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Abstract

A framework for a 10-day ahead probabilistic forecast based on a deterministic model is
proposed. The framework is demonstrated on the system price of the Nord Pool electricity
market. The framework consists of a two-component mixture model for the error terms
(ET) generated by the deterministic model. The components assume the dynamics of
“balanced” or “unbalanced” ET respectively. The label of the ET originates from a classi-
fication of prices according to their relative difference for consecutive hours.

The balanced ET are modeled by a seemingly unrelated model (SUR). For the un-
balanced ET we only outline a model. The SUR generates a 240-dimensional Gaussian
distribution for the balanced ET. The resulting probabilistic forecast is evaluated by four
point-evaluation methods, the Talagrand diagram and the energy score.

The probabilistic forecast outperforms the deterministic model both by the standards
of point and probabilistic evaluation. The evaluations were performed at four intervals in
2008 consisting of 20 days each. The Talagrand diagram diagnoses the forecasts as under-
dispersed and biased. The energy score finds the optimal length of training period and set
of explanatory variables of the SUR model to change with time.

The proposed framework demonstrates the possibility of constructing a probabilistic
forecast based on a deterministic model and that such forecasts can be evaluated in a
probabilistic setting. This shows that the implementation and evaluation of probabilistic
forecasts as a scenario generating tools in stochastic optimization are possible.
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Chapter 1

Introduction

This work is motivated by the need for next generation short-term optimization methodol-
ogy for hydropower producers. Previously the producers have used numerical optimization
of the power prices in their production planning. The deterministic optimization procedure
is now replaced by stochastic optimization. This change in methodology of the optimization
has also an impact on the type of forecasts which are admissible. While the determinis-
tic forecasts were capable to generate input for the deterministic optimization, the new
method requires a forecast distribution which scenarios can be generated from(Fleten and
Kristoffersen|, [2008). The reason for this change is that the deterministic forecast, which
only takes the expected values into account, fails to consider the uncertainty found in the
probability distribution of the prices. This error in methodology might lead the optimiza-
tion to find a non-optimal solution (Kall and Wallace, 2003} Higle, 2005). This stems from
the fact that the previous methodology optimizes the function after the expected values of
the parameters have been found, rather than the expected value of the function itself.
Today, the power producing companies employ several of these deterministic forecast,
which in the industry is called fundamental models. These forecasts are made on different
time scales, the longest of which are spanning several years. In this report we choose to
study the short-term planning horizon, which only considers prices for the next ten days.
The predictions are made for hourly prices, since this is the frequency which the prices are
observed in the market. The market information structure is respected when predictions
are made. This information structure means that new price data is only received once a
day. Even this short forecast horizon of only 10 days produces a very complex system. This
is because the forecast depends on variables that themselves are hard to predict. Exam-
ples of such variables are the temperature and consumption. In addition, the fundamental
models must also take into account the structure of the power grid, since the electricity
has to be transported to the consumer. This structure combined with the technical con-
straints of the supply lines have an effect on the power prices (Fu and Li, 2006). Further,
the geographical division of the market has also an impact on the prices (Lgland and Di-
makos, [2010). In addition to fulfill these system based constraints, should the forecast of
the short-term model be calibrated towards the forecast with the medium-time horizon.
The power producing companies have developed forecast algorithms which take the



complexity of the system into account. However, as the forecast is an essential part of the
decision making process, they are closely guarded trade secrets. As we do not have access
to any fundamental model, we have to construct one. To do so a detailed study of the
power production facilities and other complex physical systems such as drainage basins had
to have been made. In addition, a good insight into the power price market had to have
been acquired. We do however not study these physical systems. The reason for this is that
the motivation of this project is to make a framework by which any fundamental model
may be used. Therefore, we chose a simple deterministic model which only depends on
past prices, since the framework should be able to handle any deterministic (and suitable)
model that are chosen. The deterministic model that we chose is throughout the project
taken for granted and is not a topic of discussion. Thus, we are aware that the optimal
fundamental model is not used, but rather one that is chosen by convenience.

In this report we present a statistical method of the error terms (differences) generated
by the deterministic model and the observed prices. The prices are divided into two groups
“balanced” and “unbalanced”. This classification is done with regards to the relative size of
the difference of prices for consecutive hours. The reason for classifying the power prices
into two groups is the hypothesis that the error terms are generated by power prices which
follow two different sets of dynamics. The prices in the balanced group are assumed to
come from power prices that are effected by ordinary scenarios. By ordinary scenarios we
mean that the prices are generated by a power system working under usual conditions and
that none extraordinary external factors come into play. The prices which fall into the
unbalanced category is assumed to be generated from scenarios that are unusual. These
scenarios may originate from a break down of important infrastructure in the power system,
which leads to shortage in supply. This shortage does in turn invoke prices that cannot be
explained by the usual model. In addition would a single model that tries to capture both
groups be dominated by the unbalanced prices. The error terms are also classified into two
groups. The group that the error term is classified into is the same as its respective power
price. Thus, if the price difference of time t and t — 1 is classified as unbalanced, then the
error term at time ¢ is also classified as unbalanced.

A model both

A model which takes into account both groups of the error terms is proposed. How-
ever, this proposal does not in reality consist of a single model, since it is the finite mixture
model that we propose. The mixture model consist of two components meant to represent
a model for each of the classified groups. In addition to the components the mixtures con-
sists of another feature. This final feature is a function which indicates the weight that the
two error terms models should be given. The theoretical framework of the entire mixture
model is described, but only for the component of the balanced error terms is a model
proposed and results given. It is the seemingly unrelated regression (SUR) model which
is used for the error terms that are labeled as “balanced”. The SUR model was initially
proposed by Zeller| (1962) in his seminal paper and has since been applied on a wide variety
of problems. These problems involve property prices, domestic incomes and crime rates
among others (Wooldridge, 2010)).

The SUR model is used to model a system of equations which through applying linear



regression on each of the equation. The noise term of the equations are assumed to be
Gaussian distributed. Furthermore is the covariates of the equations assumed to be inde-
pendent. This independence of covariates is both with respect to other covariates of the
same equation and those of the other equations. However, the equations are assumed to be
related though a correlation in the covariance matrix of the noise term. In this report the
coefficients are fitted through a feasible generalized least square (FGLS) (Srivastava and
Giles|, 1987), which compromise of fitting the equations by the generalized least square.
The feasibility comes from the fact that the first estimate of the covariance matrix of the
FGLS is found by independently fitting the regression model of each equation by the use
of ordinary least squares. The coefficients found by the SUR are used as parameters in the
multivariate Gaussian distribution which is used to sample the price forecast.

In order to be able to evaluate the forecasts we introduce scoring functions. A scoring
function evaluates the forecast with respect to the realization by giving it a value. This
value should be as small as possible (or large as possible depending on the definition.) The
scoring functions can be divided into two classes by the way they consider the probabilistic
forecasts. This division is quite similar to that of the deterministic and stochastic opti-
mization, which we saw at the start of this chapter. The first class of scoring functions, the
class that we consider to contain the “classical” scoring functions, uses a single predicted
value to evaluate the forecast. This single predicted value is deduced from the probabilistic
forecast by a forecast function. We reproduce the results from the paper of |(Gneiting (2010))
which shows that the variety of forecast functions that are used in the literature today.
An example of one such forecast function and classical scoring function are the mean and
the absolute error respectively. Many papers today seem to choose the forecast function at
random (Cuaresma et al., 2004)). However, we can optimize the choice of forecast function
given the predicted distribution and scoring function(Gneiting, [2010).

The second class of scoring functions consider the entire distribution of the forecast
without the application of the forecast function. This class of scoring functions is entitled
probabilistic scoring functions. These scoring functions have in recent years gained momen-
tum and have been used to evaluate a number of forecast scenarios (Berrocal et al., [2008;
Gneiting et al., 2008; Panagiotelis and Smith, 2008|). We introduce the continuous rank
probability score (CRPS), which is a probabilistic scoring function for the uni-variate case.
In addition to explaining the concepts of the probabilistic forecast we give a small tutorial
of its use. Further, the energy score is introduced, which is the multivariate generalization
of the CRPS. A second tool for evaluating a probabilistic forecast is the rank histogram.
The method of the rank histogram is introduced and explained. The method measures
the calibration of two probabilistic density functions with regard to each other (Gneiting
et al., 2007). This calibration is found by evaluating to which degree the quantiles of the
predicted and observed coincide.

This report is organized as follows. In Chapter [2| the Nord Pool market is presented.
This presentation includes a brief historic summary of the years 2005-2009 of the prices and
their pattern(s). In addition, we introduce our deterministic forecast, which is followed by
an analysis of the error terms. In Chapter [3| we review the existing literature in the field of
forecasting and modeling of power prices. In Chapter [4] the theoretical foundations of the
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statistical regression, prediction and evaluation methods used in this report are presented.
In Chapter [ we present our own stochastic forecast model for the power prices. The focus
is on the model for the unbalanced error terms, for which also the method and manner of
parameter estimation are explained. In Chapter [6] we look at the result and performance
of our own spot price model that was presented in the last chapter. This presentation is
given through plots of predicted prices, use of scoring functions and rank histograms. In
we discuss the the results provided in the last chapter. The report closes with a discussion
and a outline of further work in Chapter [§



Chapter 2

Spot Price Characteristics

In this chapter the Nord Pool data, which we later are to use in a case study, is presented.
This presentation includes the characteristics found in the electricity price such as patterns
and spikes. In addition, the deterministic forecast model is revealed. After the presentation
of the deterministic model a short analysis of the error terms follow. In the end we study
the correlation structure of the prices and error terms. This study is later used when we
is to determine which model to use.

2.1 Awvailable Data

In this section we present the basic facts of the data used in this chapter. The main in-
terest is the spot prices of electricity on the Nord Pool market. The market is divided
into different areas, each with their own price. In addition to these a system price exists.
The system price represents the ideal price E] of the entire market. The division of the
market areas changes over time. The prices for the different areas are also vulnerable to
local effects caused by break downs in transmission lines and other technical infrastructure.
Therefore, we choose to consider the system price in this report. It is however important
to note that the data analysis could have been done on specific market areas. The final
spot price model can be employed on the spot price of a single market area. The system
price of Nord Pool, the prices of the market areas and other variables, can be found at
the home page of Nord Pool (Nord Pool Spot AS| 2011). The other variables which are
considered are the consumption of power in the market, the mean temperaturdﬂ of Norway
and the reservoir level. The data for the reservoir level are found at the home page of the
Norwegian Water Resources and Energy Directorate (NVE | [2011]). Months, weekdays and
Norwegian holidays are also used as explanatory variables. The power prices of the market
are quoted in euro (€) per megawatt-hour (MWh). We work with the prices from 2005

!The ideal price is the price that the market would have had if none bottlenecks or other technical
constraints existed.

2The mean temperature is calculated as an average over the different locations, weighted by their
respective population size.
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Figure 2.1.1: Overview of available information at 12 pm yesterday. The upper time-line gives the
important hours in which different information are revealed and/or updated. The second time-line gives
the interval for which information about various variables, which may have an impact upon the electricity
price, are known with certainty. The third time-line gives us the interval in which the electricity price is
already settled. The last time-line gives us the time window for which prices are to be predicted.

until the summer of 2010. The prices are given on hourly intervals giving us almost 50.000
data pointsﬂ The hours of the day will be denoted h, which takes the values 0, ..., 23. Hour
0 is the time interval from 12 pm to 1 am and so forth.

The Nord Pool market is a day-ahead market. In such a market the price on a com-
modity for a given day is, as the name suggests, settled upon the day before. This is done
in the following manner: Before noon the power producing companies (the sellers) send
their price bids for hourly intervals the following operational day to the market operator.
At the same time the power supplying companies (the buyers) send in their demands for
hourly intervals for the next day. The market prices are then determined by the equilibrium
between the supply and the demand. The market operator then reveals the equilibrium
in form of prices and the amount of power to the respective producer. For the Nord Pool
market the market prices are announced at 1 pm each day. This fact does that the power
price for all hours today were already known from 1 pm yesterday, and that we do not
have any more information about hour 0 than for hour 23. This information structure is
depicted in [4.2.3] However, other parameters such as temperatures, consumption etc are
only known up to and including the day before.

2.2 Pattern(s)

In everyday life the modern man uses a number of items powered by electricity. This creates
patterns in electricity demand, which in turn create patterns in the power prices. As the
existence of such patterns may influence the choice of model, we study the spot price history
in order to find them. The structure of this pattern is found to be dominant on three time
scales; daily, weekly and yearly. In Figure (c) we have a plot of an usual weekday.
The most prominent structures are the morning and afternoon peaks. The morning peak
occurs at around 9-10 am. After the peak hour the power price decreases until around

3However, as the site is updated daily, new data points are added each day.



3-4 pm when it again starts to rise and subsequently reaches the afternoon peak around 7
in the evening. Thereafter the price decreases and attain a minimum around 2 am, after
which it once again starts to increase towards the morning peak. Another observation we
make of the prices leading up to either of the two daily peaks is that they seem to be more
volatile than the other day prices of the day. This is observed in Figure (a) to (f)
where the time series and box are plotted for the respective hours. In the figure the prices
for the hours 7-9 are more ragged than for the hours 22-0, suggesting that they are more
uncertain. Supporting this hypothesis is the box plot in Figure where the whiskers
are larger for the pre-peak hours than for the hours around midnight. This is especially
true for the intervals from 7-9 am, where more outliers than for the hours 22-0 are seen. In
Figure (b) we can see the plot of the system price for April 2008. In addition to the
observation of the two daily peaks we observe that the weekdays Monday through Friday
seem to have a similar daily shape. For the weekends the maximum value of the morning
spike tends to be much smaller. This is seen in the first week of April where the morning
and afternoon spikes for the Saturday are of the same size. In addition to not having the
same spike levels as the weekdays, the general price level of the weekends seems lower than
for the weekdays.

An overview of the price for the entire year 2008 can be seen in Figure (a). Here we
can witness that the price decreases in the spring, picks up again during the late summer
months and throughout the autumn. In the early winter months it starts to decrease once
again. In the lower right panel of Figure [2.2.1] the averaged system price over weeks for
the entire time period is plotted. The impression of a yearly cycle, given by the plot of the
the prices of year 2008, seems to hold in general. Except for the winters of 2006/2007 and
2004,/2005 (where we do not have data points before New Year.) The highest electricity
price occurs sometime during the winter months. In addition, the price seems to drop
during the spring whereupon it starts to increase again during the summer. Even thought
the yearly fluctuation of the prices are considered, the level of the prices for the years
differ. In Figure the prices from the different years are plotted. From early May to
late June and in December the price level seem to be the same. The level between these
dates are however a different story. In late August we have a longer period where the prices
differ with as much as 60€. Moreover, the price-level in this period of the year seem to
alternate. In 2005, 2007 and 2009 the price level is “low”, while it for 2006 and 2008 are
“high”. Even though this is too few years to draw any solid conclusion, this shows that one
cannot expect the prices of a given year to be the same as those of the previous year. In
addition, it clearly shows that no such thing as “ordinary” power prices for a given time of
year exists.

2.3 Unbalanced prices

In this section an analysis is made of the extreme upward and downward movements in
the hourly power prices, otherwise know as jumps. Jumps in the upward movement are to
be called “spikes”, while the downward movement is called a “dip”. Together they will be
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Figure 2.2.1: The Panels (a)-(c) are plots of the hourly system price over the same period, but with
different time scales. Panel (a) is a plot of year 2008. The vertical dotted lines represent the different
quarters of the year, while the red segment is the prices of April 2008. Panel (b) is a plot of April 2008.
The Mondays in the month are specified with dotted vertical lines to ease their identification. The red
segment is April Tth. Panel (c) is a plot of April Tth of 2008. Panel (d) is the weekly mean for the
duration of the data period, that is from the start of 2005 until the summer of 2010. It thereby captures the
fluctuation of the system price over the entire time period. The dotted vertical lines in this panel separate
the different years. Note that the y-azes is constantly changing.



System power price for hour 7 System power price for hour 8 System power price for hour 9

300
I
300
I
300
I

250
I
250
I

250
I

200
I
200
I

8 8 8

5 5 5
3 3 2

2 2 2

@ @ @
s s =
8 4 8 4 g |
E] S S
2 3 4 2
3 8 2
o 4 o 4 o

Hour 7 for different dates Hour 8 for different dates Hour 9 for different dates
System power price for hour 22 System power price for hour 23 System power price for hour 0

s s 3
8 4 8 4 g |
8 8 8
2 2 2
8 4 g | 8 |
8 g &
3 3 s
g 8 4 S 4
8 8 &

3 3 g

8 8 8

5 5 5

e 84 £ 84 £ 84

g - g - g -

2 2 2

@ @ @
3 3 =
g 4 8 4 g 4
S = S
3 3 4 2
] 8 2
o 4 o 4 o |

Hour 22 for different dates Hour 23 for different dates Hour 0 for different dates

(d) (e) (f)

Boxplot for different hours in 2008

= - S
S g °
s g
8
8 °
3 °
o b4 4
< ] 8 2 H
= —_—
S —8— °
_8 J j 8 ] H
‘ | ‘ s g
' ' ' ' —_—
' I ' ) I '
= ! ! ! ' ' '
b= == ' ' ' '
R=3 ' '
=S ! ! ! ' ! |
= ! : I ' !
s ' ]
174
2,
P =
<
; ]
] ]
! ' ' ! ' '
S ! ! ‘ ‘ ! ‘
' ' ' ! '
! ! ! ' !
' R E—
! . . |
L . —_—
o
T T T T T T
7 8 o 22 23 o
Hour

(8)

Figure 2.2.2: The Panels (a)-(f) are time series plots of the system price for a single hour for the
duration of the time period 2005-2010. Hour 7 is the interval from 7 am to 8 am etc. The dotted vertical
lines mark the years. Panel (g) is a box plot of the same hours, but restricted to the year 2008. The prices
plotted in the panels at the top show greater variance than the prices found in the figure in the panel of the
middle row. This can also be observed in the box plot, where the whiskers of the hours 7-9 are larger than
for the hours of 10-12. It should be noted that the y-axis of the time series plots have the same scale.
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referred to as “unbalanced” power prices, the complement of which being “balanced” power
prices. Models that are proposed to capture the dynamics of power prices are usually unable
to capture both unstable and stable prices at the same time. As we will see in Chapter
where a separate model for the unstable prices is considered, therefore an analysis of the
phenomenon is done. In Figure [2.3.1] a plot of the hourly power prices for the years 2005
to 2009 is seen. In the figure we notice a set of characteristics concerning prices; (i) they
have changing volatility, (ii) extreme jumps in the price occur and (iii) the upward jumps
is larger in absolute value than the downward jumps. In Figure we see that it is not
always unforeseen spikes that causes the highest prices. The build up for the August and
September peaks for 2006 and 2008 happen after a longer period of (relative) stable prices.
By stable we mean that we observe (relatively) few cases of unbalanced prices.

To identify the unbalanced prices we follow a procedure from [Clewlow and Strickland
(2000). A spike (dip) can be defined as when the difference in price for successive hours are
greater (lower) than the mean plus (minus) three times the standard deviation of differences
for the same year. To identify the unbalanced prices we first take the differences and
calculate their mean and standard error for the period in question. We first separate the
differences into two classes: The “normal” differences (C1) and the “extreme” differences
(C2). We then assign the difference into the class in which it belong. After this the new
mean and standard deviation of C1 are calculated and the spikes found to be extreme are
separated into the C2 class. This process is continued until no more C2 class differences
are found from C1. When this is completed all the prices in C2 are unbalanced prices and
the C1 class consists of only balanced prices.

In Table the number of spikes and dips for the years 2005-2009 are found by the
method stated in the last paragraph. The method calculates the number of spikes relative
to the mean and standard deviation of the differences. As a result it cannot be used to
compare directly the number of unbalanced prices between years. It might however give a
fairly good representation of the fraction of yearly unbalanced prices. The reason for why
the number of unstable price cannot be compared directly is discussed in |de Lande et al.
(2002). The main reason is that the iterative process of “sorting out” C2-values is stopped
too early as a result of low standard deviation in the price difference for the period. In
addition, the paper raises concerns in the use of the mean value as “center point” of the
sample. The reason for this concern lies in the fact that a few extreme unbalanced prices
may dominate the C2-group, thereby classifying prices that should be in C2 fall into C1.
Signs of this can be found by comparing Table and Figure for the year 2007.
The table tells us that 2007 is the year with the fewest unbalanced prices. This is however
not obvious by looking at Figure which suggests that this should be 2005, because
the time series plot of the spot prices for that year is very flat and have relatively few
spikes. In addition, the large fluctuation in the level of jump sizes for the unbalanced
prices, as given in Figure [2.3.2] suggests that a single group of spikes fools the model. The
largest spike sizes are in February making this seems plausible, as a large group of spikes
is found here in the Figure 2.3.1 However, as none of the other years shows sign of the
same degeneracy, we will use the proposed model by (Clewlow and Strickland (2000).

We also note from Table that there are more spikes than dips. In Figure[2.3.2] a
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Year 2005 2006 2007 2008 2009

# Spikes 387 370 312 350 299
# Dips 289 231 182 199 112
# Total 676 601 494 549 511

Total frequency 7.71 6.86 5.63 6.28 5.83

Table 2.3.1: The number of spikes and dips for the years 2005 to 2009. The spike is a large upward
Jjump in the price, while the dip is a downward jump. In the third row the total number of spikes and
dips is found. At the bottom the (relative) frequency of the occurrences of spikes and dips are found. The
frequency is given as spikes and dips per hundred hour. The overall trend is that both the number of spikes
and dips are decreasing.

plot of the number of spikes and dips for each hour of the day is reported. It is clear from
these plots that the occurrence of spikes and dips within a day is not uniformly distributed.
In Figure we see that the majority of peaks happen in the morning hours from 4
to 7. In addition, there is a cluster of spikes in the hours 3-5 in the afternoon. For the
dips, which are seen in Figure 2.3.2D] there is a completely different story. An increase
in dips is seen in the morning hours, but less dominant than for the spikes. However, a
consistently larger degree of dips does occur through the early evening hours to the early
morning. A conclusion of Figure [2.3.2]is that the number of spikes and dips in a given year
is not the same, and that they are not uniformly distributed through the day. In Figure
a 30-day moving average (MA) of the size of spikes and dips for each of the years
2005-2009 are plotted. The MA value were calculated by counting the number of spikes or
dips which had occurred in the 30 past days, and dividing it by the number of days, i.e.
30. From the figures we note that there seem to be a lower jump size for the dips than
for the spikes. The difference in jump size, together with the observation of Table [2.3.]]
that more spikes than dips occur, suggests that the prices have a skewed distribution. In
addition we notice that the spread in the MA for the extreme events seems not to be that
great, with December 2008 being an exception.

In Figure[2.3.4]a plot of the hourly frequency of jumps and dips for a 30-day MA is seen.
At first sight we notice that the frequency for both the spikes and dips seem to change
throughout the year(s). A further study of Figure reveals that there in 2007 were
four period with increased spike frequency, which occurred in March, June, September and
December respectively. In 2006 we also observe four periods with an increase in frequency.
These periods are February, May/June, October and December. In 2008 we have a single
such period stretching from the start of May to the en of July. In addition we observe
a second period with increased spike frequency in December of 2008. In 2009 we have
3 periods with increased frequency in June, September and December. The trend of the
intensity of the dips which are seen in Figure seem to more or less follow that of
the spikes. The intensity of dips are however smaller than that of the spikes as fewer dips
than spikes occur. The increase in intensity for the late spring and early summer might
be more or less expected. This increase comes from the fact that this is a time of year
when the power producing companies tries to minimize their water reservoir level. The
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Figure 2.3.1: A plot of the power prices for the years 2005-2009. The line segments at the bottom of the
plot indicate spikes and dips. A single segment indicate either a spike or a dip. The color of the segment
indicate the year. How the spikes and dips are found is described z'n

reason for doing this is that they prepare to fill up their reservoir with “new” water coming
from snow melting and precipitation. Thus, a delay in warmer weather or precipitation
may lead the level of the water reservoirs lower than expected which invoke uncertainty
in form of spikes in the market. However, if a warmer weather and much precipitation
comes in combination, this might lead to an increase in dips as the water cannot be stored.
The increase in frequency in the early fall might be explained by the same dynamics as
the spring. However, the increase in frequency during late fall and winter are harder to
explain. In this period we might expect an increase in unbalanced prices in response to
a cold period. However, as cold weather rarely set in for the whole Nordic market at the
same time for longer periods, this cannot be used as the only explanation. Some of these
increases might be the cause of system failure or other dynamics.

2.4 Our Deterministic Forecast

In this section we introduce our deterministic forecast. The deterministic forecast is, as
clearly stated in Chapter [I], not a topic of interest in this report. This since it will be
consider as in input to the framework that we are to present, namely the statistical model
of the error terms. Thus, we choose to present the deterministic model here, even though
the discussion could arguably have been done in a later chapter.

The power price is considered as the sum of a deterministic and the stochastic variable:

X,(t,h) = Dy(t, ) + eo(t, ), (2.4.1)

where the variable X, (¢, h) is the power price(s), the variable D, (¢, h) is the deterministic
forecast and the variable €,(¢, h) the stochastic forecast. The subscript v denotes the last
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Figure 2.3.2: Number of unbalanced prices. In Panel (a) the number of spikes for a given hour in the
years 2005-2009 is plotted. In Panel (b) we see the respective plot of the dips in the same period. Note
that the scales on the y-axis of the plots are not the same.

Moving 30-days average of jumps Moving 30-days average of dips
w _| w
3 3
m 2005 ® 2006 ® 2007 ® 2008 = 2009 m 2005 ® 2006 ® 2007 ® 2008 = 2009 Lu‘

o o

— —
() [}
N N
" 2]
Q o
£ £
2 2
c c
[ ©
[} Q
= = ‘

w0 - w - 1

o - o

T T T T T T T T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Month Month

(a) (b)

Figure 2.3.3: The 30-days moving average of the size of a price jump for the years 2005-2009. The value
at 1st of February is the sum of the spikes (dips) in January divided by the number of spikes (dips) that
occurred. In Panel (a) a plot of the spikes is given, while in Panel (b) we have the dips.
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Figure 2.3.4: The 30-days moving average of the intensity of jumps for the years 2005-2009. The
intensity is given as the number of unbalanced prices per hour. In Panel (a) a plot of the spikes is given,
while in Panel (b) we have the dips.

day for which we known the power prices (and other data.) Thus, the parameter v will be
referred to as today’s date. The parameter ¢ denotes a number of days relative to v, and
will be referred to as the lead time of the forecast. The index h is the same as encountered
at the end of Section [2.1] The deterministic model used in this report will be

In[D,(t, h)] = In[X,(—1,h)] + meigl}%an(ln[XU(—77 i)] — In[ X, (—8,7)]), (2.4.2)
where the In denotes the natural logarithm. This model ensures that the forecast does not
produce negative prices, which is unheard of in the Nord Pool market areaﬂ This trans-
formation does only apply to the deterministic forecast. Thus, the deterministic forecast
consist of the logarithm of the power price yesterday plus the sum of the difference of the
logarithm of the prices the same weekdays last week.

2.5 The Error Terms

In this section an analysis of the error terms introduced by the deterministic forecast of last
section is given. In Figure a plot of the deterministic one day-ahead forecast of the

4Negative power prices occur in the German market, where coal plants are in use. Coal plants cost
sometimes more to shut down than to keep in production.
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year 2008 can be seen together with the realized values of that year. The one day-ahead
forecast in the figure does not depict the error terms of the other leading days, but it does
however give a good insight into characteristics of the error terms. One observation that
we make is that the deterministic prediction follows the observed prices quite well through
the year. Another observation is that the deterministic forecast does not give any negative
prediction of the prices as promised in Section This is of course expected as the image
of the logarithmic function do not contain negative values. At the same time it is still
impressive that such a simple model as presented in Equation (2.4.2)) manages to capture
a sharp drop in the prices, as seen at the end of June, without dropping below zero.

The deterministic forecast presented in Equation does however have some weak-
nesses. One of these weaknesses is that it induces some rather large errors after a large
jump in the power prices have occurred. This is seen in Figure where a large nega-
tive error is observed at the end of October. This is right after a large spike in the prices,
as seen from Figure 2.5.1b] Thus, the only explanation for this large negative spike in
the model is that the deterministic forecast predicts a large spike on the basis of another
which fails to be observed. Disregarding this flaw in the deterministic model we see from
Figure that it produces deseasonalized error terms. The error terms are however
heteroskedastic. This can be observed from Figure as a change in absolute value of
the error terms throughout the year. For instance is the variance of the error terms greater
from March to the end of July, than from the end of July to the end of October.

2.6 Correlation Structures

Before a model is fitted it is interesting to know if the patterns in the power price, which
was discussed in Section [2.2] still exist after the deterministic model has been applied.
In this section the correlation of the power prices and the error terms generated by the
deterministic model is studied. As the information of power prices on the Nord Pool market
is updated only once a dayﬂ any forecast has to be made for 24-hour blocks. Thus, the
correlation of the power prices on daily intervals, both the one that takes place within and
between days, are of interest.

In Figure the correlation of the power prices among hours for the year 2008 is
plotted. We can see that the intra-day dependence is strong, but very different among
hours. From the plot there seems to be three “periods” of the day with extra strong
correlation. The first period is for the early morning hours, another for the lunch-time
hours and a third for the evening hours. These three groups have large within-group
dependence. The dependence between the groups are however low. In Figure the
correlation matrix for the stochastic part of Equation is shown. Therefore, before
the correlation was calculated the deterministic forecast was subtracted from the observed
prices. The figure indicates that the intra-group dependencies are sustained while the inter-
group dependencies have decreased somewhat. However, as the range of the minimum value
of the z-axis of the plot indicates a correlation of 0.7, the overall correlation is not low.

5The prices are published by the market operator at 1 pm every day.
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Figure 2.5.1: (a) The plot of the error terms, e;(h), for the year 2008. (b) The plot of the deterministic
one day-ahead forecast (red) and the true price data (black) for the year 2008.
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Figure 2.6.1: The correlation matrices of Panel a) is the untreated price date for 2005-2008. In Panel b)
is however the correlation matriz of the error terms, which originate from the difference of the deterministic
model and the observed prices, as given in Equation .

In Figure 2.6.2) the correlation plot for the power prices and the error terms are plotted
for a ten lead-day interval. The motivation is to study the inter-day dependency. In Figure
we see the power prices, and for this plot the Figure would alomst be the same
as the diagonal matrix. This is because the diagonal of in Figure [2.6.2] is the within day
correlation. In the plot we can observe that there seem, in addition to the within-day
correlation to be correlation for the same hour for different lead days. Further, we notice
that the correlation between a given hour and its neighbors seems to smooth out as the
difference in lead time increases. This manifest itself through a more uniform correlation.
We also observe that the correlation among the seven first lead days have more in common
than that of lead day eight to ten. Moving to Figure we see that the correlation
displays a more significant pattern. The correlation does not discriminating among the lead
days. In addition, we notice that the correlation structures between the inter-day hours
is sustained. We also notice a smoothing of the error terms as the difference in lead time
increases. This suggest that the error terms for become more similar with increasing lead
times. This is plausible since the bias of the prediction should increase with increasing lead
time. This means that while the error terms at small lead times are explained better with
external variables, is the error terms at large lead times explained better by the systematic
error made by the model.
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Figure 2.6.2: The correlation matrices of Panel a) the untreated price date for 2005-2008 and Panel b)
the error term of the power prices as given in Equation . The correlation matrices consider the lead
time from 1 to 240 hours. The panels of Figure[2.6.1] can be seen as the mean diagonal matriz of each of
the panels corresponding to the same quantity here.

18



Chapter 3

Price Models 1n the Literature

In this chapter we perform a literature study in the field of forecasting and estimation meth-
ods of power prices. With this study we seek to explore the solution(s) and problem(s)
found in competing strategies. The number of articles written on the subject of power
prices is quite large (Gonzales et al. |2005). A number which have risen substantially since
the liberalization of many of the power markets in the 1990’s (Fleten and Kristoffersen,
2008). In addition, the articles in the literature display a wide variety of solution meth-
ods and approaches. This is caused by many factors: Firstly, the markets have different
features, e.g. Worthington et al.| (2005), which considers the different electricity markets
found in Australia. Secondly the different structure of the market itself is a factor worth
considering (Knivfla and Rud, [1995). Thirdly, exterior variables of the power system may
be highly influential, as seen in McSharry et al. (2005), where the climatology changes the
daily cycle of the prices. Fourth, the articles often try to capture a certain characteristic
of the power price (Mullins et al., |2010), which there are many of, and thereby tailor the
model to the question at hand. These models may be good at capturing certain dynamics,
but by focusing on a (single) detail they may lose the whole picture altogether. Finally,
many of the articles do only have the power price as a secondary objective (Lucia and
Torro, 2005), or may only seek to explain (and thereby not forecast) the power prices (Lg-
land and Dimakos| [2010)).

The power price is a stochastic variable and as a result it changes with time. As a result
an intuitive approach is the time series methodology. The simplest and thereby often the
first approach when the time series methodology is considered is the uni-variate case. In
such models the price is considered a function of single hour in the past or as a sequence of
previous hours. In|Contreras et al.|(2003) the power prices of the Spanish and Californian
market are modeled in sequence as an ARIMA series. In the ARIMA model the variance
is the same for all points in time, which is something that is not necessarily true as seen in
Chapter [2] Taking this into account |Garcia et al.| (2005)) fits a GARCH model in addition
to the ARIMA model to the same markets. The problems with these models are that they
do not respect the information structure of the markets.

In Wu and Shahidehpour| (2010) the authors expand the time series model by introduc-
ing an hybrid model by adding the possibilities granted by neural networks and wavelets
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for extra flexibility. This paper does also work on the day-ahead prices forecasts. By this
we mean that they do not consider the prices up to and including yesterday as known.
This corresponds to the information structure in Figure [£.2.3] In the article returns of
prices are modeled both in sequence and as separate hours. The approach of modeling
prices in sequence consist of only applying a time series model to a single hour at the time.
Thus, the paper disregard any dependence between different hours and consider the hours
separately. In Section we saw that the different hours of the day displayed their own
characteristics. Indeed, better results are experienced with this model than with the time
series approach alone. However, as the prices are considered as independent for different
hours. This is disturbing, given the outcome of the analysis made in Section as the
correlation of the prices between hours in the same day are lost.

In Huisman et al.| (2007) another attempt is made to capture the dynamics of the
hourly data by its true information structure as we saw in Figure [£.2.3] However, the
paper does this by combining the concepts of panel data and time series. A group of 24
hours, that is a day, is considered as a panel. These panels are in turn treated as time
series. Thus the model captures the fact that the power prices have to be predicted for
an entire day at the time, and that each such forecast depends on the same information
set. That is, the information used to model 23rd hour of the forecast does not differ from
the information available to forecast the 1st hour. However, the main advantage of the
panel model approach is that it can also consider the structure within the panels. This
is an improvement from |Wu and Shahidehpour| (2010), where each of the hours was con-
sidered to be independent. In Andersson and Lillestgl (2007) a further expansion of the
fusion of panel and time series models are proposed. In this paper the authors propose a
multivariate time series model is proposed. The paper also uses different price profiles for
daily, monthly, and yearly power prices as a basis to model the panel of power prices. The
panel approach is the same as that ofHuisman et al.| (2007). However, by decomposition of
the price structure the authors are able to analyze the impact on the power price for the
different time scales as discussed in Section Moreover the article study the volatility
structure and also fit a GARCH process to the data. Also in the volatility structure is the
paper able to connect the structure of the different time scales and that of the panel.

To deal with the occurrence of spikes in power prices, as mentioned in Section 2.3 an
adaptive neural network is applied. In Nogales et al| (2002)) time series featuring both
power price and demand are used with dynamic regression and transfer function models.
Another approach to tackle the system-shock induced by spikes is to introduce a mix-
ture model. The mixture model is a popular modell] that we will explore in more detail
later. However, the main philosophy of the method is briefly stated to use many (separate)
models as components. By using different models as components it is able to captured
dynamics which (any) single models cannot capture. For the power prices the mixture
model has previously been constructed with an Ornstein-Uhlenbeck process (Seifert and
Uhrig-Homburg, [2006) and time series (Garcia-Martos et al.; 2011; Cuaresma et al., 2004])

!The popularity of the model is shown in [McLachlan and Peel (2000), where several names for the
model are quoted. These names include mixed, component and switching model among others.

20



as components. However these papers do only make an one hour-ahead forecast, since they
assume that the information is updated on an hourly basis. Consequentially they do not
consider the information structure of the market. Additionally the goal of these papers
is to find the model which best fits the data. As a result none of them seek to make a
probabilistic forecast. The reason for a lack of interest in these matters can however be
related to the fact that none of the papers stated is written for use in production planning.

The discrete approach of the time series models is not the only strategy found in the
literature. In [Skantze et al| (2000) a mean reverting processes is fitted to spot prices. A
mean reverting process assumes that the prices have a mean level to which they will always
return. Thus, the philosophy of a mean reverting process is to capture the rate and the
manner of this return. This can be done by imposing structures on both the prices and its
variance as seen in the paper. The mean revering methodology has been tried on a wide
variety of other commodities, and as such it is supported by a large mathematical toolbox.
However, the models are often hard to calibrate and the answers they provide are often
difficult to interpret (Cartea and Figueroal [2005). Continuous models are also suggested
for power prices. One such suggestion is stochastic partial differential equations (SPDE)
(Erlwein et al., 2010). The SPDE is a generalization of both the time series and the mean
reverting processes in a continuous setting. The price bids on the Nord Pool market are
however only placed for single hours, and as a result are discrete. Therefore we do not
discuss the SPDE approach further.
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Chapter 4

Statistical Models

This chapter explores statistical models already found in the literature, which later serve as
the basis (or part of) the error term model. The chapter first turns its attention towards the
regression of observations. Then the focus is shifted towards the prediction of intensities
observation through point process. Thereafter we look at the mixture models which takes
up both the regression of observation and the prediction of intensity of the observations.
Finally, in the last part of the chapter we study how to evaluate predictions which are
given both as point and probability distributions.

The following notation is used: The uppercase letters represent matrices. In addition,
is the uppercase letters that are emphasized stochastic. The lowercase letters that are
emphasized denote column vectors. The letters written in calligraphic style are sets. The
letter \V is the exception, since it is the Gaussian distribution. The Gaussian distribution is
written A/(u1, 02), where p and o2 are the mean and variance respectively. The superscript
T denotes the transpose. Further, the letter I denotes the identity matrix, and a subscript
on the identity matrix denotes its dimension. Subscripts are however only written on the
identity matrix in cases where it is strictly necessarily. The symbol ® marks the Kronecker
product operator. The indicator function is written I(-). The indicator function of a set
A € Q, is a function on the sample space € such that I4(z) = 1if z € A and [4(z) =0
if x ¢ A. Thus, the indicator function indicates whether an outcome x is in the respective
set of events A or not.

4.1 Regression and Prediction Methods

In this section we discuss different linear regression models. We start of considering a
regression model for a single equation and expand this to include a system of regression
equations. This enables us to first consider the equations as independent, while we in the
end have a system of equations where there exists a correlation structure. This correlation
between equation is captured by the covariance matrix. After we have introduced the
models a longer discussion of their inference is given. When we are finished with multi-
variate regression and its inference we look at point processes in one dimension. Thus, we
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are able to model an event which only happens at an instantaneous point in time. In the
end we introduce mixture models. In this part a discussion fitting different components
of the finite mixture model are highlighted, with special attention given to the component
modeling of the balanced prices.

4.1.1 Seemingly Unrelated Regression

In regression a model of the relationship between the response variable y and the explana-
tory variable(s) x is considered. The relation can be written as y = f(x) + €, where the
variable € is the noise term. If the function f is assumed to be linear, we have then a linear
regression model as expressed by

yi=X;B; +e&, ief{l, ., M} (4.1.1)

can be used to model the relationship. The dimension of the variables are respectively:
The response variable y; is (7" x 1), the model matrix X is (T x K), the coefficients (3 is
(K x 1) and the noise terms € is (T x 1). The parameter T is the number of observations
of the response variables in the ith equation. The parameter M is the number of response
variables. In the regression one assumes that each of the response variables is related to a
linear combination of K explanatory variables. The weight of each explanatory variables
is expressed through the regression coeflicients 3,;. The relationship between the response
variable and the linear coefficients have a disturbance term that is assumed to be N (0, 0?)
distributed. The parameter o2 is the variance, while the mean is zero.
A multivariate regression model of M response variables each observed T times and K
explanatory variables is expressed
y =703+, (4.1.2)

where the response y is (MT x 1), the model matrix Z is a (MT x K) , the coefficients 3
is (K x 1) and the noise terms € is (MT x 1). The noise terms are N(0, o;;Ir) distributed.
The parameter o;; is the variance of each of the different response variables as indicated
by the index ¢. The index j on the other hand refer to correlation among equations. By
defining X; = ZJ;, where J; is a (K x K;) we get a more general model, since the selection
matrix picks out the explanatory variables of a restricted model. These restrictions, in the
form of excluded explanatory variables, may be different for the equations. The restricted
model is written

yi=2ZJiB+e=X,0+e¢€. (4.1.3)

This is a more flexible model compared to the one presented in Equation (4.1.2) where
the same number of response variables were used. In Equation we assumed that
no correlation existed among the different explanatory variables of each response variable.
If a correlation between the response variables in the multivariate case is suspected, then
another model should be selected. An independent model assumes that the only terms in
the variance matrix that is non-zero are the ones found on the diagonal.

In the rest of this section we talk about the inference for the three regression model
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given in Equation (4.1.1)), and (4.1.3). The model in the first equation can be fitted
by the ordinary least square (OLS) estimator. The estimate of the regression coefficients
of this model is ,Bls = (Z¥Z) 1Z%y. 1t should be noted that we fit a model where all the
explanatory variables are present in every equation. For the model of Equation (4.1.2))
we have to Take into consideration the new information represented by the possibility of
correlation among response variables. If any of the response variables truly is correlated
this is manifested through off-diagonal elements of the covariance matrix which differ from
zero. This new assumption is written E(eTe) = X®Ir = ¥, where the old covariance matrix
is 3 € RM*M_ The dimension of ¥, which is new covariance matrix, is (MT x MT). The
least square estimation method for the new model is called the generalized least squares

(GLS) estimator, and is written BGLS = (XTU1X)7!XTP¥~ly. The coefficient vector
B has the dimension (K’ x 1), the noise terms € has the dimension (MT x 1) and the
model matrix X has the dimension (MT x K'). The parameter K’ is less than K, since it
represents a reduction in the number of explanatory variables. We do however not know
the new correlation matrix. As a result we cannot estimate 3°S. Following the results of
Zeller| (1962) we replace the correlation matrix > with another matrix S. This replacement
matrix has to be positive definite, symmetric, non-singular and of same dimension as the
old covariance matrix. In other words: The replacement matrix has to be a feasible choice.
This estimation method with the choice of covariance matrix just described is called the
feasible least squares (FLS). The corresponding estimator is

~ FLS

B

Two estimates of the S matrix are discussed in Chapter 2 of [Srivastava and Giles
(1987)). The first estimate uses the covariance matrix of the residuals found by the full linear
regression model, which were found by employing a OLS on each of the equations separately
as we did in Equation (4.1.1). The residuals used to construct the covariance matrix are
¢ =y—Z(Z'Z) 'y = Py, where the matrix P, = [ — Z(Z*Z)"!. These residuals
are the same as were found in the unrelated case of Equation (4.1.2)). Thus, a consistent
estimator for the covariance matrix S is S = %gTé By introducing this estimate into
Equation (refeq:FLSest) we get the seemingly unrelated unrestricted estimator (SUUR),

which then can be written

[(XT(ST' @I X' XT(S™ @ I)y. (4.1.4)

~ SU

B

The reason why this estimate is called SUUR, is that all of the explanatory variables are
used to estimate the feasible covariance matrix. Another approach is to considered the
restricted version of the regression model of Equation . This restricted model was
found in Equation , and the residuals of this model is ¢ = y — X (X' X) 'y = Pyy,
where the matrix Py = [ — X(X"X)™'. The same method used to find an unrestricted

estimate is used again. Thus, a consistent estimate for the covariance matrix is S = %€T€

[XT(S'QINX]'XT(S' @ Ir)y. (4.1.5)
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and the respective restricted estimator of Equation (4.1.4)) is

~ SR

B

This is called the seemingly unrelated restricted regression (SURR), since the parameters
can change among equations thereby giving a restricted parameter space. Thus, the re-
striction comes from the exclusion of explanatory variable(s) in the model.

We see that the approach of fitting the SUUR and SURR estimator follows more or
less the same procedure. The only difference is the SUUR uses the full model, while the
SURR have excluded one or more explanatory variables from equation(s). To recapitulate:
We first fit a separate OLS model to each of the M equations. Second the residuals from
this estimate are used as a basis to calculate a feasible covariance matrix. Finally this
covariance matrix is used in the GLS estimation finding an estimate of the coefficients 3.

Two special cases reduces the SUUR and SURR models back to the ordinary linear
regression, where the OLS estimate would be sufficient. The first of this cases is when all
the explanatory variables are used in every equation, that is X; = Xy = ... = X = 7
and K; = Ky = ... = Kp. The model is then reduced to the multivariate model of Equa-
tion . The second case is when the estimated covariance matrix ¥ only has elements
on the diagonal. The model is then equivalent to the uni-variate regression model of Equa-
tion [4.1.1 However, these two special cases are substantially different in the way they
occur. The first case is the result of that model that was chosen, and we can therefore
avoid such cases before any calculations are done. The second case on the other hand can
sometimes only be identified only after the result of the calculation were acquired. This
reason for this is that the preliminary exploration of the covariance structure may hint to
a correlation structure. However, the existence of this structure may be rejected or found
to be non-significant. Thus, leading the us to chose the model of Equation [4.1.1] as the
preferred model. The advantages of the SUR model is its ability to identify any correlation
that is found between the equations which cannot be explained systematically, something
that enables it to capture a wide variety of problems.

Above we have assumed that all of the response variables y consist of an equal number
of observation T'. In real world application this might not be the case. In the paper of
Schmidt| (1977) an analysis of the SUR model, where the number of observations 7T; for
each response variable y; differ is discussed. In the literature this is referred to as an unbal-
anced SUR models (Wooldridge, [2010). In the article four ways of tackling the unbalanced
SUR model is discussed. Of these methods only the two cases is discussed in this report.
The first option is to reduce the total number of observations T" = > . T; to T' = MTj,
where the variable T = miny; 7;. Thus, we reduce the number of observations of all the
responses variables to the same number as the response variable with the fewest number of
observations. This solution method does that we get back to the ordinary balanced SUR
model. Another approach is to keep all of the observations. This results in a more accurate
prediction, while the calculation and thereby the implementation gets harder.

[XT(S @I X' XY (S ® Ip)y. (4.1.6)
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4.1.2 Temporal Point Processes

The following section is inspired by Rasmussen| (2011) and Daley and Vere-Jones (1988).
A temporal point process describes a point pattern on the real line. This could be con-
sidered as a list of times when events take place. Thus, the terms point and event are
used interchangeably. The term temporal describes the instantaneous nature of the point,
which only exists at a single moment in time. In addition, the total number of points in the
process is not known. Thus, given a time series Yy, t € {1, ..., T}, where an event happens
at some time j € t. Let H; denote the history up to, but not including, the event. The
history is defined as the training period of the process, that is H; = {¥; ’;jf -

The simplest model of the stochastic process is the binomial model. This model consid-
ers the probability that an event occur at a single point in time to be p. In addition each
point in time is considered as independent, making the process a Bernoulli trial. More ad-
vanced do however exist. The models can usually be classified into one of the two categories.
The fist type model the stochastic process by the distribution of the time interval between
events. The second type of model consider the distribution of the number of events in an
arbitrary interval. The time interval between events are often denoted as the interevent
time. A stationary interevent time is expressed as f(t1,...t;) = | [;(;ltj-1.-t1) = | [, f(t;),
where f is the probability density function. A stationary process is a process which joint
probability does not change in time.

An example of a stationary process is the homogenous Poisson process, where the in-
tensity function A(t) is constant. This process is a special case of the renewal processes,
where the interevent time is independent identically distributed, that is f(¢;) = f(t;—t;-1).
In Figure three renewal processes are seen. In the figure three Gamma-distributions
with different parameters are plotted. We observe that the different parameters gives three
(apparent) different point processes with regards to the clustering of the points.

A further generalization leads to the Wold process where f(t;) = f(t; — tj—1 — tj—2)
which is a first order Markov chain. This concept is further generalized into point pro-
cesses where a larger fraction of the entire history is considered. The conditional intensity
function is defined as A(t) = g gzt)’ where F' is the cumulative distribution function of
the distribution. A brief explanation for the previous definition of the conditional point
process is

s
1—F(t)
_ Pr(point is in dt|H,)
~ Pr(point not before t|H,)
_ Pr(point is in dt, point not before t|#,)
B Pr(point not before t|H,;)

A(t)

= Pr(point in dt , point not before t|#;)
= Pr(point in dt|H;)
= E(N(dt)[Hy),
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Renewal process
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Figure 4.1.1: A plot of three different renewal processes with different degree of clustering. The interevent
time of the process displayed dare respectively Gamma(0.02,0.2), Gamma(0.1,1) and Gamma(2,20) dis-
tributed. Due not that the Gamma(0.1,1) distribution is the same as the Poisson process with intensity
0.1. From each of the processes 100 points are sampled. The three processes are however standardized such
that the (global) minimum value is put at time zero and the (global)mazimum value is put at time one.

where Pr denotes the probability and N(dt) the number of points in the interval d¢. A
specific point processes is the Hawkes process

A(t) = pu+ f g(t — s)ds(N) (4.1.7)

-0
=p+ ), glt—t)
tith

where > 0. The p is the baseline intensity function throughout the year. The function
g is the so called trigger function, which may be expressed on the general form g(z) =
Szt lexp(—ic), where z = t —t;. The parameters a; decides the degree of clustering
of points, ¢ the damping of the intensity function after an event and K is the order of
the trigger function. Thus for the simplest case when K = 1 the Hawkes process becomes
At) = p+ ad oy, exp(—(t —t;)). In this case the expected level of the intensity is p.
However, when a new point occur the intensity function increases by «, after which it
instantly starts to decreases exponentially towards p again.

4.1.3 Mixture Models

In this section the framework of the mixture model is studied. The main idea of mixture
models is to let the probability density function be a linear combination of other proba-
bility density functions. The weights of each of the linear terms have to sum to one, so
the probability of an event being in the (entire) sample space is one. The advantage that
the mixture models have when compared against other traditional models functions, is
that they enable more exotic (probabilistic) functions. Some of these functions are seen in
Figure £.1.2] In the figure many of the functions seen are consists of several components.
Indeed theory for finite models where the number of components in the model is not known
exists (Fruhwirth-Schnatter] 2006|)|Chapter 4]|. However, we will focus on the cases where

27



Finite mixture densities
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Figure 4.1.2: Figure 1 of|Marron and Wand (1992). In Panel 1-6 the probabilistic density of the standard
Gaussian, skewed unimodal, outlier, bimodal, skewed binomal and claw are plotted. The closed form
expression of the densities are found in Table 1 of the same paper from which the figure is taken. The
Gaussian distribution is the only probability distribution used as component of the miztures. The scale of
the y-azxes changes between panels.

the number of components are assumed to be known and especially the cases where the
number of components is assumed to be two.

The finite mixture model is used when the events in the sample space consist of
sub-populations. These sub-populations may be group of events that share a expecta-
tion and variance which is different from other sub-populations. Thereby, one can assume
the stochastic variable Y is composed of several probability distributions. These proba-
bility distributions are expressed as the stochastic variable conditioned on which of the
sub-populations it originated. If S is the indicator of the sub-population from which Y
originates the distribution which may be written Pr(y, S) = Pr(y|S)p(S) = Pr(y|0s) Pr(S),
with 6 the parameter(s) of the distribution (McLachlan and Peel, |2000))|Chapter 1].

Two questions arise from the new representation. The first of which is how one is
to model the stochastic variable given that the sub-population is known. To solve this
methods such as the linear regression is used. The second question is how to model the
group indicator S. A simple choice of group indicator is to give it the relative frequency of
the occurrence of the sub-populations. That is to say, the probability that the stochastic
variable is in the group is the same as the number of times events have been realized from
the respective group in the past. The representation of such a finite mixture distribution
is

k
Y ~ Y wifo (@ — ), (4.1.8)
=1

where k is the number of components in the mixture models. The function f is the
probability distribution function of the components. The component distributions are any
feasible distribution function. In Equation (4.1.8) the parameters o; and y; are the shape
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and location parameter{] of the components of the distribution function of the different
components. The parameter w is the group indicator of the mixture, in Equation (4.1.8]
put to be the relative rate of the respective group. However, this choice assumes that the
relative population size of the different groups within the sample space remains fixed.

Another approach with regards to the group indicator variable is the regime switching
model. In the switching regression model the choice of group is linked to a value 7, called
the breaking value (Fruhwirth-Schnatter, 2006)|Chapter 8|. The model can be expressed
as

v {Xiﬁl +ea 6 ~N(0,02) T<i (4.1.9)

XiBy+e ~N(0,02) ,7=1.

However, a re-parametrization can be done with Y; ~ X;8,I(7 < i) + X;8,1(7 = 1) + 02,
with 0% = I(7 < i)o? + I(r > i)o?. This model relies on the fact that the breaking
value is known. Otherwise, the breaking value itself must be considered as a stochastic
variable. Two such models are the variance inflating model of [Abraham and Box (1978])
and the local shift model of Box and Tiao (1968). These models both uses a mixture of
two Gaussian densities. The first model uses as it names suggests a (constant) shift k; in
variance of Y; ~ (1—n)N (X8, 02) +nN (X3, kic?). The second model incorporate a shift
in expected value ky of the stochastic variable Y; ~ (1 —n)N(X;,0%) + nN (X8 + ks, 02).
This enables the models to capture either an increase in uncertainty or a change in the
expected value. Both of the models can easily be expanded into other distributions than the
Gaussian which is employed in these examples. We could in addition envision an expansion
of the models by making the parameters k; and ks functions of explanatory variables. The
inference of the models mentioned by |/Abraham and Box! (1978); Box and Tiao| (1968]) are
done by MCMC as explained in [Fruhwirth-Schnatter (2006)[Section 8.3.4|. There, a two

stage Gibbs sampler is proposed to estimate the parameters.

4.2 FEvaluation Methods

In this section the evaluation of both point and probabilistic forecasts are considered. As
the evaluation methods give a score indicating the performance of the evaluation they are
called scoring functions. The scoring functions are written S(z,y), where the parameter
x denotes the observation and the parameter y denotes the forecast. The point forecast
uses, as the name suggest, only a single value to evaluate. Several values of the forecast
ensemble might be chosen to represent the point forecast. Examples of such values are the
median or the mean of the forecasting samples. Since multiple values might get chosen, it
is important to specify which function that is used to represent the forecast. The choice
of forecast function is studied in the next section. The probabilistic forecast have only

!The reason we write shape and scale parameters is that we have the normal distribution in mind.
However, we could just as easily written that these parameters were the shape and scale parameters,
which are used by the beta and gamma distributions among others. The essence is that the parameters
needed to define the distribution function are given, not which or how many they are.
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recently gained momentum as a preferred prediction method. Consequentially, specific
methods evaluating these forecasts have only come to attention recently. Therefore we
give a short tutorial in this field. In this tuition both uni-variate and multivariate methods
are discussed, even though we only will use the latter in later chapter. On the other hand
are the discussion of the uni-variate cases important as they highlight important points.
In addition consist many of the multivariate procedures in reducing the problem into a
setting where it can be solved by the uni-variate method.

4.2.1 Point Forecast Evaluation

Four classical approaches to evaluate forecasts are the root mean square error (MSE)
(Contreras et al., 2003} |Garcia et al., 2005), mean absolute error (MAE), mean absolute
percentage error (MAPE) and mean relative error (MRE) (Wu and Shahidehpour, [2010).
The scoring functions for these evaluation criteria are

1 T
Swse(x,y) = TZ(% — )’ (4.2.1a)
t=1
1 T
Smag(x,y) = TZ 70 — il (4.2.1b)
t=1
Suarn(cy) = £ Y22 (4210
A XJy =+ ] L C
MAPE Tt=1 Ui
Sure(X,y) 1ixt_yt (4.2.1d)
X = 7 L.
MRE\X, Y Tt:l z, )

where T" the number of observations for which the model is to be evaluated. We note that
the Suapr(z,y) is exposed to small observed values. When an observation is small (in
absolute value) the denominator is small. In this scenario we are unreasonably punished
when predicting values that in reality lie close to the observed ones (Nogales et al., [2002).
This scenario where instability in the MAPE score occur is detected by another point
evaluation methods. The Sygrg(x,y) is constructed just in such a case. This scoring
function put the observed rather than the predicted value in the denominator. Thus, if the
predicted value is small something that would lead to an unjustified penalization in the
Smape(,y), then this can be observed by the value of Sygrg(z,y) staying low. If however
both scoring functions give the predicted value a bad score, then we should conclude that
a bad prediction has been made.

The possibility of making a more fundamental errors in the use of point evaluation
methods are discussed in |Gneiting| (2010)). In addition the article gives a summary of
statistics of the number of times the different evaluation methods are used by other articles.
The evaluation methods considered are the same as those presented in Equation ([{.2.1)). It
also includes a case study, where the different scoring functions are employed. The essential
parts of the case study is revisited here. We consider the stochastic process Y; = Z2,
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where Z; ~ N'(0,0?). In addition, the variance is a conditional heteroscedastic time series
o2 = 0.20Z2 | + 0.7502 | + 0.05. For this time series three strategies of predicting an
one time-ahead forecast are studied. The different strategies are labeled: The Statistician,
Optimist and Pessimist. The strategy of the Statistician is to predict the true conditional
mean & = E(Y;|0?) = 7. The Optimist always predicts the value 5, while the Pessimist
always predict the value 0.05. The case study then performs 100,000 simulation of 200
points in time of the time series. Table 4 of the paper is here reproduced as Table {.2.1] As
we can see from the table the Pessimist performs best in half of the evaluation criteria (MAE
and MAPE)) while the Statistician and Optimist perform best in a single evaluation criteria
each (respectively the MSE and MRE.) This is somewhat disturbing, since the Statistician
uses information about the underlying model. The point that the article emphases, is that
in the evaluation of the prediction we always use the mean to represent the point forecast.
By doing so, we have done what is sometimes done by forecasters. However, the article
argues that the scoring function, here the MSE, MAE, MAPE and MRE, is to be disclosed
before the forecast is made. This is because the choice of scoring function influence the
forecast functions.

A forecast function such as the mean, quantile or fractional moment has to be chosen
on the basis of scoring function. The best forecast function is the one that minimize the
expected loss function with respect to the predictive distribution. For the MAPE and
MRE a new moment has to be defined, namely the fractional moment, which is defined
as: “...If the predictive distribution F' has density f on the the positive real half-axis and a
finite fractional moment of order (3, the optimal point forecast under the scoring function,

Sslyo) = [1- ()

proportional to y” f(y). We call this the S-median of ' and write med”(F). The traditional
median arises when § — 0.” (Gneiting}, 2010)). The resulting optimal forecast functions for
the scoring functions in question is reproduced in Table [£.2.2] In this table the forecast
functions for the respective scoring function are used to calculate new and improved values
for the time series example. We see that the new forecast functions greatly improve the
old values obtained for the scoring functions that were found in Table £.2.1 The only
exception is the MAE, where the Statistician used the appropriate forecasting function in
the first calculation. Thus, the example shows the importance of choosing the right forecast
function. This forecast function can be found by a procedure including the maximization
of the scoring function.

, where 8 # 0, is the median of a random variable whose density is

4.2.2 Univariate Rank Histograms

In the following sections we will explore evaluation methods which use the entire probabilis-
tic forecast. This method include the rank histogram, the energy score among others. By
applying the evaluation methods Gneiting et al. (2007)) defines the objective of a predictive
performance to be the “maximization of the sharpness of the predicted distribution subject
to calibration”. The calibration being the measure of consistency between the predictive
distribution and the observed realization. This could be that 90% and 50% of the observed
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Forecaster SE AE APE RE
Statistician 5.07 0.97 2.58 x 10° 0.97
Optimist 22.73 4.35 13.96 x 10° 0.87
Pessimist 761 096 0.14 x 10° 19.24

Table 4.2.1: Table 4 of |Gneiting (2010). The table shows values of different evaluation criteria. The
scoring functions are applied on an one time-ahead forecast, where different prediction strategies are tried.
These strategies are labeled the Statistician, Optimist and Pessimist. The boldface values are the strategy
with the best performance for the given scoring function.

Scoring Function Bayes Rule Point Forecast in Simulation Study
Swse(X,y) 7 = mean(F) ol
Smar(X,y) & = median(F) 0.45507
SMAPE(X, y) T = med((_l)F) €
Smre (X, y) & = med(WF) 2.366072

Table 4.2.2: Table 5 of |Gneiting (2010). In the table the appropriate forecast functions according to the
pre-determined scoring functions are given. The scoring function are the mean squared error (MSE), mean
absolute error (MAE), mean absolute percentage error (MAPE) and mean relative error (MRE). The ¢
denotes a very small positive number. By med®) we mean the fractional moment of order 5.

SE AE APE RE
Value 5.07 0.86 1.00 0.75

Table 4.2.3: Table 6 of |Gneiting (2010). In the table the value of different scoring function under
their respective optimized forecast function is seen. The optimal forecast function of the different scoring
functions are found in Table . The predictions evaluated are the same as in Table |4.2.1}
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values lie within the respective 90% and 50% interval of the predictive distribution. The
sharpness on the other hand refers to the size of the prediction interval and is thereby
a quality of the predictive distribution alone. These two objective functions are used to
prevent the predictive distribution to be too wide, and thus get it to cover a larger fraction
of the observed variables without being penalized.

When forecasting future values the objective is to obtain a distribution that is as close
as possible to the distribution of the observed values. In other words we are trying to
calibrate our distribution to the distribution that nature has chosen to our stochastic vari-
able. One way of quantitatively measure the degree in which this is satisfied is to use a
rank histogram as first proposed by (Talagrand et al| (1997). The rank histogram is used
to evaluate discrete ensemble forecast by assessing the threshold value and the ordered
observed values. For continuous forecasts the probability integral transform (PIT) is used
(Gneiting et al., 2004). However, for the PIT the cumulative density function (CDF) is
used instead of the ordered observed values. The PIT is frequently used in the community
of statistical meteorology (Gneiting et al., 2008} (Gneiting and Raftery|, 2007).

The PIT is a method for deciding whether the predictive distribution used is calibrated
for the outcomes. Alternatively, the PIT shows why a calibration of the predictive distri-
bution is not achieved. As the name suggests the values of the PIT is p; = F;(y;), where F;
is the predictive distribution function and y; a single outcome. This distribution function
is usually the same for all of the outcomes, but may also change for different outcomes. If
the distribution function is continuous and calibrated the histogram generated by several
outcomes of the p; should be uniform. The uniformity of a rank histogram, or the lack
thereof, is an indication of the degree of calibration between the distribution of the pre-
dicted and the observed values. To give an example we consider the calibration of some
Gaussian distributions with different parameters. The PIT of these examples are presented
in Figure [£.2.1] Peaked histogram as the ones that are in the top row of Figure in-
dicate uncalibrated predictions. From these histograms it we conclude that the predictive
distributions have a smaller variance than the distribution of the observed values. On the
contrary is the case of the U-shaped rank histogram, as seen in the bottom row of Figure
[4.2.2] This case occur when the distribution of the observed values has a greater variance
than that of the predictive distribution. An histogram which has an increasing (decreas-
ing) slope from left to right indicates that the mean of the predictive distribution is greater
(smaller) than the distribution of the observed values. This is observed in the histogram
in the right column of Figure [4.2.2]

The method of calibration is however not entirely fool proof. This stems from the
fact that a calibrated distribution will display a uniform rank histogram, but the opposite
needs not to be true. That is, a uniform rank histogram does not necessarily originate
from a calibrated distribution. In [Hamill (2001) two cases which highlight this issue is
presented. In the first case the predicted values are drawn uniformly from one of three
different uncalibrated distributions. In the example the observed values are drawn from
another distribution. The paper shows that the predicted values are able to produce a uni-
form rank histogram when compared to the observed values. The second case presented
in the paper is when a requirement is added to the predicted values after the sampling is
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Figure 4.2.1: In Panel (a)-(c) the standard Gaussian distribution is the thick black dotted line. The
other lines are density functions of the Gaussian distribution with different parameters as indicated in the
legends. These functions are the used in the evaluation of the PIT histograms in Figure[{.2.2 The panels
are (from left to right) the predictive distribution of different rows (from top to bottom) in Figure . It
is important to note that the respective y- and x-axis do not have the same scales in the different panels.

done. Thus, by post-processing the predicted values an uniform rank histogram is achieved.
These two examples are important to consider when analyzing the rank histogram, and
shows that one cannot rely on this evaluation method alone. In addition, the second case
where the predicted value is post-process may be used to improve forecasts. In [Raftery
et al.| (2005)) and [Berrocal et al.| (2008)) a post-processing of the predictions are performed.
This post-processing is based on the rank histograms, and is used to improve the predictive
distribution.

4.2.3 The Continuous Rank Probability Score

In this section the method evaluating the sharpness of the prediction in one dimension is
presented. The sharpness of a forecast is an important question. When a probabilistic
forecast is made a minimization of the uncertainty in the prediction is often preferred.
When dealing with predictive distributions the uncertainty are linked to the width of the
distribution function. In other words, a sharp function will give a small interval of simulated
values from the distribution. Thus, we would like to minimize the width of the predictive
distribution. Further it is important that an evaluation method always gives the forecast
that predicts the true value the best score. Functions that have this property are called
bena fide scoring functions. It is also beneficial if the scoring function is stable. By this we
mean two things. Firstly, the function should not be dominated by a single value in the
forecast. That is, if a single predicted value is far off its observed value, then this should
not make us reject the entire forecast. Second, the scoring function should not denote
forecast with infinite values if they give a finite prediction.

As we have seen previously in this chapter a scoring rule can be defined which evaluates

34



mu=0 mu=0.4 mu=1.6

o)

Y

o

M

@©

S

(a) (b) (c)

—

I

@©

e

K=y

()]

(T T T T I T ITTTT] r—v—v_v‘v_l_l_ﬂ—mﬂ_m_ﬂ_ﬂ
(d) (e) (f)

©
—

I

@®

E
L

0

(g)

Figure 4.2.2: Theoretic probability integral transform (PIT) histograms. The observed values are sampled
from the standard Gaussian distribution with different means (1) and standard errors (o). The different
means and standard errors are indicated to the left of the rows and at the top of the columns. The predictive
distribution function is at all times that of the standard Gaussian distribution. Due note that the y-axis
are the same in each of the figures. That is to say with values between 0 and 16. The range of the x-axis
is also the same for all figures, namely from 0 to 1. In the figures we note that if the observed values
have greater mean than the predictive distribution the histograms are right skewed. On the other hand if
the standard error is to great the PIT histograms are “smiling”. Too low variance gives the opposite effect,

which results in a hump.
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the predictive distribution function F'. Two such scoring functions are the Brier score (BS)
and the continuous rank probability score (CRPS). The choice of the these scoring functions
is based on the fact that they are bena fide and that they are stable (Gneiting et al., [2007).
A theoretical walk-through of these scoring functions are given in |Gneiting and Raftery
(2007) and case studies are provided in |Gneiting et al.| (2007, 2008)). The BS is a verification
tool for the prediction of a specific event. The BS is used to evaluate predictions of binary
events. Thus the value of the BS is either zero or one. However, the continuous predictions
can also be evaluated once a threshold value is introduced. In Gneiting et al.| (2007) Brier
score is defined to be

BS(z) = %Z{Ft(z) S )2, (4.2.2)

where x; is the observed value at time ¢. The variable z is a threshold value, while the
function F; is the cumulative predictive distribution (CDF) at time tEI The parameter T’
denotes the length of the time period that is to be evaluated by the Brier function. The
Brier score function evaluates the performance of the predicted distribution towards the
empirical distribution. The function evaluated to with degree the predictive distribution
captures real distribution. This is done by measuring the probability that an event occur
with respect to the frequency with which it is observed in nature. To do this we have to

consider all possible threshold values. The continuous rank probability score does exactly
this. The CRPS is defined as

1 ©
CRPS = - > erps(Fy, z) = J BS(z)d 2. (4.2.3)

t=1 —©

The objective is to minimize the CRPS, which is the mean of several crps evaluated for
the same predictive forecasting model over different times. It is important to note that
the CRPS is scoring function which depends on the unit of the predicted variable(Berrocal
et al.l 2008)ﬂ As a result, two models can be compared directly using the CRPS once
the physical quantity is taken into account. However, this is not an attempt to say that
all stochastic variables are equally easy to model, just that models can be compared. The
CRPS can also be used to evaluate deterministic forecasts. It then reduces to the mean
absolute error (MAE) described in Section [4.2.1] This can be shown by a simple calculation
which is done in the Appendix.

An example of the BS and CRPS for a single point in time and a given threshold is
shown in Figure [£.2.3] The BS is the distance from the dotted line and the intersection of
the red and the blue curve. The CRPS is the square of the light blue area between the red
and blue curve. The perfect forecast would be a deterministic forecast which would result
in a vertical cumulative distribution function at the same place as the observed value. That
is, the blue area and thus the CRPS would then be zero, which is the minimum value for the

2Using the previous notation we have that F} is the (empirical) CDF of the predicted values y; at time
t.
3Unlike the log scoring function like the maximum likelihood among others.
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Figure 4.2.3: A figure of the empirical cumulative distribution function (ECDF) of predicted values (red)
and the ECDF of a single threshold value with respect to the observation, i.e a Heaviside function, which
is to be evaluated (blue). The light blue area highlighted between the curves squared is the continuous rank
probability score (CRPS) score of the single threshold value which is evaluated.

CRPS. A noteworthy fact is that the CRPS may alternatively be defined as the negative
BS (Gneiting and Raftery, 2007)), which is important if the reader chooses to do further
literature studies. An example of theoretical Brier score plot is given in Figure [4.2.4], where
the predictive density functions are the same as the ones used the example of evaluating
PIT histograms in Figure [£.2.2] The corresponding CRPS values are given in Table
The examples evaluate the score functions of the predictive Gaussian distribution with
different parameters. The observed values are however sampled sampled from the standard
Gaussian distribution. As one may notice the different BS of two predictive distributions
are hard to compared. As a result the calculation of the BS should only be considered
as a step to finding the CRPS. The CRPS of the example is found in Table [£.2.4, The
prediction which has the same distribution as the observed values, is the distribution which
has the lowest CRPS.

To give further insight into the CRPS another example is given. This time we consider a
prediction of a 24 hour period seen in Figure[£.2.5a] The forecast is divided into 4 groups of
equal size. The observed value is a sinus function. All of the groups in the forecast consist
of the value of the true function plus some noise. The noise terms in the four groups are
different. In group 1 the noise terms are sampled from a N'(0,0.1) distribution. In group 2
the noise terms are sampled from a N (—0.5,0.1) distribution. In group 3 the noise terms
are sampled from the A/(0,0.4) distribution. In group 4 however the noise terms are zero,
thus for this last group we have no noise. In Figure [£.2.5b|the corresponding Brier function
for a single forecast from each groups are shown. We notice that the Brier function for
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o\ p 0 0.4 1.6
0.25 0.6547 1.0592 1.2617
1.0 0.5625 1.0350 1.2770
4.0 1.0305 1.0506 1.2773

Table 4.2.4: The table of the continuous rank probability score (CRPS) values for the Brier score (BS)
functions of Figure [{.2.4] The BS functions are in turn realizations of the probability integral transform
(PIT) plots in Figure . The columns and rows are the CRPS wvalue for different predicted Gaussian
densities with different mean and variance. All of the predicted densities are all evaluated toward a observed
density. The observed density is the standard Gaussian. All of the densities are found in Figure .

the perfect forecast (group 4) is everywhere zero. We also notice that the biased forecast
of group 2 is most penalized, with a maximum BS function value of one. Remembering
Equation this can be expected, since the indicator function dominates the function
completely until the empirical distribution kicks in. This intervention of the empirical
distribution function is much “smoother” for the Brier function of group 1 and 3, which
in addition have a symmetric BS function. This comes from the fact that their forecast
ensembles are sampled from distributions that are unbiased and symmetric with regard
to the true value. For these groups we notice that the Brier function is wider for the
function with the most variance in the noise term. Thus, the BS penalizes the least sharp
distribution the most. The observations concerning the BS are reflected in the value of the
CRPS. The CRPS value for group 1, 2, 3 and 4 is 0.024, 0.445, 0.095 and 0 respectively.

The last example confirms the promises made with respect to the CRPS. In addition
it showed that the CRPS can in fact be used to evaluate deterministic forecasts. Further,
the example illustrated the range of values the CRPS might take. From Equation (4.2.2))
we know that the maximum value of the BS is one. As seen in Figure this is the
case. As the crps denotes the integral over all points the worst possible score will be
infinite. However, when the crps is used in a setting where the reasonable evaluation value
of the function is unknown, a naive method is used as a benchmark. As deterministic
forecasts can be evaluated these are often used. An example of such benchmark is given in
paper |Gneiting et al.| (2008)). Here the mean of recent wind observations are used as the
benchmark. Thus, the more advanced statistical method used in the paper are evaluated
against this. However, this method of using deterministic forecasts as benchmark is only
done if a competing statistical prediction does not exist.

4.2.4 Multivariate Calibration

In the previous sections evaluation of one-dimensional forecasts was discussed. In this
section calibration of forecasts in more than one dimension is discussed. Thus, in the
following sections the forecasts are given in vector form. To evaluate the calibration of a
forecast the same Talagrand histogram as seen in Figure is used. The only difference
is the forecasts have to be pre-processed in order to use the same framework. The main goal
of the pre-prosessing is to get the predicted values into a setting where they are of internal
order is in a one-dimensional setting. That we need to have a framework where we can
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Figure 4.2.4: Theoretic Brier score functions. The values on the x-axis corresponds to different threshold
values, while the values on the y-axis are the corresponding value of the Brier score. The plots are each the
mean over 1000 time periods T'. The observed values are sampled from the standard Gaussian distribution.
The predicted values are also sampled from the Gaussian distribution. However, the parameters of the
predictive distribution functions vary. These parameters are indicated to the left and at the top of the
panels. Fach row has the same mean value, while each column has the same standard deviation. The
dotted red line is the ideal predictive function, namely that the predictive distribution being the same as
the distribution function of the observed values. It is important to note that scales of the y- and x-axis
have been kept unchanged for all the plots. The range of values on the x-azis being from -10 to 10, and the
values on the y-azis being from 0 to 0.35. Also note that the Brier score for (d) is that of the ideal forecast.
In addition the Brier scores corresponds to the PIT plot given in Figure[4.2.3 and the corresponding CRPS

values are given in Table|4.2.4} 39
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Figure 4.2.5: In Panel a) an artificial forecast of 24 time periods is shown. The forecasts are divided
into 4 groups, where group 1 is at time 1-6, group 2 is at time 7-12 etc. All the time periods have a
forecast ensemble size of 100 which is marked with dots. The observed values are marked with an asterisk.
Each of the time periods in the same groups share the same parameters in the Gaussian distribution of the
error terms . Group 1 is unbiased and have low variance, group 2 is biased and low variance, group 8 are
unbiased with large variance and group 4 are unbiased with zero variance. In Figure b) the corresponding
brier score for one of the time periods from each groups is shown.
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map the predicted values to the natural numbers. The algorithm for doing this given by
Gneiting et al.| (2008): When considering a vector x = (21, xa, ..., xq) and 'y = (1, X2, ..., Tg)
in R? we define

x<y iff x <y ie{l,..d}. (4.2.4)

Thus, for an ensemble forecast x; € RY, j € {1,..., K}, where K is the size of the ensemble,
a multivariate Talagrand histogram can be constructed by the following steps:

i. Standardize: First an optional standardization of the ensemble members are per-
formed using the principal component method.

ii. Pre-rank assignment: Members are pre-ranked:

K
Z (x; < x5), (4.2.5)

where I denotes the indicator function. Thus all the members of the ensemble are
given a non-distinct value between 1 and m-+1. This is depicted in Figure [4.2.6al

iii. Find multivariate rank: The multivariate rank r of the ensemble is found. The
multivariate rank is the same as the pre-rank. However, for cases with members of
same rank, the tie is resolved by giving them a rank between (s=+1,...,s° + s7) at
random. The variables s= and s~ are the number of ensemble members which have
lower and the same pre-rank as the member that are to be consider respectively.
These variables are found by calculating

K K
Z pj <po) and s = Z I(p; = po)- (4.2.6)
j=1 j=1

The variable pg is the pre-rank of the ensemble member which is to be evaluated.

The second and third step of the procedure are depicted in Figure [£.2.6b] The same
Talagrand histogram that was used in the uni-variate case can be used once the algorithm
is employed on the prediction. Thus, we can use the diagnostic tools as the once presented

in Section 4.2.2]

4.2.5 Evaluation of Sharpness in a Multivariate Setting

The CRPS cannot evaluate sharpness of a multivariate prediction as it is defined. This
comes from the fact that the Brier score function uses the indicator function, and we then
come into the same problem of ordering as in the calibration. The CRPS encountered
in Section is however a special case of the energy score (ES). Let X and X’ be two
independent copies of a random vector with distribution P in R™. Then, as long as E|| X ||*
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Figure 4.2.6: Figure 2 of |Gneiting et al| (2008). In Panel a) the ensemble members are pre-ranked

following Equation [[-.2.5. The light blue area is the area which have a smaller rank than the member
marked with an asterisk. Any member in this area is outranked by the ensemble member with an asterisk.
Three such ensemble members have the same rank as the asterisk member. This has to be resolved using the
procedure given in Equation[].2.6, By performing the calculations of Equation[].2.6| the ensemble members
with asterisk is found to have the values s< = 3 and s= = 3, which are the number of ensemble members
with equal and smaller pre-rank respectively. Thus, the possible ranks of the ensemble member are {4,5,6}.
Sampling from uniformly from the possible ranks the rank for the asterisk member becomes sixz. In Panel
b) the pre-processing of the ensemble members are finished. The ensemble is then ready to by plotted in a

Talagrand histogram.
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is finite [ where || - || is the Euclidean norm and the parameter 3 € (0,2), then the ES is
defined )

ES(P,x) = §EP||X—XI||5 — Ep|| X —x]|”, (4.2.7)
where x is a vector of observed values (Gneiting et al., 2008). Thus, the evaluation of
sharpness in a multivariate setting uses the energy score. The CRPS is the special case
when beta equals one. Then the Euclidean norm of Equation refeq:energyscore becomes
the absolute value. The definition of the ES is then ES(P, z) = Ep|X —z|— s Ep|X — X[,
which is shown in Lemma 2.2 of |Baringhaus and Franz| (2004)) or the identity of Equation
(17) of [Szekely| (2003)) to be identical to Equation (4.2.3).

The expression in Equation has no closed form. However if we assume that the
density of the predictive ensemble is P = P,,s, P.,s a numeric expression can be found.
The predictive density proposed gives point mass 1/K to each of the ensemble members
X1,X3, ..., Xg € R™, then following |Gneiting et al.| (2008)), the energy score becomes

1 K 1 K K
ES(Pens; X) = = Y 1% = x|l = = > > [Ixi = xl. (4.2.8)
K~ 2K?

i=1j=1

In addition the ES may also be simplified to be the negative squared error. This simpli-
fication happens when 8 = 2. The ES is then expressed as ES(P,x) = —||up — x||*>. The
parameter up is the multivariate mean of the probability distribution P. We thus see that
the ES is a generalization of many of other well known evaluation criteria, and that it thus
may be used in a wide variety of settings. In addition we have seen that the evaluation
methods of calibration and sharpness encountered in Section f.2.2] can be generalized into
the multivariate case.

4When this requirement fails the ES(P,x) can be defined as

25—2I‘ m + B _ ,i<x,z2>|2
ES(P,:E)Z—B (2 52)J |90P(Y) € | dz,
mm20(1 — 2) g ly[[™+#
where || - || is the Euclidean norm, the parameter § € (0,2), the function I'(:) is the gamma function,
the operator < -,- > is the inner product space and the function @p(-) is the characteristic function

of probability distribution P (Gneiting and Raftery} 2007)). This score evaluates the weighted distance
between the characteristic function of P and the observed value
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Chapter 5

Model Specification

In this chapter a model of the error terms of the deterministic electricity spot price model,
as introduced in Section [2.4] is proposed. The framework of the model is based on a two-
component mixture model as seen in Section [4.1.3] Later we focus on the balanced part
of the model which uses the seemingly unrelated regression which we saw in Section [£.1.1]
Then we discuss the estimation of the SUR model parameters . Finally the evaluation
method of the is discuss, unveiling the optimization procedure that is used to find the best
set of explanatory variables.

5.1 Spot Price Forecast Model

In this Section we will describe how the full spot price model is built up. By this we
mean before any filtering of prices as described in Section is done. The framework is
as described in Section [2.4] reproduced here

Xo(t,h) = Dy(t,h) + e,(t,h) he{0,...,23), (5.1.1)

where X, (¢, h) is the power price at hour h at relative day ¢ to a given date v. The D, (¢, h)
is the deterministic forecast as given in Equation . The € is the error term, which we
are going to find a model. The error term is described by the mixture model, as described
in Section [4.1.3] As already indicated in that section the model consist of two components.
Each of the two components is a model of either one of the two groups of error terms that are
labeled balanced and unbalanced. The error terms are classified according to the criterion
presented in Section In other words are the model of the error terms conditioned
on the classification of its respective power price. Accordingly is the full model written
Pr(e,(t, h)| X, (t, h) = Balanced) = f1(0,) and Pr(e,(¢, h)|X,(t, h) = Unbalanced) = f5(6s),
where f; denotes the probability distribution function while 6; is the associated parameters.
These two components are put into a mixture model, where an inflated variance model or
mean shift is considered the for the unstable prices, as mentioned in Section [4.1.3]

eo(t,h) ~ (1= n)f1(XiB,02) + nfa(XiB + Ky, koo?). (5.1.2)
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This is to be considered as the full model of the error terms. In further analysis of the
model is the three separate partdl] handled individually. Indeed is only the a model for f;
specified in the of this chapter, Chapter [6|and [7] The discussion of the component model of
f2 and the group-selection function are not taken up again until Chapter |8, and there only
in the form of further studies. Nota bene that we henceforth will denote the balanced
error term(s) as simply error term(s) for the sake of simplicity in writing.

5.2 The Unbalanced Spot Price Forecast Model

In this section the model for the balanced error is revealed. In Equation refeq:mixtureEMP
the probabilistic distribution together with its expected value and covariance matrix is not
given. However, on the basis of the correlation both for within-day hours seen in Figure
[2.6.1] the information structure as depicted in Figure and our deterministic model
(which is stated in Equation (2.4.2)) ) we consider the model to consist of 24 hour blocks.
Equally important is the between day correlation which is seen in Figure[2.6.2] To account
for this dependency and induce bias correction in the model the probability distribution
of the forecast horizon is given conditionally for each lead day. Thus, the joint forecast
distributions can be expressed as the conditional marginal distribution for each lead day

(Y1, ---y10) = 7(y1) 7 (ye|y1) 7™ (ys|y1, v2).--m(y10|y1---yo). The marginal distributions are

Xv(l, h) ~ N(Dv(l, h) + Xlﬁlu 21)

Xi . 5.2.1

X, (i,h)|e,(i —1,h) ~ N (Dv(i, h) + (uv(z Y h))ﬁi’ E“-_1) i€{2,..,10}, ( )
where u,(t, h) = X, (t,h) —D,(t, h) —€,(t, h) and 3; is the within-day variance matrix. The
index 7 refers to the lead day, that is to say the number of days-ahead from the date that
we forecast error terms. Inn addition is the variable u, (¢, h) the residuals of the combined
deterministic and stochastic model. The model given for the mean and variance model of
Equation is the seemingly unrelated model (SUR). Thus we assume that the error
terms are independent between different hours in the day in the expectation, but that the
dependence is captured by the covariance matrix . The SUR model is multivariate a
linear regression and is explained in detail in Section [4.1.1] To explain the error terms we
introduce the relation

€(t,h) = Cy(t, h) + @, (t, h)e, (=1, h) + T, (t, h) + qu(t, h) + R,(t, h)+
+ gu(t, W)Ig(dy(t, h)) + pu(t, B)Ip(dy(t, h))+
+w,(t,h) Y Li(do(t, h)) + my(t, h) Y Li(d(t, b))+ (5.2.2)
JEW 1eEM
+ uy(t, h).

'The two mixture components and the group-indicator function.
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The variables in this full model are the intercept (C, (¢, h)), bias correcting term ®,(t, h),
temperature (7,(t, h)), consumption (g,(t,h)) and reservoir level (R, (¢, h)). The variable
d,(t,h) is a dummy variable, consisting of the information of a given day, and used in
the case of the categorical explanatory variables which are linked to the calender. These
are explanatory variables such as Norwegian holidays (g, (¢, h)), daylight savings (p,(t, h)),
weekday (w,(t,h)) and month (m,(t,h)) are also in the model. In Equation I(-)
is the indicator function and W = {Tuesday, Wednesday, Thursday, Friday, Saturday,
Sunday} and M = {February, March, April, May, June, July, August, September, October,
November, December} are the sets weekdays and months, while G and P are the days with
Norwegian holidays and daylight savings respectively. The number of months and weekdays
considered is chosen to avoid any co-linearity in the model.

The variable d, (¢, h) is the information about a given day. Thus if we use it with regards
to the set of summer time, we check if the summer time is used for on that day. In the
same way is the day check if it is a holiday. For the terms corresponding to the effect of
weekday and month we sum over all possible outcomes of the set. However, as the day,
d,(t,h), only can be a member of a single day or month of the time, all except one of the
terms in the summation are put to zero. Sometimes are even all of the terms put to zero.
This happens for the weekday and month on Monday and in January respectively. On
the other hand is the notation chosen used to harmonized with the earlier notation. In
addition do the 216ﬂ parameters of the weekday, w,(t, h), vary with the day of the forecast,
v. As a result is the notation used to emphasis this fact. The same reason is used in the
case of the month explanatory variable.

5.3 Parameter Estimation for the Unbalanced Model

In this section we give a short explanation of some the values of the parameters of the
Equation . In addition we go through the estimation procedure of the response
variable in the same equation. The consumption and reservoir level are in terms of their
relative size according to the mean value of the years 2005 and 2006. As the reservoir level
value is only reported once a week, a linear interpolation between data points is used to
get hourly values. The reservoir level is a physical value that rarely makes jumps, since
it represents quantities with large geographical dispersion and vast size. As a result this
seems to be a safe assumption enabling us to generate hourly values. Another simplifica-
tion is that all of the variables mentioned are considered known. However, we do not know
any the future values and the values should have been estimated. The implementation of
a prediction model for any of the variables is however a project in itself. However, as will
be discussed in the next section, not all factors in the model will necessarily be utilized.
The length of the training data period is also consider to be essential, a length which
greatly influence the procedure (and probably value) of estimating variables. The motiva-
tion of considering different length in the training period comes from Figure [2.3.1] where

2For each forecast there is parameters for each of the 6 days and each their 24 hour.
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the power prices changes drastically over time, thus indicating that the vales of the ex-
planatory variables themselves vary much. The length of the period is sometimes called
the history and written H, something which is taken from Section [£.1.2] This notation is
useful when we are to study the length of the training period. The training data period is
given in number of days. The minimal theoretical training data period is 8 days, as this is
the time frame needed for the deterministic model to make a forecasts. As we will however
see later, the length of the training period will seldom be less than 50 days.

When the SUR model calculates the estimates of the parameters a number of sub-
procedures are required. Below a brief explanations is given. For more details the reader is
referred to the Appendix, where the source code of the program which does the calculations
is found. Thus, the SUR regression consists of the following steps:

i. Deterministic forecasts are made for the training period. The deterministic forecast
is described in Equation ([2.4.2})

ii. Error terms between the forecast of (i) and observed prices are calculated.

iii. Error terms belonging to hours with unbalanced prices are filtered out, using the
filtration methods described in Section 2.3

iv. An ordinary least square (OLS) regression of each of Equation (5.2.2)) is fitted on the
error terms of (iii). Accordingly, a separate model is fitted to each of the hours.

v. The residuals of the OLS in (iv) are used to estimate an empirical variance matrix.

vi. The variance matrix of (v) is used to fit an generalized least square (GLS) model
to the data. As with the OLS model an empirical covariance matrix of the GLS
residuals estimated. The GLS procedure is described in Section (.1.1]

vii. The new variance matrix is used as an input to another GLS fitting of the data.

viii. Steps (vi) and (vii) are repeated until all the values for the estimates of the explana-
tory variables have converged.

In the procedure of finding an estimate for the explanatory variable described above, the
OLS and GLS estimators of Section are used. In that section the parameters T, K and
M are used to denote the dimensions of different matrices and vectors. The parameter
M is the number number of response variables, which in our case is 240, as we have one
response variable per hour of the forecast horizon. The parameter T" which is the number
of observations of a single hour depends on the training period chosen. Thus, the T' is the
length of the training period H, but we also have to subtracts the number of unbalanced
error terms which is filtered out of the training set as they are to be explained by the other
component of the mixture model. The number K is the number of explanatory variables
which is nine when the full set of parameters are used.

The number of explanatory variables may of course vary. The full set of explanatory
variables is described in Equation (5.2.2)). The model which is reduced to the maximum is
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defined to consist only of the intercept and the bias correction term of yesterday ®,(t, h).
It is however important to note that even though we specify a set of explanatory variable,
all of the variables in the set may not necessarily be estimated. This can come from the
fact that the an observations of the explanatory variable may not exist in the specified
training period. The explanatory variables of daylight savings and public holiday are this
something that happens frequently.

5.4 Subset Selection for the Unbalanced Model

As mentioned in Section [4.1.1]the SUR model opens for the possibility of different explana-
tory variables for the different equations through the use of a restricted model (SURR).
Thus, the number of explanatory variables can differ for each of the 240 equations, which
are found in the forecast horizon. The deterministic model as described in Equation ([5.2.2))
will be considered the bench mark in the evaluation.

As the forecasts consist of ensembles sampled from the multidimensional Gaussian dis-
tribution specified in Equation the probabilistic evaluation methods of Section
are used. The main evaluation criterion is the Energy score which is described in Section
. The energy score is used as criterion in the best subset selection algorithm (Hastie
et al., 2008) to select the best set of explanatory variables for the SURR model. The
best subset algorithm chooses, as the name suggest, the best set of explanatory variables
according to a given evaluation criterion. In our case this criterion is the energy score. In
the stepwise form the algorithm always changes the number of explanatory variables by
one, either by excluding or including an explanatory variable iteratively into the current
set of explanatory variables. The procedure is ended when either no explanatory variable
can be added to positively influence the score (forward selection) or nothing is gained by
excluding any of the explanatory variables (backward selection).

The number of possible combination of explanatory variables SURR models is however
quite large. The total number of combinations of the 7 “free” explanatory variableg’] in
240 equations is 2198, Even if we restrict ourselves to the same estimation model for all
of the 10 leading days we still have 2% combinations, which is a staggering number of
(possible) models. As a result we restrict yourself to consider a single estimation model
for each of the 10 leading days. In addition we split the hours of the day into 5 groups.
These groups are: Hour 0-6, 7-10, 11-15, 16-18 and 19-23. This reduces the number of
possible combinations substantiallyf] The reason for reducing the number of combinations
of explanatory variable is to make it possible for the algorithm to examine every combina-
tion if it should find it to be necessary. Thus, another division of hours into groups could
be made. The present choice is motivated by the fitting of a SUR model to power prices
by [Klaeboe (2011)). In this paper the coefficients for these hours tended to coincide. We
therefore conclude that these hours have the same dynamic and accordingly that they need
the same set of explanatory variables.

3The intercept and the bias correcting term are always present as explanatory variables.
4The number of candidates is now reduced to 23°.
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Chapter 6

Results

In this chapter we present the result of the probabilistic prediction model proposed in
Chapter [p] to forecast the spot prices. The power prices used are from the Nord Pool
market, which was discussed discussed in Chapter The predictions presented are for
different time intervals of 2008, length in training period and combinations of explanatory
variables. Moreover is evaluations of the predictions carried out with methods based on
both point and probability methodology.

6.1 Forecasts

In this section we present the results of the forecasts for four different dates in 2008. The
first day in our predictions are the 16th of April, June, August and October respectively.
Thus, according to the notation introduced in Section [2.4] the variable v is the 15th of
this respective months. As we work with a 10-day forecast horizon the electricity prices
predicted are those of 16th to the 25th of the respective month. The periods are chosen
to test the model for different price dynamics of the year. Moreover are three forecasts for
each of the periods performed, with a respective length in the training period of 60, 80 and
120 days.

The forecasts of the power prices are products of the prediction model presented in
Section [5.1] Accordingly a categorization of the error terms was executed, and only a
model for the balanced terms was build. This model was based on seemingly unrelated
regression (SUR) presented in Section [5.2] The inference on the parameters of the SUR
model is given in detailed in the same section. The probabilistic prediction of the error
terms that followed from this is a multidimensional Gaussion distribution. The figures
shortly presented are based on 5000 samples of price realizations from this distribution. In
in the figures we present the forecast, represented by the median as the forecast function.
Furthermore are the values of the 95% prediction interval reported. These values are found
by selecting the 4875th and 225th numbers of the ordered ensembles at each lead time.
In addition are the interval of the vertical axis of the forecast figures kept unchanged to
facilitate comparison between the figures. On the basis of these figures we do the following
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observations:

1. In Figure the forecasts for 15th of April 2008 are found. The first striking
feature is that many of the prices in the forecast horizon would have been classified
as unbalanced had they been in the training sample. This is observed by the number
of points. Second, we notice that all of the forecasts seem to capture the daily
dynamics, by this we mean that the predicted prices capture the characteristic daily
pattern. Thirdly one can see that the size of the prediction intervals are effected by
the time of day and that it widens with increasing lead time. For instance can this be
observed in Figure where the width of the prediction interval is approximately
40€ around noon and 15€ in the evening. However, in the same figure we observe
that the prediction interval increases, and that its value on the 10th lead day ranges
from 0 to 90€. Moreover, the prediction interval the 10th lead day changes less
through the day than that of the first lead day. Finally, we observe that a decrease
in the length of the training period seems to increase the performance of the forecast
and to decrease the size of the prediction interval at the 10th lead day. The improved
prediction ability can especially be seen on the first day where the observed prices for
the forecast with a 120 days training period sometimes falls outside the prediction
interval, while it is well predicted by both the forecast with a 60 and 80 days training
period. For these predictions do the observed prices fall well inside the prediction
interval. It is also observed that the prediction interval for the forecast with a 120
days training period has much wider prediction interval on the 10th lead day than
the forecast with a 60 days training period.

2. In Figure[6.1.2] the forecasts for the 15th of June 2008 are found. The most striking
feature for this time period is that the unbalanced prices are fewer but more dom-
inating than the ones seen in Figure An example of this is the unbalanced
prices which occur around 170 and 200 hours into the forecast, where big drops make
the price fall towards zero. Moreover, these unbalanced prices are producing big dips
in the prices. Dips in prices during the summer are to be expected, since precipita-
tion and low consumption during the early morning hours make the power prices fall
drastically. However, when it comes to the prediction of prices we observe that these
display a flatter structure than the observed prices. Apart from this, we notice that
the prediction interval for these prediction also vary within day and increases with
lead time. It is however difficult to spot any improvement in the predictions of the
prices as the length in the training period increases, while an improvement in the
size of the prediction interval is clear.

3. In Figure the forecasts for the 15th of June 2008 are found. The observed prices
have a completely different pattern than the prices seen in Figure [6.1.1] and [6.1.2]
namely that the two characteristic daily spikes described in Section are very much
smaller and sometimes even completely absent. Further is the number of observed
prices that would have been characterized as unbalanced prices decreased drastically.
Turning to the predictions of the prices we see that they are able to capture the prices
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quite well. Furthermore, the prediction intervals are smaller than those previously
seen for April and June. However, the change in size of the prediction interval for
different hours within a day are not that great for these forecasts. Further is the
decrease in size for the prediction interval as the length in training period increases
not that apparent as in April and June.

4. In Figure the forecasts for the 15th October 2008 are found. In comparison to
the observed prices of the other months, the prices that are observed in this month
have the smallest variation in the daily prices and the fewest number of prices that
would have been classified as unbalanced had they been in the training data. When
it comes to the predictions of power prices we see an increase in accuracy as the
length of the training period decrease. However, the precision of the predictions, as
observed through their prediction interval, seem not to improve drastically as the
number of training days decreases.

Thus, by looking at the observed and predicted prices for different months in 2008 we see
that their dynamics seem to change.

Turning our attention away from the predicted prices we look at the correlation struc-
ture of the residuals of the probabilistic forecast. In Section 2.6 we inspected the correlation
in the error terms of the deterministic model in in Figure [2.6.1] and [2.6.2] are revisited in
Figure To facilitate comparison a new plot have been made where the range of the
values has been altered to facilitate comparison with the correlation of the residuals. Thus,
the correlation structure given in Figure [6.1.5a] where the within-day correlation of the
error terms was given, is the same as the one found in Figure [2.6.1D] but a changed range.
By comparing these figures we can deduce that the within-day correlation is reduced dras-
tically. The only intervals of the day that seem to uphold correlation in the residuals are
the groups of hours 1-5, 9-16 and 20-22. For the between-day correlation found in Figure
we saw strong signs of pattern, while these patterns seem to have vanished in Figure
[6.1.5d, which is the correlation after the probabilistic model was applied. From these plot
we conclude that the proposed SUR model for the balanced error terms seems to capture
the within-day correlation through it use of 24-hour prediction blocks. Additionally, the
between-day correlation seems also to have been captured, something which may be at-
tributed to the implementation of the bias correcting terms, which connect the same hour
between days.

The values of the coefficients for SUR model of the forecast of October 15th 2008 with
a 60 days training period are found in Figure [6.1.6 In the figure we notice that values
for three of the explanatory variables changes drastically through the 240-hours (10-days)
forecast horizon, namely the intercept, reservoir level and month 2. The month 2 variable
is in this case September. While the confidence interval of the values for the reservoir level
and September appears to be constant, the confidence interval of the intercept increases
with lead time. Further, the values of the coefficient for the consumption and bias correct-
ing term are constantly changing, but do not have any clear trend. The coefficients for
the temperature, August, October and Thursday increase with lead time, while the values
of Tuesday and Sunday decreases with increasing lead time. The values of the remaining

51



coefficients: Monday, Wednesday, Saturday and summer time are more or less constant.
Many of the confidence intervals are also constant. The exceptions are the confidence
interval for the coefficients of Friday, Saturday and the temperature which experience an
increase in size during the daytime hours. At the same time do the confidence intervals for
the September coefficients appear to increase linearly with lead time.

From Figure it appears like some of the coefficients have the same dynamics,
while others do not. Therefore we have plotted of the correlation of the coefficients of the
explanatory variables of the SUR model in Figure [6.1.5d] The model was constructed on
the basis of a full SUR model with 2007 and 2008 as training data. The large sample
of training data was chosen so we can assess a model where all the explanatory variables
are present. From the figure we observe that the intercept is negatively correlated with
nearly all of the explanatory variables which take their origin in the calender, that is to
say the months and the weekdays. Further is the holidays negatively correlated with sev-
eral of the months from April to October. moreover, a correlation between the holidays
and the months April and May is to expect when a number of (Norwegian) holidays take
places at that time. However, the correlation between the holidays and the other months
is somewhat unclear as none holidays occur in those months. This may on the other side
be a side effect that not really originates from the holiday month relationship, but from
the correlation among the months. This is because the months themselves have a positive
correlation. Therefore, a lack in correlation of the extra (moving) holidays in some of the
months are something that may have been redistributed to the holiday variable. Moreover,
we observe a weak negative correlation between the reservoir level and the months. This
effect comes naturally as the level together with the rate of change of the reservoir follows
a yearly pattern. Finally, we see that the weekdays are positively correlated with each
other.

6.2 Evaluation

In this section we first examine the point forecast methods of the deterministic model and
the probabilistic forecast. The evaluation of the probabilistic forecast is performed on each
of the four same time periods as of the predictions that were presented in the last section.
To recapitulate these predictions were the 5th to the 25th of April, June, August and Oc-
tober 2008. Thereafter the energy score for the same deterministic model and probabilistic
forecast is presented. Then we study the Talagrand histogram to look for the fit of the
predicted distribution with regards to the distribution of the observed value. Finally, the
best-subset algorithm, as described in detail in Section [5.4] is used to find the best set of
explanatory variables of the SUR model.

In Table the point evaluation of the deterministic model for the four periods is
presented. Before the forecasts, the appropriate forecast function were evaluated as de-
scribed in Table [£.2.2] was applied on the forecast. We observe that the point evaluations
do not give a single period for which the deterministic model gave the best prediction.
This stems from the fact that the deterministic model performs best in August according
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Forecast for the 15th of April of 2008
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0 50 100 150 200
Hours ahead

(a)

Forecast for the 15th of April of 2008

— Median forecast - - Observed price 95% Prediction interval o  Unstable prlcs.;é

0 50 100 150 200
Hours ahead

(b)

Forecast for the 15th of April of 2008

— Median forecast - - Observed price 95% Prediction interval o  Unstable prices

0 50 100 150 200
Hours ahead

(c)

Figure 6.1.1: Three 10 day-ahead forecasts from the 15th of April 2008. The length in training period is
Panel a) 120 days, Panel b) 80 days and Panel c) 60 days. The explanatory variables of the model are as
described in Table[6.2.4) The black line is the predictions values, the dashed red line is the observed prices
while the dotted black line is the values of the prediction intervals. The green dots are the hours that would

have have classified as spikes if they had been in the in the training sample.

23



Prices

40

Prices

40

Prices

40

Figure 6.1.2: Three 10 day-ahead forecasts from the 15th of June 2008. The length in training period is
Panel a) 120 days, Panel b) 80 days and Panel ¢) 60 days. The explanatory variables of the model are as
described in Table[6.2.7) The black line is the predictions values, the dashed red line is the observed prices
while the dotted black line is the values of the prediction intervals. The green dots are the hours that would
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have have classified as spikes if they had been in the in the training sample.
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Forecast for the 15th of August of 2008
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Forecast for the 15th of August of 2008
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Forecast for the 15th of August of 2008
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Figure 6.1.3: Three 10 day-ahead forecasts from the 15th of August 2008. The length in training period
is Panel a) 120 days, Panel b) 80 days and Panel ¢) 60 days. The explanatory variables of the model are
as described in Table The black line is the predictions values, the dashed red line is the observed
prices while the dotted black line is the values of the prediction intervals. The green dots are the hours that
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would have have classified as spikes if they had been in the in the training sample.
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Forecast for the 15th of October of 2008
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Forecast for the 15th of October of 2008
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Forecast for the 15th of October of 2008
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Figure 6.1.4: Three 10 day-ahead forecasts from the 15th of October 2008. The length in training period
is Panel a) 120 days, Panel b) 80 days and Panel ¢) 60 days. The explanatory variables of the model are
as described in Table The black line is the predictions values, the dashed red line is the observed
prices while the dotted black line is the values of the prediction intervals. The green dots are the hours that

would have have classified as spikes if they had been in the in the training sample.
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Figure 6.1.5: In Panel a) is the correlation among hours for the error terms. This correlation is from both
the unbalanced and balanced terms as given by Equation . In Panel b) is the correlation among hours
of the residuals of both the deterministic and stochastic prediction, as found in Equation , plotted.
In Panel ¢) we have the inter-day correlation among the residuals of the deterministic and probabilistic
forecasts combined. In Panel d) is a plot of the correlation of the explanatory variables of the October
forecast of 2008 with a 60 days training period. The value and confidence interval of the variables are

found in Figure[6.1.6

o7



Consumption

T
20

15 160 168 176 186 192 20 28 26 20 2 20

t
152 160 168 176 18¢ 192 200 208 216 224 232

T
4

2
)

Hours ahead

(f
 Weekday1

10412 120 128 1% 1
Hours ahead

Month

T
%

I
|
8 8 % 104 I;E ‘l:znejjﬂ 13 14
(b)
Temperature

T
0 8

T — L
80 8 % 104 12 10 128 13 14 152 160 168 176 184 192 20 28 26 24 22 40

2

[

—
@8 % o
|
@8 % 8 T

8
R 4

——
u R W

T
18 6 2% &
B
18 155

T
18 5

The

T
20

Hours ahead

(h)

80 88 % 104 112 120 128 13 144 152 160 168 176 18¢ 192 200 208 216 224 2%

18 6 4 2 & 8 % 8 N

o8

T
<]

T
5 20 W A0

t
2

T T
76 18 12 20 28

Tt
4 15 160 168

T
1% 14

T T T
28 1% 14 15 160 168 176 18 12 20 28 26 24 22 40

T
<]

t
152 160 168 176 184 192 200 208 216 224

 Intercept

T
% 104 12 10 18

T
L]

T
8% 6 0

| U
18 6 2% &

Hours ahead
(a)
Reservojr levels

S
% 104 12 1

T
0 8

A —
@8 % 64 T

| T
18 6 2% &

(c)
Month 1

A
7?0 8 %

t
8 5%

T
18 16 4 %

104 112 10 128 13 144 152 160 168 176 184 192 200 208 216 224

T
2}

T
o

(e)
Month 3

T T
104 112 120 128 1% 14

T
70 8

T
8 % 64

T T
18 16 4 %

t
%

T
o

Hours ahead

(g)

Figure 6.1.6: This figure continues on the next page. The estimated parameters of the full SUR model for

the forecast of the 15th to 25th of October 2008 with a 60 days training period. The parameters are plotted

with their respective confidence intervals. In Panel a) through o) we have the following parameters:

intercept, consumption, reservoir level, temperature, October, September, August, Tuesday, Wednesday,

Thursday, Friday, Saturday, Sunday, summer time and bias correction. The y-axis are not the same for

every panel.
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Figure 6.1.6: This figure is a continuation of the figure on the previous page. The estimated parameters

In Panel a) through o) we have

of the full SUR model for the forecast of the 15th to 25th of October 2008 with a 60 days training period.
The intercept, consumption, reservoir level, temperature, October, September,

The parameters are plotted with their respective confidence intervals.
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y-azis are not the same for every panel.
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to the mean square error (MSE) and the mean absolute error (MAE), while it performs
best for October according to the mean absolute percentage error (MAPE) and the mean
relative error (MRE).

If we compare the point evaluations of the deterministic model in Table to those
of the probabilistic model which are found in Table [6.2.3] we see that the probabilistic
predictions always have the best performance. The point evaluations of the probabilistic
predictions were done in the same manner as of the deterministic model. However, for the
probabilistic forecast we have also considered different lengths in the training period. The
different lengths in the period which are presented in Table [6.2.3] is 60, 80 and 120 days.
For the 60 days training period the SUR model performs best in August, and the same is
the case for the 120 days training period. The SUR model does however perform best for
October, when the training period is set to 80 days.

The probabilistic evaluation criterion of the energy forecast is given for the determinis-
tic model and probabilistic forecast in Table[6.2.2l We do however observe that the energy
score of the deterministic model is the same as the mean absolute errors that were pre-
sented in Table [6.2.1] This fact was pointed out already in the theoretical walk through
of the evaluation method in Section [£.2.3] but it is good to see that the theoretical result
holds in practice. Another thing to notice in Table [6.2.2] is that the energy score evalu-
ates the probabilistic forecast to be best always in October regardless of the length of the
training period. This is in contrast to the point evaluation methods, which evaluated the
probabilistic forecast to be best in August for the 60 and 120 days training period.

In addition to giving the values of the energy score in Table[6.2.2] a plot of the score for
more lengths in the training period for the four periods can be found in Figure [6.2.1] From
this figure we realize that an even better probabilistic forecast for April can be constructed
by a 50 days training period. Moreover, we notice that the other periods have a minimum
in energy score for a training period between 60 and 80 training days. The month of Oc-
tober is perhaps an exception, with an always a very small decrease in the score, but the
energy score for this month as a function of the training period is very flat below the 110
days training period. What is maybe more important is that the energy score of the mean
of the periods evaluates the best length in training period for the probabilistic forecast at
all the periods to be 80 days.

Changing the focus away from the evaluations by scoring functions we look at the Ta-
lagrand histogram. This histogram is used to evaluate the calibration of the prediction,
something which was explained in the theoretical walk through of the multivariate Ta-
lagrand histogram was given in Section [£.2.4, The Talagrand histogram presented later
were found by drawing 1000 simulation of each of the probabilistic predictions, which were
performed of the same periods of 2008 as earlier. In Figure the histogram for the
deterministic model and the probabilistic forecast are presented. We see that the determin-
istic model displays under-dispersion as it has a smiling shape. Further is the upper half of
the rank observations greater than those of the lower ranks, something which implies a bias.
However, this may also be a result of the under-dispersion. The same findings manifest
themselves in the Talagrand histogram of the probabilistic forecast. On the other hand are
the under-dispersion less in this histogram, something which points to a more calibrated
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Month MSE MAE MAPE MRE
April 871.7 16.7 0.98 0.63
June 263.0 20.3 0.93  0.50
August 41.84 12.1 0.86 0.40
October 87.63  13.6 0.71 0.37
Mean 316.0 15.7 0.87 0.48

Table 6.2.1: The table presents the point scoring functions with the use of their optimum forecast functions
for the deterministic forecast as stated in Equation .The scoring functions are mean square error
(MSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and mean relative error
(MRE). The scoring functions are each calculated for four different periods of the year. Fach period starts
the 5th and ends the 25th of April, June, August and October respectively. The emphasized values are the
minimum values of their respective columns. The mean score is reported in the bottom row.

model. In addition to these histograms are also the histograms of each of the periods April,
June, August and October of the stochastic model presented in Figure[6.2.2¢ to [6.2.21] sep-
arately. These histograms may be regarded as a decomposition of the histogram for the
histogram of Figure [6.2.2D] since this histogram is the mean of the histograms displayed in
Figure[6.2.2d to[6.2.2fl. We observe that the histogram for April is heavily under-dispersed,
while the histogram of October seems almost calibrated.

To find the optimal set of explanatory variables of the SUR model, and thereby a bet-
ter probabilistic forecast, we performed the backward leave-one-out best-subset-selection
algorithm. The method found that for the 60 days training period only the probabilistic
forecast of August was improved by excluding parameters. However, for a training period
of 80 days were the SUR model for all the methods improved by excluding parameters.
Further was it only August which is not improved for a 120 days training period by exclud-
ing parameters. The point and energy scores of the reduced SUR models are found in Table
[6.2.4) where also the model which did not get reduced are marked by an asterisk. More-
over is the explanatory variables that were excluded from the SUR model, together with
an indicator for which hour they were excluded from, reported in Table[6.2.5 However, as
the previously discussed in Section [5.4] the best-subset-selection algorithm is not allowed
to choose any combinations of explanatory variables for all the 240 equations. From Table
we see that the reservoir level and the consumption are excluded approximately the
same amount of times. However, we notice that they only are excluded one time together.
Other explanatory variables that are excluded from the SUR model are the temperature,
weekdays and daylight savings.
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Table 6.2.2: The energy score of the probabilistic price forecast including the unbalanced error term with
all explanatory variables in the regression model. In the last column is also the energy score of the the
deterministic forecast (D, (t,h)) found, which we observe is the same as its mean absolute error. The reason
for this is given in Section and in the Appendiz. The energy score of the probabilistic forecast for
different length in training period (in days) are presented in the three first columns. The scoring function
are calculated for four different periods of the year. Fach period starts the 5th and ends the 25th of April,
June, August and October respectively. The emphasized values are the minimum values of their respective

Month 60 80 120 D,(t,h)
April 871 809 9.64 16.7
June 14.0 9.35 9.63 20.3
August 10.2 8.23 7.82 12.1
October 8.28 7.08 7.06 13.6
Mean 10.3 8.19 8.54 15.8

columns. The mean score is reported in the bottom row.

Figure 6.2.1:
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Figure 6.2.2: In Panel a) through f) are the Talagrand histogram of the deterministic , stochastic, April,
June, August and October forecast. The Talagrand histogram displays the calibration of the forecast. The
horizontal solid line indicated the level of the bars in a calibrated histogram The histograms of each of the
months is calculated from 20 forecasts each (from the 5th to the 25th each month) and tallied over 1000
simulations in each of the 20 forecasts. The Talagrand histogram of the stochastic forecast is a mean of
the four months April, June, August and October. The Talagrand histogram is calculated on the basis of
forecasts from the same period.

Probabilistic prediction April Probabilistic prediction June
Lo Lo
[ - N/
o o
o o
= X4 = &
2 o ] 2 o —
<5} <5
= =
S 9 ] o 9 ]
=] =]
2 — 2 —
8 o B8 o 7
s = o — T = o
x o x o
(Yol [¥e]
o o 4
[=3 S
o (=3
2 T T T T T T T T T T T 2 T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11
Rank observation Rank observation
(c) (d)
Probabilistic prediction August Probabilistic prediction October
Lo Lo
o~ N 4
[=3 (=3
o o
= & 4 = N
2 o o 2 o
<5} ]
= =
s 1 | 3 15 |
L o L o
[<5} (<5}
= = —
s o — 8 o —
s = (— s = - —
x o —_— x o
Lo 1 Lo
(== o 4
o Tj—r O
o o
S S
o o

64



TP 60 80 120

April % J(1,345) T+ q(1,2345)
June * R(1,5) R(1,5)+w(2,3 4)
August  ¢(1,4,5)+R(1,2,3,4,5) R(1,2,3,4,5)

October * R(1,2,345)+q(1) ¢(1,2,3)+m(1,2,3,4,5)

Table 6.2.5: The rows display the explanatory variables excluded in the SUR model of the balanced power
prices, which first was evaluated by its full set of explanatory variables in Table[6.2.4, The exclusion of
variables is done according to the backward leave-one-out best-subset-selection algorithm with the energy
score as evaluation criterion. The numbers in the parenthesis are the groups, as outlined in the end of
Section[5.4), which have the explanatory variables excluded. The numbers are groups of hours, where 1,2,3,/
and 5 are the hours from 0-6, 7-10, 11-15, 16-18 and 19-23 respectively. The SUR model is considered
for different months of 2008, namely April, June, August and October. Moreover are the scoring function
calculated for regression model using different lengths in training period (TP). Cells marked with an asterisk
have none of the explanatory variables excluded.
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Chapter 7

Discussion

In this chapter a discussion about the results obtained in Chapter [6] is given. When an-
alyzing the data in Chapter [2] we noticed an increase in variance for the spring months.
This is something that influenced the optimal training period as seen in Figure [6.2.1] In
this figure the best forecast for the spring month April were the one s with a short (50
days) training period. For the other forecast studied, in June, August and October, the
optimum training period was not the shortest, being around 60-80 days.

By this we may conclude that the dynamic model used to forecast the prices are only
interested in error terms displaying the same regime. This regime of error terms seem to
change through the year. While we in April experience a trade of between number of data
points and a fast changing dynamics in error terms, the month of October displays no such
need for choice. This is because it has a relatively flat energy score function with respect
to the training period, as seen in Figure [6.2.1 The month of June is penalized for both
the short and long training period. However a training period of 80 days, which is the
optimal length according to the energy score, should leave enough data points for a good
prediction of the SUR model. The month of August finds itself somewhere between June
and October, since it have a relatively flat energy score function with regards to the length
in training period, but at the same time displays a local minimum in the function for a 70
days training period.

It is on the other hand not clear what would have been the optimal length of the train-
ing period had an model for the unbalanced power prices been included. The component in
the mixture model that was to capture the unbalanced prices. As a result an introduction
of this into the model could have left us with the same length in training period for all of
the periods investigated.

Another factor we saw in Figure was that the deterministic Talagrand histogram
was greatly improved by the use of the probabilistic forecast. On reflection, though, it is
not so surprising. There are several sources of uncertainty in the forecast of power prices,
including uncertainty in the deterministic model, including uncertainty of the power grid,
the price that competitors bid and last but not least the physical system that affects the
prices. Most ensembles captures some of these uncertainties, and then probably only par-
tially. Thus it seems inevitable that ensemble based purely on a deterministic model will be
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under-dispersive to some extent. Because they do capture some of the important sources
of uncertainty, however, it is reasonable to expect a positive spread.error correlation, even
when the ensembles is uncalibrated. To obtain a calibrated forecast, therefore it seems
necessary to introduce a model for the unbalanced error terms. In addition it may be
necessary to include a single more accurate, or several, deterministic forecast in the use of
statistical post-processing.

In Table [6.2.4] the optimal set of explanatory variables of a model were studied. We
found that the reservoir level and consumption should be excluded in five of twelve cases.
The explanatory variable for temperature, weekday and daylight savings should only be
excluded one time each. All other explanatory variables were not to be excluded in any
of the cases. The fact that the reservoir level and consumption are that often excluded
might imply that the explanatory variables of explaining the calendar capture the same
dynamic just as well. An other explanation might be that the consumption and reservoir
level are mutually exclusion. This is something that is suggested by Table|6.2.4] as the two
explanatory variables are rarely excluded simultaneously. (Something which only happens
two times.) However, if this were the cases, that the consumption could be explained by
the reservoir level, this is something that should have given a high correlation in Figure
[6.1.5d] As this correlation fails to materialize we conclude that the consumption and reser-
voir level are so often excluded is that they have a high impact on the model. Therefore,
when this impact simply is negative the explanatory variable is excluded. This might be
the case why the reservoir level is excluded for a 80 days training period for June, August
and October. In this training period the reservoir level starts to fill up. Thus, the model
might be mislead by the sudden increase in reservoir level, which have a negative impact
on the model.
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Chapter 8

Conclusion

In this report we have made a stochastic model framework for the error terms generated
by a deterministic model and the Nord Pool system power prices. First we did an ex-
ploratory analysis of the Nord Pool market, from which it was revealed that the system
price had daily, weekly and yearly patterns together with a within and between day corre-
lation. In addition, based on the large jumps in the power prices that were found in this
analysis something which later lead us to introduce a two-component mixture model was
introduced. The components of the mixture model represents the two classes balanced and
unbalanced. The error terms were classified in either of the two classes. In the further work
of the report we only looked at the balanced error terms. To capture correlation structure
of the balanced error terms a seemingly unrelated regression (SUR) model was constructed
with a 24-hour block-structure. Moreover these blocks respects the information structure
of the market.

In the SUR model eight explanatory variables were assumed to have an impact on the
system price. These explanatory variables were: The consumption of electricity on the
market, water reservoir level in Norway, temperature in Norway, Norwegian holidays, day-
light saving, month and weekday. In addition was a bias correcting explanatory variable
introduced which was to capture the between-day dependence.

The selection of explanatory variables of the SUR model was done by the energy score.
Similarly was evaluation by point forecasts calculated and analyzed, but since they do not
considered the uncertainty structure in the predicted probabilistic forecasts their impor-
tance were downplayed. The energy score found that the optimal number of explanatory
variables and the length of the training period changed with time. The evaluation was
performed at four different time-intervals of 20 days each , which started the 5th of April,
June, August and October 2008 and ended the 25th of each the respective months. In
addition, the 24-hour block was dived into four groups which were assumed to share sig-
nificant explanatory variables. this was done to lighten the computational burden.

The energy score preferred the shortest of the studied training periods which were 50
days for April. For the other months the score was optimal for a 70 to 80 days training
period. Accordingly was the optimal training period for all the time periods for the model
found to be 80 days. The choice of explanatory variables changed with time of year and
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length of training period. The reservoir level was the explanatory variable most often left
out, while the second most was the consumption. In addition were also in some cases the
explanatory variable for the temperature and holidays left out. On the other hand were
no more than two explanatory variable left out at once.

The exploratory analysis of the data showed heteroscedasticity and changing level of
the power prices which we responded to by constructing a dynamic SUR model. This
consisted of constructing a model where the set of optimum explanatory variable could
and the length of the training period could change. However, even by always choosing
the full set of explanatory variables in the regression model of the balanced error terms,
the evaluation always found the stochastic model of the power prices to outperform the
deterministic model. The deterministic model was not based on any (confidential) system
knowledge. Although, the framework allows for other (system-based) model(s) to be im-
proved by taking into account the uncertainty structure. Furthermore, this framework can
also be applied on specific areas of the Nordic market, and thereby exploring more specific
scenarios.

In the same way as the energy score is the Talagrand histogram used to perform eval-
uation on the probabilistic forecasts. The Talagrand histogram of the earlier mentioned
forecast periods of April, June, August and October showed the prediction of the power
price by a model consisting of the balanced error terms alone to be under-dispersed and
biased. Indeed, this shows that the component consisting of the model of the unbalanced
error terms is needed, since we by introducing the model unbalanced error term component
to the model will expand its possible outcome space and leave it more calibrated. Moreover,
the unbalanced error terms showed signs of skewness in the analysis of the observation.
We could therefore assume that some of the bias displayed by the Talagrand histogram
can be explained by the component of the unbalanced error terms.

In this paper we have focused on the balanced prices. To investigate the unbalanced
prices and the group indicator more knowledge concerning the power system have to be
acquired. However, the information about the power systems and their models are confi-
dential. On the other hand was possible models based on the attempts by other papers
discussed. As the unbalanced prices appeared to be skew distributed a possible candidate
for “their” component in the mixture model could be the skewed t-distribution (Panagiotelis
and Smith|, 2008). The implementation of the model is a rather straight forward task, but
the challenge lies in finding a good set of explanatory variables. Likewise would the fusion
of the two components through their indicator variable be difficult, perhaps even being the
hardest part of the model to deduce. In Chapter |4 we explored the method of temporal
point process, which already are used on power prices by |Cuaresma et al. (2004)); Seifert
and Uhrig-Homburg| (2006).

The report proposes a model framework for making probabilistic forecasts of power
prices and evaluating them. Even if all the details of the model framework are not settled,
did the preliminary results show a working procedure. Furthermore the model could serve
as a scenario generator which can be used as input to a stochastic optimization algorithm
for power prices. In addition could its performance be evaluated in a stochastic setting.
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Appendix

Reduction of the CRPS to the MAE

As pointed out in Section the continuous rank probability score function (CRPS)
can be simplified when it evaluates deterministic forecast. To be more precise the CRPS
reduces to the mean absolute error (MAE) score function. This can be shown through a
simple manipulation of the definition of the CRPS. We use the same variable names as
in Chapter [dl To recapitulate: The variable x; is the observed value and the variable y,
is the predicted value(s). The index ¢ denotes that we consider the variables at a single
moment in time. Thus, the parameter 7' is the length of the time interval. Further F; is
the distribution function of the predicted values. The variable z is the threshold value.
Putting this into the Brier score function found in Equation (4.2.2)), where the distribution
function of the deterministic forecast reduces to an indicator function

BS(2) — -

'ﬂ |

D1 > ) ~ 1> )
Z

I(z = x;) — 21(z = max(z, y;))-

’ﬂ |

CRPS —J BS(z)d

—— Z f )+ 1(z = ) — 20(z = max(xy, y,))d 2

= —Z |2 — i
=

= Smar(,y).

Thus we see that the CRPS is reduced to the MAE when deterministic predictions are
evaluated.
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Month 50 60 70O 8 90 100 110 120 130 140
April 880 935 931 9.63 103 109 128 14.0 145 13.9
June 11.2 871 881 8.09 840 9.08 931 9.64 9.59 10.6
August 8.05 823 7.63 7.82 832 880 884 102 10.3 10.0
October 7.08 6.95 6.98 7.06 7.20 7.25 7.51 828 899 9.40

Table I: A table of the values in Figure|6.2.1, In the table the energy score for the predicted spot power
prices from the 15th to the 25th of the months indicated is given. At the top of the columns the training
period (in days) of the prediction used to calculate the energy score is given.

Supplementary tables

In this section we give the Table |l] which contain the values of Figure|6.2.1

R code

In the following paragraphs a brief walk through will be given, while the code itself will
be presented at the end of the text. The source code is the implementation of the al-
gorithms and statistical methods described in Chapter )| The language utilized to do
the calculations are R. The commands are mostly self-implemented, but some off-the-
shelf commands are used. A single forecast for a given date is performed by the com-
mand combine_forecast.R. The command takes approximately 5 minutes and 30 second
when run on a computer with the processor Intel(R) Core(TM) i7 860 with 2.80GH z.
The leave-one-out best subset procedure made by the same computer by the command
best_subset.R on one of the periods described in Section takes 28 minutes and 48
seconds to run.

The forecast consists of two separate models, namely the deterministic and stochas-
tic. This is described in Equation (2.4.1). The deterministic forecast is made in the
file detetministic_forecast.R. The stochastic forecast, which is the main focus of this
project, uses considerable more subroutines. The main program however is found in the
file build_model.R. This model uses a number of internal subroutines. These are labeled
with the same name, but with a number added. The following routines are used to make
the stochastic forecast: To initialize and filter data of the length of the training period
initialize_data_frame.R is used. The length of the training period is number of days in
backwards that the user wants to use to make the estimation. In addition, the reservoir fill-
ing and consumption are scaled in respectively meanfylling.R and meancon.R. These sub-
routines are found initialize_data_frame.R and build_model7.R. The filtration of the
unbalanced prices, the spikes, are done in the subroutine spike_identification.R. Once
this selection and filtering are done the data are passed to file parameter_estimation.
This function does also have a number of internal subroutines. These have the same name,
but are labeled with a number. In this file the model matrix, covariance matrix and param-
eters are estimated. The data are first sent to the file parameter_estimationl.R where
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11

13

15

17

an ordinary least square (OLS) estimation takes place. The covariance of the residuals
from this process are then sent to another subroutine parameter_estimation2, where
a feasible generalized least square (FGLS) estimation is performed. It is important to
note that the estimation of both the OLS and FGLS are done such that it starts on lead
day one and thereafter consequentially iterates itself through the other nine. When pro-
cess in parameter_estimation are finished the output is passed back to build_model.
In this file the model matrix and the parameter vector are arranged such that they are
compatible with each other and that they take into account the missing data. Much of
the work with compatibility is done in the file beta_fill_max.R. As the implementation
strategy chosen is to fill in the estimated parameters into a vector which size equal that
of the full model where no data are missing. This process is also utilized for the variance
matrix. The main sub-files of build_model.R are build_model6.R and build_model7.R.
The first being the place where all the data for the predicted period is gather and prepared.
In build_model6.R the model matrix for the period to be predicted is prepared. In the
end build_model.R estimated parameters of the multidimensional Gaussian distribution,
which is then passed to the file combine_forecast.R. This is the main file, combining
the deterministic and stochastic forecast. It also calculates the prediction intervals. After
build_model.R the data are passed to combine_forecast.R.

In the end all of the predictions are combined in the main function combine_forecast.R.
However, as mentioned previously the routine parameter_estimation takes as input the
covariates for the different equation. In Section and further Section the pos-
sible choices of covariates are discussed. To evaluate which of the covariates to use the
script best_subset.R is used. This script perform the best subset calculation. Fur-
ther this program’s subroutine, forecast_evaluation.R, calculates a user defined set
of forecast which are to be considered in the evaluation. The forecasts are generated
by combined_forecast.R. The evaluation of the subset of parameters are done in the
energy_score.R, a sub-function of forecast_evaluation.R. This function uses evalua-
tion the Energy score criteria described in Section [£.2.5]

ombined forecastb .R

comforecast <— function (DAY,MONTH, YEAR, COVARIATES, HISTORY ,NUMBER) {
source ("example det forecast.r")
source ("forecast.gls.r")
print (Sys.time())
forecast .combined <— matrix (0,nc=NUMBER, nr=240)
forecast .det <— det.forecast (DAY,MONTH,YEAR)
forecast .stoc <— main. pred (DAY,MONTH, YEAR, COVARIATES, HISTORY ,NUMBER)
spike.jump <— abs(forecast.stoc$spike.indicator)
spikes.real <— forecast.det$r|[c(2:length(forecast.det$r))|—forecast.det$r[c(1:(length (
forecast.det$r)—1))|
spike. classified <— which(abs(spikes.real)>min(spike.jump]|[which(spike.jump>0)]))+1
for (i in 1:NUMBER) {
tmp <— cumsum (rnorm (240,0,1.0))
forecast .combined[,i| <— as.vector(exp(forecast.det$p)+forecast.stocSy.pred|,i])

}

five.percent <— dim(forecast.combined) [2]/40
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t.sorted <— t(apply(forecast.combined,l,sort))

confl <— t.sorted[,(dim(forecast.combined)[2]/2)]

conf2 <— t.sorted|,(dim(forecast.combined)[2]—ceiling (five.percent))]

conf3 <— t.sorted[,(1+ ceiling (five.percent))]

print (Sys.time ())

comforecast <— list (forecast=forecast.combined,real=forecast.det$r,det=forecast.det$p,s=
forecast .stoc$y.pred ,sigma=forecast .stoc$sigma,beta=forecast.stoc$beta ,spikes=spike.
classified ,confl=confl ,conf2=conf2 ,conf3=conf3)

}

Listing 1: The main function. Passes arguments to the deterministic forecast and stochastic forecast. In
addition it is here that the deterministic forecast and the predicted error terms are combined.

deterministic

forecast .R—
det . forecast <— function (day,month,year){

source ("redigerdato .R")

data <— read.table("tidsserier alle 2005—2010.txt",skip=0,header=T,sep="\t")
dato.info <—redigerdato (as.character(data|,1]) ,hundreaar=2000)

forecast .window <— 10

price <— data[which(dato.info$year=—year) ,2]

na <— which(is.na(price))
price[na] <— 0.5x%(price[(na+1)]+price[(na—1)])

start <— (which(dato.info$year=—year&dato.info$month—month&dato.info$day=—day)[1] —which (
dato.info$year=—=year)[1]) /24

memo <— 24x8

now <— (start—1)%24

real.prices <— price[((start)*24+1—memo) : (now+24+forecast.window*24) |

price2 <— real.prices

lagl <— 24
lag2 <— 168
lag3 <— 192
i<—1

while (i <=(10)){
tmpl <— rep (now—lag2+(i—1)*24,24)+c(1:24)
tmp2 <— rep (now—lag3+(i—1)*24,24)+c(1:24)
tmpl <— tmpl—(start —9)=24
tmp2 <— tmp2—(start —9)*24
drift <— median(price2[tmpl|—price2 [tmp2])
tmp3 <— now+(i)*24+c(1:24)—-24
tmp4 <— now+seq(—23,0,1)+(i—1)=x24
tmp3 <— tmp3—(start —9)*24
tmp4 <— tmpd—(start —9)*24
price2 [tmp3]| <— price2 [tmp4|+drift
i <— i+l
}
i< 1
price3 <— log(real.prices)
while (1 <=(10)){
tmpl <— rep (now—lag2+4(i—1)%24,24)+c(1:24)
tmp2 <— rep (now—lag3+(i—1)*24,24)+c(1:24)
tmpl <— tmpl—(start —9)*24
tmp2 <— tmp2—(start —9)=24
drift <— median(price3 [tmpl]—price3 [tmp2])
tmp3 <— now-+(1i)*24+4c(1:24)—-24
tmp4 <— now+seq(—23,0,1)4(i—1)x24
tmp3 <— tmp3—(start —9)*24
tmp4d <— tmpd—(start —9)*24
price3 [tmp3]| <— price3 [tmp4|+drift
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51 i <— i+l

}
53
det.forecast <— list (r=real.prices[—c(1l:memo)]|,p=price3|[—c(1l:memo)],price2=price2[—c(1:
memo) | )
55| }
Listing 2: The place where the deterministic forecasts are generated.
e " iild_model .R——

I I NI I Ty, 1Ll L)

# INPUT— the current day (DAY), month (MONITH) and year (YEAR). In addition, a
#binary vector of length 7 (COVARIATES), indicating whetever a covariate should be
#present (1) or left out (0), will be the input. COVARIATE 1 is the consumption, 2
#is the reservoir level , 3 temperature, 4 month, 5 weekday, 6 holidays and 7
#daylight saving. OUPUT are the predicted value of the error term (y.pred) and its
#confidence intercal (y.conf).

71 7
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7l 11

12| main. pred <— function (DAY,MONTH, YEAR,COVARIATES, HISTORY,
library ("fSeries")

14| init < init (DAY,MONTH, YEAR, HISTORY)

fore <— foreblock (DAY,MONTH,YEAR, init ,COVARIATES, HISTORY ,NUMBER)
16| y.pred <— matrix (0,nr=240,nc=NUMBER)

for (number in 1:NUMBER){

18 model.c <— cbind (fore$model, fore$error.term|[number,])

model.c <— model.rear (model.c)

20 model .tmp <— array (0,c(24,576,10))

for (lead.day in 1:10){

T 11111 111111111177 TTT7777

BER) {

22 index <— c(((lead.day—1)*24+41):(lead.dayx24))
covar.tmp <—model.rear2 (model.c[index ,])
24 model .tmp|,,lead.day| <— as.matrix(covar.tmp)

26 model .tmp <— as.matrix(model.rear3 (model.tmp))

y.pred[,number| <— mvrnorm (240, model.tmp%*%fore$beta , fore$sigma)

28| }

y.conf <— model.tmp%%fore$beta.sigma

30| fore . model <— as.matrix(fore$model)

main.pred <— list (y.pred=y.pred,sigma=fore$sigma, beta=fore$beta,spike.indicator=fore$spike
.indicator)

32|}

Listing 3: The main file of the stochastic forecast model. The file gathers separate parts of the code as
reading of input data, matching of dimensions and making the model matrices.

I I NIRRT IR IR IR TR IR IR IR IRTE

71

- build modell R

4| model.day <— function (weekday){

box <— rep(1,24)

6 vl <— c(box,rep(0,6%24) ,box,rep(0,2%24))

v2 <— c(rep(0,1%24) ,box,rep(0,6%24) ,box,rep(0,1%24))

8 v3 <— c(rep(0,2%24) ,box,rep(0,6%24) ,box)
v4d <— c(rep(0,3%24) ,box,rep(0,6%24))

10|  v5 <— c(rep(0,4%24) ,box,rep(0,5%24))

v6 <— c(rep(0,5%24) ,box,rep(0,4%24))

12 v <— matrix(c(vl,v2,v3,v4,v5,v6) ,nc=6)

if (weekday!=7){

14 v.tmp <— v[,—c(1l:weekday) |

v <— cbind(v.tmp,v|,c(1l:weekday)])

16| }

model.day <— v
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Listing 4: Splits the week in half, and puts the current day first.

J
77 /'/',/ //',/ //"/ T '/‘lr/'/ r/'///'////'/ / 'r// '!/r) -/r/-// '// _//‘1_’)/ ',///'/ 7 '/ 717 //'///"/ //"I '/’/!/'//r '/// 7 / '/ / 'r// '// '/ /'// '///'/ 77 //',/ //"/ T '/‘lr/'/ r/'///)'/ //"I 'r// 'r// '/)r/'//,/ '/ / '/ /
build odel2 . R H HHH

11111
IR I IN IR ININY IRy

/

model . month <— function (MONTH, check , breaks ,scope){
m <— matrix (0,nc=11,nr=scope)
if (MONTH!=1){
if (check==1) m[,(MONTH-2)] <— 1
if (check==0){
m[1l:(scope—breaks*24—1) ,(MONTH-2)] <— 1
if (MONTH!=12) m|(scope—breaks*24—1):scope,(MONTH-2)| <— 1
if (MONTH==12) m[(scope—breaks*24—1):scope,11] <— 1

T 117171171111 T 1T 11 111171711117 THTTT T 11111117

}

model . month <— m
Listing 5: Checks if we encountered a new month in the forecast horizon.
HHHHHHHHHHHHHHHH build _model3 . R HHHHHHHHHHHH

model.rear <— function (model){
line <— rep(c(1:24) ,dim(model)[1]/24)
model <— cbind (line ,model)
model. sort <— model[which(model[,1]==1) ,]
for (i in 3:25){
model.sort <— rbind (model.sort ,model[which(model[,1]==(i—-1)) ,])

}

7 T 1111 11111111 T 111111111 T 1111111111111

model. rear <— model.sort[,—1]
}
Listing 6: Adds the indicator of between-day correlation to the model matriz.
i R build_model4 . R HHAFHH A

model.rear2 <— function (model){
model <— as.matrix (model)
list .tmp <— list (t(model[1,]),t(model[2,]),t(model[3,]),t(model[4,]),t(model[5,]) ,t(

model [6,]) ,t(model [7,]) ,t (model[8,]) ,t(model[9,]) ,t(model[10,]),t(model[11,]) ,t(
model [12,]) ,t(model[13,]) ,t(model[14,]) ,t(model[15,]),t(model[16,]),t(model[17,]
model [18,]) ,t(model[19,]) ,t (model[20,]) ,t(model[21,]) ,t(model[22,]) ,t(model[23,]
model [24 ,]))

tmp <— bdiag(list .tmp)

model.rear2 <— tmp

}

Listing 7: Constructs the (sparse) part of the (same lead day) model matrizx.

S o o i B s b R s e i
: build model5 . R
i i A Hi

model . rear3 <— ion (model) {

list .tmp <— list (model[,,1],model|,,2],model[,,3],model[,,4],model[,,5],model[,,6],model

[,,7] ,model[,,8],model[,,9],model[,,10])

tmp <— bdiag(list .tmp)
model.rear2 <— tmp

}

FH A
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Listing 8: Adds the different lead days (of the last sub-function) to an even greater (sparse) matriz.

foreblock <— function (DAY,MONTH,YEAR, init ,COVARIATES, HISTORY ,NUMBER
source (" full .model. matrix.r")
source ("beta. fill .max.r")
source ("redigerdato .R")
source ("beta.sigma. fill .max.r")
data <— read.table("tidsserier alle 2005—2010.txt",skip=0,header=T,sep="\t")
dato.info <—redigerdato (as.character(data|,1]) ,hundreaar=2000)
kalender <— redigerdato(as.character (data|[which(dato.info$year=YEAR) ,1]) ,hundreaar=2000)
today.index <— which(dato.info$month—MONIHdato . info$day—DAY)
months <— c(kalender$month|(today.index—HISTORY=*24) |[1]: kalender$month|today.index|[1])
t <— main (DAY,MONTH, YEAR, 0 ,COVARIATES, HISTORY)
beta <— t$beta.m
beta.sigma <— t$sigma.mA
end <— 0
count <— 0
for (i in 1:10){
if (i==1){
start <— end-+l1
end <— end+dim(t$sigma.ml)[1]
sigmal <— diag(t$sigma.ml)
}else{
count <— count-+1
start <— end+1
end <— end+dim(beta.sigmal|,,(i—1)]) [1]
if (count==1){
sigma <— diag(beta.sigmal,,(i—-1)])
sigma.m <— matrix (0,nr=length (sigma) ,nc=9)
sigma.m|[ ,1] <— sigma
}else{ sigma.m[,(i—1)] <— diag(beta.sigmal[,,(i—1)])}
}
}

sigma . beta <— beta+1.96xsqrt (c(sigmal,as.vector (sigma.m)))

COVARIATES <— t3COVARIATES

beta <— beta. fill .max(beta ,COVARIATES, months, t$month.length)

beta.sigma <— beta. fill .max(sigma.beta ,COVARIATES, months, t$month.length)

scope <— 10x%24

forecast <— vector (mode="numeric",length=scope)

weekday <— kalender3$weekday [which(dato.info$month—MONTH&dato.info$day=—DAY) |[1]
days <— C("IHE}.” Lt "on" "t " fr " "o ,"SO”)

weekday <— which (days=—weekday)

day .dummy <— model.day (weekday)

tmp <— which(dato.info$year=YEAR&dato.info$month=MONTHdato.info$day=DAY) [1]

check <— as.numeric MONITH—redigerdato (as.character (data[(tmp+scope) ,1]))3$month)
if (check==0){

48 breaks <— 1
check.copy <— check
50 i <— 24
while (check.copy !=1){
52 check.copy <— as.numeric (MONIHE—=redigerdato (as.character (data[(tmp+scope—i) ,1]))$month
)
i <— i+24
54 breaks <— breaks+1
}
56| }

58

month .dummy <— model.month (MONTH, check , breaks , scope)
tmp <— tmp— which(dato.info$year

YEAR) [1]
init <— init [(dim(init)[1]—scope+1):dim(init)[1],]
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model <— cbind (as.matrix(rep(1l,scope)),as.matrix(init[,c(1:3)]) ,month.dummy,day.dunmy, as.
matrix (init[,c(4,5)]))
group.size <— cumsum(c(1,552,rep(576,9)))
error .term <— matrix (0,nr=NUMBER, nc=(24%10))
counter <— 24
for (lead.time in 1:10){
if (lead.time==1){
det.r <— det.d <— matrix (0,nr=24,nc=HISTORY)
for (history.i in HISTORY:1){
day.d <— kalender$day|[(today.index—history.i*24)|[1]
month.d <— kalender$month[(today.index—history.ix24)
year.d <— kalender$year|(today.index—history.ix24) ]|
det . forecast.d <— det.forecast (day.d,month.d,year.d)
det.r[,(history.i)] <— det.forecast.d$r[1:24]
det.d[,(history.i)] <— det.forecast.d$p[1:24]

}

rep.object <— det.r—det.d—det.s
rep.object <— rep.object/(0.1*max(abs(rep.object)))
sample.elem <— matrix (rep(seq(0,24x*(HISTORY—1) ,HISTORY) ,NUMBER)+sample (1:HISTORY,24 x
NUMBER, replace=T) ,nc=24,byrow=T)
error .term|,c(l:counter)] <— matrix(rep.object[sample.elem|,byrow=F,nc=24)
telse{
beta.index <— rev(seq((group.size[(lead.time+1)]—1),(group.size[(lead.time)]),—24))
beta.i <— beta|beta.index|
rep.object <— beta.ixerror.term|,(counter —23):( counter) |
error.term|,c((counter+1):(counter+24))| <— rep.object
counter <— counter+24
}
}
forecast <— list (model=model, error.term=error.term, beta=beta ,sigma .m=sigma .m, sigmal=sigmal
,beta.sigma=beta.sigma,spike.indicator=t$spike.indicator)
}

Listing 9: Construct the entire model matriz.

build model7.R-

init <— function (DAY,MONTH, YEAR, HISTORY) {
source ("meancon.R")
source ("meanfylling .R")
source ("redigerdato .R")
data <— read.table("tidsserier alle 2005—2010.txt",skip=0,header=T,sep="\t")
dato.info <—redigerdato (as.character(data|,1]) ,hundreaar=2000)
scope <— 10x%24
i f (YEAR==2007){
index <— which(dato.info$year—YEAR)
telse{
index <— which(dato.info$year=—YEAR|dato.info$year==(YEAR-1))

}

index . history <— which(dato.info$day=—DAY&dato.info$month—MONIHdato.info$year—YEAR) [1]—
HISTORY 24

index.future <— which(dato.info$day=—DAY&dato.info$month—MONIHdato.info$year—YEAR) [1]|+
scope

index <— index[which(index>=index. history&index<index. future)/24]

con <— data[index ,13]

con <— as.vector (interpNA (con,"linear"))

tmp <— meancon ()

tmp <— approx (x=tmp, y=NULL, method="1linear" ;n=length (con))

scaledcon <— con/tmpS$y—1

fylling <— read.table("Fyllingsgrad 2002—2010.txt" ,skip=0,header=T,sep="\t")
fyll <— rev(fylling [which(fylling][,1]==YEAR) ,3])

fyll <— approx(x=fyll ,y=NULL, method="linear" ;n=length (con))
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tmp <— meanfylling ()

tmp <— approx (x=tmp, y=NULL, method="linear" ,n=length (con))

scaledfyll <— fyll$y/tmpSy—1

temp <— data[index ,30]

holy <— data[index ,23]

summer <— data|index ,29]

frame <— data.frame(con=scaledcon , fyll=scaledfyll ,temp=temp, holy=holy ,summer=summer)
init <— frame

}

Listing 10: Initializes the data for the stochastic forecast model.

beta_ fill max.R

beta. fill .max <— function (beta ,COVARIATES, months,month.length .r){
size.lead.dayl <— 24x%24
size .lead .day <— 24x%24
size .beta.full.final <— size.lead.dayl+9%size.lead.day
beta. final <— vector (mode="numeric",length=size.beta.full.final)
pos.b <— cumsum(c(1,(size.lead.dayl) ,rep((size.lead.day),9)))
end . group <— 1
for (lead.time in 1:10){
beta. full <— vector (mode="numeric",length=24%24)
COVARIATES. copy <— COVARIATES|, ,lead . time]
month.length <— month.length.r[lead.time]
COVARIATES. month <— COVARIATES. copy [ ,rep (4,11) |
if (month.length!=0){
if (month.length[1l] <length (months)){
COVARIATES. month <— COVARIATES. copy [ ,rep(4,11)]
differ <— length (months)—month.length[1]+1
COVARIATES. month [, —(c(months [1: differ |) —1)] <— 0

if (month.length|[l]==length (months)){
COVARIATES. month <— COVARIATES. copy|[,rep(4,11)]
COVARIATES. month|[,(—c¢(months[—length (months)|)+1)] <— 0
}
}
for (i in 1:24){
if (((sum(COVARIATES| ,4,lead.time]|) !=24)&&(COVARIATES|i ,4,lead . time|==1))){
tmp <— which (COVARIATES. month==1,arr .ind=T) [, 2]
COVARIATES. month [i ,tmp[1]] <— 0O
}

}
COVARIATES. weekday <— COVARIATES. copy [, rep(5,6)]
if (lead.time==1){
COVARIATES. copy <— cbind (rep(1,24) ,COVARIATES. copy |[,c (1:3)],COVARIATES. month,
COVARIATES. weekday ,COVARIATES. copy [ ,c (6:7)])

}else{ COVARIATES. copy <— cbind(rep(1,24) ,COVARIATES. copy|,c(1:3)],COVARIATES. month,

COVARIATES. weekday ,COVARIATES. copy [ ,c(6:7) ] ,rep(1,24))}
counter <— end.group
for (i in 1:24){
line <— 24x*(i—1)

end <— sum(COVARIATES. copy [i,])—1
betas <— beta[(counter):(end+counter)|
counter <— counter+end+1
sep.z <— which (COVARIATES. copy [i,] !=0)
if (lead.time==1){

betas <— c(betas,1)

sep.z <— c(sep.z,24)

beta.full [(line+sep.z)] <— betas
if (i==24){
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if (lead.time==1){
end.group <— counter
}else end .group <— counter

}

beta. final [pos.b[lead.time]:(pos.b[(lead.time+1)]—1)] <— beta. full

}

return (beta. final)

}

Listing 11: As the number of Bs used is not equal that of the full model. The estimated Bs are put into
the right place here, and the ones that are not used aare put to zero. Also used to allocate the standard
deviation of the Bs.

I NI N I I TR N NI R IR T T T Ty

1

meancon . R

)

meancon <— function (){

library ("fSeries")

source ("redigerdato .R")

data <— read.table("tidsserier alle 2005—2010.txt",skip=0,header=T,sep="\t")
dato.info <—redigerdato (as.character(data|,1]) ,hundreaar=2000)
indexl <— 1

index2 <— which(dato.info$year==2008)[1]—1

con <— data[seq(indexl ,index2,1) ,13]

con <— as.vector (interpNA (con,"linear"))

tmp <— apply (matrix (con,nc=(365%24) ,byrow=T) ,2 ,mean)

meancon <— tmp

}

Listing 12: Calculates the mean consumption of 2004 and 2005. This is used to find the relative size of
input values according to this level.

,,/.,/-/'/
meanfylling . R-

meanfylling <— function (){
fylling <— read.table("Fyllingsgrad 2002—2010.txt" ,skip=0,header=T,sep="\t")
indexl <— which(fylling[,1]==2002&fylling[,2]==1)

index2 <— which(fylling|[,1]==2006&fylling[,2]==52)

index3 <— which(fylling|[,2]!=53)

index <— rev(intersect ((index2:index1l),index3))

niva <— apply (matrix(fylling [index ,3],nc=52,byrow=T) ,2,mean)

meanfylling <— niva

}

Listing 13: Calculates the mean reservoir filling of 2004 and 2005. This is used to find the relative size
of input values according to this level.

IR IR
1171117

11111111

Tt

paramter_estimation .R

1111711 T T 11111 1 11111 1 11 11 111111 1 11111111

main <— function (DAY,MONTH, YEAR, plot ,COVARIATES, HISTORY) {
source ("beta. fill .max.r")

source ("redigerdato .R")

source ("example det forecast.r")

data <— read.table("tidsserier alle 2005—2010.txt",skip=0,header=T,sep="\t")

dato.info <—redigerdato (as.character(data|,1]) ,hundreaar=2000)

kalender <— redigerdato(as.character (data|[which(dato.info$year=—YEAR) ,1]) ,hundreaar=2000)
today.index <— which(dato.info$month=—=MONTH&dato . info$day=—DAY)

months <— c(kalender$month|(today.index—HISTORY=*24) |[1]: kalender$month|[today.index][1])
COVARIATES.a <— array (0,c(24,7,10))
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det.r <— det.d <— matrix (0,nr=240,nc=(HISTORY-10))
for (history.i in HISTORY:11){
day.d <— kalender$day|[(today.index—history.i*24)|[1]
month.d <— kalender3$month|(today.index—history .i%24)
year.d <— kalender$year [(today.index—history.i%x24)]]
det . forecast.d <— det.forecast (day.d,month.d,year.d)
det.r[,(history.i—10)] <— det.forecast.d$r
det.d[,(history.i—10)] <— det.forecast.d$p
}
fit.ols <— fit.ols (DAY,MONTH,YEAR, COVARIATES, HISTORY, 1 ,NULL)
COVARIATES.a |, ,1] <— fit.ols$COVARIATES
fit.gls <— fit.gls(fit.ols$Omega.inv.gls, fit.ols$fitl ,fit.ols$model, fit.ols$epsilon.hat)
fit.glsl <— fit.gls
beta.m <— fit.gls$beta.hat
month.length <— fit.ols$month.length [1]
sigma.ml <— fit.gls$test
for (lead.time in 2:10){
last .error <— as.vector(det.r[c(((lead.time—2)%24+1):((lead.time—1)%24)) ,])—as.vector(
det.d[c(((lead.time—2)%24+4+1):((lead.time—1)x24)) ,])—as.vector(fit.ols$model%*%fit .
gls$beta. hat)
fit.ols.tmp <— fit.ols (DAY,MONTH, YEAR,COVARIATES, HISTORY, lead . time , last . error)
fit.gls.tmp <— fit.gls(fit.ols.tmp$Omega.inv.gls, fit.ols.tmp$fitl ,fit.ols.tmp$model, fit .
ols .tmp$epsilon . hat)
COVARIATES. a|, ,lead .time| <— fit.ols.tmp3COVARIATES
beta.m <— c(beta.m, fit.gls.tmp$beta.hat)
if (lead.time==2){
sigma .mA <— array (0,c(dim(fit.gls.tmp$test)[1],dim(fit.gls.tmpStest)[1],9))

sigma .mA|[, ,(lead.time—1)] <— fit.gls.tmp$test

month.length <— c(month.length , fit.ols.tmp$month.length|[1])
}
names <— names(fit.ols$fitl$coefficients)
if (plot==1) plot.beta(names, beta.m|[iter ,|,sigma.m|[iter ,]|)
main <— list (fit.ols=fit.ols,beta.m=beta.m,COVARIATES=COVARIATES. a,month.length=month.

length ,sigma.ml=sigma.ml, sigma .mA=sigma .mA, spike.indicator=fit .ols$spike.indicator)

}

Listing 14: The function where the OLS and GLS are done. Calculate the parameters of the
multidimensional Gaussian density.

paramter estimationl .R-

fit.ols <— function (DAY,MONTH, YEAR, COVARIATES, HISTORY, lead . time , last . error ){

source ("fgls.r")

source ("reduced.model.r")

library ("Matrix")

library ("MASS")

source ("foo.r")

epsilon.hat <— NULL

frame <— fgls (DAY,MONTH, YEAR, HISTORY)

if (lead.time==1){
full .model <— formula(epsilon~con+fyll+temp+month+weekday+holy+summer)

}else full.model <— formula(epsilon~con+fyll+tempt+monthtweekday+holy+summertlast.error.c)

forecast.l <— dim(frame) [1]

frame.c <— frame[—c((forecast.l—240+lead.timex24):forecast.l) |

frame.c <— frame.c[—c(1l:(lead.timex24—1)) ,]

for (i in 1:24){

# kill covariates which only have one factor. Delete them and fill in ones (avoiding error
message )

frame .tmp <— frame.c|[which(frame.c$ind==(i—-1)) ,]

epsilon .non.na <— which(!is.na(frame.tmp$epsilon [which(frame.tmp$ind==(i—-1))]))

group.start <— which(frame.tmp$ind==(i—1)) [1]

epsilon.non.na <— epsilon.non.natgroup.start
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half <— epsilon.non.na[l: floor (length(epsilon.non.na)/2)]|

25| tmp <— subset (frame.tmp,ind==(i —1))$month[1]
if (length (which (frame.tmp$month=—=tmp) )=dim (frame .tmp) [1]) {
27 COVARIATES| ,4] <— 0
frame .tmpSmonth|[( half —1)] <— abs(as.integer (tmp)—2)
2| 1
31 tmp <— frame.tmp$holy [1]
33 if (length (which (frame.tmp$holy—tmp) )=—dim (frame .tmp) [1]) {
COVARIATES| ,6] <— 0
35 frame.tmp$holy [( half —1)] <— abs(as.integer (tmp)—2)
}
37
tmp <— frame.tmp$summer[1]
39 if (length (which (frame .tmp$summer—tmp) )=—=dim (frame .tmp) [1]) {
COVARIATES[ ,7] <= 0
41 frame . tmp$summer [( half —1)] <— abs(as.integer (tmp)—2)
}
43|# reduce model
if (sum(COVARIATES[i ,]) !'=7){
45 model <— reduced.model (COVARIATES|i ,] ,lead.time)
telse{
47 model <— full.model
}
49 nam <— paste (" full .model" i, sep="")
assign (nam, model)
51| nam2 <— paste("fit",i,sep="")
if (lead.time!=1){
53 last.error.c <— as.vector(last.error[seq(i,length(last.error),24)])
frame.tmp<— cbind (frame.tmp, last.error.c)
55
fit <— Im(eval(parse(text=paste("full.model",i,sep=""))),frame.tmp,na.action (na.omit))
57 assign (nam2, fit)
epsilon.hat <— c(epsilon.hat,eval(parse(text=paste("fit",i,"$","residuals" ,sep=""))))
59| }
if (length (which (is.na(frame.c$epsilon)))>0){
61 epsilon.na <— vector (mode="numeric",length=length (frame.c$epsilon))
epsilon .na[—which(is.na(frame.c$epsilon))] <— epsilon.hat
63 epsilon .na[which(is.na(frame.c$epsilon))| <— NA
}else{
65 epsilon.na <— frame$epsilon
}
67| fit . ols <— epsilon.na

69

71

73

S.hat <— cov(matrix(epsilon.na,nc=24,byrow=T) ,use="pairwise.complete.obs")
S.hat [which(is.na(S.hat))] <— S.hat[which(!is.na(S.hat))]|[1]

S.hat.inv <— inv ((S.hat+diag(0.0001,24)))

list <— list (S.hat.inv)

T <— length (frame.c$epsilon) /24

Omega.inv <— bdiag(rep(list ,T))

if (length (which(is.na(frame.c$epsilon)))>0){

75 frame. gls <— frame.c[—which(is.na(frame.c$epsilon)) ,]|
Omega. inv.gls <— Omega.inv|[—which(is.na(frame.c$epsilon)) ,]|
77| Omega.inv.gls <— Omega.inv.gls|[,—which(is.na(frame.c$epsilon))]
telse{
79 frame. gls <— frame.c
Omega. inv. gls <— Omega.inv
81| }
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model <— model. matrix (fitl)

month.length <— vector (mode="numeric" ,length=24)

month.length [1] <— foo("month" ,names(fitl$coefficients))

for (i in 2:24){
model <— bdiag(model,model. matrix(get(paste("fit",i,sep=""))))
month.length[i] <— foo("month" ,names(eval(parse(text=paste("fi

sep="")))))

t",i,"$" ,"coefficients",
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89| fit .ols <— list (Omega.inv.gls=Omega.inv.gls, fit1=fitl ,model=model, epsilon.hat=epsilon.hat,
epsilon .na—epsilon .na, epsilon=frame.c$epsilon ,COVARIATES=COVARIATES, month . length=month
.length ,spike.indicator=frame$spike.indicator)

Listing 15: The fitting of an OLS for the residuals of the error model.

4| fit . gls <— function (Omega.inv.gls,fitl ,model.input,epsilon.hat){
PLUTO <— 0

6| library ("Matrix")

pre. multiplication <— t(model.input)%+%Omega.inv . gls%%model.input
8| pre. multiplication <— inv(pre.multiplication)

sigma <— pre.multiplication

10| epsilon . hat <— matrix(epsilon.hat,nc=1)

beta <— sigma%+%t (model.input)%+%Omega.inv. gls%+%epsilon . hat

12| names <— names(fitl$coefficients)

beta.hat <— as.vector(beta)

14| sigma . diag <— diag (sigma)

test <—inv (t(model.input)%*%model.input)

16| fit . gls <— list (beta.hat=beta.hat,sigma.diag=sigma.diag ,sigma—=sigma,test=test)

Listing 16: The fitting of a GLS for the feasible variance matriz

LU ) g g g g g g g ) )]
T 1T 1T 171177171 Ty

paramter_estimation3 .R————

Kronecher <— function (S.hat,epsilon.hat,epsilon.na){
5| S.hat.inv <— inv(S.hat)
list <— list (S.hat.inv
7| T <— length(epsilon.na) /24

Omega.inv <— bdiag(rep(list ,T))

9| if(length(epsilon.hat)!=length (epsilon.na)){

Omega.inv <— Omega.inv[—which(is.na(epsilon.na)),—which(is.na(epsilon.na))]

~——

1] }
Omega.inv <— Omega.inv
13|}
Listing 17: Calculates the Kronecker operator.
V| dibinitinsdtivd : it e T T T T T T T R R T T T e i
£ H t# # reduce_model . R

7 T 11111 111111

reduced . model <— function (COVARIATES, lead . time) {

5/ covar <— c("con","fyll" ,"temp" ,"month" ,"weekday" ,"holy" ,"summer")

cond . number <— sum (COVARIATES)

7| cond <— 7

if (lead.time==1){

9| if (cond .number<cond){

excludel <— covar|[which (COVARIATES==0)]|[1]

11 red . model <— eval(parse(text=paste("epsilon~con+fyll+temptmonthtweekday+holy+summer—",
excludel ,sep="")))

}

13| cond <— cond—1

if (cond.number<cond){

15 exclude2 <— covar |[which (COVARIATES==0) |[2]

red . model <— eval(parse(text=paste("epsilon contfyll+temptmonthtweekday+holyfsummer—",
excludel ,"—" jexclude2 ,sep="")))
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61
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65

67

69

}

cond <— cond-—1
if (cond.number<cond){
exclude3 <— covar [which (COVARIATES==0) | [ 3]
red . model <— eval(parse(text=paste("epsilon~contfyll+temptmonthtweekday+holyfsummer—",
excludel ,"—" jexclude2 ,"-"  exclude3 ,sep="")))
}
cond <— cond-—1
if (cond.number<cond){
exclude4 <—covar |which (COVARIATES==0)][4]
red . model <— eval(parse(text=paste("epsilon~con+fyll+tempt+monthtweekday+holy+summer—",
excludel ,"—" jexclude2 ,"-" exclude3 ,"—" ,excluded ,sep="")))
}
cond <— cond-—1
if (cond.number<cond) {
excludeb5 <— covar|which (COVARIATES==0)][5]
red . model <— eval(parse(text=paste("epsilon~con+fyll+temptmonthtweekday+holy+summer—",
excludel ,"—" jexclude2 ,"-"  exclude3 ,"—"  excluded4 ,"—" ,excludeb ,sep="")))
}
cond <— cond—1
if (cond.number<cond){
exclude6 <— covar|[which (COVARIATES==0)|[6 |
red . model <— eval(parse(text=paste("epsilon~ con+fyll+temptmonth+weekday+holy+summer—'
excludel ,"—" ,exclude2 ,"-" ,exclude3 ,"—" ,excluded4 ,"—"  excludeb ,"—" ,exclude6 ,sep="")))

1

}

cond <— cond-—1
if (cond.number<cond){
exclude7 <— covar|which (COVARIATES==0)][7]
red . model <— eval(parse(text=paste("epsilon~con+fyll+tempt+montht+weekday+holy+summer—",
excludel ,"—" Jexclude2 ,"—" Jexclude3 ,"—" excluded ,"—" ,excludeb ,"—" ,exclude6 ,"-",
exclude7 ,sep="")))

}
telse{
if (cond.number<cond){
excludel <— covar|[which (COVARIATES==0)]|[1]
red . model <— eval(parse(text=paste("epsilon~con+fyll+temptmonthtweekday+holyfsummertlast

.error.c—",excludel ,sep="")))

}
cond <— cond—1
if (cond.number<cond){

exclude2 <— covar|which (COVARIATES==0)][2]

red . model <— eval(parse(text=paste("epsilon~con+fyllt+temptmonthtweekday+holyfsummertlast

.error.c—",excludel ,"—" jexclude2 ,sep="")))

}
cond <— cond-—1
if (cond.number<cond) {
exclude3 <— covar|[which (COVARIATES==0) || 3]
red . model <— eval(parse(text=paste("epsilon~con+fyll+temptmonthtweekday+holy+summertlast
.error.c—",excludel ,"-"  ,exclude2 ,"-"  exclude3d ,sep="")))
}
cond <— cond-—1
if (cond.number<cond) {
exclude4 <—covar [which (COVARIATES==0)]|[4]
red . model <— eval(parse(text=paste("epsilon~con+fyll+tempt+montht+weekday+holy+summertlast
.error.c—" ,excludel ,"—" jexclude2 ,"-" exclude3 ,"—" excluded4 ,sep="")))
}
cond <— cond—1
if (cond.number<cond){
excludeb <— covar |[which (COVARIATES==0) |[5 |
red . model <— eval(parse(text=paste("epsilon~con+fyll+temptmontht+weekday+holy+summertlast

.error.c—",excludel ,"—" jexclude2 ,"-"  exclude3 ,"—"  excluded4 ,"—" ,excludeb ,sep="")))

}

cond <— cond—-1
if (cond.number<cond){
exclude6 <— covar|which (COVARIATES==0)]|[6 |
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red . model <— eval(parse(text=paste("epsilon~con+fyll+temptmonthtweekday+holyfsummertlast
.error.c—" ,excludel ,"-" exclude2 ,"-" Jexclude3 ,"—" ,excluded4 ,"—"  exclude5 ,"—" Jexclude6
,sep="")))
}
cond <— cond-—1

if (cond.number<cond) {

exclude7 <— covar[which (COVARIATES==0)][7]
red . model <— eval(parse(text=paste("epsilon~con+fyll+tempt+montht+weekday+holy+summertlast
.error.c—" ,excludel ,"-" exclude2 ,"-" Jexclude3 ,"—" ,excluded4 ,"—"  exclude5 ,"—" Jexclude6
,"=" ,exclude7 ,sep="")))
}
reduced . model <— red.model
}

Listing 18: Reduces the full OLS model to a model which only the given (input) explanatory variables are
considered.

## Funksjon for aa hente ut aar,mnd,dag,time fraa datostreng paa forma
- "fr 16—07—10:02", dvs. "ukedag dag-mnd—aar:time"
## time: 0-—23
## datostreng = vektor med datoinformasjon paa forma over
## hundreaar = hundreaar for dato, f.eks 1900, 2000 (kun siste to siffer i streng)
#4+ — ein verdi: alle i samme hundreaar
## — vektor med lengde lik length(datostreng): i ulike hundreaar
redigerdato<—function (datostreng ,hundreaar=2000)
{
tmpl<—matrix (unlist (strsplit (datostreng ,":")) ,ncol=2,byrow=T)
hour<—as.numeric (tmpl|[,2])
tmp2<—matrix (unlist (strsplit (tmpl[,1]," ")) ,ncol=2,byrow=T)
weekday<—tmp2|,1]
datoar<—matrix (unlist (strsplit (tmp2][,2],"-")) ,ncol=3,byrow=T)
year<—as.numeric(datoar [ ,3])+hundreaar
day<—as.numeric (datoar|,1])
month<—as.numeric(datoar[,2])
return (list (year=year , month=month, day=day, hour=hour, weekday=weekday))
}

Listing 19: A code supplied by Turid Follestad (advisor). Takes as input a text string which represent a
date and split in into an object containing the separate parts.

foo <— functioﬁ(a, b){ .

counter <— 0
for (word in 1l:length(b)){
a <— strsplit(a, "")[[1]]
b.tmp <— strsplit (b[word], "")[[1]]
nmatch <— sum(outer(a, b.tmp, "=—"))
if ((length(a)) = nmatch) counter <— counter+l

return (counter)

}

Listing 20: Checks the number of months in the OLS fitting. Used as control-mechanism to check that
the right number of explanatory variables are considered.
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initialize data frame.R

fgls <— function (DAY,MONTH, YEAR, HISTORY) {
source ("meancon.R")

source ("meanfylling .R")

library ("plm")

library ("tseries™)

library ("fSeries")

source ("clewlow price.R")

source ("retrive.r'")

source ("redigerdato .R")

data <— read.table("tidsserier alle 2005—2010.txt",skip=0,header=T,sep="\t")
dato.info <—redigerdato (as.character(data|,1]) ,hundreaar=2000)

fylling <— read.table("Fyllingsgrad 2002—-2010.txt",skip=0,header=T,sep="\t")
index <— which(dato.info$year==2008)

index2 <— which(dato.info$year==2007)

price <— data[union(index ,index2) ,2]|

skuddaar <— 366

normalaar <— 365

na <— which(is.na(price))

price[na] <— 0.5x%(price[(na+1)|+price[(na—1)])

tmp <— length (price)

lagl <— 24
lag2 <— 168
lag3 <— 192
year=2008

year2 <— 2007

individual <— rep(0:23,(skuddaar+normalaar))

cross <— rep (1l:(skuddaar+normalaar) ,each=24)

kalender <— redigerdato (as.character (data|[which(dato.info$year=—year) ,1]) ,hundreaar=2000)

kalender2 <— redigerdato (as.character (data|which(dato.info$year=—year2) ,1]) ,hundreaar
~2000)

weekday <— factor (rep(rep(c(0,1,2,3,4,5,6),each=24),104))

tmp <— length (length (price)/24)%%104

weekday <— factor (c(weekday,rep(1l,each=(24x(tmp+1)))))

month <— as.factor (c(kalender2$month, kalender$month))

levels (month) <— ¢(0,1,2,3,4,5,6,7,8,9,10,11)

holy <— factor (c(data|[which(dato.info$year=—year2) ,23],data|[which(dato.info$year=—year)
23]))

levels (holy) <— ¢(0,1)

summer <— factor (c(data|[which(dato.info$year=—year2) ,29],data|[which(dato.info$year=—year)
29]))

levels (summer) <— c(0,1)

temp <— c(data|index2,30],data[index ,30])

con <— c(data[index2,13],data[index ,13])

con <— as.vector (interpNA (con,"linear"))

tmp <— meancon ()

tmp <— approx (x=tmp, y=NULL, method="linear" ;n=length (con))

scaledcon <— con/tmp3y—1

fyll <— c(rev(fylling [which(fylling|[,1]==year2) ,3]) ,rev(fylling [which(fylling|[,1]==year)
31))

fyll <— approx(x=fyll ,y=NULL, method="linecar" ;n=length (con))

tmp <— meanfylling ()

tmp <— approx (x=tmp,y=NULL, method="linear" ,n=length (con))

scaledfyll <— fyll$y/tmp$y—1

temp <— as.vector (interpNA (temp,"linear"))

price <— price[—c(1l:1lag3)]

ind <— individual[—c(1:lag3)]

cross <— cross|[—c(1l:lag3)]

temp <— temp[—c(1l:lag3)]

con <— scaledcon|—c(1:1lag3)|

fyll <— scaledfyll[—c(1:1lag3)]

month <— month[—c (1:lag3) |
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weekday <— weekday[—c(1:(lag2))]

holy <— holy[—c(1:lag3)]

summer <— summer|—c (1l:lag3)]

frame <— data.frame(price=price ,temp=temp,ind=ind, cross=cross ,con=con, fyll=fyll ,month=
month , weekday=weekday , holy=holy , summer=summer)

today <— which(dato.info$day=DAY&dato .info $month=—MONTH&dato .info$year=YEAR) [1]| — which (
dato.info$day==1&dato. info $month==1&dato.info$year==2007)[1]

price.c <— frame [(today—HISTORY*24+1—192):today ,|$price

frame <— frame [(today—HISTORY%*24+1):today , |

¢c2007 <— clewlow.price (frameS$price)

spikes <— c¢(c20078$spikes)

spike.indicator <— vector (mode="numeric" ,dim(frame) [1])

spike.indicator [spikes| <— frame$price|[spikes+1]|—frame$price|(spikes)]

frame$price [ spikes| <— NA

frame <— cbind (frame,spike.indicator)

lagl <— 24
lag2 <— 168
lag3 <— 192

tmp <— length (price.c)

seql <— seq(lag3-lagl ,tmp—lagl —1,1)

seq2 <— seq(lag3—lag2 ,tmp—lag2 —1,1)

seq3 <— seq(1,tmp—lag3d 1)

seq2b <— rep((lag3—lag2):(tmp—lag2 —1),each=24)+c(0:23)
seq3b <— rep (1:(tmp—lag3) ,each=24)4c(0:23)

weekmedian <— apply (matrix (price.c[seq2b]—price.c[seq3b],nc=24,byrow=T) ,1,median ,na.rm=T)
x.hat <— price.c|[seql|+weekmedian

epsilon <— price.c[—c(1l:lag3)|—x.hat

lead . time <— rev (rep (1:(dim(frame)[1]/24),each=24)%%10)
frame <— cbind (epsilon ,frame,lead.time)

save (frame, file="frame.Rdata")

fgls <— frame

}

Listing 21: A code that reads the data file, and puts it into a data frame.

t————————spike_identification . R———+

clewlow . pri’éé <~ function (prlce ){
tmp <— which(is.na(price))
price [tmp| <— 0.5%(price [(tmp+1)|+price [(tmp—1)])

diff <— diff(price)
n.spikes <— 0
dummy <— —2

std.res <— sd(diff)
spikes <— NULL

up <— NULL

14| while ((n. spikes —dummy) >1){

dummy <— n.spikes
16 spikes <— union (which(abs(diff)>(3+xstd.res)),spikes)

up <— union (which(diff >(3*std.res)) ,up)
18| n.spikes <— length (spikes)

std.res <— sd(diff[—spikes])
20| }

clewlow <— list (diff=diff ,spikes=spikes ,n.spikes=n.spikes ,up=up)
22| }
Listing 22: A code that identifies a spike according to the criterion given by Clewlow.

1]~

‘ b‘e‘st_s‘ubset.R -
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model. evalution <— function (HISTORY ,NUMBER) {
start <— Sys.time ()

source ("forecast.eval2.r")

7| model <— matrix (1,nc=7,nr=24)

t

9|# Divide the hours into groups where the same
# covariates should be present
11|# group 1 Hour 0-—6
# group 2 Hour 7—10
# group 3 Hour 11-15
group 4 Hour 16—18
15|# group 5 Hour 19-23
number. of . groups <— 5
17| number. of . covariates <— 7
group.start <— ¢(1,8,12,17,20)
19| group . final . model <— NULL
ev.criterion <— NULL
21| model .cum <— NULL
best.subset.cum <— NULL
23| first .line <— forecast.eval2(model ,HISTORY,NUMBER, 1)
best.subset.tmp <— first.line $CRPS
25| base.line <— first.line$CRPS. baseline
best .subset.last <— Inf
27| print (paste("base line",base.line))
for (group in 1l:number.of.groups){
29| print (paste ("group",group))
zeros <— rep (0,number.of.covariates)
31 best .subset <— best.subset.last
indicator <— NULL
33 while (best .subset >best . subset .tmp) {
best .subset.last <— best.subset

35 best .subset <— best.subset.tmp
model.cum <— rbind (model.cum, model)
37 for (i in 2:number.of.covariates){
subset.cum <— rbind (best.subset.cum, best.subset)
39 if (zeros|[i]|==0){
if (group !=number. of . groups){
41 model [c(group.start [group|:(group.start|[group+1]—1)),i] <— 0
telse{
43 model [c(group.start [group]:24) ,i|] <— 0
}
45 tmp <— forecast.eval2 (model ,HISTORY ,NUMBER, 0 ) $SCRPS
if (tmp < best.subset.tmp){
47 best.subset.tmp <— tmp
indicator <— c(indicator ,1i)
49 print (indicator)
51 if (group !=number. of . groups) {

model [c(group.start [group|:(group.start|[group+1]—1)),i] <= 1
53 telse{
model [c(group.start [group]:24) ,i| <= 1

55 }
}
57
zeros [indicator]| <— 1
59 if (group !=number. of . groups) {
rows.l <— group.start|[group+1]—group.start [(group)]
61 }else rows.l <— 24—group.start [group|+1
change <— l-matrix (zeros ,nc=number. of.covariates ,nr=rows.l ,byrow=T)
63 if (group !=number. of . groups){
model [c(group.start [group|:(group.start[(group+1)]—1)),] <— change
65 }else model [c(group.start [group|:24) ,] <— change
67| }

print (paste("best subset tmp",best.subset.tmp))
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print (model)
group. final .model <— rbind (group. final.model, model)
ev.criterion <— rbind(ev.criterion ,best.subset.tmp)

end <— Sys.time ()

output <— list (crps=ev.criterion ,best.covariates=group.final.model,start=start ,end=end,
subset .cum=subset .cum)

save (output , file="output2.RData")

model . evaluation <—output

}

Listing 23: A algorithm calculating the leave-one-out best-subset, using the Energy score as evaluation
criterion.

energy score.R

forecast .eval <— function (COVARIATES, HISTORY,SAMPLES, PLUTO) {
source ("comforecast.r")

source ("CRPS.r")

DAY <— ¢ (15)

MONTH <—c (4)

YEAR <— ¢ (2008)

evaluation <— vector (mode="numeric" ,length=length (MONTH)*length (YEAR)*length (DAY))
if (PLUTO==1) evaluation.baseline <— evaluation

for (time.d in 1:length (DAY)){

13 for (time.y in 1l:length (YEAR)){
for (time.m in 1:length (MONTH)){

15 t <— comforecast (DAY[time.d]| ,MONIH| time .m]| ,YEAR[time .y| ,COVARIATES, HISTORY,SAMPLES)

price.obs <— t8$real
17 price.fore <— t$forecast

price.det <— t$det
19 evaluation [((time.y—1)*length (MONTH)+length (DAY)* (time .m—1)+time.d)| <— crps(price.

fore ,price.obs)

if (PLUTO==1){

21 evaluation. baseline [((time.y—1)*length (MONIH)+length (DAY)* (time .m—1)+time.d)| <—
crps(price.det, price.obs)
23 }
}

25| }

27

29

31

CRPS <— (1/(length (MONTH)«length (YEAR)*length (DAY)))s*sum(evaluation)

i f (PLUTO==1){
CRPS. baseline <— (1/(length (MONIH)*length (YEAR)x*length (DAY)))x*sum(evaluation.baseline)
forecast.eval .tmp <— list (CRPS=CRPS,CRPS. baseline=CRPS. baseline)

}else{ forecast.eval.tmp <— list (CRPS=CRPS)}

forecast.eval <— forecast.eval.tmp

}

Listing 24: Calculates the Energy score of several forecasts. Inputs are the dates of the forecast, the
covariates, the training period and the number of ensemble members.
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