(x, y)− s′z(x′, y′)]2
〉

= s2
〈
z2(x, y)

〉
+ s′

2 〈
z2(x′, y′)

〉
− ss′ 〈z(x, y)z(x′, y′)〉

= s2σ2 + s′
2
σ2 − ss′C(x− x′, y − y′). (3.4)

Here, C(x − x′, y − y′) is a height-height correlation function describing to what
degree the heights at coordinates (x′, y′) and (x, y) are correlated. The choice of
C(x− x′, y − y′) is crucial, and a suitable form is described in section 3.2.
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3.2 The Height-Height Correlation Function

The height-height correlation function describes to what degree two heights z(x′, y′)
and z(x, y) on a surface are correlated. Denoting the relative coordinates X =
x′ − x and Y = y′ − y, Sinha et al. suggested that the function C(X,Y ) be ex-
pressed as

C(X,Y ) = σ2e
−
(√

X2+Y 2

ζ

)2h

, (3.5)

where ζ is a finite cut off length describing the correlation length of the surface
features, and h, called the Hurst exponent, specifies the fractal dimension of the
surface by D = 3 − h. A perfectly smooth surface has two dimensions, so 0 ≤
h ≤ 1. If h is small, the fractal dimension is high and the surface has relatively
”protruding” features (jagged surface), cf fig. 3.1. Note that eq. (3.5) is symmetric

Figure 3.1: The Hurst exponent h determines the fractal dimension of a rough surface
through D = 3−h. The figure shows surfaces with two different Hurst exponents h0 > h1

and root mean square roughnesses σ0 < σ1. Smaller h results in a more jagged surface.

inR =
√
X2 + Y 2, or r =

√
x2 + y2 by defining that x′ = y′ ≡ 0 such thatX = −x

and Y = −y.
Figures 3.2 and 3.3 demonstrate the shape of eq. (3.5) as a function of r =√
x2 + y2 for various values of the parameters h and ζ. In practice, ζ must be

smaller than the coherence length of the beam in order for the the theory pre-
sented in this chapter to match experimental results. The coherence length is the
spatial length (transverse and longitudinal) over which the X-rays are in phase
(remember that the incoming beam has a cross section of approx. 1 mm2). In this
instance it is the coherence length parallel to the sample surface that is of interest.
The significance is that interference will be strong within the coherence volume,
but not beyond it. Consequently, the coherence length of the beam restricts the
maximum length scales of the roughness characteristics that can be studied.
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Figure 3.2: The correlation function C(r) for various values of the Hurst exponent h. The
cut off parameter ζ is indicated by the dotted red line.
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Figure 3.3: The correlation function C(r) for various values of the cut off parameter ζ.
h = 1.
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3.3 DWBA for Diffuse X-Ray Scattering From a Rough
Surface

The DWBA states that the probability amplitude for a particle or photon to go
from one state to another in the presence of an exactly solvable potential plus a
small perturbation potential is given by

〈1|T |0〉 = 〈ψ1|V0 |φ0〉+ 〈ψ1|V1 |ψ0〉 (3.6)

which follows1 from eq. (A.19). In this section the DWBA is used to describe
diffuse scattering of grazing incidence X-rays on rough surfaces. The presentation
closely follows and complements the article X-ray and neutron scattering from rough
surfaces published in 1988 by Sinha et al. [6]. That article also includes expressions
for specular scattering.

The starting point of the derivation is a set of wave functions and potentials
to describe the system in which scattering occurs. A plane wave from an X-ray
source describes the incoming X-rays prior to scattering:

φ0 = Ceik0,i·r, (3.7)

where C is a normalization constant. Upon striking a potential (i.e. a surface or
interface), the wave function evolves into

ψ0 =

{
C[eik0,i·r + r0e

ik0,r·r] for z > 0
Ct0e

ik0,t·r for z < 0
(3.8)

which from here on will be referred to as the source wave. The components corre-
spond to an incident, a reflected, and a transmitted wave. r0 and t0 are Fresnel
amplitude coefficients, cf. section 2.2.

The DWBA requires a third wave function to describe the diffusively scattered
X-rays, given by

ψ1 =

{
C[eik

∗
1,i·r + r∗1e

ik∗1,r·r] for z > 0

Ct∗1e
ik∗1,t·r for z < 0

(3.9)

It is referred to as the detector wave as it defines the outgoing direction in which
scattering will later be calculated, just like a detector in an experimental setup.
Figure 3.4 illustrates the concept of a source wave and a detector wave.

A key property of the DWBA is that it relies on two potentials; one describing
the unperturbed system, and another corresponding to a small perturbation. In
X-ray scattering the potential of the unperturbed system describes a perfectly flat
surface, given by

V0 =

{
k20
(
1− n2

)
for −∞ < z < 0

0 for z > 0
(3.10)

1The approximation in the DWBA consisted of letting ψ0 describe scattering due only to V0, as
opposed to V0 and the perturbation potential V1. In effect, the Schrödinger equation describing ψ0 has
been approximated to only include one of two potentials, namely V0. On a side note, ψ1 also depends
only on V0, but this is not an approximation.
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The perturbation potential V1 corresponds to a deviation from the perfectly flat
surface and incorporates surface roughness in the model. It is given by

V1 =

 k20
(
1− n2

)
for 0 < z < z (x, y) if z (x, y) > 0

−k20
(
1− n2

)
for 0 > z > z (x, y) if z (x, y) < 0

0 elsewhere
(3.11)

where z(x, y) describes the topography of a rough surface. The perturbation po-
tential is confined to the volume bounded by z(x, y) and a plane at z = 0. The
form of the given potential functions are commonly used in X-ray reflectivity the-
ory, and a thorough description can be found in [13]. The differential scattering

Figure 3.4: The source wave ψ0 and detector wave ψ1 in the DWBA. The perturbation
potential V1 is limited to the volume bounded by z = 0 and the function z(x, y) describing
the topography of the rough surface.

cross section follows from eq. (A.14) and yields for X-rays

dσ
dΩ

=
|〈1|T |0〉|2

16π2 |C|4
=
|〈ψ1|V0 |φ0〉+ 〈ψ1|V1 |ψ0〉|2

16π2 |C|4
(3.12)

It describes the probability of finding a scattered particle within a given solid an-
gle.

Retreating for a moment from the notation above, consider the fact that the
numerator in eq. (3.12) is an expression of the type

|A+B|2 .

B is a spatially fluctuating quantity because of its dependence on z (x, y) through
V1, and it is therefore necessary to take the configurational average, which is given
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by 〈
|A+B|2

〉
= |A+ 〈B〉|2︸ ︷︷ ︸

spec

+ 〈BB∗〉 − 〈B〉 〈B〉∗︸ ︷︷ ︸
diff

, (3.13)

where the bra-ket notation and configurational average are not to be confused.
The first term corresponds to scattering in the specular direction, and the last two
terms constitute the variance of B and correspond to the diffuse signal. Note that
if the perturbation potential is zero (V1 = 0), then B = 0 and eq. (3.13) becomes
simply |A|2. However, for a finite perturbation potential it is necessary to calculate
the quantities 〈B〉 and 〈BB∗〉. The strategy is therefore to calculate B, 〈B〉, and
〈BB∗〉 to find an expression for the diffuse signal, given by(

dσ
dΩ

)
diff

=

∣∣〈BB∗〉 − 〈B〉 〈B〉∗∣∣2
16π2 |C|4

. (3.14)

Note for later use that for z > 0

ψ∗1ψ0 = |C|2
(
e−i(k1,i−k0,i)·r

+ r1e
−i(k1,r−k0,i)·r

+ r0e
−i(k1,i−k0,r)·r (3.15)

+ r1r0e
−i(k1,r−k0,r)·r

)
,

and for z < 0
ψ∗1ψ0 = |C|2t1t0e−i(k1,t−k0,t)·r. (3.16)

Returning to the original notation, an evaluation of B in eq. (3.14) yields

〈ψ1|V1 |ψ0〉 =

∫∫∫
ψ∗1V1ψ0 dz dx dy

=

∫∫
S

∫ z(x,y)>0

0

ψ∗1V1ψ0 dz +

∫ 0

z(x,y)<0

ψ∗1V1ψ0 dz +

∫ z>z(x,y)

z<z(x,y)

ψ∗1V1ψ0 dz︸ ︷︷ ︸
=0

 dx dy

= k20
(
1− n2

) ∫∫
S

(∫ z(x,y)>0

0

ψ∗1ψ0 dz −
∫ 0

z(x,y)<0

ψ∗1ψ0 dz

)
dx dy. (3.17)

Equation (3.17) quickly turns into a complicated expression upon substitution
of eqs. (3.15) and (3.16) and taking the configurational average. However, the
calculation can be significantly simplified by assuming that ψ0 and ψ1 can be ap-
proximated by their expressions for z < 0 when2 0 < z < z(x, y), in effect meaning

2I.e. in the volume below the rough surface described by z(x, y), but above z = 0.
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that eq. (3.16) is used in both terms of eq. (3.17). The approximation, which was
suggested by Sinha et al., is viable3 for Qzσ � 1, which is the only regime where
it is necessary to go beyond the Born approximation to calculate the diffuse scat-
tering. Consequently, eq. (3.17) becomes

〈ψ1|V1 |ψ0〉 ' C2k20
(
1− n2

)
t1t0F (Qt) , (3.18)

where Qt = k1,t − k0,t, and4

F (Qt) =

∫∫
S

∫ z(x,y)>0

0

e−iQt·r dz dx dy

+

∫∫
S

∫ 0

z(x,y)<0

e−iQt·r dz dx dy

=
i

Qt,z

∫∫
S

(
e−iQt,zz(x,y) − 1

)
e−i(Qxx+Qyy) dx dy. (3.19)

Substitution of eq. (3.18) into eq. (3.14) yields for the diffuse differential scattering
cross section(

dσ
dΩ

)
diff

=

∣∣k20(1− n2)
∣∣2

16π2
|t1|2|t0|2 [〈F (Qt)F

∗(Qt)〉 − 〈F (Qt)〉 〈F ∗(Qt)〉] . (3.20)

Under the key assumption that z(x, y) describes a Gaussian random surface, ω (z)
is given by eq. (3.2). The configurational averages 〈F (Qt)〉 and 〈F ∗(Qt)〉 in eq. (3.20)
then yield

〈F (Qt)〉 =
i

Qt,z

∫∫
S

∫ ∞
−∞

ω(z)
(
e−iQt,zz − 1

)
e−i(Qxx+Qyy) dx dy dz

=
i

Qt,z

∫∫
S

(
e−Q

2
t,zσ

2/2 − 1
)
e−i(Qxx+Qyy) dx dy (3.21)

〈F ∗(Qt)〉 = − i

Q∗t,z

∫∫
S

(
e−(Q

∗
t,z)

2σ2/2 − 1
)
ei(Qxx+Qyy) dx dy, (3.22)

(3.23)

such that the product 〈F (Qt)〉 〈F ∗(Qt)〉 becomes

〈F (Qt)〉 〈F ∗(Qt)〉 =
1

|Qt,z|2
∫∫

S

∫∫
S

(
e−((Qt,z)2+(Q∗t,z)

2)σ2/2 − e−Q2
t,zσ

2/2 − e−(Q∗t,z)2σ2/2 + 1
)

× e−i(Qx(x−x′)+Qy(y−y′)) dx dy dx′ dy′. (3.24)

3Evaluation of the constraintQzσ � 1 shows that it can be re-expressed as Ω << arcsin [λ/(4πσ)],
where Ω is the angle between the sample surface and the incident beam. This is under the assumption
that at some point during a scan Qz ≈ |Q|. For example, if λ = 1.54 Å and σ = 5 Å, then Ω� 1.4°.

4Note that Qx and Qy are independent of the medium and remain unchanged as the wave vectors
they depend on maintain their x and y components in surface scattering, cf. eq. (2.5).
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The configurational average 〈F (Qt)F
∗(Qt)〉 yields

〈F (Qt)F
∗(Qt)〉 =

1

|Qt,z|2
∫∫

S

∫∫
S

〈(
eiQt,zz(x,y) − 1

)(
e−iQ

∗
t,zz(x

′,y′) − 1
)〉

× e−i(Qx(x−x′)+Qy(y−y′)) dx dy dx′ dy′

=
1

|Qt,z|2
∫∫

S

∫∫
S

(〈
ei[Qt,zz(x,y)−Q

∗
t,zz(x

′,y′)]
〉
− e−Q2

t,zσ
2/2 − e−(Q∗t,z)2σ2/2 + 1

)
× e−i(Qx(x−x′)+Qy(y−y′)) dx dy dx′ dy′. (3.25)

In order to solve this configurational average [Qt,zz(x, y) − Q∗t,zz(x′, y′)] is taken
to be a Gaussian random variable of the form [s(x, y)− s′z(x′, y′)] so that eq. (3.3)
can be used. Substituting for the relative coordinates X = x′ − x and Y = y′ − y,
eqs. (3.24) and (3.25) then yield

〈F (Qt)〉 〈F ∗(Qt)〉 =
S

|Qt,z|2
∫∫

S

(
e−((Qt,z)2+(Q∗t,z)

2)σ2/2

− e−Q2
t,zσ

2/2 − e−(Q∗t,z)2σ2/2 + 1

)
ei(QxX+QyY ) dX dY (3.26)

〈F (Qt)F
∗(Qt)〉 =

S

|Qt,z|2
∫∫

S

(
e−((Qt,z)2+(Q∗t,z)

2)σ2/2+|Qt,z|2C(X,Y )

− e−Q2
t,zσ

2/2 − e−(Q∗t,z)2σ2/2 + 1

)
ei(QxX+QyY ) dX dY. (3.27)

Substituting eqs. (3.26) and (3.27) into eq. (3.20) finally yields for the diffuse dif-
ferential scattering cross section

(
dσ
dΩ

)
diff

=
S
∣∣k20(1− n2)

∣∣2
16π2

|t1|2|t0|2P (Qx, Qy) (3.28)

where

P (Qx, Qy) =
e−((Qt,z)2+(Q∗t,z)

2)σ2/2

|Qt,z|2
∫∫

S

(
e|Qt,z|

2C(X,Y ) − 1
)
ei(QxX+QyY ) dX dY,

(3.29)

which for very small Qt,z (i.e. Qzσ � 1) can be approximated to yield

P (Qx, Qy) '
∫∫

S

C(X,Y )ei(QxX+QyY ) dX dY. (3.30)

Table table 3.1 lists the various approximations and assumptions taken in the pre-
ceding derivation of eq. (3.28).
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Table 3.1: An overview of the physical and mathematical compromises implicit in
eq. (3.28) that lead to uncertainties.

TE-polarization In the derivation of the Fresnel equations in section 2.2,
transverse electric polarized radiation was assumed. This
is a good assumption for two reasons. Firstly, the Fres-
nel equations are to a large degree independent of polar-
ization at small angles. Secondly, X-ray synchrotrons pre-
dominantly emit horizontally polarized radiation.

χα replaced by χ0α The scattered wave function χα is a stationary solution of
the Schrödinger equation with the potential V0 +V1. How-
ever, in the derivation of the DWBA in appendix A, it was
replaced by χ0α which is also a solution of the Schrödinger
equation, but with the potential V0.

ψ0 and ψ1 In the derivation of the DWBA scattering cross section for
diffuse X-rays, the calculations were simplified by assum-
ing that ψ0 and ψ1 could be approximated by their expres-
sions for z < 0 for 0 < z < z(x, y). The approximation is
viable for Qzσ � 1.

V0 and V1 The choice of potential functions in section 3.3 is taken un-
der the assumption that the electron density is constant in
the x- and y-directions within a medium. A detailed dis-
cussion about scattering potentials in X-ray reflectivity is
given in [13].

Gaussian random sur-
face

In the derivation of the DWBA for X-rays incident on a
rough surface, a Gaussian distribution of the relative sur-
face heights was assumed.

P (Qx, Qy) Equation (3.29) was approximated to yield eq. (3.30) as-
suming very small Qt,z , which in practice is true so long
as Qzσ � 1.
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3.4 Multiple Interfaces

The DWBA expression for X-ray scattering can also be derived for multilayer
structures with several interfaces. Using the full set of wave equations, which
is to say four eigenstates for each of the N layers, the integral over z is split up
and it is found [7] that(

dσ
dΩ

)
diff
' k40S

16π2

N∑
j=0

∣∣n2j − n2j+1

∣∣2
×
∣∣∣∣∣ (tj+1

0 tj+1
1 + rj+1

0 rj+1
1

)
e−(σjQ

j+1
0,z )2/2

+
(
tj+1
0 rj+1

1 + tj+1
1 rj+1

0

)
e−(σjQ

j+1
1,z )2/2

∣∣∣∣∣
2

Pj(Qx, Qy), (3.31)

where the stacking reflection coefficients from section 2.3 provide the correct am-
plitudes. Here, the potentials corresponding to flat interfaces are given by

V j0 =

{
k20
(
n2j − n2j+1

)
for −∞ < z < 0

0 for z > 0
(3.32)

The perturbation potential accounts for the interface roughnesses and is given by

V j1 =


k20
(
n2j − n2j+1

)
for zj < z < zj + zj (x, y) if zj (x, y) > 0

−k20
(
n2j − n2j+1

)
for zj > z > zj + zj (x, y) if zj (x, y) < 0

0 elsewhere
(3.33)

and finally

Pj(Qx, Qy) '
∫
S

Cj(x, y)e−i(xQx+yQy) dx dy. (3.34)

Equation (3.31) is based on the same assumptions and approximations as the sub-
strate model of the previous section. Furthermore, it assumes that the surface
topography functions zj(x, y) for adjacent layers are not correlated. This assump-
tion could be fulfilled for thicker layers, while for thinner layers a certain degree
of correlation could influence the scattering.

Terms in eq. (3.31) with j > 1 seldom contribute much to the the signal unless
the layers are very thin [7]. Terms with j > 1 can therefore potentially be neglected
for simulations of some structures. Figures 3.5 and 3.6 show the contributions
from each term for two very different structures.
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Figure 3.5: The multilayer DWBA expression, eq. (3.31), is a sum of N separate terms.
For this simulated scan of an [Al2O3 200 Å/TiO2 200 Å/Si] structure (N = 3) the term
corresponding to the first interface ([Surface/ 1st interface /2nd interface]) may safely be
neglected as it is about two orders of magnitude lower than the contribution from the sur-
face. However, it is essential to have an idea of numerical precision requirements before
doing such approximations. Other parameters: 2θ = 1.99 degree, σj = 2 Å, ζj = 500 Å, hj
= 1.0, λ = 1.1808 Å.
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Figure 3.6: The multilayer DWBA expression, eq. (3.31), is a sum of N separate terms.
For this simulated scan of a [SiO2 5 Å/Au 100 Å/Si] structure (N = 3) all terms at some
point lie withing the same order of magnitude ([Surface/ 1st interface /2nd interface]).
Therefore, none of the terms should be neglected. Other parameters: 2θ = 1.99 degree,
σj = 2 Å, ζj = 500 Å, hj = 1.0, λ = 1.1808 Å.



Chapter 4

Experimental

This chapter provides information about the samples, relevant scan methods, and
the experimental setup.

4.1 Samples

Two samples have been studied, both kindly provided by Assoc. Prof. Ola Nilsen
at the University of Oslo. Specifically, the samples were a [TiO2/Si] thin film
structure1 and an [Al2O3/TiO2/Si] structure, cf. table 4.1.

Table 4.1: Data for sample A and sample B. The nominal thicknesses correspond to values
provided by Assoc. Prof. Ola Nilsen.

Sample A
Si TiO2

Nominal thickness [Å] (Substrate) 400
Sample B

Si TiO2 Al2O3

Nominal thickness [Å] (Substrate) 200 200

Atomic layer deposition (ALD), a thin film deposition technique based on al-
ternate saturative surface reactions [14], was used to deposit the various layers.
ALD is a type of deposition where the specimen is repeatedly exposed to alter-
nating chemical precursors. For example, deposition of a TiO2 layer requires two
precursors, TiCl4 and H2O. The reaction chamber is purged with an inert gas such
as N2 between each step to avoid mixing of the precursors. The film grows one
monolayer for each cycle.

1[TiO2/Si] denotes a thin film structure consisting of a layer of TiO2 on top of a Si substrate.

26



4.2. Scan Methods 27

Although ALD is a slow process, each exposure and subsequent reaction is
self-limited, resulting in excellent thickness control. However, the end surface
might have excess precursors, and the bulk is subject to precursor contaminants.

4.2 Scan Methods

There are three common ways of grazing incidence reflectivity measurements
with regard to sample and detector geometry. Figure 4.1 illustrates the geome-
try of a typical setup with an X-ray source, a sample, and a detector. 2θ denotes
the angle between incoming beam and the detector, and Ω the angle between the
incoming beam and the sample surface. φtr denotes the transverse angle of the
detector.

Figure 4.1: The geometry of an experimental setup for X-ray reflectivity. 2θ denotes the
angle between incoming beam and the detector, and Ω the angle between the incoming
beam and the sample surface. φtr denotes the transverse angle of the detector (φtr = 0 for
the depicted detector). Note that in some setups it is also possible to rotate the detector in
the transverse direction (i.e. in and out of the paper plane). Doing so results in an additional
nonzero component Qy to Q.

A specular scan is characterized by Ω = θ, meaning that the detector always is
in the direction of the specular reflected beam. In this type of scan the specular
signal dominates. Data from specular scans are commonly used in combination
with multi-parameter fitting algorithms to obtain structure information.

In a rocking scan 2θ is fixed at some angle, and the sample rotation, Ω, is free.
The specular condition is only fulfilled at Ω = θ, resulting in a sharp peak around
this angle. However, at other angles only the diffuse signal and background ra-
diation is detectable, cf. eq. (3.31). The final type of scan has Ω fixed, but 2θ is
free, and is referred to as a detector scan. While the scan methods listed so far only
require a small point-like detector, it is also possible to conduct scans with one- or
two-dimensional detectors.

Figure fig. 4.2 shows examples of the characteristic paths taken in Q-space by
each type of scan. Here, Q is the momentum transfer between the source wave
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and detector wave, cf. section 3.3. Qx and Qz denote the x and y components of
Q with respect to the sample surface.

At this point it should be noted that the incident beam possesses cross section.
For example, the data used in this thesis was obtained using a beam with rect-
angular cross section and a Gaussian intensity profile. The characteristics of the
cross section introduce some additional considerations that must be addressed
in the data analysis, cf. fig. 4.3. Firstly, when the beam is almost parallel to the
sample surface, part of the beam does not contribute, thus reducing the intensity
compared to angles where a larger extent of the beam strikes the surface. The in-
tensity profile must also be taken into account. Secondly, the illuminated area on
the sample surface, called the footprint, depends on the incident angle of the beam,
which has consequences for the area over which the integral is taken in eq. (3.34).
Finally, there is always some background noise to consider.

4.3 W1 Beamline Characteristics

The experimental data was obtained at Hamburger Synchrotronstrahlungslabor
(HASYLAB) at Deutsches Elektronen-Synchrotron (DESY) using the W1 (ROEWI)
beamline. The W1 beamline boasts a 4 − 11.5 keV focused-beam energy range.
10.5 keV was used, resulting in a wavelength of 1.1808 Å. A 70 mm long one-
dimensional linear detector consisting of an array of 1280 pixels oriented horizon-
tally was used. The distance from the sample holder to the detector was 897 mm,
meaning the detector captured data from a 4.46° transverse angle centered on the
direct signal. X-rays striking the outer pixels of the detector have a non-negligible
component Qy in addition to Qx and Qy . Figures 4.4 and 4.5 illustrate the situa-
tion. Data from a scan of the direct beam, cf. fig. 4.6, indicates a 60 pixel extent
(3.3 mm) of the beam in the transverse y-direction, and shows a rough intensity
profile. For simplicity the beam height was taken to that of the final slit opening,
i.e. 0.05 mm.

Figures 6.8 to 6.15 contain experimental data, where the data is restricted to
the 60 pixels in the center of the detector to be able to simplify the simulations by
assuming Qy ≈ 0.
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Figure 4.2: The different types of scans discussed in the text take different paths in Q-
space. (a - c): Rocking scans at various values of 2θ. There is a small change in Qz that is
not visible here. (d): A specular scan for which Qx = 0. (e - g): Detector scans for various
fixed Ω where the detector is blocked below the horizon of the sample (Qz does not reach
zero). Note that the axes are of quite different scales. λ = 1.1808 Å. The DWBA used in
this thesis is valid in the regime where Qzσ � 1.
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Figure 4.3: The area that gets illuminated by the beam for a certain sample rotation is
called the footprint. As is evident from the figure, the size of the footprint changes with
geometry. Note that for some angles, such as in the topmost drawing, only a small part
of the incoming intensity strikes the surface and contributes to the scattered signal. This is
compensated for in the computer model.
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Figure 4.4: Specular scan of sample A. The detector is an array of 1280 pixels oriented
along the transverse y-direction. The specular signal is in the center pixels. See also fig. 6.7a.
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Figure 4.5: Rocking scan at 2θ = 1.08° of sample A. See also fig. 6.8.
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Figure 4.6: The profile of the direct beam. The horizontal axis corresponds to the pixels of
the linear detector. The detector array, oriented along the transverse y-direction, was 70 mm
broad and had 1280 pixels. This data gives an idea of the extent and intensity profile of the
beam in the transverse direction. A full width at half maximum estimate gives a beam width
corresponding to 60 pixels (3.3 mm).



Chapter 5

Computer Simulation

Based on the multilayer DWBA eq. (3.31), we have implemented simulation soft-
ware in Python [15], a high level programming language that is both user-friendly
and versatile1. This chapter goes through the basics of the model and proceeds to
briefly explain the modular framework.

5.1 Model

The model, based on eq. (3.31), of course inherits all the uncertainties that come
as a consequence of the physical and mathematical assumptions that were taken
in chapter 3. There are, in addition, uncertainties related to computer precision
and the numerical evaluation of Fourier transforms. Tables 3.1 and 5.1 give an
overview. While many of the shortcuts listed in table 3.1 impose limitations on
the model, it should be clear that removing any of them would be accompanied
by an increase in the complexity of the calculations.

Beyond eq. (3.31) the model includes corrections associated with experimental
X-ray (synchrotron) setups that relate to geometry, beam footprint, sample size
and background radiation, cf. chapter 4.

5.1.1 Computing Fourier Transform Integrals

The Fourier transform-like integrals in eq. (3.34) are of particular interest as they
cannot easily be evaluated analytically with the chosen correlation function of eq. (3.5),
and therefore must be found numerically. Moreover, the integration surface, S,
which is taken to be equal to the footprint, depends on the incident angle of the
beam. The latter property effectively rules out2 the option of using a fast Fourier

1There are Python wrappers for a number of low-level programming languages, such as C, OpenCl,
OpenGL, and CUDA. The wrappers allow for the developer to code demanding tasks in fast, low-level
languages while largely retaining Python’s clean syntax and unifying role in the code hierarchy.

2The FFT relies on constant integration area.

33
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Table 5.1: An overview of the numerical compromises inherited by the computer model
that lead to uncertainties.

Machine precision Precision can be defined as the smallest floating point
number ε that, when added to the floating point number
1.0, produces a number different from 1.0. For double pre-
cision 64-bit floating point numbers, which are used here,
ε ≈ 2.22× 10−16 [16].

Fourier transform The numerical evaluation of the Fourier transform
of eq. (3.34) can be made more accurate by applying cor-
rection terms and oversampling, but there will always be
some additional error associated with this type of compu-
tations. This is further discussed in section 5.1.1

transform algorithm (FFT), but, as it will be shown, can be disregarded when the
Hurst exponent is above a certain limit (typically h > 0.1).

Equation (3.5) and thus eq. (3.34) are symmetric3 in r =
√
x2 + y2 and can be

re-expressed in polar coordinates :

P (Qr) = 2π

∫ rlim

0

C(r)e−iQrrr dr, (5.1)

where rlim is a radius at which rC(r) becomes vanishingly small,Qr =
√
Q2
x +Q2

y ,
and

C(r) = σ2e−(
r
ζ )

2h

. (5.2)

However, this formalism cannot be used when rlim extends beyond the bound-
ary of the footprint, since the integration surface is strictly circular. Furthermore,
if h = 0 then rC(r) ∝ r and therefore never vanishes. If rlim extends beyond
the footprint, then eq. (3.34) should be employed instead (integral over x and y).
Figure 5.1 shows the function rC(r) in the interval 0 ≤ r ≤ rlim and the corre-
sponding Fourier transform.

An intuitive way of solving a Fourier integral numerically is to split it into M
subintervals:

F (ω) =

∫ b

a

f(t)e−iωt dt ≈ ∆

M−1∑
j=0

fje
−iωtj , (5.3)

3Here we use X = −x and Y = −y, cf. section 3.2.
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(a) The function rC(r).

(b) The Fourier transform of rC(r).

Figure 5.1: (a): The function rC(r) in the interval 0 ≤ r ≤ rlim with ζ = 500 Å and h = 0.2.
(b): The Fourier transform of the function in (a) resulting from FFT.
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where

∆ ≡ b− a
M

(5.4)

tj ≡ a+ j∆ (5.5)
fj ≡ f(tj). (5.6)

For certain values of ω and M , the sum in eq. (5.3) can be made into a discrete
Fourier transform (DFT) that can be evaluated using an FFT algorithm. Let M be
an integer power of 2 and

ωm∆ ≡ 2πm

M
m = 0, 1...,

M

2
− 1. (5.7)

Equation (5.3) then becomes

F (ωm) ≈ ∆e−iωma
M−1∑
j=0

fje
−2πimj/M

︸ ︷︷ ︸
DFT

. (5.8)

This approximation is not very good for one reason. The oscillations in e2πimj/M

from j = 0 to j = M − 1 results in exactly m oscillations, meaning that larger
frequencies, such as ωM/2−1, will oscillate M/2 − 1 times over an interval of M
samples. In other words, the accuracy is inverse proportional to m. The situa-
tion can be remedied in two ways: By introducing correction terms of various
order [16], and by ”zero-padding” the array of fj ’s.

Zero-padding increases the frequency resolution and is actualized by choosing
an integer number N > M that is a power of 2 and appending zeros to the array
of fj ’s forM +1 < j ≤ N −1. The larger theN is chosen, the finer the sampling in
in frequency space, whereas M determines the highest frequency sampled. Equa-
tion (5.3) becomes

F (ωn) ≈ ∆e−iωna
N−1∑
j=0

fje
−2πinj/N , (5.9)

where ∆ is still given by eq. (5.4), and

ωn∆ ≡ 2πn

N
n = 0, 1...,

N

2
− 1. (5.10)

Note that M no longer needs to be a power of two. Since there are N different
F (ωn)’s, all of which require N iterations, the number of necessary operations to
compute the DFT is proportional to N2. The FFT algorithm reduces this factor to
N log2(N), cf. appendix B.
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5.1.2 Fourier Integrals in the Model

Figure 4.3 shows that the footprint depends on the incident angle of the beam.
Consider fig. 5.2. It shows how large a circle can be spanned by rlim before it
extends across the boundary. Recall that rlim is a distance at which the function
rC(r) comes sufficiently close to zero. Moreover, note that rC(r) for any h > 0
has only one maximum, the location of which, denoted rmax, can be found by
evaluating the differential

drC(r)

dr

∣∣∣∣∣
r=rmax

= 0 (5.11)

and substituting for rwith rmax. Defining the parameter p ≡ rlimC(rlim)/rmaxC(rmax),
rlim is readily found numerically through

rlimC(rlim) = prmaxC(rmax). (5.12)

Whenever rlim is within the footprint, it is safe to use eq. (5.1) and calculate it

Figure 5.2: In most experimental setups the beam strikes only part of the sample surface,
as seen here. The footprint is bounded by x and y. Moreover, the inner circle shows how
large a value rlim can take before the radial symmetry of the correlation function C(r)
can no longer be exploited. At this point it becomes necessary to take a two-dimensional
Fourier transform over x and y, as opposed to a one-dimensional one over the r.

numerically as an FFT using the formalism of eq. (5.9) in addition to correction
terms of sufficient order. However, the latter requirement of rlim is not always the
case. Figure 5.3 shows that rlim quickly increases for small values of h.

The latter method is limited to circular footprints or cases when the actual
shape of the footprint can be neglected because rC(r) vanishes at its edges. When
rlim extends beyond the boundary we employ the standard DFT of eq. (5.9) in two
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Figure 5.3: The function 2πrC(r) for different values of the Hurst exponent h. The value
rlim at which the function comes appreciably close to zero is clearly inverse proportional
to h. The consequence is that the radial symmetry cannot be used for small values of h due
to the non-circular shape of the footprint.

dimensions, x and y, taking care to change the the fj ’s according to changes in
the footprint. With this approach, the Fourier integral can be evaluated with any
shape of the footprint. However, it remains an open question whether h actually
goes low enough for actual samples that rlim exceeds the footprint.

Even though rlim may well exceed the correlation length ζ, or even the extent
of the coherence domain of the beam, it appears to only be a mathematical ef-
fect4. Therefore, there should be no requirement that rlim must be smaller than or
bounded by the coherence length of the beam (like ζ).

In the special case when rlim extends beyond the boundary, but the boundary
remains stationary (i.e. only moving the detector), the two-dimensional DFT can
be calculated as an FFT since the fj ’s do not change.

5.2 Implementation

The Python based framework used to compute eq. (3.31) is highly modular, mean-
ing each major function resides in a separate file for easier handling. Due to its
modularity, the code can easily be extended upon or be put into other frameworks.
For instance, a natural extension would be a multi-parameter fitting software to
search for physical parameters that would give a good fit between the DWBA
and some experimental data. Figure 5.4 gives an overview of the module hier-
archy. The code is largely based on the numpy package [17] (numerical Python)

4The function 2πrC(r) extends much further than C(r), but only due to the purely mathematical
prefactor r.
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which greatly speeds up array operations compared to the native array processes
in Python.

Figure 5.4: The module hierarchy of the simulation software. The optional convert module
handles translation from the spherical coordinates Ω and 2θ to components inQ-space used
by the other modules. DWBA core takes as input from a program sample data, beam char-
acteristics, and an array of Q vectors for which the DWBA expression will be calculated,
cf. eq. (3.31). It depends on the Matrix Method and FFT modules to handle wave amplitudes
and Fourier inegrals.



Chapter 6

Results and Discussion

6.1 Model - General Observations

This section looks at the general features of a computer simulated small angle
rocking scan of a thin film. It then proceeds to discuss the effects of changing
various parameters in the model, such as surface roughness and the refractive
indices.

6.1.1 Small Angle Rocking Scan

This section shows how key parameters affect the results produced by the im-
plemented DWBA model. Figure 6.1 shows a simulated rocking scan around
2θ = 2.0 ° for an [Au (200 Å)/Ti (800 Å)/Si]1 thin film structure. There are several
features to be noted for this example simulation that are characteristic not only
for the particular structure. During a rocking scan, which is described in chap-
ter 4, the detector is fixed at a position 2θ. Then, for small angle studies of thin
films, the sample is rotated by a few degrees. At low Ω, the surface is parallel to
the beam such that only background radiation is registered by the detector, (Al-
though in figs. 3.5 and 6.1 to 6.6 the contribution from background radiation has
been disregarded as it does not give useful information about the sample).

As the sample rotates and Ω increases, more of the surface intersects the beam
and gives rise to an increasingly stronger signal until, in most cases, the sample
catches all of the incoming intensity. In addition, the diffuse signal grows stronger
as Ω approaches the specular point at θ = 1°. However, it begins to decrease
when the angle between the surface and the incident wave goes beyond a certain
threshold, namely the critical angle, denoted Ωc. For the structure in fig. 6.1, when
Ω < Ωc = 0.415 °, there is total internal reflection, cf. section 2.1.1, meaning that
most of the incoming energy is reflected back without entering the surface.

1[Au (200 Å)/Ti (800 Å)/Si] denotes a thin film structure consisting of 200 Å of Au on 800 Å of Ti
on top of a Si substrate.

40
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Figure 6.1: A simulated small angle rocking scan showing only the diffuse scattering from
a [Au (200 Å)/Ti (800 Å)/Si] structure. Other parameters: 2θ = 2.0 °, σj = 4 Å, ζj = 400 Å,
hj = 0.5, λ = 1.1808 Å.

Beyond Ωc the beam enters the multilayer structure, weakening the reflected
signal due to transmission (most of the transmitted flux is eventually absorbed).
The two peaks located at the critical angle on either side in fig. 6.1 are referred to
as Yoneda peaks [18]. They originate from the combined effects of reflection and
refraction as discussed above. Note that the second Yoneda peak appears not
because of total internal reflection of the incoming beam, but rather because of the
total internal reflection of the diffusively scattered waves below the critical angle,
as this radiation has not been mitigated by losses into the sub-surface structure.

The oscillating features between the two Yoneda peaks are thickness fringes that
become apparent in the interval of Ω where there is transmission into the sample.
They result from interference effects between diffuse scattering from different lay-
ers, meaning they only appear for structures with at least one layer on top of the
substrate. The low frequency fringes in fig. 6.1 result from interference in the thin
Au layer, while the high frequency fringes that are discerned upon careful inspec-
tion can be said to originate from the much thicker Ti layer.

Around Ω = θ = 1.0 ° the specular condition is fulfilled, and there should be
a sharp peak, as will be seen in the experimental data. However, the computer
model only calculates the diffuse component of the reflected intensity, and there-
fore not the specular peak. Also, note that with increasing Ω the area of the beam
footprint, S, gets smaller. As a consequence, the off-specular signal diminishes
according to eq. (3.31).
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6.1.2 Changing Model Parameters

Equation (3.31) has many parameters that are likely to change from one sample
to the next and from one experimental setup to the other. This section highlights
the consequences of changing some of them. Or, specifically, those that are usually
considered as free parameters in the model. Other parameters, such as the beam and
sample geometries, are fixed parameters, i.e. values that are known beforehand and
are not changed (by much) during the fitting procedure. This discussion serves as
background material for section 6.2 where simulations are fitted to experimental
data.

For the structure associated with the simulations in figs. 6.2 to 6.6, all param-
eters are the same except for the one which is being monitored. Specifically the
figures depict rocking scan simulations of a substrate at 2θ = 1.99°, with σ = 10 Å,
ζ = 1000 Å, h = 0.5, δ = 1× 10−5, and β = 1× 10−7. One could pose the question
whether the changes induced in one simple substrate model are generally valid
for other and perhaps more complex structures with several layers. Given the
form of eq. (3.31), in which the contributions from the layers constitute separate
terms, it is safe to say that parameter changes for one term (layer) will produce
the same variations as for the substrate model, but that the after summation of
the remaining terms their sum will not necessarily appear to have changed in the
same manner.

6.1.2.1 Surface Roughness

Figure 6.2 shows the effect of varying the surface roughness. It appears that as σ
increases from zero, the strength of the diffuse signal also increases, but only up to
a certain point, after which the signal begins to decay. Moreover, the Yoneda peaks
become increasingly pronounced. There is no diffuse scattering from a perfectly
smooth surface. If, however, the surface becomes increasingly rough, there is a
natural increase of the diffuse signal from zero. The decay at larger values of σ is
due to the factors e−(σjQ

j+1
0,z )2/2 and e−(σjQ

j+1
1,z )2/2 in eq. (3.31).

6.1.2.2 Refractive Index

Figure 6.2 shows the effect of varying δ in the refractive index, n = 1 − δ +
iβ. Evidently, doing so has a direct effect on the critical angle, as seen from the
displaced Yoneda peaks. This behavior is covered in many introductory optics
books [8].

When δ decreases, so does the magnitude of the diffuse signal. This is due
to the choice of the potential functions in eqs. (3.32) and (3.33) which are both
proportional to n2j − n2j+1. When the refractive index of the substrate becomes
increasingly similar to that of the surrounding vacuum, the scattering potentials
get weaker. However, logic dictates that the reflected signal at angles of total
internal reflection should remain constant despite changes in δ. This is not the
case in the simulations, and it leaves some doubt about the choice of the potential
functions.
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Figure 6.2: Simulated small angle rocking scans of a substrate for different root mean
square roughnesses σ.
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Figure 6.3: Simulated small angle rocking scans of a substrate for different δ. δ is related
to the refractive index through n = 1− δ + iβ.
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Changing the imaginary part of the refractive index, β, appears to smoothen
the Yoneda peaks, cf. fig. 6.4. For multilayer structures, the thickness fringes also
become smoother if β increases for the layers responsible for the fringes. As dis-
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Figure 6.4: Simulated small angle rocking scans of a substrate for different β. β is related
to the refractive index through n = 1− δ + iβ

cussed in section 2.1.1, β is related to absorption losses.This results in a decreased
reflected signal and a smoother transition to total internal reflection at the critical
angle.

6.1.2.3 Hurst Exponent and Correlation Cut Off Length

As mentioned in section 3.3, the Hurst exponent h describes a surface of fractal
dimension D = 3 − h. Because a flat surface has two dimensions, h takes values
between zero and one. The parameter has the effect of changing the shape of
the correlation function as shown in fig. 3.2, thus influencing the Fourier integral
in eq. (3.34).

It appears from fig. 6.5 that a small value of h, i.e. a jagged surface with pro-
truding features, results in a peak centered at θ , or alternatively, a peak appears
because the signal decreases around θ. There is not much difference between the
plots for h > 0.5, and it might prove difficult to determine the Hurst exponents in
this range. The behavior appears not to be correlated with other parameters.

The correlation cut off length, ζ, is a key parameter in the correlation function,
which describes the surface length over which features are spatially correlated in
the z-direction (height direction). As can be seen in figure fig. 3.3, reducing ζ also
reduces the extent of the correlation function. The Fourier integral in eq. (3.34)
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Figure 6.5: Simulated small angle rocking scans of a substrate for different Hurst expo-
nents h. The Hurst exponent describes a surface of fractal dimension D = 3− h.
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Figure 6.6: Simulated small angle rocking scans of a substrate for different correlation cut
off lengths ζ.
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changes accordingly. It appears that the greater the correlation length, the more
the signal will be focused around Ω = θ.

6.2 Comparison With Experiment

Scattering simulations for two different thin film structures have been compared
to experimental data to see whether it is feasible to determine surface specific
properties of two samples within the implemented DWBA model. Data for the
two samples A and B is listed in table 4.1. All refractive indices are taken from [19].

The parameters σ, ζ, and h are correlated in the implemented model [7], and
it is therefore advisable to first investigate the coherent signal and determine
surface roughnesses σj before proceeding to find the correlation lengths ζj and
Hurst exponents hj from the diffuse signal. The open source reflectivity program
GenX [20] 2 was used to establish estimates of both the surface roughness and
thickness of the two samples. Table 6.1 shows the values that were obtained.
GenX is able to account for inter-diffusion between adjacent compounds in addi-
tion to surface roughness. However, inter-diffusion was eventually not taken into
account for two reasons. Firstly, doing so did not improve the GenX fits, and sec-
ondly the DWBA model used here makes no distinction between inter-diffusion
and roughness.

There was a tolerable degree of similarity between the model and the exper-
imental data, cf. fig. 6.7. It has been suggested that there were irregularities in
the experimental setup or in the samples influencing the reflected signal at cer-
tain angles. Moreover, data from the full length of the linear detector was used,
as opposed to only the center pixels. However, the thin film thicknesses should
be fairly accurate, and the surface roughnesses appear to be in the range of a few
Ångström, as is to be expected given the technique used to make the samples,
cf. section 4.1. The values obtained are listen in table 6.1.

Approximate fits between data and DWBA simulations were obtained using
the values from table 6.1. Fits for sample A are shown in figs. 6.8 to 6.10, and
for sample B in figs. 6.12 to 6.15. The parameters, listed in table 6.2, do not differ
between the fits at various angles 2θ for a sample. Furthermore, rlim appeared not
to exceed the footprint at any point.

It can be seen from fig. 4.2 and the surface roughnesses listed in table 6.2 that
the criteria Qzσ � 1 is not always fulfilled and the implemented DWBA model
looses its validity. However, the roughnesses are still very uncertain at this point.

The indices of refraction for the various media were changed. Decreasing δ
of a medium corresponds to decreasing its electron density and shifts the Yoneda
peaks outwards. Note that the model does not include the instrument resolution
which to some extent should act to smoothen the simulated scans.

Although it is a cumbersome task to fit curves manually in the (present) ab-
sence of a multi-parameter fitting algorithm, some similarity between data and

2GenX employs a genetic algorithm to do multi-parameter fitting of reflectivity data. However, it
is limited to investigations of the specular signal.
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(a) Fit of a specular scan of Sample A. See also fig. 4.4.

(b) Fit of a specular scan of Sample B

Figure 6.7: There was a tolerable degree of similarity between the model (blue line) and
the experimental data (black dots).However, the logarithmic figure of merit functions for
each plot, which is a measure of of well the model fits the data, should preferably have
ended at lower values.
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Table 6.1: Parameters that were obtained using the multi-parameter reflectivity fitting
program GenX. Sample data is listed in table 4.1. The parameters d and σ are layer thickness
and roughness, respectively. A thin layer of SiO2 was modeled on top of the substrate in
case there was some oxide formation during the making of the sample, cf. [1]. The error
intervals as reported by GenX are shown in parenthesis behind each value. However, keep
in mind that these are the errors as seen from the software’s point of view, and that the
true value of the parameters do not necessarily lie within the listed bounds. There was a
tolerable degree of similarity between the model and the experimental data.The thin film
thicknesses should be fairly accurate, and the roughnesses evidently lie in the Å-range.

Sample A
Si SiO2 TiO2

d [Å] ∞ 5.0 (−1.8, 0.0) 432 (−0.8, 1.5)

σ [Å] 1.8 (−1.2, 1.8) 4.9 (−3.0, 1.0) 2.8 (−0.2, 6.6)

Sample B
Si SiO2 TiO2 Al2O3

d [Å] ∞ 3.6 (−3.4, 1.5) 216 (−2.5, 2.1) 233 (−1.9, 2.7)

σ [Å] 0.03 (−0.03, 10.0) 1.4 (−0.41, 1.1) 1.9 (1.5, 2.8) 2.3 (−0.2, 0.1)

model was achieved. A constant background radiation was added to the sim-
ulations. The background radiation was taken to be the magnitude of the low-
est (least intense) data point in each experimental data set. Determination of the
Hurst exponent form the rocking scans was complicated by the fact that the spec-
ular component covers much of the area around Ω = θ, which is the region most
sensitive to changes in h, cf. section 6.1.2.3. It is therefore advantageous with a
narrow and highly collimated beam to limit the extent of the specular component
in the scans.
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Table 6.2: An overview of the parameters used in the DWBA simulation software. Fixed
parameters in bold font.

Instrument
Wavelength 1.1808 Å
Beam width 3.3 mm
Beam height 0.05 mm

Sample A

Sample dimensions (x× y) 15× 30 mm2

Si SiO2 TiO2

d [Å] ∞ 5.00 432.00

σ [Å] 3.60 4.90 8.40

ζ [Å] 400.00 400.00 400.00
h 0.40 0.40 0.40
δ 3.76× 10−6 4.27× 10−6 6.57× 10−6

β 5.15× 10−8 3.28× 10−8 2.06× 10−7

Sample B

Sample dimensions (x× y) 15× 30 mm2

Si SiO2 TiO2 Al2O3

d [Å] ∞ 3.60 216.00 233.00

σ [Å] 0.06 2.80 3.80 6.90

ζ [Å] 1000.00 1000.00 1000.00 1000.00
h 0.40 0.40 0.40 0.40
δ 3.50× 10−6 3.97× 10−6 6.10× 10−6 5.84× 10−6

β 4.79× 10−8 3.05× 10−8 1.91× 10−7 3.99× 10−8
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Figure 6.8: Comparison between model and data for sample A for a rocking scan around
2θ = 1.08 °. Qzσ ≈ 0.8. See also fig. 4.5.
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Figure 6.9: Comparison between model and data for sample A for a rocking scan around
2θ = 1.18 °. Qzσ ≈ 0.9.
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Figure 6.10: Comparison between model and data for sample A for a rocking scan around
2θ = 2.48 °. Qzσ ≈ 1.9.
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Figure 6.11: Comparison between model and data for sample A for a rocking scan around
2θ = 2.57 °. Qzσ ≈ 1.9.
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Figure 6.12: Comparison between model and data for sample B for a rocking scan around
2θ = 0.56 °. Qzσ ≈ 0.3.
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Figure 6.13: Comparison between model and data for sample B for a rocking scan around
2θ = 0.60 °. Qzσ ≈ 0.4.
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Figure 6.14: Comparison between model and data for sample B for a rocking scan around
2θ = 1.08 °. Qzσ ≈ 0.7.
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Figure 6.15: Comparison between model and data for sample B for a rocking scan around
2θ = 1.16 °. Qzσ ≈ 0.8.
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6.3 Outlook to Multi-parameter Fitting

To get accurate parameters more efficiently, a multi-parameter fitting algorithm
should be employed.In the case of rocking scans, the figure of merit function
should be weighted around the Yoneda peaks, and not at all in the interval of
specular reflection in the experimental data. The algorithm should also be able to
fit scans where Ω remains fixed and 2θ changes, cf. chapter 4. Moreover, it would
be advantageous to combine the aforementioned with a concurrent fit of a specu-
lar scan to find the parameters that fit best not only with one, but with a number
of data sets. Another possibility would be to fit two-dimensional scans at various
angles, and although more computationally intensive, it would be an interesting
approach as there is more data in a two-dimensional than in a one-dimensional
scan.

GenX, which employs a genetic multi-parameter fitting algorithm, typically
needs several thousand complete calculations of the specular reflectivity curve,
or ”individuals”, to converge on a solution. The number is obviously highly de-
pendent on several factors such as the number of free parameters, their respective
”allowed” intervals and chance. For example, the fits in fig. 6.7 required around
7000 and 11000 individuals to converge. It is therfore important that each individ-
ual can be calculated in a reasonable amount of time.

Analyses of the implemented DWBA tools showed a typical computing time
of 0.2−5 s for a rocking scan of a structure with three layers using 500 data points.
The computation time varied with the parameters h, ζ, and 2θ because they influ-
ence the time required to calculate the Fourier integrals with resolution to match
the number of data points, cf. section 5.1.1. Further analysis revealed that between
90 − 99 % of the time was spent solving the Fourier integrals. Optimization and
parallelization [21–23] of the FFT should therefore vastly improve the computa-
tion time. Furthermore, recall that for some structures, select terms of eq. (3.31)
can be disregarded as their contributions are negligible, cf. section 3.4. Perfor-
mance should therefore be greatly improved when the parameters in a multi-
parameter fitting algorithm became exact enough to establish which terms might
safely be neglected.



Chapter 7

Conclusion

The differential scattering cross section for diffuse scattering of X-rays from thin
film structures has been discussed within the framework of the distorted wave
Born approximation (DWBA). In contrast to the standard Born approximation
(BA), the distorted wave approach succeeds in calculating scattering from sur-
faces near the critical angle. The method is particularly useful for studying aver-
age surface properties.

Compromises made in the derivation of the model, cf. table 3.1, substantially
simplify the final expression, but also limit its range of validity, which is deter-
mined by the requirement Qzσ � 1. However, this is also the only regime where
it is necessary to go beyond the simpler Born approximation. Furthermore, the
rough surface (and interfaces) was taken to be a Gaussian random surface, which
naturally leads to the inclusion of a desired height-height correlation function. A
height-height correlation function with a correlation length cut off parameter ζ
was used, as suggested by Sinha et al. [6].

A computer simulation software based on the aforementioned DWBA expres-
sion has successfully been implemented in Python. Specifically, the model finds
the differential scattering cross section of diffusively scattered X-rays from a thin
film structure of N layers. The implemented DWBA depends on the surface spe-
cific parameters ζ and a Hurst exponent h. The latter parameter describes the
fractal dimension of the surface features. The various effects of changing key
model parameters, among them ζ and h, have been demonstrated. Work by Holý
et al. suggests that the surface roughness σ is correlated with the latter two pa-
rameters [7], and the DWBA was therefore supplemented with an evaluation of
the specular signal in determining the surface roughness from experimental data.
Fitting of the specular signal was done within the GenX software [20].

Although emphasis was not put on searching manually for the best possible
parameters, comparison between experimental data and the DWBA model looks
promising. Simulations of rocking scans for different values of h > 0.5 are hard to
distinguish, and are further complicated as the specular signal in the experimental
scans is centered around the area that is most sensitive to changes in the Hurst
exponent.
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Multi-parameter fitting algorithms are crucial in order to efficiently match a
model to the data to determine probable sample parameters. The Python imple-
mentation of the DWBA, which was programmed to be surveyable and easy-to-
follow rather than fast, spends up to a few seconds to calculate a 500 data point
simulation of a structure with three layers. However, most of this time is spent
calculating Fourier-type integrals. Under this premise a multi-parameter fitting
algorithm for the DWBA (even for 2D scans) should be feasible given proper op-
timization and parallelization of the fast Fourier transform (FFT) part of the code.

Recommendable future work includes optimization and parallelization of the
DWBA code and implementing a decent multi-parameter fitting algorithm. The
latter would preferably be placed in a flexible framework allowing simultaneous
fitting of both specular scans and diffuse scans (for example rocking scans). Fur-
thermore, it would be necessary to factor in instrument resolution as parameter
and pay closer attention to the influence of the coherence properties of the incom-
ing beam.
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Appendix A

DWBA - General Expression

This chapter offers a brief overview of the derivation of the general expression for
the BA and the DWBA. It is assumed that the reader has some basic knowledge of
quantum mechanics. The derivation follows the steps given by Schiff in [9].

The wave function Ψ(r, t) of a particle with mass m in all places r at a time t,
described by the full Schrödinger equation,

i~
∂

∂t
Ψ(r, t) =

(
− ~2

2m
∇2 + V (r, t)

)
Ψ(r, t) (A.1)

contains all information about the particle. This includes the wave function at
some later time t′ and place r′, which can be written explicitly as

Ψ(r′, t′) = i

∫
G(r′, t′; r, t)Ψ(r, t) d3r, (A.2)

where G is the Green’s function. Here, this function acts as a propagator describing
the probability amplitude of going from the state Ψ(r, t) to Ψ(r′, t′), given t < t′.
That is, G can be used to describe the wave function Ψ(r, t) at a different point in
time.

Consider an initially free particle (V = 0) with wave function Φα(r, t) incident
on a potential (V 6= 0). Associated with Φα(r, t) is a new wave function Ψα(r, t)
growing out of Φα(r, t) when the particle enters the potential. Using the Green’s
propagator, Ψα(r′, t′) can at some later time (t < t′) be expressed as

Ψα(r′, t′) = i

∫
G(r′, t′; r, t)Φα(r, t) d3r. (A.3)

At some time in the future, t′, the particle will have left the potential, and Ψα(r′, t′)
will necessarily be a solution of the free particle Schrödinger equation. The proba-
bility amplitude of the (scattered) free particle state Φβ(r′, t′) contained in Ψα(r′, t′)
is then defined as the quantity

〈β|S|α〉 ≡ 〈Φβ |Ψα〉 , (A.4)
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where S is the unitary scattering matrix or S matrix. The scattering matrix relates
the initial state and final states of a scattering process. Φα and Φβ represent an
incoming and a scattered outgoing wave, cf. fig. A.1. Substituting eq. (A.3) we get

〈β|S|α〉 = i

∫∫
Φ∗β(r′, t′)G(r′, t′; r, t)Φα(r, t) d3r′ d3r, (A.5)

which can be rewritten as

〈β|S|α〉 = 〈β|α〉 − i

~

∫∫
Φ∗β(r, t)V (r, t)Ψα(r, t) dt d3r (A.6)

where 〈β|α〉 ≡
∫

Φ∗β(r, t)Ψα(r, t) d3r.

Figure A.1: A free particle described by Φα(r, t) strikes the potential V (r, t), giving rise to
a spherical wave Ψα(r′, t′). The probability amplitude of the (scattered) free particle state
Φβ(r′, t′) contained in Ψα(r′, t′) is given by eq. (A.4).

The above theory allows for the potential V to vary in time beyond just being
switched on and then off at a later time. In stationary scattering theory, however,
the potential is constant in an interval between being switched on and off, which
allows for some simplifications (imagine a particle entering and leaving a constant
potential, corresponding to switching the potential on, and then off). In such cases
it is more convenient to deal with transition probability amplitude per unit of
time. This assumption of a stationary potential (i.e. not varying in time) is valid
for most interactions of X-rays with matter.
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Consider a situation where

Φα(r, t) = uα(r)e−iωαt V = 0 (A.7)

Ψα(r, t) = χα(r)e−iωαt V (r, t) = V (r)g(t) (A.8)

The time dependence of the potential V (r, t) is determined by g(t), which is equal
to one during the time span ∆t when the particle is in the potential. The transition
matrix or T matrix is defined through

〈β|S − 1|α〉 = − i
~
〈β|T |α〉

∫ ∞
−∞

g(t)ei(ωβ−ωα)t dt, (A.9)

where

〈β|T |α〉 ≡
∫
u∗β(r)V (r)χα(r) d3r. (A.10)

In contrast to the S-matrix, the T -matrix has no time dependency. For situations
where ∆t → ∞ (a stationary system) it is not meaningful to think in terms of a
transition probability. We use instead the scattering amplitude, which is given by

f(kβ ,kα) = − m

2π~2|C|2 〈β|T |α〉 , (A.11)

where m is the particle mass. Here we have used that

uα = Ceikα·r (A.12)

uβ = Ceikβ ·r, (A.13)

where kβ and kα are wave vectors andC is a normalization constant. The differen-
tial scattering cross section, which describes the probability of finding a scattered
particle within a given solid angle, is given by

dσ
dΩ

= |f(kβ ,kα)|2 =
m2

4π2~4|C|4 |〈β|T |α〉|
2
. (A.14)

Equation (A.11) is exact, but not easy to use in practice. In the Born approximation
we use the property that χα(r) can be written as an infinite perturbation series,
which to first order is equal to uα(r), such that

fBA(kβ ,kα) = − m

2π~2|C|2
∫
u∗β(r)V (r)uα(r) d3r (A.15)

= − m

2π~2|C|2
∫
V (r)ei(kα−kβ)·r d3r. (A.16)

The approximation of χα(r) to first order might seem drastic, but it should be
noted that for a stationary scattering problem, the expected solution for χα(r)
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has the asymptotic form of a plane wave plus an outgoing spherical wave. The
solution should be expressible by

χα(r) = uα(r) + Cv(r) (A.17)

where uα(r) is the plane wave and v(r) is the scattered outgoing spherical wave.
As long as C|v(r)| is small in comparison with |uα(r)| = C|eikα·r| = 1, the first
order Born approximation is valid.

Sometimes it is convenient to write the potential as the sum of two parts, V =
V0 + V1, where V1 is so small that it can be treated as a perturbation. For our
purposes, V0 will be the scattering potential of a perfectly smooth surface, and V1
a small correction term to the potential to account for possible surface roughness
(that will cause diffuse scattering in addition to the specular component). It can
be shown that

〈β|T |α〉 = 〈uβ |V0 + V1|χα〉
=
〈
χ−β

∣∣∣V0 + V1

∣∣∣uα〉
=
〈
χ−0β

∣∣∣V0∣∣∣uα〉+
〈
χ−0β

∣∣∣V1∣∣∣χα〉 (A.18)

where χ−0β is equal to the plane wave uβ plus a an ingoing spherical wave describ-
ing the scattering due only to V0. In contrast, χα is equal to the plane wave uα plus
an outgoing spherical wave describing the scattering from both V0 and V1. It might
seem strange that the final state χ−0β is associated with an ingoing spherical wave,
but it is the only viable solution as an outgoing spherical state would necessarily
contribute to the scattering amplitudes in other directions.

Equation (A.18) is exact. If, however, we replace χα by χ0α, the T -matrix ele-
ment in the distorted-wave Born approximation is obtained:

〈β|T |α〉 =
〈
χ−0β

∣∣∣V0∣∣∣uα〉+
〈
χ−0β

∣∣∣V1∣∣∣χ0α

〉
(A.19)

Although we began this section with the Schrödinger equation of a particle
with finite mass, the theory is also valid for mass-less X-ray photons of wave-
length λ. X-rays obey the stationary wave equation [6]

∇2ψ + k20ψ − V ψ = 0, (A.20)

where V = k20(1 − n2), k0 ≡ 2π/λ is the magnitude of the wave vector, and n is
the refractive index of the medium.



Appendix B

Fast Fourier Transform

This appendix extends upon section 5.1.1.
The frequency spectrum resulting from any DFT is even around ω0 such that

F (ωn) = F (ωn+N/2), so there is evidently some redundancy in the calculations.
Furthermore, the sum in the DFT function can be rearranged into an even indexed
and an odd-indexed part:

N−1∑
j=0

fje
2πi
N nj

︸ ︷︷ ︸
DFT - all indices

=

N/2−1∑
j=0

f2je
2πi
N/2

nj

︸ ︷︷ ︸
DFT - even indices

+ e
2πi
N n

N/2−1∑
j=0

f2j+1e
2πi
N/2

nj

︸ ︷︷ ︸
DFT - odd indices

(B.1)

= F e(ωn) + wF o(ωn) (B.2)

This can be done log2(N) times until the there is only one h left for each DFT. Re-
call now that only half of the F (ωn)’s have to be calculated for each DFT due to
redundancy. Since we have split the original DFT log2(N) times as demonstrated
in eq. (B.2), the pivotal result is that we only need to compute F (ω0 = 0), although
for N DFTs (each with one f ). The concept is clarified in fig. B.1. The consequence
is a dramatic reduction in the number of computational operations, which is now
proportional to N log2(N). The method described above is called the FFT algo-
rithm, and it was discovered in 1805 by Carl Friedrich Gauss and rediscovered
and popularized in 1965 by J. W. Cooley and John W. Tukey [24].
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Figure B.1: The number of computational operations required for a fast Fourier transform
(FFT) is proportional to N log2N , whereas the number required by the naive approach
is proportional to N2. The figure demonstrates the basic intuition behind an FFT of size
N = 8. That is, eight different frequencies and thus eight Fn and eight fj ’s: The topmost
array holds the DFTs corresponding to all eight Fn’s, half of which come ”for free” due to
symmetry (green color). The remaining Fn’s are split in separate DFTs for odd and even
indices. Again, for the new DFTs, half of the Fn’s come for free. The latter procedure
is repeated log2N = 3 times until there only remaining frequency is F0, and each of the
N = 8 DFTs are functions of one f . The resulting number of computations is therefore
equal to N log2N . The procedure is most easily carried out recursively.
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