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Abstract—Complex out-of-order (OoO) processors have been designed to overcome the restrictions of outstanding long-latency misses

at the cost of increased energy consumption. Simple, limited OoO processors are a compromise in terms of energy consumption and

performance, as they have fewer hardware resources to tolerate the penalties of long-latency loads. In worst case, these loads may stall

the processor entirely. We present Clairvoyance, a compiler based technique that generates code able to hide memory latency and better

utilize simple OoO processors. By clustering loads found across basic block boundaries, Clairvoyance overlaps the outstanding latencies

to increases memory-level parallelism. We show that these simple OoO processors, equipped with the appropriate compiler support, can

effectively hide long-latency loads and achieve performance improvements for memory-bound applications. To this end, Clairvoyance

tackles (i) statically unknown dependencies, (ii) insufficient independent instructions, and (iii) register pressure. Clairvoyance achieves a

geomean execution time improvement of 14% for memory-bound applications, on top of standard O3 optimizations, while maintaining

compute-bound applications’ high-performance.

Index Terms—Compilers, code generation, memory management, optimization

✦

1 INTRODUCTION

Computer architects of the past have steadily improved
performance at the cost of radically increased design com-
plexity and wasteful energy consumption [1], [2], [3]. Today,
power is not only a limiting factor for performance; given the
prevalence of mobile devices, embedded systems, and the
Internet of Things, energy efficiency becomes increasingly
important for battery lifetime [4].

Highly efficient designs are needed to provide a good
balance between performance and power utilization and
the answer lies in simple, limited out-of-order (OoO) cores
like those found in the HPE Moonshot m400 [5] and the
AMD A1100 Series processors [6]. Yet, the effectiveness
of moderately-aggressive OoO processors is limited when
executing memory-bound applications, as they are unable to
match the performance of the high-end devices, which use
additional hardware to hide memory latency and extend the
reach of the processor.

This work aims to improve the performance of the limited,
more energy-efficient OoO processors, through the help of
advanced compilation techniques specifically designed to
hide the penalty of last level cache misses and better utilize
hardware resources.

One primary cause for slowdown is last-level cache (LLC)
misses, which, with conventional compilation techniques,
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result in a sub-optimal utilization of the limited OoO engine
that may stall the core for an extended period of time. Our
method identifies potentially critical memory instructions
and hoists them earlier in the program’s execution, even
across loop iteration boundaries, to increase memory-level
parallelism (MLP). We overlap the outstanding misses with
useful computation to hide their latency and, thus, also
increase instruction-level parallelism (ILP).

Modern instruction schedulers for out-of-order processors
are not designed for optimizing MLP or memory over-
lap, and assume that each memory access is a cache hit.
Because of the limits of these simple out-of-order cores,
hiding LLC misses is extremely difficult, resulting in the
processor stalling, unable to perform additional useful work.
Our instruction scheduler targets these specific problems
directly, grouping loads together to increase memory-level
parallelism, in order to increase performance and reduce
energy dissipation. We address three challenges that need to
be met to accomplish this goal:

1. Finding enough independent instructions: A last level
cache miss can cost hundreds of cycles [7]. Conventional
instruction schedulers operate on the basic-block level,
limiting their reach, and, therefore, the number of in-
dependent instructions that can be scheduled in order
to hide long latencies. More sophisticated techniques
(such as software pipelining [8], [9]) schedule across basic-
block boundaries, but instruction reordering is severely
restricted in general-purpose applications when pointer
aliasing and loop-carried dependencies cannot be resolved
at compile-time. Clairvoyance introduces a hybrid load
reordering and prefetching model that can cope with
statically unknown dependencies in order to increase the
reach of the compiler while ensuring correctness.

2. Chains of dependent long-latency instructions may
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stall the processor: Dependence chains of long-latency
instructions prevent parallel accesses to memory and
may stall a limited OoO core, as the evaluation of one
long-latency instruction is required to execute another
(dependent) long-latency instruction. Clairvoyance splits
up dependent load chains and schedules independent
instructions in-between to enable required loads to finish
before their dependent loads are issued.

3. Increased register pressure: Separating loads and their
uses to overlap outstanding loads with useful computa-
tion increases register pressure. This causes additional
register spilling and increases the dynamic instruction
count. Controlling register pressure, especially in tight
loops, is crucial. Clairvoyance naturally reduces register
pressure by prefetching loads that are not safe to reorder.
This, however, assumes that the compiler cannot statically
determine whether loads are safe to reorder.

In our previous work [10] the compiler was too con-
servative. To ensure correctness, Clairvoyance re-ordered
only those that were statically known not to alias with any
preceding store. The full potential can, however, only be
unlocked by targeting a wider range of long-latency loads.

In this work we aim to reach the performance of the most
speculative version of Clairvoyance, while guaranteeing
correctness. We extend our previous work through the
following contributions:

1. Improving Alias Analysis: We improve Clairvoyance’s
conservative version by integrating a more powerful
pointer analysis, which is able to disambiguate more mem-
ory operations. As a result, we can reduce the performance
gap between the conservative version and Clairvoyance’s
best speculative versions (Section 2.6, Section 4.4).

2. Making the Speculative Version Reliable: While previ-
ously speculation acted as an oracle, we now add support
for mis-speculation such that the speculative version can
be safely invoked if necessary (Section 2.2.1, Section 4.6).

3. Handling of Register Pressure: Reordering instructions
and purposely increasing register lifetime – by separating
loads from their uses – increases register pressure. To
mitigate register pressure and spilling, we propose heuris-
tics that determine which loads to reorder (and keep the
loaded values in registers) and which loads to prefetch
without increasing register pressure (Section 2.5.1).

4. Comparing against State-of-the-Art Prefetching: We ex-
tend the evaluation to include the comparison to state-of-
the-art prefetching techniques (Section 4).

5. Understanding the Performance: We provide new static
and dynamic statistics that provide new insights into the
performance gains achieved by Clairvoyance (Section 4.5).

Clairvoyance generated code runs on real hardware
prevalent in mobile devices and in high-end embedded
systems and delivers high-performance, thus alleviating
the need for power-hungry hardware complexity. In short,
Clairvoyance increases the performance of single-threaded
execution by 17% (geomean improvement) on top of standard
O3 optimizations, on hardware platforms that yield a good
balance between performance and energy efficiency.

Fig. 1: The basic Clairvoyance transformation. The original
loop is first unrolled by countunroll which increases the
number of instructions per loop iteration. Then, for each
iteration, Clairvoyance hoists all (critical) loads and sinks
their uses to create a memory-bound Access phase and a
compute-bound Execute phase.

Fig. 2: Selection of loads based on an indirection count
countindir. The Clairvoyance code for countindir = 0 (left)
and countindir = 1 (right).

2 THE CLAIRVOYANCE COMPILER

This section outlines the general code transformation per-
formed by Clairvoyance while each subsection describes
the additional optimizations, which make Clairvoyance
feasible in practice. Clairvoyance builds upon techniques
such as software pipelining [9], [11], program slicing [12],
and decoupled access-execute [13], [14], [15] and generates
code that exhibits improved memory-level parallelism (MLP)
and instruction-level parallelism (ILP). For this, Clairvoyance
prioritizes the execution of critical instructions, namely
loads, and identifies independent instructions that can be
interleaved between loads and their uses.

Figure 1 shows the basic Clairvoyance transformation,
which is used as a running example throughout the paper1.
The transformation is divided into two steps:

1. For simplicity we use examples with for-loop structures, but
Clairvoyance is readily available for while, do-while and goto loops.
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• Loop Unrolling To expose more instructions for re-
ordering, we unroll the loop by a loop unroll factor
countunroll = 2n with n = {0, 1, 2, 3, 4}. Higher unroll
counts significantly increase code size and register
pressure. In our examples, we set n = 1 for the sake of
simplicity.

• Access-Execute Phase Creation Clairvoyance hoists
all load instructions along with their requirements
(control flow and address computation instructions)
to the beginning of the loop2. The group of hoisted
instructions is referred to as the Access phase. The
respective uses of the hoisted loads and the remaining
instructions are sunk in a so-called Execute phase.

Access phases represent the program slice of the criti-
cal loads, whereas Execute phases contain the remaining
instructions (and guarding conditionals). When we unroll
the loop, we keep non-statically analyzable exit blocks. All
exit blocks (including goto blocks) in Access are redirected to
Execute, from where they will exit the loop after completing
all computation. The algorithm is listed in Algorithm 1 and
proceeds by unrolling the original loop and creating a copy
of that loop (the Access phase, Line 3). Critical loads are
identified (FindLoads, Line 4) together with their program
slices (instructions required to compute the target address of
the load and control instructions required to reach the load,
Lines 5 - 9). Instructions which do not belong to the program
slice of the critical loads are filtered out of Access (Line 10),
and instructions hoisted to Access are removed from Execute
(Line 11). The uses of the removed instructions are replaced
with their corresponding clone from Access. Finally, Access
and Execute are combined into one loop (Line 12).

Input: Loop L, Unroll Count countunroll
Output: Clairvoyance Loop LClairvoyance

1 begin
2 Lunrolled ← Unroll(L, countunroll)
3 Laccess ← Copy(Lunrolled)

4 hoist_list← FindLoads(Laccess)

5 to_keep← ∅
6 for load in hoist_list do
7 requirements← FindRequirements(load)
8 to_keep← Union(to_keep, requirements)
9 end

10 Laccess ← RemoveUnlisted(Laccess, to_keep)
11 Lexecute ← ReplaceListed(Laccess, Lunrolled)

12 LClairvoyance ← Combine(Laccess, Lunrolled)

13 return LClairvoyance

14 end
Algorithm 1: Basic Clairvoyance algorithm. The Access
phase is built from a copy of the unrolled loop. The Execute
phase is the unrolled loop itself, while all already computed
values in Access are reused in Execute.

This code transformation faces the same challenges as
typical software pipelining or global instruction scheduling:
(i) selecting the loads of interest statically; (ii) disambiguating
pointers to reason about reordering memory instructions; (iii)
finding sufficient independent instructions in applications
with entangled dependencies; (iv) reducing the instruction count

2. We do not maintain precise exception semantics, as we reorder
memory instructions that may throw an exception.

Fig. 3: Handling of may-aliasing loads. Loads that may alias
with any preceding store operation are not safe to hoist.
Instead, we prefetch the unsafe load.

overhead (e.g., stemming from partly duplicating control-
flow instructions); and (v) overcoming register pressure
caused by unrolling and separating loads from their uses.
Each of these challenges and our solutions are detailed in the
following subsections.

2.1 Identifying Critical Loads

Problem: Selecting the right loads to be hoisted is essential
in order to avoid code bloat and register pressure and to
ensure that long-latency memory operations overlap with
independent instructions.
Solution: We develop a metric, called indirection count, based
on the number of memory accesses required to compute
the memory address (indirections) [15] and the number of
memory accesses required to reach the load. For example,
x[y[z[i]]] has an indirection count of two, as it requires two
loads to compute the address. The latter interpretation of
indirection count is dependent on the control flow graph
(CFG). If a load is guarded by two if-conditions that in turn
require one load each, then the indirection count for the CFG
dependencies is also two. Figure 2 shows an example of load
selection with indirection counts. A high value of indirection
indicates the difficulty of predicting and prefetching the
load in hardware, signaling an increased likelihood that the
load will incur a cache miss. For each value of this metric, a
different code version is generated (i.e., hoisting all loads that
have an indirection count less than or equal to the certain
threshold). We restrict the total number of generated versions
to a fixed value to control code size increase. Runtime version
selection (orthogonal to this proposal) can be achieved with
dedicated tools such as Protean code [16] or VMAD [17], [18].

2.2 Handling Unknown Dependencies

Problem: Hoisting load operations above preceding stores is
correct if and only if all read-after-write (RAW) dependencies
are respected. When aliasing information is not known at
compile-time, detecting dependencies (or guaranteeing the
lack of dependencies) is impossible, which either prevents
reordering or requires speculation and/or hardware sup-
port. However, speculation typically introduces considerable
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Name Description
Consv Conservative, only hoists safe loads
Spec-safe Speculative (but safe), hoists may-

aliasing load chains, but safely reloads
them in Execute

Spec Speculative (unsafe), hoists may-aliasing
load chains and reuses all data in Execute

Multi-spec-safe Multi-access version of spec-safe
Multi-spec Multi-access version of spec

TABLE 1: Clairvoyance evaluated versions.

overhead by squashing already executed instructions and
requiring expensive recovery mechanisms.
Solution: We propose a lightweight solution for handling
statically known and unknown dependencies, which ensures
correctness and efficiency. Clairvoyance embraces safe specula-
tion, which brings the benefits of going beyond conservative
compilation, without sacrificing simplicity and lightness.

We propose a hybrid model to hide the latency of
delinquent loads even when dependencies with preceding
stores are unknown (i.e., may-alias). Thus, loads free of
dependencies are hoisted to Access and the value is used in
Execute, while loads that may alias with stores are prefetched
in Access and safely loaded and used in their original position
in Execute. May-aliases, however, are an opportunity, since
in practice may-aliases rarely materialize into real aliasing
at runtime [19]. Prefetching in the case of doubt is powerful:
(1) if the prefetch does not alias with later stores, data will
have been correctly prefetched; (2) if aliasing does occur,
the prefetched data becomes overwritten and correctness is
ensured by loading the data in the original program order.

Figure 3 shows an example in which an unsafe load is
turned into a prefetch-load pair.

The proposed solution is safe. In addition to this solution,
we analyze variations of this solution that showcase the
potential of Clairvoyance when assuming a stronger alias
analysis. These more speculative variations are allowed to
hoist whole chains of may-aliasing loads and will be introduced
during the experimental setup in Section 3.

2.2.1 A Study on Speculation Levels

Problem: Prefetching the first may-aliasing load in a chain
of may-aliasing loads is restrictive. First, this may prevent
us from reaching the loads that actually miss in the cache.
Second, it may become impossible to find enough loads to
overlap the outstanding latencies.
Solution: In order to reach the target load when its address
depends on a chain of may-aliasing loads, we evaluate three
versions that vary in their speculative nature: Consv, spec-safe,
and spec.

Consv is a conservative version which only hoists safe
loads. In case of a chain of dependent loads, it turns the first
unsafe load into a prefetch and does not target the remaining
loads. Spec-safe is a speculative but safe version. It hoists
safe loads, but unlike the consv version, in case of a chain of
dependent loads, spec-safe duplicates unsafe loads in Access
such that it is able to reach the entire chain of dependent
loads. Then it turns the last unsafe load of each chain into
a prefetch, and reloads the unsafe loads in Execute. Spec is
a speculative but unsafe version which hoists all safe and
unsafe loads and reuses them in Execute.

Fig. 4: Custom segmentation fault handler to safely execute
spec-safe. The handler is deployed at program start (left,
main.cpp). On a segmentation fault, the handler will either
(1) raise the fault in the default handler, or (2) re-execute the
original loop (left, segfault_handler.cpp, jump to sigsetjmp).
The decision depends on a flag (ignore).

The exploration of different speculation levels is a study
to give an overview on Clairvoyance’s performance assum-
ing increasingly accurate pointer analysis. The conservative
consv version shows what we can safely transform at the
moment, while spec indicates a perfect alias analyzer. We
expect that state-of-the-art pointer analyses [20] approach
the accuracy of spec. Spec-safe demonstrates the effect of com-
bining both prefetches and loads. A better pointer analysis
would enable Clairvoyance to safely load more values, and
consequently we would have to cope with increased register
pressure. To this end, spec-safe is a version that balances
between loads and prefetches, and thus between register
spills and increased instruction count overhead.

The speculative but safe version (spec-safe) may cause a
segmentation fault in Access when speculatively accessing
memory locations to compute the target address of the
prefetch. Since only safely loaded values are reused in Execute,
segmentation faults that are triggered during an Access can
be safely caught and ignored.

In order to avoid fine-grain differentiation between
speculative loads (loads hoisted above may-aliasing stores)
and non-speculative loads (no-aliasing loads), which may be
expensive, we perform coarse-grain differentiation at loop
level. The idea is to restore a previously saved state and
execute a back up version of the original loop, whenever
a segmentation fault occurred for spec-safe. During the
execution of the original loop, Clairvoyance reordering will
not cause any segmentation fault. If, however, the original
program is faulty, the segmentation fault is triggered.

Although a differentiation on loop-iteration level (instead
of loop-level) would allow for more flexibility, it would
have required one call to sigsetjump and one additional
branch instruction per loop iteration. This overhead would
unnecessarily penalize the case where all may-aliases turn
out to be no-aliases.

Figure 4 shows the set up of a segmentation fault handler
that enables spec-safe to continue execution without faulting
at runtime. The handler is deployed on program entry
(main.cpp). The behavior of the segmentation fault handler
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Fig. 5: Splitting up dependent load chains. Clairvoyance cre-
ates one Access phase for each set of independent loads (and
their requirements), which increases the distance between
loads and their uses.

depends on a flag (ignore). Before entering the reordered
loop, the flag is set to true. It follows a call to sigsetjmp,
which stores the current environment. If a segmentation
fault occurs, the custom handler will ignore the fault, set
the flag to false, and jump to the loop preheader (using
siglongjmp). The loop preheader will then, on evaluation of
sigsetjmp, restore the saved environment. Since the flag now
evaluates to false, the execution will continue with executing
the original loop. If a segmentation fault was caused by
Clairvoyance reordering, the loop will conclude without any
error; otherwise, it will raise a segmentation fault as expected.
After successful execution of the loop, the flag is set back to
false (ignore = true)3.

In practice, none of the analyzed benchmarks caused a
fault and therefore none of our benchmarks makes use of
this safety measure. Nevertheless, we evaluate the overhead
of the segmentation fault handler in Section 4.6.

2.3 Handling Chains of Dependent Loads

Problem: When a long-latency load depends on another
long-latency load, Clairvoyance cannot simply hoist both
load operations into Access. If it did, the processor might
stall, because the second load represents a use of the first
long-latency load. As an example, in Figure 5 we need to
load the branch predicate t1 before we can load t2 (control
dependency). If t1 is not cached, an access to t1 will stall the
processor if the OoO engine cannot reach ahead far enough
to find independent instructions and hide the load’s latency.
Solution: We propose to build multiple Access phases, by
splitting dependent load chains into chains of dependent
Access phases. As a consequence, loads and their uses within
access phase are separated as much as possible, enabling
more instructions to be scheduled in between. By the time
the dependent load is executed, the data of the previous load
may already be available for use.

Each phase contains only independent loads, thus increas-
ing the separation between loads and their uses. In Figure 5

3. In a multi-threaded setting, one flag per thread is required. The
segmentation fault signal is then delivered only to the offending thread.
The sigsetjmp / siglongjmp calls are thread-safe [21]. Note though that
the implementation of these calls may vary for each operating system.

we separate the loads into two Access phases. For the sake
of simplicity, this example uses countunroll = 2, hence there
are only two independent loads to collect into the first Access
phase and four into the second Access phase.

The algorithm to decide how to distribute the loads into
multiple Access phases is shown in Algorithm 2. The compiler
first collects all target loads in remaining_loads, while the
distribution of loads per phase phase_loads is initialized to
empty-set. As long as the loads have not yet been distributed
(Line 4), a new phase is created (Line 5) and populated
with loads whose control-requirements (Line 8) and data-
requirements (Line 9) do not match any of the loads that
have not yet been distributed in a preceding Access phase
(Line 10 and 11-14). Loads distributed in the current phase
are removed from the remaining_loads only at the end
(Line 15), ensuring that no dependent loads are distributed to
the same Access phase. The newly created set of loads phase
is added to the list of phases (Line 16) and the algorithm
continues until all critical loads have been distributed. Next,
we generate each Access phase by following Algorithm 1
corresponding to a set of loads from the list phase_loads.

In Section 4 evaluate the multi-access phases on top of the
speculative versions (thus noted as multi-spec, multi-spec-safe).

Input: Set of loads
Output: List of sets phase_loads

1 begin
2 remaining_loads← loads
3 phase_loads← []
4 while remaining_loads 6= ∅ do
5 phase← ∅
6 for ld in remaining_loads do
7 reqs← ∅
8 FindCFGRequirements (ld, reqs)
9 FindDataRequirements (ld, reqs)

10 is_independent← Intersection(reqs,
remaining_loads) == ∅

11 if is_independent then
12 phase← phase + ld
13 end
14 end
15 remaining_loads← remaining_loads \ phase
16 phase_loads← phase_loads + phase
17 end
18 return phase_loads
19 end
Algorithm 2: Separating loads for multiple Access phases.

2.4 Overcoming Instruction Count Overhead

Problem: The control-flow-graph is partially duplicated in
Access and Execute phases, which, on one hand, enables
instruction reordering beyond basic block boundaries, but,
on the other hand, introduces overhead. As an example, the
branch using predicate t1 (left of Figure 6) is duplicated in
each Access phase, significantly increasing the overhead in
the case of multi-Access phases. Branch duplication not only
complicates branch prediction but also increases instruction
overhead, thus hurting performance.
Solution: To overcome this limitation, Clairvoyance generates
an optimized version where selected branches are clustered
at the beginning of a loop. If the respective branch predicates
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Fig. 6: Early evaluation of branches enables the elimination
of duplicated branches. Relevant branches are evaluated at
the beginning of the loop. If the evaluated branches are taken,
the optimized Clairvoyance code with merged basic blocks
is executed; otherwise, the decoupled unrolled code (with
branch duplication) is executed.

evaluate to true, Clairvoyance can then execute a version in
which their respective basic blocks are merged. The right of
Figure 6 shows the transformed loop, which checks t1 and t2
and if both predicates are true (i.e., both branches are taken),
execution continues with the optimized version, in which
the duplicated branch is eliminated. If t1 or t2 are false, then
a decoupled unrolled version is executed.

The branches selected for clustering affect how often the
optimized version will be executed. If we select all branches,
the probability of all of them evaluating to true shrinks.
Deciding the optimal combination of branches is a trade-off
between branch duplication and the ratio of executing the
optimized vs. the unoptimized version. As a heuristic, we
only cluster branches if they statically have a probability
above a given threshold. See Section 4 for more details.

2.5 Overcoming Register Pressure

Problem: Early execution of loads stretches registers’ live
ranges, which increases register pressure. Register pressure is
problematic for two reasons: first, spilling a value represents
an immediate use of the long-latency load, which may stall
the processor (assuming that Clairvoyance targets critical
loads, whose latency cannot be easily hidden by a limited
OoO engine); second, spill code increases the number of
instructions and stack accesses, which hurts performance.
Solution: The Clairvoyance approach for selecting the loads to
be hoisted to Access and for transforming the code naturally
reduces register pressure. First, the compiler identifies poten-
tially critical loads, which significantly reduces the number
of instructions hoisted to Access phases. Second, critical loads
that entail memory dependencies are prefetched instead of

being hoisted, which further reduces the number of registers
allocated in the Access phase. Third, multi-Access phases
represent consumers of prior Access phases, releasing register
pressure. Fourth, merging branches and consuming the branch
predicate early releases the allocated registers.

If still more loads are hoisted than registers may exist,
we introduce a heuristic to select which critical loads to
hoist, and which ones to prefetch instead, in order to release
register pressure. Prefetching is used as a mechanism to turn
long latencies into short latencies, which can be easily hidden
by the OoO core, without increasing register pressure.

2.5.1 Limiting the Number of Registers in Use

Given the number of architectural registers R we limit the
number of loads hoisted to the Access phase by R. The
intuition is to keep all hoisted loads in registers. These
hoisted loads may be consumed by other loads and thus,
in practice, not require a register for the whole duration
of an Access phase, if not reused in Execute. Note that this
strategy does not guarantee that no spilling will occur. First,
we do not only keep loaded values alive, but also all other
computed values that can be safely reused in the Execute
phase. Second, register allocation is a separate step that has
not yet happened. The chosen heuristic is a means to have a
handle on register pressure.

In the following, we explain the details of how to
determine when to hoist a load and when to prefetch the
value instead. Similar to the creation of multiple access
phases, we begin by separating the loads into sets of loads,
see Algorithm 2. Within a set, all loads are independent. A
load in a set, however, depends on one or more loads of the
previous set. Algorithm 3 shows how we select the loads
to hoist or prefetch after having created the sets of loads.
First we loop through the load sets one by one while we still
have registers left (Line 6). For each set, we decide if the load
should be hoisted or simply prefetched. If the current number
of loads to hoist has not yet exceeded the maximum number
of available registers (Line 8), we hoist the load (instruction
reordering) (Line 9), otherwise we prefetch the value from
the target address (Line 11). If, by the end of looping through
the current set of loads, some loads were prefetched instead
of being reordered, we stop the main loop. Since the next
set may contain some loads that can be prefetched (if all of
their dependencies might be already hoisted to the Access
phase, i.e. contained in to_reuse, we look through the next
set (Line 17), and choose to prefetch each load that has all its
requirements hoisted (Line 19).

2.6 Integrating State-of-the-Art Alias Analysis

We integrate the static value-flow analysis SVF [20] for single-
threaded applications to improve the precision of the alias
analysis. We make the alias analysis available to LLVM as
well, thus all versions, including the original ones (baseline),
make use of the alias information, allowing for a more fair
comparison. Note that LLVM requires passes to explicitly
preserve analysis information, such that all passes can make
use of the analysis. We integrated the SVF analysis into O3,
however it may be that not all passes preserve the analysis.
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Input: List of sets load_sets, Maximum number of
registers max_regs

Output: Set of to_reuse and to_prefetch

1 begin
2 to_reuse← ∅
3 to_prefetch← ∅
4 iter← GetIterator(load_sets)
5 while HasNext(iter) and size_of(to_reuse) <

max_regs do
6 set← Next(iter)
7 for ld in set do
8 if size_of(to_reuse) < max_regs then
9 to_reuse← to_reuse + ld

10 else
11 to_prefetch← to_prefetch + ld
12 end
13 end
14 end
15 if HasNext(iter) then
16 set← Next(iter)
17 for ld in set do
18 if GetRequiredLoads(ld) ⊆ to_reuse then
19 to_prefetch← to_prefetch + ld
20 end
21 end
22 end
23 end
Algorithm 3: Heuristic to decide whether to reorder or
prefetch loads.

2.7 Heuristic to Disable Clairvoyance Transformations

Clairvoyance may cause performance degradation despite
the efforts to reduce the overhead. This is the case for loops
with long-latency loads guarded by many nested if-else
branches. We define a simple heuristic to decide when the
overhead of branches may outweigh the benefits, namely,
if the number of targeted loads is low in comparison to
the number of branches. To this end, we use a metric
which accounts for the number of loads to be hoisted
and the number of branches required to reach the loads:

loads

branches
< 0.7, and disable Clairvoyance transformations if

the condition is met.

2.8 Parameter Selection: Unroll Count and Indirection

We rely on state-of-the art runtime version selectors to
select the best performing version. In addition, simple static
heuristics are used to simplify the configuration selection:
small loops with few loads profit from a high unroll count
to increase MLP; loops containing a high number of nested
branches should have a low unroll and indirection count to
reduce instruction count overhead; loops with large basic
blocks containing both loads and computation may profit
from a hybrid model using loads and prefetches to balance
register pressure and instruction count overhead.

2.9 Limitations

2.9.1 Outer Loop Transformations

Currently, Clairvoyance relies on the LLVM loop unrolling,
which is limited to inner-most loops. To tackle outer-loops,
standard techniques such as unroll and jam are required.
Unroll and jam refers to partially unrolling one or more

Processor APM X-Gene - AArch64 Octa-A57
Core Count 8
ROB size 128 micro-ops [23]
Issue Width 8 [23]
L1 D-Cache 32 KB / 5-6 cycles depending on access complexity
L2 Cache 256 KB / 13 cycles Latency
L3 Cache 8 MB / 90 cycles Latency
RAM 32 GB / 89 cycles + 83 ns (for random RAM page)

TABLE 2: Architectural specifications of the APM X-Gene.

loops higher in the nest than the innermost loop, and then
fusing (“jamming”) the resulting loops back together.

2.9.2 Support for Multi-threaded Applications

Standard compilation techniques rely on the memory model
sequential consistency for data race free code (SC-for-DRF)
and perform optimizations within synchronization free
regions as if the code was sequential. In the same manner,
Clairvoyance is readily applicable within synchronization
free regions, but instructions cannot be moved (reordered)
across synchronization boundaries.

Typically, multi-threaded applications include synchro-
nization points within loop bodies, for example, critical
sections or even the simple lock taken by a thread to check
if there are any iterations left to execute. Synchronization
prevents instructions to be safely hoisted across these points.
One approach to apply Clairvoyance on multi-threaded
programs is to generate access-execute phases for each data-
race-free region. However, these regions are small and would
limit the ability of Clairvoyance to reorder, and thus cluster
loads, as Clairvoyance unrolls several loop iterations to
gather loads from different iterations.

To enable Clairvoyance instruction reordering on large
code regions (i.e. across synchronization points) requires
non-trivial inter-thread and inter-procedural compile-time
analysis [22]. Our expectation is that with an increasing
number of threads that compete for the shared cache, fewer
data can be kept in the last level cache for each thread.
Therefore, as load latencies are more likely to increase,
we expect that Clairvoyance will benefit even more multi-
threaded applications that are not embarrassingly parallel.
A thorough evaluation of Clairvoyance on multi-threaded
applications is left as future work.

3 EXPERIMENTAL SETUP

Our transformation is implemented as a separate compilation
pass in LLVM 4.0 [24]. We evaluate a range of C/C++
benchmarks from the SPEC CPU2006 [25] and NAS bench-
mark [26], [27], [28] suites on an APM X-Gene processor [29],
see Table 2 for the architectural specifications. The remaining
benchmarks were not included due to the difficulties in
compilation with LLVM or simply because they were entirely
compute-bound. Although we have not run experiments on
x86-processors, we expect that for more aggressive out-of-
order processors Clairvoyance will not provide benefit, but
will also not harm execution.

Clairvoyance targets loops in the most time-intensive
functions (see Table 3), such that the benefits are reflected in
the application’s total execution time. For SPEC, the selection
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Benchmark Function
401.bzip2 BZ2_compressBlock
403.gcc reg_is_remote_constant_p
429.mcf primal_bea_mpp
433.milc mult_su3_na

444.namd

calc_pair_energy_fullelect
calc_pair_energy
calc_pair_energy_merge_fullelect
calc_pair_fullelect

445.gobmk
dfa_matchpat_loop
incremental_order_moves

450.soplex entered
456.hmmer P7Viterbi
458.sjeng std_eval

462.libquantum
quantum_toffoli
quantum_sigma_x
quantum_cnot

464.h264ref SetupFastFullPelSearch
470.lbm LBM_performStreamCollide
471.omnetpp shiftup
473.astar makebound2
482.sphinx3 mgau_eval
CG conj_grad
LU buts
UA diffusion

TABLE 3: Modified functions.

was made based on previous studies [30], while for NAS we
identified the target functions using Valgrind [31].

In Section 2.4 we introduced an optimization to merge
basic blocks if the static branch prediction indicates a
probability above a certain threshold. For the following
evaluation, we cluster branches if probability is above 90%.

3.1 Evaluating LLVM, DAE, SW-Prefetching and Clair-

voyance

We compare our techniques to Software Decoupled
Access-Execute (DAE) [14], [15], Software Prefetching
for Indirect Memory Accesses [32] (SW-PREF) and the
LLVM standard instruction schedulers list-ilp (priori-
tizes ILP), list-burr (prioritizes register pressure) and
list-hybrid (balances ILP and register pressure). DAE
reduces the energy consumption by creating an accesses
phase that prefetches data ahead of time, while running
at low frequency. These access phases can span tens to
hundreds of iterations. Comparing DAE and Clairvoyance
will showcase the difference between prefetching vs. loading,
and coarse-grain vs. fine-grain handling of loads. SW-PREF
is a software prefetching technique that targets indirect
memory accesses. It inserts prefetches for each indirect load
whose address can be generated by adding an offset to a
referenced induction variable. We attempted to compare
Clairvoyance against software pipelining and evaluated a
target-independent, readily available software pipelining
pass [33]. The pass fails to pipeline the targeted loops (except
one loop) due to the high complexity (control-flow and
memory dependencies). LLVM’s software pipeliner is not
readily applicable for the target architecture, and could thus
not be evaluated in this work.

We also compare to a hybrid of DAE and Clairvoyance,
which performs the same transformations as Clairvoyance

but, borrowing from DAE, always prefetches the last indi-
rection and does not reuse any of the computed values in
Access. In other words, Clairvoyance-DAE (1) unrolls the loop,
(2) uses Clairvoyance heuristics (indirection count reflects
memory and control-flow indirections), and (3) applies
Clairvoyance-optimizations (branch clustering), just as other
Clairvoyance versions. However, instead of keeping loaded
values in registers, it only prefetches them, as in DAE. This
version may also, as spec-safe, throw a segmentation fault
during Access, if invalid memory addresses are accessed
during address computation. The prefetch-only version
serves as a comparison point to our reordering scheme.

In the following, we will evaluate four techniques:

LLVM-SCHED LLVM’s best-performing scheduling
technique (one of list-ilp, list-burr, and
list-hybrid).

DAE Best performing DAE version.
SW-PREF Software prefetch for indirect memory accesses.
CLAIRVOYANCE-DAE A hybrid of Clairvoyance and

DAE: transformations are performed as for regular
Clairvoyance, but always prefetch the last indirection.

CLAIRVOYANCE Best performing Clairvoyance version.

4 EVALUATION

In this section, we first compare different versions of Clair-
voyance, starting with the conservative approach and grad-
ually increasing the speculation level. We first discuss the
performance and energy consumption of Clairvoyance’s best
versions (among all speculation levels). Next, we compare the
optimized but conservative version of Clairvoyance (which
includes a state-of-the-art alias analysis and a heuristic to
mitigate register pressure) to the previously known best
version. Finally, we analyze the performance penalty that
comes with ensuring correctness of the spec-safe version.

4.1 Comparing Clairvoyance’s Speculation Levels

Figure 7 compares the normalized runtimes of all Clair-
voyance versions across all benchmarks. For the majority
of workloads, the different degrees of speculation do not
play a major role in the final performance. For hmmer and
libquantum we observe a significant difference between the
more conservative versions (consv, spec-safe, multi-spec-safe)
and the speculative ones (spec, multi-spec). The benchmarks
contain small and tight loops, thus any added instructions
introduce overhead that quickly outweighs the benefits of
Clairvoyance. Since the speculative versions only reorder
instructions, the overhead is minimal. Furthermore, Hmmer
is a compute bound benchmark whose workload fits in the
cache; therefore, there is little expected improvement.

On the other hand, there are workloads that benefit from
hoisting loads, such as lbm—which shows best results with
spec-safe and multi-spec-safe. Since spec-safe and its multiple
access version multi-spec-safe use a combination of reordering
loads and prefetches, these versions provide a better balance
between register pressure and memory-level-parallelism
compared to spec.
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Fig. 7: Normalized total runtime w.r.t original execution (-O3), for all Clairvoyance versions.

Benchmark Version Unroll Indir
429.mcf consv 8 0
433.milc multi-spec-safe 2 0
450.soplex spec 2 0
462.libquantum spec 4 1
470.lbm multi-spec-safe 16 1
471.omnetpp Disabled
473.astar Disabled

CG spec 4 1

TABLE 4: Best performing versions for memory-bound
benchmarks [34].

4.2 Understanding Clairvoyance Best Versions

We categorize the benchmarks into memory-bound appli-
cations (mcf, milc, soplex, libquantum, lbm, omnetpp,
astar, CG) and compute-bound applications (bzip2, gcc,
namd, gobmk, hmmer, sjeng, h264ref, LU, UA) [34]. Table 4
lists the best performing Clairvoyance version for each
memory-bound benchmark. Typically, the best performing
versions rely on a high unroll count and a low indirection
count. The branch-merging optimization that allows for a
higher unroll count is particularly successful for mcf, as
the branch operations connecting the unrolled iterations are
merged, showing low overhead across loop iterations. As the
memory-bound applications contain a high number of long-
latency loads that can be hoisted to the Access phase, we are
able to improve MLP while hiding the increased instruction
count overhead. Clairvoyance was disabled for omnetpp
and astar by the heuristic that prevents generating heavy-
weight Access phases that may hurt performance.

For compute-bound benchmarks the best performing
versions have a low unroll count and a low indirection count,
yielding versions that are very similar to the original. This is
expected as Clairvoyance cannot help if the entire workload
fits in the cache. However, when applied on compute-bound
benchmarks, Clairvoyance will reorder instructions partly
hiding even L1 cache latency.

4.3 Runtime and Energy

Figure 8 compares the normalized runtimes when apply-
ing Clairvoyance, its prefetch-only pendant (Clairvoyance-
DAE), and state-of-the-art techniques designed to hide
memory latency: DAE, SW-PREF and the optimal LLVM
instruction scheduler selected for each particular benchmark.
Clairvoyance-consv shows the performance achieved with

the most conservative version, while Clairvoyance-best
shows the performance achieved by the best Clairvoyance
version (which may be consv or any of the speculative ver-
sions spec-safe, multi-spec-safe, spec, multi-spec). The baseline
represents the original code compiled with -O3 using the
default LLVM instruction scheduler. Measurements were
performed by executing the benchmarks until completion.
For memory-bound applications we observe a geomean
improvement of 7% with Clairvoyance-consv and 13%
with Clairvoyance-best, outperforming both DAE and the
LLVM instruction schedulers. The best performing applica-
tions are mcf (both Clairvoyance versions) and lbm (with
Clairvoyance-best), which show considerable improvements
in the total benchmark runtime (43% and 31% respectively).
These are workloads with few branches and very “condensed”
long-latency loads (few static load instructions responsible
for most of the last level cache misses).

DAE is competitive to Clairvoyance, but fails to leverage
the same performance for mcf. An analysis of the generated
code suggests that DAE fails to identify the correct set of
delinquent loads. Benchmarks with small and tight loops
such as libquantum suffer from the additional instruc-
tion count overhead, since DAE duplicates target loops to
prefetch data in advance. A slight overhead is observed with
Clairvoyance-consv for tight loops, due to partial instruction
duplication, but this limitation would be alleviated by a more
precise pointer analysis, as indicated by Clairvoyance-best.

We further observe that astar suffers from performance
losses when applying DAE. Astar has multiple nested
if-then-else branches, which are duplicated in Access and
thus hurt performance. In contrast, our simple heuristic
disables Clairvoyance optimization for loops with a high
number of nested branches, and therefore avoids degrading
performance. For the compute-bound applications, both
Clairvoyance-consv and -best preserve the O3 performance,
on-par with the standard LLVM instruction schedulers,
except for hmmer, where Clairvoyance-consv introduces an
overhead due to prefetching instead of reordering. A precise
pointer analysis could alleviate this overhead and enable
Clairvoyance to hide L1 latency, as in the case of h264ref.

Clairvoyance-DAE shows that lbm and CG benefit from
the prefetching-only scheme, which can unroll more iter-
ations since no registers are blocked due to reordering.
In contrast, mcf and libquantum profit from Clairvoy-
ance optimizations. While DAE introduces significant over-
head for libquantum due to the duplicated instructions,
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Fig. 8: Normalized total runtime w.r.t original execution (-O3) for the best version of LLVM schedulers, SW-PREF, DAE,
Clairvoyance-DAE, and the conservative and the best version of Clairvoyance, categorized into memory-bound (left) and
compute-bound (right) benchmarks.
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Fig. 9: Normalized energy across all memory-bound bench-
marks for Clairvoyance-consv and Clairvoyance-best.

Clairvoyance-DAE profits from branch clustering which
reduces the instruction count overhead significantly. For mcf,
Clairvoyance-DAE identifies the correct set of delinquent
loads, just as the other versions of Clairvoyance, as it makes
use of the Clairvoyance-indirection heuristic which considers
both memory and control-flow indirections. For compute-
bound benchmarks instruction overhead is critical, thus
Clairvoyance-best still performs better. Overall, Clairvoyance-
DAE and -best show similar geomean improvements, but
since they provide benefits for different benchmarks, com-
bining them may enable even higher gains.

SW-PREF (with a look-ahead distance of 64) inserted
prefetches for CG, bzip2, sjeng, soplex, and namd.
For most of the transformed benchmarks SW-PREF does not
benefit, neither harm performance, except CG, where SW-
PREF outperforms all other techniques (improvement of 24%,
compared to Clairvoyance-best 6%). SW-PREF is designed to
prefetch indirect loads that do not require complex control
flow for their address computation, and thus the targeted
benchmarks differ from the ones we study. For example,
some prefetches could not be inserted as they depend on
non-loop-induction phi nodes (mcf ), others were not inserted
because there were no indirect loads to target (milc).

Figure 10 shows per loop runtimes, normalized to orig-
inal. Highly memory-bound benchmarks show significant
speed-ups, mcf-68%, milc-20% and lbm-31%. Clairvoyance-
consv introduces a small overhead for libquantum, which
is corrected by Clairvoyance-best (assuming a more pre-
cise pointer analysis). As mentioned previously, Clair-
voyance was disabled for omnetpp and astar. Overall,
Clairvoyance-consv improves per loop runtime by 15%,
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Fig. 10: Normalized runtime per target loop w.r.t original
loop execution (-O3) across all memory-bound benchmarks
for the Clairvoyance-consv and Clairvoyance-best.

approaching the performance of Clairvoyance-best (20%).
We collect power numbers using measurement techniques

similar to Spiliopoulos et al. [35]. Figure 9 shows the normal-
ized energy consumption for all memory-bound benchmarks.
The results align with the corresponding runtime trends:
benchmarks as mcf and lbm profit the most with an energy
reduction of up to 25%. For memory-bound benchmarks,
we achieve a geomean improvement of 5%. By overlapping
outstanding loads we increase MLP, which in turn results in
shorter runtimes and thus lower total energy consumption.

4.4 Closing the Gap between Clairvoyance-best and

Clairvoyance-consv

In Figure 8 Clairvoyance-best includes speculative versions.
In fact, all benchmarks profited most from speculation except
for mcf. In order to close the gap between Clairvoyance-best
and Clairvoyance-consv, we introduce (i) an improved alias
analyzer to disambiguate memory operations (Section 2.6)
and (ii) a new heuristic (Section 2.5.1) to determine whether
to hoist or prefetch a disambiguated load.

Figure 11 shows the updated comparison between
Clairvoyance-best (or better, Clairvoyance-previous-best) and
Clairvoyance-consv. The conservative version is now com-
petitive with Clairvoyance-best, but without the need of
any speculation. In fact, all targeted load store pairs can be
successfully determined to be a no-alias or a must-alias, and
thus no speculation is even required. Table 5 reflects the best
performing Clairvoyance-consv versions and the number
of loads and prefetches in Access (prefetching happens as a
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Fig. 11: Normalized runtime w.r.t. original execution (-O3) for
Clairvoyance-consv (with better alias analysis and heuristic
to choose between hoisting and prefetching) and the previous
Clairvoyance-best.

result of our register balancing heuristic, and not because of
unknown memory dependencies). The numbers reflect the
loads and prefetches after running Clairvoyance and O3. O3
optimizations may remove or insert new load instructions in
the Access and Execute phases. So, even though the AARCH64
execution state provides in total 31 general purpose registers,
the total number of loads may be less or more than 31. Note
that multi-consv is now among the best versions: since more
loads can be disambiguated, more and longer dependency
chains exist that can be split into multiple access phases.

For the majority of the benchmarks the previous best
versions are on-par or slightly outperform the corresponding
Clairvoyance-conservative (e.g., 4% for mcf). For two bench-
marks, CG and lbm, Clairvoyance-conservative outperforms
the previous Clairvoyance-best (17% for CG and 3% for lbm).
This difference can be traced back to the efficiency of the
chosen heuristic, as the heuristic may choose to prefetch
other loads than the previous prefetch/load scheme. While
we previously unrolled and hoisted all no-aliasing loads (and
only relied on prefetches of may-aliasing loads), we now only
hoist loads as long as there are registers still left to use, while
the rest of the addresses are prefetched instead.

The combination of improved alias analysis and applied
heuristic to consider register pressure enables Clairvoyance
to explore higher unroll counts while being able to handle
register pressure. The heuristic chooses to prefetch other
loads than Clairvoyance-best, which would use prefetches for
may-aliasing loads. Nevertheless, the updated Clairvoyance-
consv version now reaches a geomean improvement of 14%
compared to the previous 13% including speculation.

4.5 A Close Look Into Clairvoyance’s Performance

Gains for Memory-Bound Benchmarks

In order to better understand Clairvoyance’s performance
gains this section focuses on the relevant memory-bound
benchmarks: mcf, lbm, milc CG, soplex, and libquantum.
In addition to the already presented benchmarks, we further
include IS (NAS benchmark suite).

For the analysis we gather runtime, the number of
dynamic instruction, and load and store operations to caches
using hardware performance counters (perf) and are shown
in Figure 12. The instruction count gives an insight into
the instruction count overhead that Clairvoyance introduces,
partly due to additional prefetch instructions and branch
duplication. The load and store counters serve as an estimate

Benchmark Version Unroll Indir #Loads #Pref
429.mcf multi-consv 8 3 32 17
433.milc multi-consv 2 0 11 28
450.soplex consv 1 16 8,3,2,3 0,0,0,0
462.libquantum consv 4 2 9,9,6 0,0,0
470.lbm multi-consv 16 1 30 358
CG consv 16 1 32 17
IS consv 8 1 9 0

TABLE 5: Best performing versions for memory-bound
benchmarks using the improved Clairvoyance-consv, and
their number of loads hoisted or prefetches inserted for each
target loop.

of inserted spill code that results from register pressure
overhead. All numbers are normalized to the original (O3)
execution. Each graph shows two bars: one for the best
Clairvoyance-consv version and one for the unrolled version
it is based on (e.g., if the best Clairvoyance-consv version had
an unroll count of 2, the evaluated unrolled version would
have the same unroll count).

Figure 12a shows the normalized total runtime. For all
benchmarks we see a performance gain from applying Clair-
voyance on top of unrolling. Looking at the geometric mean,
unrolling improves performance by 1%, while applying
Clairvoyance on top of it allows for an improvement of
17%. Clairvoyance has its biggest impact on mcf (39%),
lbm (34%) and CG (23%). All three of them, despite of their
runtime gains, show a significant increase in the number of
dynamically executed instructions (see Figure 12b). All three
insert prefetch instructions; see Table 5 for the number of
loads hoisted and prefetches inserted. Most of the instruction
count overhead in CG is due to the added prefetches, and only
a few are related to additional spill code (small increase in
number of stores and loads). For lbm and mcf, load and store
counts go up, by 26% and 42% for loads, and by 86% and 72%
for stores, thus indicating that registers are spilled to memory.
The overhead of additional instructions can, nevertheless,
be hidden by overlapping the long-latency loads. Generated
versions with less or no register pressure do not achieve the
same benefit as the ones shown here.

Libquantum is a case in which the number of loads
drops by 39%, as a consequence of our branch clustering
technique. Branch clustering enables the reuse of loaded
values. As an example, the loop condition depends on a
variable reg → size, which is loaded and used in each itera-
tion. Branch clustering in libquantum targets the unrolled
loop branches that determine whether the next iteration is
valid to be executed4. It calculates all loop iteration variable
values (i, . . . , i + countunroll −1) and only compares the
last value (i + countunroll −1) against reg → size. In total,
branch clustering combined with O3 enables the removal
of seven out of 12 loads for each iteration for one of the
targeted loops. Even though the number of loads is reduced,
Clairvoyance still introduces more instructions than the
original, see Figure 12b. The additional instructions can stem
from evaluating the branches at an early stage: as we target
the branches in between the unrolled iterations, we may
compute the loop iteration variables i, . . . , i+ countunroll −1
unnecessarily, if we only have one iteration left to execute.

4. Note that in other benchmarks these branches can be successfully
removed by loop unrolling – but not in all cases
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(a) Normalized Runtime. (b) Normalized Instruction Count.

(c) Number of Loads to Cache Hierarchy. (d) Number of Stores to Cache Hierarchy.

Fig. 12: Normalized Dynamic Runtime, Instruction Count, Load and Store Count to the unmodified O3-version for the best
Clairvoyance version and the Unrolled version with the same unroll count as Clairvoyance.

Fig. 13: Normalized runtime w.r.t. original (-O3) for
Clairvoyance-consv and Clairvoyance-specsafe (with seg-
mentation fault handling).

4.6 Safe Speculation: The Overhead of A Segmentation

Fault Handler

1 // Fault caused if a == b (using spec-safe)

2 void seg(node_t *a, node_t *b, int n) {

3 for (int i = 0; i < n - 1; i+=2) {

4 b[i].next = &(b[i + 1]);

5 b[i].next->next = &(b[i]);

6

7 // Fault caused on accessing

8 // a[i].next->next in order to

9 // prefetch a[i].next->next->x

10 a[i].x = a[i].next->next->x;

11 }

12 }

Listing 1: Microbenchmark causing a segmentation fault
when applying speculation (spec-safe) and if a == b.

None of our evaluated benchmarks actually requires spec-
ulation, as all targeted load store pairs can be successfully dis-
ambiguated (or are known to be must aliases). Nevertheless,
we evaluate the overhead of the segmentation fault handler

for spec-safe. For this purpose we created a microbenchmark
that contains a must-alias for the given input, see Listing 1.
None of the loads in the given microbenchmark can be fully
disambiguated by the compiler. As a result, speculation will
try to prefetch the address with the highest indirection (Line
10). To compute the address of that value, two other loads
need to be hoisted into the Access phase (load instructions
in Line 4 and 5). As these loads alias with the stores in the
loop, accessing their values will cause a segmentation fault.
We implemented the segmentation fault handler described
in Section 2.2.1 to recover from the erroneous execution.

The benchmark is not memory-bound and is thus not
an actual target of Clairvoyance. The estimated overhead
is a worst-case estimate, as (i) the segmentation fault will
happen once for every iteration, (ii) the loop is tight and any
overhead will directly reflect in the runtime, and (iii) none of
the values can be reused (all actual must-aliases at runtime),
thus any reordering will lead to an unnecessary overhead.

Figure 13 (right) shows the normalized runtime of the
microbenchmark for consv and spec-safe. The segmentation
fault is thrown directly in the first iteration. The execution
is then directed to our custom segmentation fault handler,
which then resumes execution at the original, unmodified
loop. Both Clairvoyance-consv and Clairvoyance-spec-safe
do not differ in runtime and only introduce a negligible
overhead compared to the original (1%).

We also evaluate the overhead of our segmentation fault
handling procedure on mcf, our most promising benchmark.
Mcf does not throw a fault at runtime, as opposed to our
crafted microbenchmark. Figure 13 (left) shows the overhead
that our safety measure introduces: for mcf we introduce a
performance degradation of 2% over the conservative version
when adding the segfault handler.

This version of the segmentation fault handler favors
cases, in which the speculative but safe version would cause
a segmentation fault in many iterations. If the segmentation
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fault would only happen seldom, a more fine grain approach
may give better results.

Since none of our benchmarks, except of the manually
crafted microbenchmark, actually throw a segmentation fault,
we have not further investigated potential improvements of
this safety feature.

5 RELATED WORK

Hiding long latencies of memory accesses to deliver high-
performance has been a monumental task for compilers.
Early approaches relied on compile-time instruction sched-
ulers [36], [37], [38], [39], [40] to increase instruction level
parallelism (ILP) and hide memory latency by performing
local- or global-scheduling. Local scheduling operates within
basic block boundaries and is the most commonly adopted al-
gorithm in mainstream compilers. Global scheduling moves
instructions across basic blocks and can operate on cyclic or
acyclic control-flow-graphs. One of the most advanced forms
of static instruction schedulers is modulo scheduling [8],
[9], also known as software pipelining, which interleaves
different iterations of a loop.

Clairvoyance tackles challenges that led static instruction
schedulers to generate suboptimal code: (1) Clairvoyance
identifies potential long latency loads to compensate for
the lack of dynamic information; (2) Clairvoyance combines
prefetching with safe-reordering of accesses to address the
problem of statically unknown memory dependencies; (3)
Clairvoyance performs advanced code transformations of
the control-flow graph, yielding Clairvoyance applicable
on general-purpose applications, which were until now not
amenable to software-pipelining. We emphasize that off-
the-book-shelf software pipelining is tailored for indepen-
dent loop iterations and is readily applicable on statically
analyzable code, but it cannot handle complex control-
flow, statically unknown dependencies, etc. Furthermore,
among the main limitations of software pipelining are the
prologues and epilogues, and high register pressure, typically
addressed with hardware support.

Clairvoyance advances the state-of-the-art by demonstrat-
ing the efficiency of these code transformations on codes
that abound in indirect memory accesses, pointers, entangled
dependencies, and complex, data-dependent control-flow.

Typically, instruction scheduling and register alloca-
tion are two opposing forces [41], [42], [43]. Previous
work attempts to provide register pressure sensitive in-
struction scheduling, to balance ILP, latency, and spilling.
Chen et al. [44] propose code reorganization to maximize
ILP with a limited number of registers, by first applying a
greedy superblock scheduler and then pushing over-hoisted
instructions back. Yet, such instruction schedulers consider
simple code transformations and compromise on other
optimizations for reducing register pressure. Clairvoyance
naturally releases register pressure by precisely increasing
the live-span of certain loads only, by combining instruction
reordering with prefetching and by merging branches.

Hardware architectures such as Very Long Instruction
Word (VLIW) and EPIC [45], [46], identify independent
instructions suitable for reordering, but require significant
hardware support such as predicated execution, speculative
loads, verification of speculation, delayed exception handling,

memory disambiguation, etc. In contrast, Clairvoyance is
readily applicable on contemporary, commodity hardware.
Clairvoyance decouples the loop, rather than simply reorder-
ing instructions; it generates optimized code that can reach
delinquent loads, without speculation or hardware support
for predicated execution and handles memory and control
dependencies purely in software. Clairvoyance provides
solutions that can re-enable decades of research on compiler
techniques for VLIW-like and EPIC-like architectures.

Software prefetching [47] instructions, when executed
timely, may transform long latencies into short latencies.
Clairvoyance attempts to fully hide memory latency with
independent instructions (ILP) and to cluster memory oper-
ations together and increase MLP by decoupling the loop.
Software Decoupled Access-Execute (DAE) [14], [15] targets
reducing energy expenditure using DVFS, while maintaining
performance, whereas Clairvoyance focuses on increasing
performance. DAE generates Access-Execute phases that
merely prefetch data and duplicate a significant part of the
original loop (control instructions and address computation).
Clairvoyance’s contribution consists in finding the right
balance between code rematerialization and instruction
reordering, to achieve high degrees of ILP and MLP, without
the added register pressure. DAE uses heuristics to identify
the loads to be prefetched, which take into consideration
memory-dependencies. In addition, Clairvoyance combines
information about memory- and control- dependencies,
which increases the accuracy and effectiveness of the long
latency loads identification. Software prefetching for indirect
memory accesses [32] prefetches indirect loads; loads that
are not detected by a strided prefetcher. Similarly, Clairvoy-
ance targets loads of all indirections, but manages also to
hoist loads that require complex control flow for address
generation, at the expense of instruction count overhead.

Helper threads [48], [49], [50] attempt to hide memory
latency by warming up the cache using a prefetching thread.
Clairvoyance uses a single thread of execution, reuses values
already loaded in registers (between Access and Execute
phases) and resorts to prefetching only as a mechanism
to safely handle unknown loop carried dependencies.

Software-hardware co-designs such as control-flow decou-
pling (CFD) [51] prioritize the evaluation of data-dependent
branch conditions, and support a similar decoupling strategy
for splitting load-use chains as our multi-access phases
(however, their multi-level decoupling is done manually [52]).
Contrary to Clairvoyance, CFD requires hardware support to
ensure low-overhead communication between the decoupled
phases. A software only version, Data-flow Decoupling
(DFD), relies on prefetch instructions and ensures commu-
nication between phases by means of caches, using code
duplication. As the CFD solution is not entirely automatic,
Clairvoyance provides the missing compiler support and
is readily applicable to decouple the CFG and hoist branch
predicates, in lieu of long latency loads. Moreover, Clairvoy-
ance provides software solutions to replace the hardware
support for efficient communication between the decoupled
phases. CFD makes use of decoupled producer phases for
branches, but low-overhead communication is achieved with
hardware support.
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6 CONCLUSION

In this work, we propose a new technique to improve a
processor’s performance by increasing both memory and
instruction-level-parallelism and therefore the amount of
useful work that is done by the core. Clairvoyance handles
limitations imposed by may-alias loads, reorders dependent
memory operations across loop iterations, and controls regis-
ter pressure. Using these techniques, we achieve performance
improvements of up to 43% (14% geomean improvement for
memory-bound benchmarks) on real hardware. Clairvoyance
enables optimizations that move beyond standard instruction
reordering to achieve energy efficiency and overall higher
performance in the presence of long-latency loads.
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