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Abstract

This master’s thesis investigates how well a generalized mixed model fits different
dominance data sets. The data sets mainly represent disputes between individuals in
a closed group, and the model to be used is an adjusted, intransitive extension of the
Bradley-Terry model. Two approaches of model fitting are applied; a frequentist and a
Bayesian one. The model is fitted to the data sets both with and without random effects
(RE) added. The thesis investigates the relationship between the use of random effects
and the accuracy, significance and reliability of the regression coefficients and whether
or not the random effects affect the statistical significance of a term modelling intransi-
tivity.

The results of the analysis in general suggest that models including random effects
better explain the data than models without REs. In general, regression coefficients
that appear to be significant in the model excluding REs, seem to remain significant
when REs are taken into account. However the underlying variance of the regression
coefficients have a clear tendency to increase as REs are included, indicating that the
estimates obtained may be less reliable than what is obtained otherwise. Further, data
sets fitting to transitive models without REs taken into account also, in general, seem to
remain transitive when REs are taken into account.
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1 Introduction

1.1 Basic concepts

This project is concerned with paired comparisons between individuals interacting
with each other within a closed group for a given period of time. These interactions
are typically disputes between animals in contests about different kinds of needs and
will be represented by data sets in the form of dominance matrices revealing how many
disputes that have been won by individual i in contest with individual j for any pairs
(i, j) of individuals within the group upon which the analysis is to be performed. The
underlying assumption in this analysis is that the data sets have a hierarchical structure.

The data sets being analysed are matrices X in which element X;; of the i-th row and
the j-th column corresponds to the number of times individual i has won over indi-
vidual j in interactions taking place within the period of time for which the data have
been collected. A generalized mixed model will be fitted to this dominance matrix and
different aspects of this model fitting will be analysed and investigated. Element X;; is
further assumed to have a binomial distribution with parameters p;; and Nj;, the latter
corresponding to element (i, j) of the symmetric matrix N containing the number of
disputes between any pair of individuals (i, j). p;; is the probability that individual i
wins over j in some dispute.

1.2 The Bradley-Terry model
1.2.1 Applications

In this project the Bradley-Terry (BT) model plays a major part. The BT model has sev-
eral applications and is a very popular and frequently used tool to model the probabili-
ties p;; as described in the previous section in response to paired comparisons between
individuals 7 and j. Further, several extensions and adjustments have been added to
this model in order to handle draws, group comparisons and phenomena such as ties
as well as home advantage effects for cases in which, for instance, sport teams are com-
pared. Popular applications are multiclass classification, ranking of chess players and;
as this project is concerned with; behaviour among the individuals in an animal group

[1].

1.2.2 Model description

The BT model assumes that the outcome of a contest between two individuals is given
by what is often referred to as strength parameters A; and A; indicating the relative
strength of individual i and individual j, respectively [2]. The BT model assumes that
the probability that individual i wins over j in some interaction is given by the ratio,

. = Ai
P+ A

1)
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From (1) the ratio 12’;}_}_ can easily be found leading to

log <1fljpl]> = log A; —logAj, (2)

Hence, using the re-parametrization log A; = 3; and log A; = ; the BT model can
be written on the form

logit(pij) = Bi — Bj- 3)

The B; and 3; parameters are often referred to as "absolute dominances", indicating
the strength of the corresponding individual.

One aim of this project is to investigate how the dominance probabilities p;; in (3) are
explained by the traits of the individuals involved, traits that affect their interaction
abilities, i.e. the abilities on which their dominance skills depend on. A common usage
of the BT model is to let the absolute dominances be explained by these traits through
a linear regression model. This can easily be incorporated in (3). If n different traits
Xi1, .-, Xin have been measured for the individuals i = 1, ..., N being evaluated, logit pij
may be expressed by the sum of the differences of all the corresponding traits between
individual i and j. Further, each trait difference x; — x; of the k-th trait of individual i
and j may be scaled by some coefficient o indicating how heavily logit p;; depends on
this particular trait. Hence we get the following linear regression model,

logit(pij) = 0(1(Xi1 — Xﬂ) + 0(2(9(?1‘2 — ij) + ...+ ocn(xl-n — xjn)- 4)

Comparing (3) by (4) we see that the latter is a Bradley-Terry model since all the
elements of its right-hand side is a measure of the strength of either individual i or
individual j of some kind. This again leads to

Bi = oaxi + ...+ anXiy,
/3] = oqx]-1+...+ocnx]-n. (5)

In all the analysis that this project is concerned with, the trait values measured for
the individuals involved have been collected for a limited period of time. This is so one
can assume these values and hence the regression coefficients «y, ..., &, to be approx-
imately constant for this amount of time, which is important for the reliability of the
generated results.

1.3 Regression

There are different ways to estimate the S, ..., 3, parameters given in Section 1.2.2.
One commonly used approach is the following: First, maximum likelihood estimation
based on (3) is used to estimate the f3; value for individual i = 1,..., N. Next, the j3;
estimates obtained are treated as response variables in a regression model in which the
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x;j-s are the explanatory variables and the «;-s are the regression coefficients. In this
way regression estimates of the a;-s can be achieved.

However, this kind of model has certain disadvantages. One of these problems may
arise if sparse data have been collected from the group being analysed. Then some of
the 3;-s may be estimated to values of infinity. This can be seen from (1). For example,
if all interactions between individual i and individual j that have been recorded are
either interactions being won by i, or interactions in which 7 has lost against k and k has
won over j, then p;; will be estimated to 1. Hence, if all other interactions between i and
the other individuals have one of these two kinds of outcomes, and unless the absolute
dominance $3; of individual j is being estimated to 0, the strength parameter of i needs
to be estimated to infinity to fulfil the criteria that p;; = 1. This will not only cause the
estimates %;; of the explanatory variables to be biased. In such cases, it is also obvious
that the approximate asymptotic normal distribution of the /3;-s does not hold.

This is however not the only disadvantage related to the given estimation of the f3;
parameters. Achieving the ;-s only on basis of the pij-s before the regression is car-
ried out probably gives less accurate estimate values than what would have been the
case if the trait values had been included in the estimation as well. A different model
approach is therefore to simply include both the dominance data X;; and N;; as well
as the trait values x;; in the estimation of the Bi-s and perform this estimation and the
regression analysis in a single model. Then one should expect more correct values of
the f3; parameters since more information is included in the estimation of them than
what is the case in the other approach given above. Hence more correct estimates &;; of
the regression coefficients are to be expected as well.

In this project the latter approach will be performed using generalized mixed mod-
els in two different ways: one frequentist approach and one Bayesian approach.

1.4 Intransitive models

A possible extension to the BT model, as suggested in [3], is to add one or more cross-
product terms to (4) leading to an intransitive model,

n
logit(pij) = Y. axc(xie — xjk) + o (XiuXjo — XioXju) , (6)
k=1

expressing the cross-product interaction effect of traits u and v between individu-
als i and j. This cross-product term o, (xiuxjv — xivxju) models the correlative effect
between trait u and v upon the dominance probability p;;. This can intuitively be inter-
preted as the effect of two specific traits u and v working together, which significantly
contributes to the outcome of an interaction, in addition to the isolated effects that the
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traits u and v contribute with on each of their own. This way an intransitive model
design is achieved.

The intransitive model differs from the transitive one in that the hierarchical domi-
nance structure that it describes is allowed to be circular implying that individual i
may be dominated by individual k even though i dominates j and j dominates k. It gets
easier to get an understanding of this looking at the isolines of the trait space of (6).
Let us consider a model of the form (6) in which two types of traits assigned "1” and "2’
along with their cross-product effect are of interest. We then get

logit(pi]‘) = (Xﬂ — le) + OCz(xiz — X]‘z) + a2 (xilsz — xizxﬂ) . (7)

Now, let us consider the trait space of (6) in which all possible combinations (x;1, x;2)
of values for traits 1 and 2 exist. An isoline is achieved if a subspace within this trait
space is constructed, in which all the belonging points (x;1, Xi2)su» give the same domi-
nance for an individual. This can be found using (7) and solving it for the case in which
individual i is equally dominant with individual j, that is, p;; = 1/2. Solving for x;,
one gets, as shown in [3],
x12Xjp + N x1Xj1 + X

Xipg = —————Xj1 —
x12Xj1 — a2 x2Xj1 —

(8)

As can be seen from (8), all trait values for individual i making i equally dominant
with some individual j, lie along one straight line with slope and intercept term depen-
dent on the trait values (le, sz) of individual j. Further, it can be shown [3] that all
isolines within a trait space go through the same point (x},x5) = (a2/a12, —ot1 /ax12).
Now, for a given point (xj,xj2) in the trait space, the direction of the correspond-
ing gradient vector gives the direction of which the dominance of an individual with
these trait values increases at the fastest, and the magnitude of the vector is the re-
spective amount of increment of this dominance. It can be shown [3] that this vec-
tor equals (a1 + aq2x j2, 00 — a12X jl), and hence, given the expression for the intercept
point (x7, x3) of the isolines given above, it can easily be found that the gradient vector
is given by (a12(—x3 + xj2), @12(x] — xj1)). Looking at this expression one can easily
see that dominance increases the further away a set of trait values are with respect to
(x3,x3). It can also be shown that the direction of increasing dominance is clockwise
when a1, > 0 and anticlockwise when aq, < 0.

This is where the circular property of the intransitive model comes in. Because of
the increasing dominance around (x7, x3) in the clockwise or anticlockwise direction,
a group of individuals whose traits were circularly distributed around (x7, x3) would
have had an intransitive dominance structure in which individual k could dominate i
even though i dominated j and j dominated k.

An interesting aspect is thus the properties of the model fittings of the data sets with re-
spect to intransitivity and what differences the use of random effects might contribute
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with. Further, the significance of «,, and whether or not a significant «;,, will remain
significant when random effects, as described in Section 2.2, are taken into account is
also of interest. This thesis will investigate these questions.

1.5 The main purposes of this project

In the analysis being presented in this report an intransitive dominance model structure
is fitted to several data sets by the use of the BT model with one or more cross-product
terms in addition. The project will also use what is known as random effects (see sec-
tion 2.2) included in some of its analysis. The report will take a closer look at how well
this kind of model fits the data sets.

Certain traits that the investigated individuals possess have been chosen to be used
in the analysis. The project will consider how significant each of the traits are with
respect to the model, i.e. to which extent the outcomes of the contests between the indi-
viduals in the groups being analysed depend on these traits. This will be done through
evaluation of the model coefficients ay for traits k = 1, ..., n as given in (6). Of interest is
also the coefficient «,,, as given in (6) related to the cross-product term for traits u and
v. This report will investigate to which extent the use of random effects in the model
affects this coefficient. Further, it will investigate whether or not an intransitive model
interpretation fits the data. The effect that the use of random effects have on the nature
of the estimates of the other model coefficients o, k = 1, ..., n will also be investigated.

As mentioned in Section 1.3, the data sets will be fitted to the adjusted BT model in
two different ways; one frequentist approach and one Bayesian approach. The report
will evaluate prospective differences in the analysis performed by these two methods.

There are four data sets being evaluated in this project. Three of these are also evaluated
in J. Tufto’s article [3] from 1998 in which the cross-product term in (6) is suggested as
a way to add an intransitive effect to the BT model. In [3] random effects are, however,
not taken into account. Some of the purpose of this project is therefore to evaluate three
of the same models; being referred to as Data set 1, 2 and 3 later in this report; consider-
ing random effects in addition to the cross-product term causing intransitivity in order
to continue some of the analysis from [3].
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2 Generalized mixed models

2.1 Generalized linear models

The generalized linear model (GLM) [4] is defined through a set of N independent
random variables Y7, ..., Yy, all coming from the same probability distribution in the
exponential family. Some well-known probability distributions belonging to this family
are the normal, the Poisson and the binomial distribution. A GLM is a generalization
of least squares regression, relating the explanatory variables x;i, ..., xj, in the linear
regression model to the random variables Y; through a link function g applied to the
expected value ; of the Y;-s:

g(ui) = x| B. 9)

Here x; is the n x 1 vector containing the explanatory variables x;i, ..., x;,, and  is
the n x 1 vector containing the regression coefficients 31, ..., 3, of the regression model.

Further, in our analysis we assume the number of successes Xi]- for individual 7 in in-
teractions with individual j to have a binomial distribution with the dominance proba-
bilities p;; and the number of interactions N;; as parameters,

Xz']' ~ bin (pi]', Nz]) . (10)

Thus, comparing (9) by (4) we see that this applies to the BT model described in Sec-
Pij
1_pij
w; and «y, ... , o, the model coefficients 31, ..., 3.

tion 1.2.2, logit(p;;) = log ( ) being the link function g(;), p;; the expected value

However it often happens that the data being analysed violates the assumption given
in (10). As mentioned in [3] this can occur when dependencies between the outcome
of interactions are present or when the p;; parameters have large stochastic variation.
Both of these phenomena may cause larger variance in the X;; parameters than what
the binomial model indicates. This is known as overdispersion.

There are several ways to take overdispersion into account in the analysis. One ap-
proach which is frequently applied is the use a parameter ¢ to scale the variance of X;;
in (10),

var (Xij) = ¢Nijpij(1 = pij), (11)
¢ being estimated by
D
n—p
Here, D is the deviance of the model and n — p is the corresponding residual degrees
of freedom. This way ¢ is an indicator of the amount of overdispersion present in the

$=

(12)
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model fitting, and hence it indicates how well the data being analysed suit the binomial
model. ¢ is often referred to as the dispersion parameter, and models based on (11) for
which ¢ # 1 are called quasi-likelihood models and one usually refer to them as being
binomial with overdispersion or quasibinomial.

2.2 Mixed models

The trait coefficients «y, ..., &, given in (4) are often referred to as "fixed effects” in order
to distinguish them from something called ‘random effects” as mentioned in Section
1.5. The use of random effects comes from the assumption often used in analysis of
generalized models that the covariates x;1, ..., x;; and x1, ..., X, in (4) not fully explains
the variation in the response variable. The random effects are therefore often incorpo-
rated into generalized models to simulate the uncertainty in the choice of model and
the choice of covariates.

Individual-specific random effects U; and U; related to individual i and j, respectively,
can be used to model the uncertainty and the error that is caused by estimating the
dominance probability p;; by the chosen trait types. The difference U; — U; between
two of the random effects can be added as an extra term to the right-hand side expres-
sion of the BT model (4) or its intransitive extension (6). The random effects Uy, ..., Uy
are independent and identically distributed random variables assumed to come from a
normal distribution with mean 0 and some standard deviation o, [5]. Fitting (6) with
U; — U; added to the right-hand side of the model to data and then investigating the
nature of Uj, ..., Uy we thus get an idea of to which extend the traits chosen for the
model explain the data being analysed.

Of interest in this project is also the contest-specific random effect U;; related to the
interaction between individual i and j. Like the U;-s, the U;;-s are independent and
identically distributed random variables assumed to come from a normal distribution
with mean 0 and some standard deviation 0;,. Adding the random effect U;; to the right-
hand side expression of the BT model (4) or its intransitive extension (6), overdispersion
as described in Section 2.1 is modelled. Hence, adding U;; to the model one obtains an
indication on how well the data actually fits the BT model. Generalized models includ-
ing one or more random effects, and thus containing both fixed and random effects, are
usually called generalized linear mixed models, or more generally generalized mixed
models to include the possibility of non-linearity.

In the analysis of this project an intransitive generalized mixed model extension of the
BT model (6), with and without both of the kinds of random effects described in this
section, will be fitted to dominance data.
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3 Methods

3.1 The frequentist approach

The data sets will be analysed in two different manners. The first one is a frequentist
approach in which the BTm({BradleyTerry2} function for the software package R is used.
This function fits the Bradley-Terry model to the given data set by logistic regression
using either maximum likelihood, penalised quasi-likelihood if random effects are in-
volved, or bias-reduced maximum likelihood [6].

R code for handling the analysis of data sets being fitted to the adjusted Bradley-Terry
model (6) can be found in the Appendix of this report.

3.2 The Bayesian approach

The second approach is a hierarchical Bayesian approach performed by the software
package Winbugs. The Bradley-Terry model along with the probability distribution
of prospective random effects are manually specified. Prior distributions both for the
trait coefficients being estimated as well as for the standard deviances of prospective
random effects are also manually specified. On the basis of this input along with the
dominance data Winbugs uses the most sufficient Markov chain Monte Carlo (MCMC)
approach to fit the data to the specified model [7].

For the analysis presented in this report a Bayesian hierarchical model which struc-
ture is shown in Figure 1 is used. For all of the MCMC analysis a thinning factor of 50 is
applied to avoid autocorrelation. For each data set 200.000 MCMC iterations are carried
out, but when this is not sufficient in order to obtain convergence, even more iterations
are used until convergence is reached. For prior distributions, all model coefficients are
given the normal distribution with mean 0 and standard deviation 1.0e3. This gives an
approximately non-informative prior. All random effects have the normal distribution
with mean 0 and a standard deviation o, as discussed in Section 2.2. All analysis are
carried out with a gamma prior distribution for the precision parameter T = 1/0? of
this normal distribution with scale and rate parameters fitting for the respective data
set in order to obtain reliable results.

Winbugs implementation code for all of the analysis can be found in the Appendix
of this report.
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Figure 1: Illustration of the Bayesian hierarchical model used in the Bayesian approach
as described in Section 3.2 in which both individual-specific and contest-specific
random effects are included. In the model given above two kinds of traits denoted "1’
and "2” are handled for individuals denoted i and j.
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4 Data sets

4.1 General description

All data sets being analysed in this project are N x N sized dominance matrices X, N
being the number of individuals in the group being analysed and the elements X;1, Xj>,
vy Xii—1, Xii+1, -, Xin Of the i-th row of X corresponding to the number of interactions
between individual i and, respectively, individual 1, 2, ...,i —1,i 41, ..., N in which i
has won. For the first three data sets element (i, j) represents the number of contests in
favour of individual 7 in interactions with individual j within a closed group of animals.
The elements in the fourth and last data set represent the number of times 5 different
newspapers cited each other for a given period of time.

4.2 Data set 1: Contests between male house sparrows in Denmark

The first data set is chosen from A.P. Moller’s article [8] from 1987. The purpose of this
article was to investigate the relationship between the badge size of house sparrows
and their dominance pattern. The birds being investigated consisted of three separate
flocks located at three different places in Denmark; Hollensted, Uster Bronderslev and
Pandrup. The Hollensted flock was observed by a feeding stand from Januray to April
1984 and the two others were observed in two separate laboratory rooms from Decem-
ber 1984 to February 1985. Female house sparrows have a tendency to avoid contest
interactions with male house sparrows in the winter season since the males are usually
more dominant than the females at this time of the year. Therefore, only interactions
between male house sparrows were recorded. In his article Moller concludes that in
general the house sparrows with a larger badge seemed to dominate house sparrows
with a smaller badge. In this report the age and the total badge size traits will be con-
sidered.

In the analysis of this project the dominance data of all of the three sparrow flocks are
merged into one single dominance matrix as it may be considered reasonable to assume
that the model coefficients «y, ..., &, as given in (6) do not differ from one subpopula-
tion to the other. For all interactions between sparrows i and j from different flocks, the
elements with coordinates (i, j) and (j, i) in the dominance matrix are simply given as
0. The dominance matrices correspond to Table I, Il and IIl in [8], and the trait values
used in the analysis of this project can also be found in these tables. The merged matrix
is given in the Appendix of this report. In the analysis of this project covariate values
of 1 and -1 are used for the age trait depending on whether the sparrows were adults
or immature, respectively.

4.3 Data set 2: Contests between male house sparrows in Norway

The second data set is chosen from E. J. Solberg’s and T. H. Ringsby’s article [9] from
1997. Three separate groups of male house sparrows were observed at three different
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farms situated at Storselsey, Hestmona and Ytre-Kvaroy, all along the coast of northern
Norway. Two of the traits registered for which values also are available in the article,
were age (the sparrows were divided into one of two age categories: immatures and
adults) and visible badge size. These are the two traits this project will consider in its
analysis.

Like the data sets found in Mgller’s article [8], the dominance matrices for the three
separate sparrow flocks described in Solberg’s article [9] are in this project evaluated
as one single dominance matrix generated the same way as for Data set 1. The dom-
inance matrices correspond to Table 1, 2 and 3 in [9], and the trait values used in the
analysis of this project can also be found in these tables. The merged matrix is given in
the Appendix of this report. In the analysis of this project covariate values of 1 and -1
are used for the age trait depending on whether the sparrows were adults or immature,
respectively. Missing trait values are registered as 'NA’.

4.4 Data set 3: Contests between woodland caribou in Canada

Interactions between woodland caribou were observed from September to May in the
seasons of 1980/81 and 1981/82 in Parc des Grands-Jardins, a 310 km? big forest park
cituated 120 km north-east of the city center of Quebec, as described in an article from
1986 written by C. Barrette and D. Vandal [10]. Traits registered for the woodland cari-
bou being analysed were sex, age and antler size. All these traits will be evaluated in
this project.

The dominance matrix being analysed in this project corresponds to the one given in
Table 3 in Barrette and Vandal’s article [10]. This matrix is also given in the Appendix
of this thesis. Trait values can be found in Table 1 in [10]. In the analysis given in
this thesis the woodland caribou are given 1 and -1 as covariate values for the sex trait
depending on whether they are males or females, respectively. As for the antler size
trait, values 0, 1, 2, 3, and 4 are used for sizes 'none’, 'small/15 cm spikes’, ‘medium’,
"1 large/large” and "very large” as given in [10].

4.5 Data set 4: Citations among Norwegian newspapers

The fourth and last data set contains the number of times 5 of the biggest Norwegian
newspapers cited each other during the year of 2010. These numbers where found us-
ing the media archive Atekst to be found on the web site http://www.retriever.no/
tjenester. Through this page it is possible to access a database containing articles from
Norwegian newspapers back to the year of 1945. The data achieved were obtained us-
ing names of newspapers as search quotes and then specifying as one of the search
conditions from which newspaper the articles were to be accessed. The trait explana-
tory variables were chosen to be the readership and the circulation of the 5 evaluated
newspapers for the period of time chosen (the year of 2010). These data were found
at the web site http://medienorge.uib.no/. The page contains a search function for
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which it is possible to look up these kinds of data for specific Norwegian newspapers
for specific years.

The dominance matrix generated by the numbers found on http://www.retriever.
no/tjenester are given along with the trait values found on http://medienorge.uib.
no/ in the Appendix of this thesis.
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5 Results

5.1 General description

In the following subsections all relevant output diagnostics as generated by R and
Winbugs are presented. In these subsections ‘Case 1’ refers to the case in which all
random effects are omitted from the analysis. ‘Case 2’ refers to the case in which the
random effects U; and LI]- related to individual i and j are included, whereas 'Case
3’ refers to the case in which the contest-specific random effect U;; is included in the
model. Finally, ‘Case 4’ refers to the case in which all random effects, both U; — Uj as
well as U;; are included in the model. These are added as linear terms, as described in
Section 2.2. All trait data except most of the categorical ones were standardized before
the analysis was carried out. The categorical traits that were not standardized were the
age trait in Data set 1 and 2, and the sex trait in Data set 3. Unfortunately, the R func-
tion used to analyse the data was not suitable for modelling the random effects U;; and
hence Case 3 and Case 4 were carried out by Winbugs only.

The output diagnostics from R and Winbugs for the model coefficients o and «,, as
given in (6) for Data set 1, 2, 3 and 4 can be found in Table 1, 3, 5 and 7, respectively. In
these tables ‘Mean’ is the mean values of the posterior density distributions of o and
a0, and ‘SE’ is their respective estimated standard deviations, i.e. the standard errors.
Ppost.(¢ > 0) is the probability that the respective model coefficient is non-negative,
based on its posterior density distribution. The "z value” in the output diagnostics from
R is the asymptotic normally distributed estimator of the two-side z-test and corre-
sponds to the ratio between the mean and the standard error. P(Z > |z|) is the p-value
for this test. "DF” means degrees of freedom. “Est. dispersion parameter’ is the estimate
¢ given in (12) of the dispersion parameter as described in Section 2.1. Further, 'MC
error’ is the Monte Carlo standard error of the mean for the MCMC approach used by
Winbugs, and "Median’ is the median of the posterior density distribution of the respec-
tive model coefficient. ‘Samples’ is the number of samples from the posterior density
distribution of the coefficient used to generate the output diagnostics from Winbugs.

Further, Figure 8, 15, 22, 23 and 30 show the trait spaces of the trait pair of Data set
1, 2, two of the three possible trait pairs of Data set 3, as well as the trait space of Data
set 4, respectively, with the corresponding isolines as described in Section 1.4 and trait
values for the individuals of the respective data sets.

The values in Table 2, 4 and 6 for Data set 2, 3 and 4, respectively, give the ratio be-
tween each of the estimated standard deviations o, and o0}, of the random effects, and
the total variance in the response logit(p;;) for all cases in which random effects are in-
cluded. Unfortunately Data set 1 had to be let out of this analysis since Winbugs could
not handle the model in which the total variance was estimated for this data set. For the
standard deviations of the individual- and the contests-specific random effects o, and
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0y, the ratios mentioned are given by, respectively, (2%3> Yizj (logit(pi;) — logi’c(ﬁ))2
and (%) Yizj (logit(pij) — logit(ﬁ))z. Here, 1 is the number of estimated p;;-s, and p
is the mean of all estimated dominance probabilities p;; (which means that logit(p) = 0
in our case). The way this is implemented in Winbugs can be seen in the Appendix of
this thesis for the model implementation of Case 2 of Data set 2.

In all tables the symbol - means that the given kind of information was chosen not
to be evaluated for the given parameter. "*' means that the given software or software
function being applied was not able to generate the given kind of information.

5.2 Datasetl

In this section output diagnostics for the analysis of the data sets given in the article
written by Meller are presented. The estimations of the model coefficients, as gener-
ated by R and Winbugs, are presented in Table 1 and the output diagnostics of the most
slowly converging parameter in the Bayesian analysis of Winbugs are presented in Fig-
ure 2, 3, 4 and 5 for Case 1, 2, 3 and 4, respectively. In the table and the figures the
parameters of the age and the total badge size trait along with the interaction param-
eter between the two of these are referred to as "Age’, "Total badge size” and "Age X
Total badge size’, respectively. Density plots of the estimated standard deviations of
the random effects for Case 2, 3 and 4 can be found in Figure 6 and 7.

Unfortunately the penalised quasi-likelihood method of R generated extremely large
(~ 10'%) estimates of the model coefficients, and other output diagnostics also explic-
itly confirmed that the method did not converge. Hence, Case 2 of Data set 1 has not
been evaluated by R in this thesis.
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’Software‘Case‘ ‘ ‘
| R | 1] Model coef. o | Mean £ SE zvalue P(Z > |z|) Ppost.(a >0) DF |
Age 0.35341 £ 0.05652 6.253  4.03e-10 1 1
Total badge size 241327 +£ 0.12617 19.128 < 2e-16 1 1
Age x Total badge size |-0.26378 + 0.06356 -4.150  3.33e-05 0 1
Est. dispersion parameter 6.91
]Winbugs\ 1 \ Model coef. « \ Mean + SE~ MC Error Median Pyt (a0 > O)Samples‘
Age 0.3554 £ 0.05761 0.001163 0.3566 1.0 2000
Total badge size 2423 +0.1263 0.002843 2.418 1.0 2000
Age x Total badge size |-0.2653 £ 0.06382 0.001273 -0.2646 0.0 2000
2
Age 0.0382 &= 1.183 0.02778 0.06844 0.5235 10000
Total badge size 5.582 4+ 1.69 0.04898 5.42 1.0 10000
Age x Total badge size | -0.7536 £+ 0.1814 0.001693 -0.7463 0.0 10000
SE 6, of U; and U; 6.429 + 1576  0.03076 6.174 - 10000
3
Age 0.442 + 0.8163 0.0287 0.4273 0.713 2000
Total badge size 85111935 0.09218  8.229 1.0 2000
Age x Total badge size | -0.7577 £0.8299 0.03214 -0.7297 0.175 2000
SE 6, of Uj; 9.981 +2.087  0.08266 9.759 - 2000
4
Age 0.4097 +=1.102 0.03626  0.4078 0.646 2000
Total badge size 6.953 + 1.886 0.1014 6.735 1.0 2000
Age x Total badge size | -0.3582 £+ 0.7022 0.01852  -0.3489 0.3035 2000
SE 6, of U; and U; 5.134 + 1.054 0.0589 4.959 - 2000
SE 6, of Uj; 1.731 4+ 2.033 0.0516 1.235 - 2000

Table 1: Diagnostics for Data set 1. Estimations of the parameters based on the data
sets from the Moller article for Case 1 and 2, as generated by R and Winbugs, and Case
3 and 4, as generated by Winbugs.
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Trace plot of Age x Total badge size |Autocorrelation plot of Age x Total badge size Density plot of Age x Total badge size
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Figure 2: Diagnostics for Data set 1, Case 1. Final trace, autocorrelation and kernel
density plots of Age x Total badge size, the most slowly converging parameter, as

generated by Winbugs.
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Figure 3: Diagnostics for Data set 1, Case 2. Final trace, autocorrelation and kernel
density plots of Total badge size, the most slowly converging parameter, as generated

by Winbugs.
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Figure 4: Diagnostics for Data set 1, Case 3. Final trace, autocorrelation and kernel
density plots of Total badge size, the most slowly converging parameter, as generated
by Winbugs.
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Figure 5: Diagnostics for Data set 1, Case 4. Final trace, autocorrelation and kernel
density plots of Total badge size, the most slowly converging parameter, as generated
by Winbugs.
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Figure 6: Prior density plots (top row, as generated by R), and kernel density plots
(bottom row, as generated by Winbugs) of the SE 6, of U;, U; for Case 2 and the SE 6,
of Uj; for Case 3, respectively, for Data set 1. Note the differences in the scaling of the

y-axes.
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Figure 7: Prior density plots (top row, as generated by R), and kernel density plots

(bottom row, as generated by Winbugs) of the SE 6, of U;, U; and the SE &y, of U; jr
respectively fro Case 4 of for Data set 1. Note the differences in the scaling of the

y-axes.
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5.3 Data set?2

In this section output diagnostics for the analysis of the data sets given in the article
written by Solberg are presented. The estimations of the model coefficients, as gen-
erated by R and Winbugs, are presented in Table 3 and the output diagnostics of the
the slowest converging parameter in the Bayesian analysis of Winbugs are presented in
Figure 9, 10, 11 and 12 for Case 1, 2, 3 and 4, respectively. In the table and the figures
the parameters of the age and the visible badge size trait along with the interaction pa-
rameter between the two of these are referred to as "Age’, "Visible badge size” and "Age
x Visible badge size’, respectively. Density plots of the estimated standard deviations
of the random effects for Case 2, 3 and 4 can be found in Figure 13 and 14.

Case
Software | Std. dev. of the RE 2 3 4
R o 96.1368% * *
Winbugs ot 82.99439% - 57.83203%
oy - 55.34066% 14.53856%

Table 2: Diagnostics for Data set 2. The ratio between the standard deviation of the
random effect and the total variance in the response variable logit(p;;) for Case 2, as
generated by R and Winbugs and for Case 3 and 4 as generated by Winbugs only.
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’Software‘Case‘ ‘
] R \ 1 \ Model coef. « \ Mean =+ SE zvalue P(Z > |z|)Ppost.(a >0) DF ‘
Age -0.06164 + 0.07094 -0.869 0.385 0.19353 1
Visible badge size 0.15671 £ 0.12478 1.256 0.209 0.89712 1
Age x Visible badge size|0.16003 & 0.12405 1.290 0.197 0.90249 1
Est. dispersion parameter 3.66
2
Age -0.1866 &+ 0.2816  -0.663 0.508 0.25217 1
Visible badge size 0.4134 03564  1.160 0.246 0.87802 1
Age x Visible badge size| 0.1356 & 0.1902  0.713 0.476 0.76313 1
SE 6, of U; and U; 0.9295 4+ 0.1968  4.723  2.32e-06 - 1
]Winbugs\ 1 \ Model coef. x Mean + SE ~ MC Error Median Py (o > O)Samples‘
Age -0.06024 + 0.072 0.001475 -0.05957 0.1935 2000
Visible badge size 0.1573 & 0.1253 0.003066 0.1547 0.899 2000
Age x Visible badge size| 0.1625 £ 0.1206 0.002716  0.1637 0.9035 2000
2
Age -0.1717 4+ 0.3308 0.009138 -0.1759 0.2765 2000
Visible badge size 0.4376 4+ 0.4209 0.01007 0.4411 0.8765 2000
Age x Visible badge size| 0.1519 £ 0.2003 0.004882 0.1564 0.785 2000
SE 6, of U; and U; 1.081 & 0.2981 0.007512 1.031 - 2000
3
Age -0.2946 4+ 0.2086 0.005435 -0.2819 0.065 2000
Visible badge size 0.6978 + 0.3232 0.007203 0.6844 0.9875 2000
Age X Visible badge size| -0.2366 + 0.3171 0.006219 -0.2212 0.214 2000
SE 6, of uij 1.477 £ 0.2922 0.005487 1.447 - 2000
4
Age -0.23 +0.3446 0.007577 -0.2315 0.248 2000
Visible badge size 0.5603 + 0.4519 0.009053 0.5611 0.9025 2000
Age x Visible badge size |-1.023E-4 + 0.3004 0.006884 0.005352 0.508 2000
SE 6, of U; and U; 1.069 + 0.3241 0.007896  1.029 - 2000
SE 6, of U;; 0.758 +£ 0.2778 0.009824 0.7578 - 2000

Table 3: Diagnostics for Data set 2. Estimations of the parameters based on the data
sets from the Solberg article for Case 1 and 2, as generated by R and Winbugs, and
Case 3 and 4, as generated by Winbugs.
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Figure 12: Diagnostics for Data set 2, Case 4. Final trace, autocorrelation and kernel
density plots of the SE 6;, of U;;, the slowest converging parameter, as generated by
Winbugs.
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Figure 9: Diagnostics for Data set 2, Case 1. Final trace, autocorrelation and kernel
density plots of Visible badge size, the most slowly converging parameter, as
generated by Winbugs.
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Figure 10: Diagnostics for Data set 2, Case 2. Final trace, autocorrelation and kernel
density plots of Age, the most slowly converging parameter, as generated by Winbugs.
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Figure 11: Diagnostics for Data set 2, Case 3. Final trace, autocorrelation and kernel
density plots of Visible badge size, the most slowly converging parameter, as
generated by Winbugs.
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Figure 13: Prior density plots (top row, as generated by R), and kernel density plots
(bottom row, as generated by Winbugs) of the SE 6, of U;, U; for Case 2 and the SE 6,
of Uj; for Case 3, respectively, for Data set 2. Note the differences in the scaling of the

y-axes.
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Figure 14: Prior density plots (top row, as generated by R), and kernel density plots
(bottom row, as generated by Winbugs) of the SE 6, of U;, U; and the SE &y, of U; jr
respectively fro Case 4 of for Data set 2. Note the differences in the scaling of the

y-axes.



5 RESULTS

R, Case1

Visible badge size

cao

o

@ w@o o

Winbugs, Case 1

Visible badge.size

o@

Winbugs, Case 3

Visible badge size

om0

Visible badge size

Visible badge.size

Visible badge size

-1500 -1000 -500

-2000

R, Case 2

o °
8 i
T T T T T T
B 0 1 2 3 4
Age
Winbugs, Case 2
B
o °
8 §
T T T T T T
-1 0 1 2 3 4
Age
Winbugs, Case 4
°
T T T T T T
5000 4000  -3000  -2000  -1000 0

Age
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5.4 Dataset3

In this section output diagnostics for the analysis of the data set given in the article
written by Barette and Vandall are presented. The estimations of the model coefficients,
as generated by R and Winbugs, are presented in Table 5 and the output diagnostics
of the the most slowly converging parameter in the Bayesian analysis of Winbugs are
presented in Figure 16, 17, 18 and 19 for Case 1, 2, 3 and 4, respectively. In the table
and the figures the parameters of the sex, age and the antler size trait along with the
interaction parameter between sex and age as well as sex and antler size are referred to
as ‘Sex’, "Age’, "Antler size’, ‘Sex x Age’ and ‘Sex x Antler size’, respectively. Density
plots of the estimated standard deviations of the random effects for Case 2, 3 and 4 can
be found in Figure 20 and 21.

Case
Software | Std. dev. of the RE 2 3 4
R oy 25.23867% * *
Winbugs oy 24.67561% - 11.31489%
oy - 21.95006% 35.42440%

Table 4: Diagnostics for Data set 3. The ratio between the standard deviation of the
random effect and the total variance in the response variable logit(p;;) for Case 2, as
generated by R and Winbugs and for Case 3 and 4 as generated by Winbugs only.
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’Software‘Case‘ ‘ ‘
’ R ‘ 1 ‘ Model coef. « ‘ Mean + SE zvalue P(Z > |z|)Ppost.(a >0) DF ‘
Sex 0.98213 £ 0.03439 28.56 <2e-16 1 1
Age 0.55721 £ 0.03250 17.14 <2e-16 1 1
Antler size 1.19526 4+ 0.04149 28.81 <2e-16 1 1
Sex x Age -0.42398 + 0.03247 -13.06 <2e-16 0 1
Sex x Antler size 0.45156 £ 0.03505 12.88 <2e-16 1 1
Est. dispersion parameter 20.34
2
Sex 1.47493 + 0.31876  4.627  3.71e-06 0.99999 1
Age 1.00316 + 0.34437 2.913 0.00358 0.99809 1
Antler size 1.68790 + 0.32408 5.208  1.91e-07 1.00000 1
Sex x Age -0.36751 £+ 0.03928 -9.357 < 2e-16 0.00000 1
Sex x Antler size 0.47470 £ 0.04310 11.013 <2e-16 1.00000 1
SE 6, of U; and U; 1.3119 4 0.2348  5.588  2.29e-08 - 1
(Winbugs| 1 | Model coef. « | Mean+SE  MC Error Median Pyst.(a > 0)Samples|
Sex 0.9835 + 0.03598 8.375E-4 0.9844 1.0 2000
Age 0.5584 4+ 0.03257 7.289E-4  0.5578 1.0 2000
Antler size 1.196 £0.042 9.735E-4  1.195 1.0 2000
Sex x Age -0.4239 £ 0.03229 7.694E-4 -0.4229 0.0 2000
Sex x Antler size 0.4519 + 0.03564 7.218E-4 0.4519 1.0 2000
2
Sex 1.479 + 0.351 0.01176 1.472 1.0 4000
Age 0.9863 + 0.3612 0.01157  0.9895 0.997 4000
Antler size 1.712 £ 0.3429  0.01146 1.706 1.0 4000
Sex x Age -0.3695 £ 0.03912 6.095E-4 -0.3688 0.0 4000
Sex x Antler size 0.4769 £+ 0.04382 8.199E-4 0.476 1.0 4000
SE 6, of U; and U; 1.386 +0.2682 0.005412  1.347 - 4000
3
Sex 1.179 + 0.1398 0.003133  1.175 1.0 2000
Age 1.164 + 0.1706  0.004379  1.159 1.0 2000
Antler size 1.654 +0.1495 0.003714 1.657 1.0 2000
Sex x Age 0.272 £0.1625 0.003781 0.2673 0.9625 2000
Sex x Antler size 0.3732 +0.1399 0.003179 0.3721 0.994 2000
SE &, of Uj; 2.071 £0.109 0.002413  2.067 - 2000
4
Sex 1.495 + 0.4578  0.01727 1.492 0.999 2000
Age 1.62 4 0.496 0.01839 1.617 0.9955 2000
Antler size 2.213 +0.4806 0.01859 2.189 1.0 2000
Sex x Age 0.3826 + 0.2907 0.007783 0.3818 0.909 2000
Sex x Antler size 0.3732 +£0.1399 0.003179 0.3721 0.975 2000
SE 6, of U; and U; 1.515 £ 0.4665 0.01335 1.478 - 2000
SE 6y, of Uj; 3.791 £ 0.3561 0.008257  3.766 - 2000

Table 5: Diagnostics for Data set 3. Estimations of the parameters based on the data
sets from the Barrette and Vandal article for Case 1 and 2, as generated by R and
Winbugs, and Case 3 and 4, as generated by Winbugs.
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Figure 16: Diagnostics for Data set 3, Case 1. Final trace, autocorrelation and kernel
density plots of Sex, the most slowly converging parameter, as generated by Winbugs.
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Figure 17: Diagnostics for Data set 3, Case 2. Final trace, autocorrelation and kernel
density plots of Sex, the most slowly converging parameter, as generated by Winbugs.
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Figure 18: Diagnostics for Data set 3, Case 3. Final trace, autocorrelation and kernel
density plots of Sex, the most slowly converging parameter, as generated by Winbugs.
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Figure 19: Diagnostics for Data set 3, Case 4. Final trace, autocorrelation and kernel
density plots of Sex, the most slowly converging parameter, as generated by Winbugs.
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Figure 20: Prior density plots (top row, as generated by R), and kernel density plots
(bottom row, as generated by Winbugs) of the SE 6, of U;, U; for Case 2 and the SE 6,
of Uj; for Case 3, respectively, for Data set 3. Note the differences in the scaling of the

y-axes.
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Figure 21: Prior density plots (top row, as generated by R), and kernel density plots
(bottom row, as generated by Winbugs) of the SE &, of U;, U; and the SE 6;, of U,
respectively fro Case 4 of for Data set 3. Note the differences in the scaling of the

y-axes.
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Figure 22: Isolines in the ‘Sex vs. Age’ trait space of Data set 3 along with the
individuals (marked as dots).
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Figure 23: Isolines in the "Sex vs. Antler size’ trait space of Data set 3 along with trait

values for the individuals (marked as dots).
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5.5 Dataset4

In this section output diagnostics for the analysis of the newspaper citations are pre-
sented. The estimations of the model coefficients, as generated by R and Winbugs, are
presented in Table 7 and the output diagnostics of the the most slowly converging pa-
rameter in the Bayesian analysis of Winbugs are presented in Figure 24, 25, 26 and 27
for Case 1, 2, 3 and 4, respectively. In the table and the figures the parameters of the
readership and the circulation trait along with the interaction parameter between the
two of these are referred to as 'Readership’, ‘Circulation” and 'Readership x Circula-
tion’, respectively. Density plots of the estimated standard deviations of the random
effects for Case 2, 3 and 4 can be found in Figure 28 and 29.

Case
Software | Std. dev. of the RE 2 3 4
R o 10.31155% * *
Winbugs ot 23.98898% - 17.83186%
oy - 16.12637% 8.120731%

Table 6: Diagnostics for Data set 4. The ratio between the standard deviation of the
random effect and the total variance in the response variable logit(p;;) for Case 2, as
generated by R and Winbugs and for Case 3 and 4 as generated by Winbugs only.
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’Software‘Case‘ ‘ ‘
] R \ 1 \ Model coef. « \ Mean =+ SE zvalue P(Z > |z|)Ppost.(x >0) DF ‘
Readership 0.166156 + 0.011349 14.641 <2e-16 1 1
Circulation -0.392013 4+ 0.022410 -17.492 < 2e-16 0 1
Readership x Circulation|-0.036143 £ 0.006741 -5.362  8.23e-08 0 1
Est. dispersion parameter 18.59
2
Readership 0.173342 + 0.040112 4.321 1.55e-05 1.00000 1
Circulation -0.396321 + 0.105131 -3.770 0.000163 0.00012 1
Readership x Circulation|-0.036387 £ 0.006795 -5.355  8.56e-08 0.00000 1
SE 6, of U; and Uj 0.1999 + 0.1026 1.948 0.0514 - 1
]Winbugs\ 1 \ Model coef. x \ Mean =+ SE MC Error Median Ppos;. (o > O)Samples‘
Readership 0.1663 £ 0.0115 2.325E-4 0.1663 1.0 2000
Circulation -0.393 £ 0.02164 4.263E-4 -0.3931 0.0 2000
Readership x Circulation|-0.03627 + 0.006731 1.463E-4 -0.036 0.0 2000
2
Readership 0.1769 £ 0.06723 0.004673 0.1741 0.9915 2000
Circulation -0.3976+ 0.1654 0.00883  -0.3968 0.0315 2000
Readership x Circulation| -0.03631+ 0.006832 1.276E-4 -0.0362 0.0 2000
SE 6, of U; and Uj 0.3054+ 0.2294 0.01145  0.2356 - 2000
3
Readership 0.1798 £+ 0.05739 0.002791  0.179 0.9985 2000
Circulation -0.4289 £ 0.09964 0.003207 -0.4302 0.0 2000
Readership x Circulation| -0.036 +0.0304  0.001629 -0.03602 0.1125 2000
SE 6y, of Uij 0.3718 £ 0.1196  0.003481 0.3477 - 2000
4
Readership 0.1852 £ 0.07229 0.004936 0.1811 0.9965 2000
Circulation -0.4429 + 0.1701  0.008695 -0.4339 0.0105 2000
Readership x Circulation| -0.03708 £ 0.02374 9.188E-4 -0.03753 0.0575 2000
SE 6, of U; and u; 0.2761 £ 0.2712 0.01712  0.2034 - 2000
SE 6y, of Uij 0.2635 £ 0.1122  0.002976 0.24 - 2000

Table 7: Diagnostics for Data set 4. Estimations of the parameters based on the data
from 2010 regarding the 5 biggest Norwegian newspapers, for Case 1 and 2, as
generated by R and Winbugs, and Case 3 and 4, as generated by Winbugs.
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Trace plot of Readership x Circulation Autocorrelation plot of Readership x Circulation Density plot of Readership x Circulation
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Figure 24: Diagnostics for Data set 4, Case 1. Final trace, autocorrelation and kernel
density plots of Readership x Circulation, the most slowly converging parameter, as

generated by Winbugs.
o Trace plot of Circulation ‘ DAutocorrela.tion plot of Readership Density plot of Readership
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Figure 25: Diagnostics for Data set 4, Case 2. Final trace, autocorrelation and kernel
density plots of Readership, the most slowly converging parameter, as generated by
Winbugs.
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Figure 26: Diagnostics for Data set 4, Case 3. Final trace, autocorrelation and kernel
density plots of Readership x Circulation, the most slowly converging parameter, as

generated by Winbugs.
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Figure 27: Diagnostics for Data set 4, Case 4. Final trace, autocorrelation and kernel
density plots of Age, the most slowly converging parameter, as generated by Winbugs.
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Figure 28: Prior density plots (top row, as generated by R), and kernel density plots
(bottom row, as generated by Winbugs) of the SE 6, of U;, U; for Case 2 and the SE 6,
of Uj; for Case 3, respectively, for Data set 4. Note the differences in the scaling of the

y-axes.
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Figure 29: Prior density plots (top row, as generated by R), and kernel density plots
(bottom row, as generated by Winbugs) of the SE 6, of U;, U; and the SE 6y, of Uj;,
respectively fro Case 4 of for Data set 4. Note the differences in the scaling of the
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Figure 30: Isolines in the trait space of Data set 4 along with trait values for the
individuals (marked as dots).
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6 Discussion

As one can see from the tables in Section 5, the estimates of the model coefficients gen-
erated by the frequentist and the Bayesian approach in general seem to be very similar.
The standard errors (SE) also tend to get similar values. Further, as far as the Bayesian
approach is concerned, all trace and autocorrelation plots in Section 5 along with the
low values of the MC errors; in general being 5% or less of the respective SEs; indicate
that convergence of the MCMC algorithms being used by Winbugs has been reached.

The SEs of the model coefficients for the cases in which random effects (RE) of some
kind were included in the model, tend to be bigger than for Case 1 in which no REs
were present. This is what to be expected. The use of individual-specific REs U;, U;
implies the presence of overdispersion as described in Section 2.1 and is a measure for
how well the chosen traits describe the data given the choice of model (in this case the
adjusted Bradley-Terry (BT) model (6)). Hence, the use of it implies that the chosen
traits not necessarily give a satisfactory description, and the values of the model coeffi-
cients o might be estimated to have larger variance, i.e. be more uncertain, than what
is to be expected when no REs are considered. On the other hand the contest-specific
REs U;; are measures for how well the adjusted BT model (6) fits the data. Hence the
use of these implies that (6) might not necessarily describe the nature of the data satis-
factory, giving more uncertainty and hence, more variance in the estimates.

Further, one can also notice that no single trait” coefficients oy were estimated to be
close to 0, except possibly the age trait coefficient for Case 2 of Data set 1. The values
of the posterior probabilities, referred to as Ppost.(oc > 0) in the tables in Section 5, in
general suggest the coefficient estimates to be significant, mainly suggesting that no
traits were redundant. Using these posterior probability values it also seems like the
cross-product coefficients; except for one exception; appear to be significant. The one
exception is the estimate of the "Age x Visible badge size’ coefficient for Case 4 of Data
set 2 as shown in Table 3. The estimate itself is obviously close to 0 and Ppos;. (¢ > 0)
lies close to 1/2. This is further confirmed by the corresponding isoline plot in Fig-
ure 15. One can see that all trait pairs for the respective individuals are distributed far
away from (x7, x3), the intercept point of the isolines. Hence the sparrows for this case
in general all lie on the same side of a large amount of isolines, indicating a strongly
transitive model. From that point of view it is not surprising that the cross-product
coefficient gets as small as it does. This can also be seen more or less directly from the
coordinates values (o /a2, —a1 /a12) of (¥}, x3) as given in Section 1.4; the smaller the
cross-product coefficient 1o gets, the bigger the absolute values of the coordinate val-
ues will be.

Looking at the tables in Section 5 one can see that the "Est. dispersion parameter” output
from R confirm that overdispersion in some amount is present in all data sets. Further,
this confirms the need for including the individual-specific REs in the model as they, as
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mentioned in Section 2.1, simulate overdispersion.

Comparing the SEs of the estimated p;-s for the non-RE Case 1 with the other RE Cases
2, 3 and 4 there is no doubt that the REs do make a difference to the model fitting of
the data; the SEs get significantly larger when REs of some kind are taken into account.
This is also confirmed in the tables of Section 5 in which none of the REs are estimated
to be non-significant. Output diagnostics for some of the p;;-s for all data sets and cases
can be found in the very last part of the Appendix of this report. Here one can clearly
see that the underlying variance in the p;; parameters increase when REs are used in
the model. Also, comparing the plots of the prior density distribution of the standard
deviations o, of U;, U; and o}, for Uj; as given in Section 5 along with the correspond-
ing kernel density plots, these figures also confirm that the REs in general do make a
difference to the model fitting compared to the non-RE case. We see that for most of
the cases the kernel density plots differs considerably from their respective prior plots.
This would have not been the case if the REs did not contribute with relevant informa-
tion about the data sets with respect to the given model fitting. Further, for the three
data sets evaluated in Table 2, 4 and 6 it can be seen that a substantial part of the total
variance in logit(p;j) comes from the variance in the REs in all cases.

When it comes to intransitivity we observe from the isoline plots that all data sets in
all cases; except for one exception discussed below; are evaluated to have a transi-
tive dominance structure. In transitive cases the trait values of the individuals are not
distributed around the intercept point (x},x3) as described in Section 1.4. From the
description of the circular property of the intransitive model and the changing of dom-
inance magnitude along successive isolines as described in Section 1.4 it follows that
an individual along an isoline will dominate all individuals distributed on the "less-
dominate" side of the isoline. Hence if all individuals are distributed on one side of
an isoline it is impossible to obtain the circular effect described in Section 1.4, and the
underlying dominance structure of the model fitting is transitive.

According to this one can observe from the isoline plots that the dominance structure
of all data sets seem to be transitive, except for Case 1 of Data set 2. In this excep-
tion, we can clearly see that both the individual-specific and the contest-specific REs
make a difference; excluding them gives an intransitive model, including them gives
a transitive model. For Data set 2 one can also observe that all model fittings exclud-
ing the contest-specific RE U;; predict the dominance of juvenile sparrows to be more
dependent on the badge size than the adult sparrows, since juveniles are distributed
further away from the isoline intercept and hence, the value of the gradient vector
(e12(—x3 +xj2), a12(x] — x;1)) indicating change in dominance, gets bigger. Intuitively
this observation may be regarded as sensible as one could assume the juveniles to use
the badge size to compensate for lack of age in disputes with older sparrows. On the
other hand, including Uj;;, the situation is the opposite; now the adults are the ones be-
ing more dependent on the badge size. This phenomenon, that a subgroup within the
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group of individuals being evaluated with the same value for a categorical trait (in this
case age), changes from being more to less dependent on the second trait type in the
model than the other subgroup(s) when Uj; is taken into account, is also observed in
the ‘Sex vs. Age’ evaluation of Data set 3 as displayed in Figure 22.

As one can see from above, the use of REs in generalized mixed models contribute
to the model fitting in several ways. In general they contribute with more information
to the model fitting and hence more variance to the parameters being estimated, and
from this thesis one can see some of the possible effects of this, as for example for Data
set 2 in which the use of REs seemed to change the model suggested for the data set
from being apparently intransitive to transitive. The use of contests-specific REs may
also change to which extent a subgroup’s dominance, as described above, depends on a
certain trait. Hence, when fitting generalized mixed models to data sets these potential
effects should be considered.
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The dominance matrices for Data set 3 and 4, respectively.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 [NA 65 27 38 24 14 30 28 13 28 14 12 24 19 26 17 14 5 2 5
213 NA 29 72 26 18 17 56 6 16 16 15 17 14 30 15 12 12 7 4
3|15 7 NA 0 2 112 41 25 26 19 4 32 27 20 43 18 23 12 4 6
410 0 35 NA 21 16 31 43 13 27 25 38 38 22 23 20 19 19 13 12
5|19 0 3 3 NA 14 36 2 18 46 38 33 32 26 16 22 19 34 13 8
66 12 2 5 0 NA 51 4 29 14 12 31 36 22 34 19 24 14 11 6
714 9 0 1 1 0 NA 2 28 24 21 39 38 38 7 22 22 25 16 7
82 0 0 0 12 10 20 NA 11 26 10 20 14 8 33 6 16 5 8 0
911 0 0 1 0O O O 2 NAO9 O 2 40 O 1 12 0 19 21 7
()2 0 0 0 2 1 1 1 1 NA 4 8 61 39 0 67 32 33 21 10
mo 1 0 1 3 0 1 1 25 2 NA S50 30 47 0 39 24 31 36 28
206 3 1 0 0 1 1 2 39 6 0 NA 52 23 24 23 43 9 24 7
B3)1 1 1 0 0 O O 2 0 0O O 1 NA 1 8 35 32 23 36 18
40 3 0 0 0 O O 1 21 1 0 1 43 NA 14 0 23 16 24 9
50 o 0o 0 O 2 1 1 23 17 7 0 2 2 NA 9 18 0 6 3
6/1 3 0 3 0 0 1 0 O 1 0 O 0 140 0 NA 27 0 68 8
713 6 0 2 0 0 0O 0 128 0 0 O O O O 1 NA 0 99 32
B o o o 1 0 0 0 1 0 0 0 0 1 1 6 16 20 NA 37 0
92 o0 o0 1 0 0 0 0O 0O O 0O O O O O O 3 0 NA 2
21 1 0 1 0 0 0 0 0O O O O O O 1 0 0 137 7 NA

[Aftenposten VG Dagbladet BT DN

Aftenposten NA 543 564 903 330

VG 1134 NA 612 670 410

Dagbladet 672 313 NA 596 349

BT 458 154 119 NA 89

DN 394 176 172 256 NA

Explanatory variables for Data set 4.

Readership | Circulation
Aftenposten | 663000 239831
VG 884000 233295
Dagbladet | 431000 98130
BT 232000 82432
DN 266000 80559

47
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Winbugs implementation code for the model along with corresponding initial val-
ues for the MCMC algorithm of the Bayesian approach for Data set 1, Case 1, 2, 3 and

4, respectively.
Case 1

model

{
f

}

Age

or(i in 2:n){
for(j in

1:(i =)

X[i,j] ~ dbin(p[i,jl, N[i,jl)
logit(p[i,jl) <— Age=(x[i,1] — x[j,1]) + Total.badge.size=*(x[i,2] — x[j,2])

Total .badge.size
Int_AgeTotal .badge.size ~ dnorm(0.0,1.0E—6);

+ Int_AgeTotal.badge.sizex(x[i,1] * x[j,2] — x[j,1] = x[i,2])

~ dnorm(0.0,1.0E—6);

~ dnorm(0.0,1.0E—6);

p.Age <— step (Age)
p.TBS <— step(Total.badge.size)
p.Int <— step(Int_AgeTotal.badge.size)

list (Age

=0

Total .badge.size

=0,

Int_AgeTotal .badge.size = 0)

Case

model

{

2

U[1] ~ dnorm(0.0, tau)
for(i in 2:n){
Uli] ~ dnorm (0.0, tau)

for(j in

1:(i =)

X[i,jl ~ dbin(p[i,jl, Nli,jl)

}

Age ~ dnorm (0.0

Total.badge.size
Int_AgeTotal .badge.size ~ dnorm(0.0,1.0E—6);
tau ~ dgamma(1.0E-3,1.0E-3); # 1/sigma”2

sigma <— 1.0/sq

logit(p[i,j]) <— Age=(x[i,1] — x[j,1]) + Total.badge.size=(x[i,2] — x[j,2])
+ Int_AgeTotal.badge.sizex(x[i,1] » x[j,2] — x[j,1] = x[i,2])
+Uli] = U[j]

,1.0E-6);
~ dnorm(0.0,1.0E—6);

rt(tau);

p.Age <— step (Age)
p-TBS <— step(Total.badge.size)
p-Int <— step (Int_AgeTotal.badge.size)

list (Age

=0,
Total .badge. size
Int_AgeTotal.bad

Case 3

model

{

for(i in 2:n){
for(j in

}

=0,
ge.siz = 0, tau = 10)

1:(i —1))f
Uli,j] ~ dnorm(0.0, tau)
X[i,j] ~ dbin(p[i,jl, N[i,jl)
logit(p[i,jl) <— Age=(x[i,1] — x[j,1]) + Total.badge.size+(x[i,2] — x[j,2]) + Int_AgeTotal.badge.size=(x[i, 1] = x[j,2
+ Uli,j]

Age ~ dnorm(0.0,1.0E-6);

Total.badge.size

~ dnorm(0.0,1.0E—6);

Int_AgeTotal .badge.size ~ dnorm(0.0,1.0E—6);

tau ~ dgamma(1.0

E1,1.0E1); # 1/sigman2
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sigma <— 1.0/sqrt(tau);

p.Age <— step (Age)
p.TBS <— step(Total.badge.size)
p-Int <— step (Int_AgeTotal.badge.size)

list (Age = 0,
Total.badge.size = 0,
Int_AgeTotal .badge.size = 0, tau = 10)

Case 4

model

{

U[1] ~ dnorm (0.0, tau)
for(i in 2:n){
Uli] ~ dnorm (0.0, tau)
for(j in 1:(i—1)){
U2[i,j] ~ dnorm(0.0, tau)
X[i,j] ~ dbin(pli,j], N[i,j])
logit(p[i,jl) <— Age=(x[i,1] — x[j,1]) + Total.badge.size+(x[i,2] — x[j,2]) + Int_AgeTotal.badge.size=(x[i, 1] = x[j,2
+ Uli] = U[j] + U2[i,j]

}

Age ~ dnorm(0.0,1.0E-6);

Total .badge.size ~ dnorm(0.0,1.0E—6);
Int_AgeTotal .badge.size ~ dnorm(0.0,1.0E—6);
tau ~ dgamma(1.0E1,1.0E1); # 1/sigma’2
sigma <— 1.0/sqrt(tau);

tau2 ~ dgamma(1.0E0,1.0E0);

sigma2 <— 1.0/sqrt(tau2);

p-Age <— step (Age)
p-TBS <— step(Total.badge.size)
p-Int <— step (Int_AgeTotal .badge.size)

list(Age =0,
Total.badge.size = 0,
Int_AgeTotal .badge.size = 0, tau = 10, tau2 = 10)
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Winbugs implementation code for the model along with corresponding initial val-
ues for the MCMC algorithm of the Bayesian approach for Data set 2, Case 1, 2, 3 and

4, respectively.
Case 1

model

{

for(i in 2:n){
for(j in 1:(i—1)){
XIi,j] ~ dbin(pli,j1, N[i,j])
logit(p[i,j]) <— Agex(x[i,1] — x[j,1]) + Visible.badge.sizex(x[i,2] — x[j,2])
+ Int_AgeVisible.badge.size+(x[i,1] * x[j,2] — x[j,1] = x[i,2])

}

Age ~ dnorm(0.0,1.0E-6);

Visible .badge.size ~ dnorm(0.0,1.0E—6);
Int_AgeVisible .badge.size ~ dnorm(0.0,1.0E—6);
p.Age <— step (Age)

p.VBS <— step(Visible.badge.size)

p.Int <— step(Int_AgeVisible.badge.size)

list (Age = 0,
Visible .badge.size = 0,
Int_AgeVisible.badge.size = 0)

Case 2

model

{

U[1] ~ dnorm (0.0, tau)
for(i in 2:n){
U[i] ~ dnorm(0.0, tau)
for(j in 1:(i—1)){
X[i,j] ~ dbin(pli,j], N[i,j])
logit(p[i,j]) <— Age=(x[i,1] — x[j,1]) + Visible.badge.size+(x[i,2] — x[j,2]) + Int_AgeVisible.badge.size(x[i,1] * x
+ Uli] - UL}

}

Age ~ dnorm(0.0,1.0E-6);

Visible .badge.size ~ dnorm(0.0,1.0E-6);
Int_AgeVisible.badge.size ~ dnorm(0.0,1.0E—6);
tau ~ dgamma(1.0E—-3,1.0E-3); # 1/sigma”2
sigma <— 1.0/sqrt(tau);

HHHHHHHH Estimating the total variance of logit(p[i,j])
for(i in 1:(n—-1)){
for(j in (i+1):n){
| pli,jl<— 1-plj, il
}
for(i in 1:n){
logit(p[i,i]) <— 0
}

for(i in 1:n){

for(j in 1:n){

) 1[i,j1 <= (logit(pli,j1))=(logit(pli,jl))
}

s <— sum(1[,])/(n*(n-1))
HHHH

p-Age <— step (Age)
p.VBS <— step(Visible.badge.size)
p-Int <— step (Int_AgeVisible.badge.size)

list (Age =0,
Visible .badge.size = 0,
Int_AgeVisible.badge.size = 0
, tau = 10)
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Case 3
model

for(i in 2:n){
for(j in 1:(i—1)){
Uli,j] ~ dnorm(0.0, tau)
X[i,j] ~ dbin(pli,j], N[i,j])
logit(p[i,j]) <— Age=(x[i,1] — x[j,1]) + Visible.badge.size+(x[i,2] — x[j,2]) + Int_AgeVisible.badge.size(x[i,1] * x
+ Ul ]

}

Age ~ dnorm(0.0,1.0E—6);

Visible .badge.size ~ dnorm(0.0,1.0E—6);
Int_AgeVisible .badge.size ~ dnorm(0.0,1.0E—6);
tau ~ dgamma(1.0E—-3,1.0E—3); # 1/sigma”2
sigma <— 1.0/sqrt(tau);

p.Age <— step (Age)
p.VBS <— step(Visible.badge.size)
p.Int <— step(Int_AgeVisible.badge.size)

list (Age = 0,
Visible .badge.size = 0,
Int_AgeVisible.badge.size = 0

, tau = 10)
Case 4
model

{

U[1] ~ dnorm (0.0, tau)
for(i in 2:n){
Uli] ~ dnorm (0.0, tau)
for(j in 1:(i—1)){
U2[i,j] ~ dnorm (0.0, tau2)
X[i,j] ~ dbin(pli,j], N[i,j])
logit(p[i,jl) <— Age=(x[i,1] — x[j,1]) + Visible.badge.size=*(x[i,2] — x[j,2]) + Int_AgeVisible.badge.size=(x[i, 1] * x
+ Uli] = U[j] + U2[i,j]
}

}

Age ~ dnorm(0.0,1.0E-6);

Visible .badge.size ~ dnorm(0.0,1.0E—6);
Int_AgeVisible.badge.size ~ dnorm(0.0,1.0E—6);
tau ~ dgamma(1.0E—-3,1.0E—-3); # 1/sigma”2
tau2 ~ dgamma(1.0E—3,1.0E—3);

sigma <— 1.0/sqrt(tau);

sigma2 <— 1.0/sqrt(tau2);

p-Age <— step (Age)
p-VBS <— step(Visible.badge.size)
p-Int <— step(Int_AgeVisible.badge.size)

list (Age = 0,

Visible .badge.size = 0,
Int_AgeVisible.badge.size =0
10

10)

, tau2
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Winbugs implementation code for the model along with corresponding initial val-
ues for the MCMC algorithm of the Bayesian approach for Data set 3, Case 1, 2, 3 and

4, respectively.
Case 1

model

{

list (Sex

for(i in 2:n){
for(j in 1:(i—1)){
X[i,j] ~ dbin(pli,j], N[i,j])
logit(p[i,j]) <— Sexx(x[i,1] — x[j,1]) + Age=(x[i,2] — x[j,2]) + Antler.size+(x[i,3] — x[j,3])
+ Int_SexAgex(x[i,1] = x[j,2] — x[j,1] » x[i,2]) + Int_SexAntler.size«(x[i,1] = x[j,3] — x[j,1] = x[i,3])

}

Sex ~ dnorm(0.0,1.0E—6);

Age ~ dnorm(0.0,1.0E-6);

Antler.size ~ dnorm(0.0,1.0E—6);
Int_SexAge ~ dnorm(0.0,1.0E—6);
Int_SexAntler.size ~ dnorm(0.0,1.0E—6);

p-Sex <— step (Sex)

p.Age <— step (Age)

p.AS <— step (Antler.size)

p.Intl <— step (Int_SexAge)

p-Int2 <— step (Int_SexAntler.size)

= 0, Age = 0, Antler.size = 0, Int_SexAge = 0, Int_SexAntler.size = 0)

Case 2

model

{

U[1] ~ dnorm(0.0, tau)
for(i in 2:n){
Uli] ~ dnorm (0.0, tau)
for(j in 1:(i—1)){
X[i,j] ~ dbin(pli,jl, N[i,j])
logit(pli,jl) <— Sex=#(x[i,1] — x[j,1]) + Agex(x[i,2] — x[j,2]) + Antler.size=(x[i,3] — x[j,3])
+ Int_SexAge=(x[i,1] = x[j,2] — x[j,1] = x[i,2]) + Int_SexAntler.size=(x[i,1] = x[j,3] — x[j,1] = x[i,3])
+ U[i] — U[j]

}

Sex ~ dnorm(0.0,1.0E—6);

Age ~ dnorm(0.0,1.0E-6);

Antler.size ~ dnorm(0.0,1.0E—6);

Int_SexAge ~ dnorm(0.0,1.0E—6);
Int_SexAntler.size ~ dnorm(0.0,1.0E—6);

tau ~ dgamma(1.0E—-3,1.0E-3); # 1/sigma”2
sigma <— 1.0/sqrt(tau);

p-Sex <— step(Sex)

p-Age <— step (Age)

p-AS <— step (Antler.size)

p-Intl <— step (Int_SexAge)

p-Int2 <— step(Int_SexAntler.size)

list(Sex = 0, Age = 0, Antler.size = 0, Int_SexAge = 0, Int_SexAntler.size = 0, tau = 10)

Case 3

model

{

for(i in 2:n){
for(j in 1:(i—1)){
Uli,j] ~ dnorm (0.0, tau)
XIi,j] ~ dbin(pli,j], N[i,j])
logit(p[i,j]) <= Sexx(x[i,1] — x[j,1]) + Agex(x[i,2] — x[j,2]) + Antler.sizex(x[i,3] — x[j,3])
+ Int_SexAgex(x[i,1] = x[j,2] — x[j,1] *= x[i,2]) + Int_SexAntler.sizex(x[i,1] = x[j,3] — x[j,1] = x[i,3]) + U[i,j]
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}

Sex ~ dnorm(0.0,1.0E—6);

Age ~ dnorm(0.0,1.0E-6);

Antler.size ~ dnorm(0.0,1.0E—6);
Int_SexAge ~ dnorm(0.0,1.0E—6);
Int_SexAntler.size ~ dnorm(0.0,1.0E—6);
tau ~ dgamma(1.0E2,1.0E2); # 1/sigma’2
sigma <— 1.0/sqrt(tau);

p-Sex <— step(Sex)

p-Age <— step (Age)

p-AS <— step (Antler.size)

p-Intl <— step (Int_SexAge)

p.-Int2 <— step (Int_SexAntler.size)

list(Sex = 0, Age = 0, Antler.size = 0, Int_SexAge = 0, Int_SexAntler.size = 0, tau = 10)

Case 4

model
{
U[1l] ~ dnorm (0.0, tau)
for(i in 2:n){
Uli] ~ dnorm (0.0, tau)
for(j in 1:(i—1)){
U2[i,j] ~ dnorm (0.0, tau2)
X[i,j] ~ dbin(pli,j1, N[i,j])
logit(p[i,j]) <= Sexx(x[i,1] — x[j,1]) + Agex(x[i,2] — x[j,2]) + Antler.sizex(x[i,3] — x[j,3])
+ Int_SexAgex(x[i,1] = x[j,2] — x[j,1] » x[i,2]) + Int_SexAntler.size«(x[i,1] = x[j,3] — x[j,1] = x[i,3])
+ ULi] - U[j] + U2[i,j]

}

Sex ~ dnorm(0.0,1.0E—6);

Age ~ dnorm(0.0,1.0E—6);

Antler.size ~ dnorm(0.0,1.0E—6);

Int_SexAge ~ dnorm(0.0,1.0E—6);
Int_SexAntler.size ~ dnorm(0.0,1.0E—6);

tau ~ dgamma(1.0E—-3,1.0E-3); # 1/sigma”2
tau2 ~ dgamma(1.0E1,1.0E1)

sigma <— 1.0/sqrt(tau);

sigma2 <— 1.0/sqrt(tau2);

p.Sex <— step(Sex)

p-Age <— step (Age)

p-AS <— step (Antler.size)

p-Intl <— step (Int_SexAge)

p-Int2 <— step(Int_SexAntler.size)

list (Sex = 0, Age = 0, Antler.size = 0, Int_SexAge = 0, Int_SexAntler.size = 0, tau = 10, tau2 = 10)
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Winbugs implementation code for the model along with corresponding initial val-
ues for the MCMC algorithm of the Bayesian approach for Data set 4, Case 1, 2, 3 and

4, respectively.
Case 1

model

{

for(i in 2:n){
for(j in 1:(i—1)){
X[i,j] ~ dbin(pli,j], NIi,j])
logit(p[i,j]) <= Readership«+(x[i,1] — x[j,1]) + Circulation=(x[i,2] — x[j,2])
+ Int_ReadershipCirculation«(x[i,1] * x[j,2] — x[j,1] = x[i,2])

}

Readership ~ dnorm(0.0,1.0E—-6);

Circulation ~ dnorm(0.0,1.0E—6);
Int_ReadershipCirculation ~ dnorm(0.0,1.0E—6);
p-R <— step(Readership)

p.C <— step(Circulation)
p.Int <— step(Int_ReadershipCirculation)

}

list (Readership = 0,

Circulation = 0,
Int_ReadershipCirculation = 0)
Case 2

model
{
U[1] ~ dnorm (0.0, tau)
for(i in 2:n){
U[i] ~ dnorm(0.0, tau)
for(j in 1:(i—1)){
X[i,j] ~ dbin(pli,j], NIi,j])
logit(p[i,j]) <— Readership=(x[i,1] — x[j,1]) + Circulation*(x[i,2] — x[j,2]) + Int_ReadershipCirculation=(x[i,1] = x
+ Uli] - Ulj]

}

Readership ~ dnorm(0.0,1.0E—6);

Circulation ~ dnorm(0.0,1.0E-6);
Int_ReadershipCirculation ~ dnorm(0.0,1.0E—6);
tau ~ dgamma(1.0E—-3,1.0E-3); # 1/sigma”2
sigma <— 1.0/sqrt(tau);

p-R <— step(Readership)
p.C <— step(Circulation)
p-Int <— step (Int_ReadershipCirculation)

list (Readership = 0,

Circulation = 0,
Int_ReadershipCirculation = 0,
tau = 10)

Case 3

model

{
for(i in 2:n){

for(j in 1:(i—1)){
Uli,j] ~ dnorm(0.0, tau)
X[i,jl ~ dbin(p[i,jl, N[i,jl)
logit(p[i,j]) <— Readership«(x[i,1] — x[j,1]) + Circulation=(x[i,2] — x[j,2]) + Int_ReadershipCirculation+(x[i,1] * x
+Uli,j]

}

Readership ~ dnorm(0.0,1.0E—6);
Circulation ~ dnorm(0.0,1.0E—6);
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Int_ReadershipCirculation ~ dnorm(0.0,1.0E—6);
tau ~ dgamma(1.0E-3,1.0E-3); # 1/sigma”2
sigma <— 1.0/sqrt(tau);

p-R <— step(Readership)
p.C <— step(Circulation)
p-Int <~ step (Int_ReadershipCirculation)

list (Readership = 0,

Circulation = 0,
Int_ReadershipCirculation = 0,
tau = 10)

Case 4

model
{
U[1] ~ dnorm (0.0, tau)
for(i in 2:n){
Uli] ~ dnorm (0.0, tau)
for(j in 1:(i—1)){
U2[i,j] ~ dnorm(0.0, tau2)
X[i,j] ~ dbin(pli,j], Nli,j])
logit(p[i,j]) <— Readership=+(x[i,1] — x[j,1]) + Circulation=(x[i,2] — x[j,2]) + Int_ReadershipCirculation=(x[i,1] = x
+ Uli] = U[j] + U2[i,j]

}
Readership ~ dnorm(0.0,1.0E—6);

Circulation ~ dnorm(0.0,1.0E—6);
Int_ReadershipCirculation ~ dnorm(0.0,1.0E—6);

tau ~ dgamma(1.0E—-3,1.0E-3); # 1/sigma”2
sigma <— 1.0/sqrt(tau);
tau2 ~ dgamma(1.0E—3,1.0E—-3); # 1/sigma”2

sigma2 <— 1.0/sqrt(tau2);

p-R <— step(Readership)
p-C <— step(Circulation)
p-Int <— step(Int_ReadershipCirculation)

list (Readership = 0,

Circulation = 0,
Int_ReadershipCirculation = 0,
tau = 10,

tau2 = 10)
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Winbugs implementation code for the dominance matrices of Data set 1, 2, 3 and 4,
respectively.

list (X = structure (.Data = ¢(NA, 6, 11, 1, 3, 4, 4, 10, 4,

7, 8, 6, 27, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0, NA, NA, 1,
3, NA, NA, 5, 12, 3, 7, 4, 25, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
0, NA, NA, 7, 13, 9, NA, 7, NA, 1, 10, 1, 14, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, 0, 0, 0, NA, 5, 8, 2, 6, 2, NA, NA, 3, 4, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, 0, 0, 0, 0, NA, NA, NA, NA, 2, NA,
NA, 3, 3, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0, NA, 0, 0, NA,
NA, NA, 3, 8, NA, 4, 1, 18, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0,
NA, NA, 0, NA, NA, NA, NA, NA, NA, NA, NA, 8, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, 0, 0, 0, 0, NA, 0, NA, NA, NA, 2, 7, 1, 27, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, 0, 0, NA, 0, 0, 0, NA, NA, NA, NA,
1, 3, 33, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0, 0, 0, NA, NA,
NA, NA, 0, NA, NA, NA, NA, 13, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
0, 0, 0, NA, NA, 0, NA, 0, 0, NA, NA, NA, 12, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, 0, 0, 0, 0, 0, 0, NA, 0, 0, NA, NA, NA, 21, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, 14, 2, 0, O, O, O, O, O, O, O, O,
0, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, 7, 13, 1, 14, 6, 2, 7, 4, 13,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0, NA, 17, 2, 56,
32, 25, 25, 3, 25, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
0, 0, NA, 2, 33, 8, 12, 12, 4, 18, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, 0, 0, 0, NA, 6, NA, 1, 6, NA, 9, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, 0, 0, 6, 0, NA, 25, 25, 25, 12,
41, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0, 0, 0, NA,

0, NA, 8, 17, 3, 18, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, 0, 0, 0, 0, 4, 0, NA, 31, 3, 9, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, 0, 0, 0, 0, 0, 0, 0, NA, 6, 69, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, 0, 0, 0, NA, 0, 0, 0, 0, NA, 12,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0, 0, 0, 0, O, O,
0, 13, 0, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 28, 23, 30, 5, 4, 41,
19, 46, 23, 34, 2, 25, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0, NA,
16, NA, 5, 2, 2, 18, 7, 7, 14, 11, NA, 9, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, 0, 0, NA, NA, 11, 16, NA, 5, 9, NA, 12, NA, 7, 2, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, 0, NA, NA, NA, 2, NA, 5, 9, NA, 14, 12,
7, NA, 4, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0, 0, 0, 0, NA, 3, 11,
NA, 12, 4, NA, 5, 4, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0, 0,
0, NA, 0, NA, 1, NA, NA, NA, NA, 5, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, 0, 0, NA, 0, 0, 0, NA, 2, NA, NA, 12, 2, NA, 4, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, 0, 0, 0, 0, NA, NA, 0, NA, 12, 4, 2, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, 0, 0, 0, NA, 0, NA, NA, 0,
NA, 2, NA, 5, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0, 0, NA,
0, 0, NA, NA, 0, 0, NA, NA, NA, 1, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, 0, 0, 0, 0, NA, NA, 0, 0, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
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1, 1.07360160553842, —1, 0.381022499292208, 1, 0.350241205681266,

-1, 0.504147673735979, 1, 0.227116031237495, —1, 0.150162797210139,
—1, —1.40429253014246, 1, —0.065306258066459, 1, —0.219212726121172,
1, —0.111478198482873, 1, —0.311556606954000, 1, —0.311556606954000

), .Dim = ¢(37,2)), n = 37)

list (X = structure (.Data = ¢(NA, 20, NA, 11, 10, 0, 2, 5, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, 2, NA, NA, 6, 14, 8, 8, 17, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, 6, 24, NA, NA, 5, 6, 1, 16, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, 4, 3, NA, 5, NA, 8, 4, 10, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 5, 5, NA, 1, 4, NA,
3, 7, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, 0, 5, NA, 0, 0, 1, NA, 8, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 1,
12, NA, 0, 5, 7, 0, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 8,
3, 7, 7, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, 3, NA, NA, 4, 9, 9, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 2, NA, 4,
NA, 4, 2, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, 4, NA, 5, 2, NA, 15, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, 3, NA, 4, 1, 8, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, 25, 19, 15, 6, 2, 1, 2, 6, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, 5, NA, 21, 7, 2, 3, 1, 3, 3, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 11, 18, NA, 6, 1,
1, 2, 1, 3, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, 1, 4, 1, NA, 4, NA, NA, NA, 3, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 1,
0, 0, 1, NA 0, 1, 1, 1, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, 0, 0, 0, NA, 1, NA, 0, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, 0, 0, 0, NA, 0, 1, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0, 0, O,
NA, 0, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, 0, 0, 0, 0, 3, NA, NA, NA, NA
), .Dim = ¢(27,27)), N = structure (.Data = ¢(1, 22, 14, 17,
14,5,2,6,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,

1,1, 1, 22,1, 48, 30, 17, 13, 13, 29, 13, 1, 1, 1, 1, 1, 1,
1,1,1,1,1,1,1,1,1, 1,1, 1, 14, 48, 1, 13, 8, 1, 9, 12,
9,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1, 1, 17,
30, 13,1, 10, 7, 1, 16, 6, 1,1, 1,1, 1,1, 1, 1, 1, 1, 1,
1,1,1,1, 1,1, 1, 14, 17, 8, 10, 1, 12, 4, 15, 4, 1, 1, 1,
1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,13,1, 7, 12,
1, 4, 14, 6,1, 1,1, 1,1, 1, 1,1, 1,1, 1,1, 1,1, 1,1,
1,1, 2,13, 9,1, 4, 4,1,8,5,1,1,1,1,1,1,1,1, 1,
1,1,1,1,1,1,1,1,1, 6,29, 12, 16, 15, 14, 8, 1, 23, 1,
1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1, 4, 13, 9,
6, 4,6,5,23, 1,1, 1,1,1,1,1,1,1,1,1,1,1,1, 1,
1, 1,1,1,1,1,1,1,1,1,1,1,1,1, 2,11, 5, 11, 10, 21,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1, 2,
1,3,1,9,1,5,5,7,1,1,1,1,1,1,1,1,1,1,1,1, 1,
1,1, 1,1, 1,11, 3, 1, 8, 14, 13, 24, 3, 10, 1, 1, 1, 1, 1,
1,1,1,1,1,1,1,1,1,1,1,1,1,5,1,8,1, 6,3, 6, 2,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1, 11,
9, 14, 6, 1, 23, 24, 3, 4,1, 1,1, 1,1, 1,1, 1, 1,1, 1,1,
1,1,1,1,1,1, 10,1, 13, 3, 23, 1, 28, 1, 1, 1, 1, 1, 1,
1,1,1,1,1,1,1,1,1,1,1, 1,1, 1, 21, 5, 24, 6, 24, 28,
1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1, 1,
1,5,3,2,3,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,
1, 1,1,1,1,1,1,7,10,1,4,1,1,1,1,1,1,1,1, 1,
i, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,
1, 1, 30, 30, 16, 7, 2, 1, 2,6, 1,1, 1,1, 1,1, 1,1, 1, 1,
1,1, 1,1,1,1,1,1,30,1,39,11,2,3,1,3,3,1, 1, 1,
1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 30,39, 1,7, 1,
1, 2,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,
1, 16, 11, 7, 1,5, 1,1, 1,3, 1,1, 1, 1,1, 1,1, 1, 1, 1,
1,1,1,1,1,1,1,1,7,2,1,5,1,1,1,1,4,1,1,1, 1,
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1, 1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,1,1,1,1, 1,

i, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,

i, 2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,

i, 1,1,1,1,2,3,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,

1, 1,1,1,1,1,1,1,1,1,1,6,3,3,3,4,1, 1,1, 1), .Dim = c(27,
27)), x = structure (.Data = c(—1, —0.361078708065587, 1, —0.481067940284305,
0, —0.391076016120266, 1, —0.161096654367723, 1, —0.391076016120266,

1, —0.391076016120266, 1, —0.761042815461314, 1, —0.261087681216655,
0, —0.661051788612382, 1, 1.32876964568136, 0, 3.05861441016788,

-1, —0.601057172503023, 1, 3.03861620479809, —1, —0.241089475846869,
-1, —0.00111101140943261, 0, —0.361078708065587, 0, —0.681049993982169,
0, 0.648830663108624, 1, —0.261087681216655, 1, 0.678827971163303,

-1, —0.00111101140943261, 1, —0.361078708065587, 1, —0.761042815461314,
1, —0.391076016120266, 1, —0.721046404721741, -1, —0.601057172503023,
1, 0.088880912754606), .Dim = c(27,2)), n = 27)

list (X = structure (.Data = ¢(NA, 65, 27, 38, 24, 14, 30, 28,
13, 28, 14, 12, 24, 19, 26, 17, 14, 5, 2, 5, 3, NA, 29, 72, 26,
18, 17, 56, 6, 16, 16, 15, 17, 14, 30, 15, 12, 12, 7, 4, 5, 7,
NA, 0, 2, 112, 41, 25, 26, 19, 4, 32, 27, 20, 43, 18, 23, 12,
4, 6, 0, 0, 35, NA, 21, 16, 31, 43, 13, 27, 25, 38, 38, 22, 23,
20, 19, 19, 13, 12, 9, 0, 33, 3, NA, 14, 36, 2, 18, 46, 38, 33,
32, 26, 16, 22, 19, 34, 13, 8, 6, 12, 2, 5, 0, NA, 51, 4, 29,
14, 12, 31, 36, 22, 34, 19, 24, 14, 11, 6, 4, 9, 0, 1, 1, 0,
NA, 2, 28, 24, 21, 39, 38, 38, 7, 22, 22, 25, 16, 7, 2, 0, O,
0, 12, 10, 20, NA, 11, 26, 10, 20, 14, 8, 33, 6, 16, 5, 8, NA,
1, 0,0,1,0, 0,0, 2, NA 91, 0, 2, 40, 0, 1, 12, 0, 19, 21,
7,2,0,0,0, 2,1, 1 NA, 43, 86, 61, 39, 0, 67, 32,
33, 21, 10, 0, 1, 0 1, 25, 2, NA, 50, 30, 47, 0,

o =
-

1
1, 3

39, 24, 31, 36, 28, 6, 3, 1, 0, 0, 1, 1, 2, 39, 6, 0, NA, 52,
23, 24, 23, 43, 9, 24, 7,1, 1, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1,
NA, 1, 8, 35, 32, 23, 36, 18, 0, 3, 0, 0, 0, 0, 0, 1, 21, 1,
0, 1, 43, NA, 14, 0, 23, 16, 24, 9, 0, 0, 0, 0, 0, 2, 1, 1, 23,
17, 7, 0, 2, 2, NA, 9, 18, 0, 6, 3, 1, 3, 0, 3, 0, 0, 1, 0, 0,

1, 0, 0, 0, 140, 0, NA, 27, 0, 68, 8, 3, 6, 0, 2, 0, 0, 0, O,
0,0, 0,1, NA 0, 99, 32, 0, 0, 0, 1, 0, 0, O,

128, 0, 0, O,
i, 0,0,0,0, 1,1, 6, 16, 20, NA, 37, 0, 2, 0, O, 1, 0, O,
o, o, 0, 0,0, 0,0 0,0,0,3,0,NA 29,1,1, 0,1, 0,0,

0, NA, 0, O, O, O, O, O, 1, 0, 0, 137, 7, NA), .Dim = c(20,

20)), N = structure (.Data = c(1,

68, 32, 38, 33, 20, 34, 30, 14, 30, 14, 18, 25, 19, 26, 18, 17,
5,64, 6, 68, 1, 36, 72, 26, 30, 26, 56, 6, 16, 17, 18, 18, 17,

30, 18, 18, 12, 7, 5, 32, 36, 1, 35, 35, 114, 41, 25, 26, 19,

4, 33, 28, 20, 43, 18, 23, 12, 4, 6, 38, 72, 35, 1, 24, 21, 32,

43, 14, 27, 26, 38, 38, 22, 23, 23, 21, 20, 14, 13, 33, 26, 35,

24, 1, 14, 37, 14, 18, 48, 41, 33, 32, 26, 16, 22, 19, 34, 13,

8, 20, 30, 114, 21, 14, 1, 51, 14, 29, 15, 12, 32, 36, 22, 36,

19, 24, 14, 11, 6, 34, 26, 41, 32, 37, 51, 1, 22, 28, 25, 22,

40, 38, 38, 8, 23, 22, 25, 16, 7, 30, 56, 25, 43, 14, 14, 22,

1, 13, 27, 11, 22, 16, 9, 34, 6, 16, 6, 8, 1, 14, 6, 26, 14,

18, 29, 28, 13, 1, 92, 25, 41, 40, 21, 24, 12, 128, 19, 21, 7,

30, 16, 19, 27, 48, 15, 25, 27, 92, 1, 45, 92, 61, 40, 17, 68,

32, 33, 21, 10, 14, 17, 4, 26, 41, 12, 22, 11, 25, 45, 1, 50,

30, 47, 7, 39, 24, 31, 36, 28, 18, 18, 33, 38, 33, 32, 40, 22,

41, 92, 50, 1, 53, 24, 24, 23, 43, 9, 24, 7, 25, 18, 28, 38,

32, 36, 38, 16, 40, 61, 30, 53, 1, 44, 10, 35, 32, 24, 36, 18,

19, 17, 20, 22, 26, 22, 38, 9, 21, 40, 47, 24, 44, 1, 16, 140,

23, 17, 24, 9, 26, 30, 43, 23, 16, 36, 8, 34, 24, 17, 7, 24,

10, 16, 1, 9, 18, 6, 6, 4, 18, 18, 18, 23, 22, 19, 23, 6, 12,

68, 39, 23, 35, 140, 9, 1, 28, 16, 68, 8, 17, 18, 23, 21, 19,

24, 22, 16, 128, 32, 24, 43, 32, 23, 18, 28, 1, 20, 102, 32,

5, 12, 12, 20, 34, 14, 25, 6, 19, 33, 31, 9, 24, 17, 6, 16, 20,

1, 37, 137, 4, 7, 4, 14, 13, 11, 16, 8, 21, 21, 36, 24, 36, 24,

6, 68, 102, 37, 1, 36, 6, 5, 6, 13, 8, 6, 7, 1, 7, 10, 28, 7,

18, 9, 4, 8, 32, 137, 36, 1), .Dim = ¢(20, 20)), x = structure (.Data = c(1,
—0.0231086102911805, 1.10107548472630, 1, —0.0231086102911805,
1.10107548472630, —1, 0.901235801356043, 1.10107548472630, 1,
—0.485280816114792, 1.86043788798581, 1, —0.485280816114792,
0.341713081466782, —1, 3.2120968304741, 1.10107548472630, -1,
0.901235801356043, 1.10107548472630, 1, 0.439063595532431, —1.17701172505225,
—1, 1.36340800717965, —1.17701172505225, 1, —0.485280816114792,
—0.417649321792733, 1, —0.485280816114792, —0.417649321792733,

—1, —0.485280816114792, 0.341713081466782, —1, —0.485280816114792,
0.341713081466782, —1, —0.0231086102911805, 0.341713081466782,

1, —0.0231086102911805, —1.17701172505225, 1, —0.947453021938404,
—0.417649321792733, —1, —0.947453021938404, —1.17701172505225,

-1, —0.0231086102911805, —0.417649321792733, —1, —0.947453021938404,
—1.17701172505225, 1, —0.947453021938404, —1.17701172505225), .Dim = c¢(20,3)), n = 20)

list (X = structure (.Data = c(NA, 543, 564, 903, 330, 1134,

NA, 612, 670, 410, 672, 313, NA, 596, 349, 458, 154, 119,

NA, 89, 394, 176, 172, 256, NA), .Dim = c(5,5)), N = structure (.Data = c(1, 1677,
1236, 1361, 724, 1677, 1, 925, 824, 586, 1236, 925, 1, 715, 521,
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1361, 824, 715, 1, 345, 724, 586, 521, 345, 1), .Dim = c(5,5)),

x = structure (.Data = ¢(1.23793068897421, —0.987599731889648, 6.847751184396,
—0.317576409654443, 0.398104187346705, —2.71118012801022, —1.08285211600846,
—0.863691692046816, —0.199186212517686, —2.92490502155532), .Dim = c(5,

2)), n =5)

R functions made by the author of this report.
intransitiveModel3 = function(dominanceMatrix, covariateMatrix, interactionVector = 0, randomEffect = 1){

This function uses the BIm{Bradley—Terry2} function to fit data sets to an intransitive extension (optional)
of the Bradley—Terry model including individual—specific random effects (optional).

B

interactionVector is as vector containing the indices of the covariates for which the interaction parameter

is to be computed. # I.e., if interactionVector = c(i,j,i, k), the interaction parameter between the i—th

and the j—th as well as the i—th and the k—th # covariate value columns (from left to right) in covariateMatrix
are computed.

F#H I I I

nlnteractions = 0
playerNames = c("Ind1","Ind2")
covNames = colnames(covariateMatrix)

pred = covariateMatrix
nCovariates = dim(pred)[2]

contests = countsToBinomial (dominanceMatrix)
names(contests )[1:2] = playerNames

if (length(interactionVector) > 1){
pl = contests[,1]
p2 = contests[,2]
interactions1l = matrix (NA, length (pl),length (interactionVector)/2)
interactions2 = matrix (NA, length (p2),length(interactionVector)/2)

intLength = dim(interactions1)[1]
nlnteractions = dim(interactionsl)[2]

for (i in 1l:nInteractions){

interactions1[,i]
interactions2[,i]

}

contests = data.frame(contests)

interactionNames = matrix(’’, 1, nlnteractions)
for(i in 1l:nlnteractions){

interactionNames[i] = paste(’Int_’, covNames[interactionVector[2+i —1]], covNames[interactionVector[2+i]],

}

contestsIndCmds = matrix(’’, 1, 2)
contestsIndCmds[1] = 'contests$Indl
contestsIndCmds[2] = ’contests$Ind2
for(i in l:nlInteractions){
contestsIndCmds [1]
contestsIndCmds [2]

data.frame(Individual
data.frame(Individual

contests$Indl ,”’
contests$Ind2 ,”’

paste (contestsindCmds[1], interactionNames[i],
paste (contestsindCmds[2], interactionNames[i],

interactions1[,’, i,
interactions2[,’, i,

}
contestsIndCmds = substr (contestsIndCmds, 1, nchar(contestsIndCmds)—1)
contestsIndCmds = paste (contestsIndCmds, ’)’, sep = ')

contests$Indl = eval(parse(text=contestsindCmds[1]))
contests$Ind2 = eval(parse(text=contestsindCmds[2]))
}

Individual = matrix (1:dim(pred)[1],dim(pred)[1],1)
colnames(Individual) = ’'Individual’
pred = data.frame(cbind (Individual, pred))

data = list(contests, pred)
names(data) = c(’contests’, predictions )
formula = "’
for(i in 1:nCovariates){

formula = paste(formula,covNames[i], '[Individual]+’,sep="")
}

if (nInteractions == 1){
formula = paste(formula, interactionNames, '+’ ,sep="")
}

sep =

pred[pl[1l:intLength], interactionVector[2xi —1]]*pred[p2[1:intLength], interactionVector[2x1i]]
pred[p2[1:intLength], interactionVector[2+i—1]]+pred[pl[1:intLength], interactionVector[2+i]]

")
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if (nInteractions > 1){
for (i in 1l:nlnteractions){
formula = paste(formula, interactionNames[i], +’,sep="")

}
}
if (randomEffect){
formula = paste(formula, (1! Individual)’,sep="")

} elsef{
formula = substr(formula, 1, nchar(formula)—1)
}

modelCommand = paste ('model = BIm(cbind (winl,win2), Indl, Ind2, ~’, formula, ’, data=data, id="Individual")’)
model = eval(parse (text=modelCommand))

return(list (data = data, model = model, summary = summary(model)))

sigmaDist = function(a,b, values){
# This function returns prior distribution values for the sigma parameter, sigma being the standard deviation of the random effects.

return (((2)x*(b”a)/gamma(a))=*(values(—(2+a+1)))*exp(—bxvalues”(—2)))

isolines = function(a, b, ¢, covariateMatrix, traitIndices , filename, main, type = ’'png’){ #, sigmaa = 0, sigmab = 0){

# Plots the isolines of a data set in the trait space as given by the vector traitlndices giving the indices of the columns of covariate
#  which the specified trait are to be subtracted. a, b and ¢ are model coefficients.

X = covariateMatrix [, traitIndices[1]]
Y = covariateMatrix [, traitIndices [2]]
A=c(0.2, 1, 2, =02, -1, —2)

B = —a/c — Ax(b/c)

xlab colnames(covariateMatrix )[ traitIndices[1]], ylab = colnames(covariateMatrix)[ traitIndices[2]],

curve (A[1]+*x + B[1], xlim = c(min(X, b/c)—1, max(X, b/c)+1), ylim = c(min(Y, —a/c)—1, max(Y, —a/c)+1),
main = main)

points (X, Y)

for(i in 1:length(A)){
abline (B[1], A[i])
}

savePlot(filename, type)
Output diagnostics for 10 of the first estimated p;; for each case of each data set.

Data set 1
Case 1

node mean sd MC error 2.5% median 97.5% start sample

pl[2,1] 0.02577 0.0053 1.04E-4 0.01687 0.02497 0.03762 100000 2000
p[3,1] 0.9318 0.009577 1.868E-4 0.9112 0.9329 0.9488 100000 2000
p[3,2] 0.998 7.415E-4 1.479E-5 0.9962 0.9982 0.9991 100000 2000
pl4,1] 0.03007 0.007967 1.611E-4 0.0175 0.0289 0.04761 100000 2000
pl4,2] 0.738 0.04701 0.001158 0.6375 0.7409 0.821 100000 2000
pl4,3] 0.001232 5.236E-4 1.036E-5 5.211E-4 0.001123 0.002602 100000 2000
pl[5,1] 0.9457 0.00833 1.985E-4 0.9279 0.9465 0.9604 100000 2000
pl[5,2] 0.9994 2.43E-4 5.725E-6 0.9988 0.9994 0.9997 100000 2000
pl[5,3] 0.4012 0.04289 9.141E-4 0.3166 0.4014 0.4846 100000 2000
pl5,4] 0.9996 1.884E-4 4.281E-6 0.9991 0.9996 0.9999 100000 2000
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Case 2

node mean sd MC error 2.5% median 97.5% start sample

pl2,1] 0.6152 0.1255 0.002827 0.3552 0.621 0.8405 100000 2000

p[3,1] 0.4288 0.1179 0.002521 0.2155 0.4235 0.6725 100000 2000
p[3,2] 0.325 0.1397 0.003302 0.1026 0.3098 0.6393 100000 2000

pl4,1] 0.6795 0.1369 0.003623 0.382 0.6934 0.9049 100000 2000

pl4,2] 0.9219 0.06994 0.00162 0.7249 0.9428 0.9924 100000 2000
pl4,3] 0.3492 0.126 0.002952 0.1338 0.3375 0.6147 100000 2000

pl[5,1] 0.03138 0.02843 5.995E-4 0.004294 0.02334 0.1065 100000 2000
pl[5,2] 0.1699 0.0968 0.002125 0.03847 0.1505 0.4116 100000 2000
pl5,3] 0.009012 0.01117 2.568E-4 5.699E-4 0.005218 0.04179 100000 2000
pl[5,4] 0.4567 0.1644 0.00398 0.1561 0.4531 0.775 100000 2000

Case 3

node mean sd MC error 2.5% median 97.5% start sample

p[2,1] 0.004705 0.02359 4.72E-4 1.813E-16 4.293E-7 0.05484 100000 2000
pl[3,1] 0.01687 0.03636 8.898E-4 4.287E-9 0.001774 0.1323 100000 2000
p[3,2] 0.98 0.1201 0.002288 0.7864 1.0 1.0 100000 2000

pl4,1] 0.01922 0.08624 0.002189 9.725E-17 3.725E-7 0.2693 100000 2000
pl4,2] 0.08793 0.1872 0.004665 4.453E-11 0.002724 0.7285 100000 2000
pl4,3] 5.793E-4 0.005815 1.464E-4 0.0 1.441E-11 0.0013 100000 2000
p[5,1] 0.0549 0.1078 0.002396 1.673E-8 0.006063 0.3799 100000 2000
pl[5,2] 0.09719 0.1459 0.00352 2.336E-6 0.02863 0.52 100000 2000

pl5,3] 0.007166 0.02085 4.522E-4 1.611E-12 7.704E-5 0.06987 100000 2000
pl5,4] 0.06906 0.1036 0.002385 5.146E-6 0.02557 0.3761 100000 2000

Case 4

node mean sd MC error 2.5% median 97.5% start sample

pl[2,1] 0.01744 0.04513 0.001049 3.966E-9 7.561E-4 0.1553 100000 2000
pl[3,11 0.0286 0.0477 9.726E-4 1.264E-6 0.007987 0.1678 100000 2000
pl3,2] 0.8472 0.3071 0.005956 0.002914 0.9993 1.0 100000 2000

pl4,1] 0.0665 0.1569 0.003729 7.845E-9 0.002077 0.6502 100000 2000
pl4,2] 0.1783 0.2534 0.004913 4.609E-6 0.04921 0.9004 100000 2000
pl4,3] 0.00974 0.0333 8.004E-4 7.406E-11 1.091E-4 0.09691 100000 2000
pl5,1] 0.02254 0.06366 0.001382 2.747E-9 5.49E-4 0.2344 100000 2000
p[5,2] 0.06215 0.1117 0.002291 9.555E-7 0.01248 0.4171 100000 2000
p[5,3] 0.004745 0.01644 3.808E-4 9.015E-12 4.608E-5 0.04778 100000 2000
pl5,4] 0.04867 0.08486 0.001856 1.08E-6 0.01137 0.322 100000 2000

Data set 2
Case 1

node mean sd MC error 2.5% median 97.5% start sample
p[2,1] 0.4304 0.04036 8.123E-4 0.3483 0.4311 0.5079 100000 2000
pl3,1] 0.4673 0.02003 4.078E-4 0.4263 0.4677 0.5048 100000 2000
pl[3,2] 0.5351 0.02037 4.075E-4 0.4965 0.5346 0.5773 100000 2000
pl4,1] 0.4558 0.03564 7.705E-4 0.3843 0.4561 0.5246 100000 2000
pl4,2] 0.4998 0.01683 3.911E-4 0.4667 0.5 0.532 100000 2000
pl4,3] 0.4777 0.02051 4.571E-4 0.4362 0.4781 0.5174 100000 2000
pl5,1] 0.4375 0.03886 7.958E-4 0.3598 0.4379 0.5114 100000 2000
p[5,2] 0.5 0.004737 1.101E-4 0.4906 0.5 0.509 100000 2000

pl5,3] 0.4685 0.01992 4.095E-4 0.4279 0.4688 0.5062 100000 2000
pl5,4] 0.5001 0.0121 2.813E-4 0.477 0.5 0.5241 100000 2000

Case 2

node mean sd MC error 2.5% median 97.5% start sample
pl2,1] 0.2315 0.05503 0.001197 0.132 0.2279 0.3529 100000 2000
pl3,1] 0.322 0.2129 0.004284 0.02987 0.2769 0.8106 100000 2000
p[3,2] 0.5518 0.232 0.004535 0.09147 0.5583 0.9345 100000 2000
pl4,1] 0.4757 0.08244 0.001612 0.3163 0.4752 0.6364 100000 2000
pl4,2] 0.7322 0.05551 0.001348 0.6131 0.7349 0.8345 100000 2000
pl4,3] 0.6527 0.2195 0.004427 0.1646 0.7001 0.9671 100000 2000
pl[5,1] 0.2462 0.06494 0.00147 0.1305 0.241 0.3856 100000 2000
pl5,2] 0.5114 0.07099 0.001544 0.3687 0.5144 0.6432 100000 2000
pl5,3] 0.46 0.2326 0.00426 0.0717 0.459 0.9127 100000 2000
pl5,4] 0.2783 0.06599 0.001913 0.1575 0.2755 0.4173 100000 2000

Case 3

node mean sd MC error 2.5% median 97.5% start sample

pl2,1] 0.1279 0.06407 0.00146 0.03273 0.1185 0.2782 100000 2000
pl[3,1] 0.4627 0.269 0.006475 0.03099 0.4499 0.9388 100000 2000
pl[3,2] 0.5457 0.2646 0.00543 0.07084 0.5625 0.9638 100000 2000
pl4,1] 0.3625 0.1055 0.002194 0.1669 0.3629 0.5742 100000 2000
pl4,2] 0.7866 0.07093 0.001341 0.6316 0.7934 0.9062 100000 2000
pl[4,3] 0.4999 0.2674 0.005612 0.04224 0.5048 0.947 100000 2000
pl[5,1] 0.3012 0.1064 0.00206 0.1162 0.2902 0.5221 100000 2000
pl[5,2] 0.2198 0.09287 0.001948 0.07352 0.2082 0.4248 100000 2000
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pl5,3] 0.4704 0.2684 0.007193 0.03375 0.4607 0.9381 100000 2000
pl5,4] 0.4926 0.1346 0.00349 0.2297 0.4935 0.7529 100000 2000

Case 4

node mean sd MC error 2.5% median 97.5% start sample
pl2,1] 0.1557 0.06878 0.001819 0.04747 0.1472 0.3151 100000 2000
pl3,1] 0.3739 0.252 0.004517 0.02741 0.3247 0.9071 100000 2000
pl[3,2] 0.5633 0.2558 0.006081 0.0676 0.5867 0.9649 100000 2000
pl4,1] 0.4045 0.1035 0.002621 0.2119 0.4024 0.6035 100000 2000
Ppl4,2] 0.7792 0.0682 0.001565 0.6306 0.7846 0.8969 100000 2000
pl[4,3] 0.6267 0.2528 0.005901 0.09617 0.6882 0.9751 100000 2000
pl[5,1] 0.2887 0.1013 0.002479 0.1214 0.2786 0.5134 100000 2000
pl[5,2] 0.3082 0.1109 0.003557 0.1188 0.302 0.5443 100000 2000
pl5,3] 0.4721 0.2615 0.005875 0.03903 0.4674 0.9448 100000 2000
pl5,4] 0.4075 0.1288 0.003235 0.1804 0.397 0.6786 100000 2000

Data set 3
Case 1

node mean sd MC error 2.5% median 97.5% start sample

pl[2,1] 0.5 0.0 2.236E-12 0.5 0.5 0.5 100000 2000

p[3,1] 0.1117 0.01047 2.154E-4 0.09226 0.1112 0.1331 100000 2000
pl3,2]10.1117 0.01047 2.154E-4 0.09226 0.1112 0.1331 100000 2000
pl4,1] 0.5279 0.00982 2.116E-4 0.509 0.5277 0.5472 100000 2000
pl4,2] 0.5279 0.00982 2.116E-4 0.509 0.5277 0.5472 100000 2000
pl4,3] 0.9631 0.00519 1.192E-4 0.9523 0.9634 0.9724 100000 2000
pl[5,1] 0.2651 0.007621 1.734E-4 0.2508 0.2651 0.2803 100000 2000
pl[5,2] 0.2651 0.007621 1.734E-4 0.2508 0.2651 0.2803 100000 2000
pl[5,3] 0.6818 0.01674 3.317E-4 0.6478 0.6821 0.714 100000 2000
pl[5,4] 0.244 0.01139 2.353E-4 0.2228 0.2441 0.2673 100000 2000

Case 2

node mean sd MC error 2.5% median 97.5% start sample
p[2,1] 0.3113 0.03955 7.458E-4 0.2377 0.3103 0.3904 200000 4000
pl3,1] 0.1259 0.02444 4.655E-4 0.08225 0.1242 0.1776 200000 4000
pl3,2] 0.2413 0.03582 5.307E-4 0.1771 0.2398 0.3186 200000 4000
pl4,1] 0.1734 0.02921 4.591E-4 0.1201 0.1714 0.2346 200000 4000
pl4,2] 0.3165 0.03582 5.472E-4 0.2479 0.3155 0.3899 200000 4000
pl4,3] 0.807 0.03539 6.387E-4 0.7333 0.8092 0.8695 200000 4000
pl5,1] 0.2046 0.03465 6.64E-4 0.1419 0.2029 0.2777 200000 4000
pl[5,2] 0.3623 0.04411 7.066E-4 0.2794 0.3615 0.4545 200000 4000
pl[5,3] 0.55 0.04882 7.811E-4 0.4516 0.5501 0.6467 200000 4000
pl5,4] 0.5505 0.04753 7.655E-4 0.456 0.5507 0.6422 200000 4000

Case 3

node mean sd MC error 2.5% median 97.5% start sample

pl2,1] 0.0542 0.02665 5.696E-4 0.01543 0.05011 0.1177 100000 2000
pl3,11 0.1513 0.06055 0.001444 0.05196 0.145 0.2834 100000 2000
pl3,2] 0.188 0.06144 0.001243 0.08467 0.1816 0.3219 100000 2000
pl4,1] 0.02863 0.02491 5.902E-4 0.002003 0.02152 0.09487 100000 2000
pl4,2] 0.01659 0.01369 2.916E-4 0.001533 0.01299 0.05258 100000 2000
pl4,3] 0.9871 0.01573 3.92E-4 0.9426 0.9926 0.9997 100000 2000

pl5,1] 0.2716 0.07584 0.001851 0.1398 0.2654 0.4365 100000 2000
p[5,2] 0.02507 0.02598 5.947E-4 0.001042 0.01707 0.09739 100000 2000
p[5,3] 0.9256 0.04264 0.001043 0.816 0.9341 0.9853 100000 2000

pl5,4] 0.1278 0.06544 0.001367 0.03262 0.1159 0.2875 100000 2000

Case 4

node mean sd MC error 2.5% median 97.5% start sample

p[2,1] 0.04813 0.02511 5.635E-4 0.01262 0.04408 0.105 100000 2000
pl[3,1] 0.1609 0.06142 0.001218 0.05998 0.1541 0.3013 100000 2000
pl[3,2] 0.1975 0.06438 0.001541 0.08615 0.1925 0.3365 100000 2000
pl[4,1] 0.01076 0.01496 3.47E-4 2.389E-5 0.004951 0.05217 100000 2000
pl4,2] 0.005885 0.008182 1.471E-4 2.387E-5 0.002795 0.02889 100000 2000
pl4,3]0.991 0.01362 2.71E-4 0.9538 0.9966 1.0 100000 2000

pl5,1] 0.2777 0.07574 0.001789 0.1434 0.2728 0.4346 100000 2000

pl[5,2] 0.01566 0.02261 4.233E-4 3.307E-5 0.006975 0.08056 100000 2000
pl5,3] 0.9384 0.03897 8.874E-4 0.8417 0.9462 0.9897 100000 2000

pl5,4] 0.1345 0.06633 0.001307 0.03173 0.1259 0.2854 100000 2000

Data set 4

Case 1

node mean sd MC error 2.5% median 97.5% start sample
p[2,1] 0.711 0.007451 1.48E-4 0.6968 0.711 0.7262 100000 2000

p[3,1] 0.6059 0.007077 1.314E-4 0.592 0.606 0.6197 100000 2000
pl3,2] 0.31 0.01137 2.451E-4 0.2877 0.31 0.333 100000 2000
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pl4,1] 0.3747 0.004172 8.234E-5 0.3663 0.3746 0.3827 100000 2000
p[4,2] 0.2091 0.01013 1.991E-4 0.1894 0.209 0.2296 100000 2000
pl4,3] 0.2515 0.009396 1.913E-4 0.2335 0.2514 0.2705 100000 2000
p[5,1] 0.5948 0.007826 1.455E-4 0.5795 0.5948 0.6097 100000 2000
p[5,2] 0.2942 0.01201 2.588E-4 0.2707 0.2941 0.3186 100000 2000
pl5,3] 0.4807 0.001229 2.667E-5 0.4783 0.4807 0.4831 100000 2000
pl5,4] 0.7436 0.01042 2.127E-4 0.7223 0.7436 0.7634 100000 2000

Case 2

node mean sd MC error 2.5% median 97.5% start sample

p[2,1] 0.6707 0.009517 2.224E-4 0.6519 0.6706 0.6896 100000 2000
p[3,1] 0.5973 0.01018 2.021E-4 0.5772 0.5976 0.6171 100000 2000
pl[3,2] 0.3431 0.01276 2.462E-4 0.3185 0.3431 0.3678 100000 2000
pl[4,1] 0.3104 0.009524 2.176E-4 0.2914 0.3106 0.3287 100000 2000
pl[4,2] 0.1936 0.00959 2.155E-4 0.1755 0.1933 0.2127 100000 2000
pl4,3] 0.2072 0.009873 2.054E-4 0.189 0.2072 0.2278 100000 2000
pl5,1] 0.5156 0.01282 2.711E-4 0.4912 0.516 0.5413 100000 2000
pl5,2] 0.267 0.01213 2.43E-4 0.2425 0.267 0.2913 100000 2000
pl5,3] 0.4103 0.01316 3.067E-4 0.3854 0.4104 0.4366 100000 2000
pl5,4] 0.7371 0.01363 3.255E-4 0.71 0.7372 0.7632 100000 2000

Case 3

node mean sd MC error 2.5% median 97.5% start sample
pl[2,1] 0.6776 0.01123 2.686E-4 0.656 0.6774 0.6999 100000 2000
pl3,1] 0.5459 0.01438 3.072E-4 0.5176 0.5457 0.5736 100000 2000
p[3,2] 0.3373 0.01522 4.056E-4 0.3088 0.337 0.3674 100000 2000
pl4,1] 0.3376 0.0128 2.875E-4 0.3133 0.3377 0.3627 100000 2000
pl4,2] 0.1877 0.01335 2.606E-4 0.1612 0.1875 0.215 100000 2000
pl4,3] 0.1707 0.01363 3.109E-4 0.1454 0.1702 0.1976 100000 2000
pl5,1] 0.5471 0.01831 4.01E-4 0.5108 0.5473 0.5826 100000 2000
pl5,2] 0.3002 0.01884 4.942E-4 0.2648 0.3001 0.3393 100000 2000
pl5,3] 0.3402 0.02085 4.957E-4 0.2998 0.3399 0.3829 100000 2000
pl5,4] 0.7446 0.02213 4.59E-4 0.6992 0.7456 0.7865 100000 2000

Case 4

node mean sd MC error 2.5% median 97.5% start sample
pl[2,1] 0.6764 0.01129 2.476E-4 0.655 0.6766 0.6988 100000 2000
p[3,1] 0.549 0.01452 2.962E-4 0.5203 0.5489 0.5774 100000 2000
pl[3,2] 0.3389 0.01521 3.06E-4 0.3095 0.3388 0.3684 100000 2000
pl4,1] 0.3355 0.01278 2.387E-4 0.3101 0.3351 0.3597 100000 2000
pl4,2] 0.1875 0.01329 3.318E-4 0.1624 0.1871 0.2132 100000 2000
pl4,3]0.1718 0.01351 2.831E-4 0.1456 0.1718 0.1979 100000 2000
pl5,1] 0.5436 0.01827 3.54E-4 0.5071 0.544 0.5789 100000 2000
pl[5,2] 0.2962 0.01858 4.488E-4 0.2607 0.2956 0.3335 100000 2000
pl[5,3] 0.3419 0.02094 3.765E-4 0.3012 0.3422 0.3842 100000 2000
pl[5,4] 0.7427 0.02202 4.498E-4 0.6966 0.7435 0.7835 100000 2000
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