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control seedlings. Moreover, in our previous studies, we have 
shown the total glucosinolate levels to be higher in MINELESS 
control (non-infested) seeds than wild-type control seeds and 
seedlings (Borgen et al., 2010; Ahuja et al., 2011; Borgen et al., 
2012). Glucosinolates form a constitutive defence (Wittstock and 
Gershenzon, 2002), but it is also evident that these compounds 

accumulate in response to wounding or herbivory (Doughty 
et al., 1995; Bartlet et al., 1999; Brader et al., 2001; Mikkelsen 
et al., 2003). A variety of glucosinolates are required to limit the 
growth of various insect herbivores (Gols et al., 2008; Müller 
et al., 2010). Gols and colleagues found a negative relationship 
between the total levels of glucosinolates and survival of M. 
brassicae larvae, proposing that M. brassicae responds to high 
levels of glucosinolates rather than to specific glucosinolates 
(Gols et al., 2008). The levels of three glucosinolates (4OH-I3M, 
I3M, and 4MO-I3M), although non-significant, showed more 
elevation in MINELESS control seedlings compared to the 
wild-type seedlings. At the same time, MINELESS showed low 
myrosinase activity, which meant that more glucosinolates were 
intact, giving the seedlings higher glucosinolate levels (Borgen 
et al., 2010; Ahuja et al., 2011; Borgen et al., 2012), which prob-
ably also affects the growth of M. brassicae larvae. The levels 
of most of the indole glucosinolates were increased in both 

Fig. 8. Regulation of genes involved in the jasmonic acid (JA) pathway 
and JA responsiveness after M. brassicae feeding. The colour scale 
represents log2-transformed gene expression ratios. The grey boxes 
represent non-regulated genes. More detailed information about genes is 
given in Supplementary Tables S4, S5, and S6. Abbreviations: MM-MC, 
MINELESS M. brassicae challenged vs MINELESS control; WM-WC, wild-
type M. brassicae challenged vs wild-type control; MM-WM, MINELESS 
M. brassicae challenged vs wild-type M. brassicae challenged.

Fig. 9. Regulation of genes involved in tryptophan and glucosinolate 
(GSL) biosynthesis pathways after M. brassicae feeding. The colour scale 
represents log2-transformed gene expression ratios. The grey boxes 
represent non-regulated genes. More detailed information about genes is 
given in Supplementary Tables S4, S5, and S6. Abbreviations: MM-MC, 
MINELESS M. brassicae challenged vs MINELESS control; WM-WC, wild-
type M. brassicae challenged vs wild-type control; MM-WM, MINELESS 
M. brassicae challenged vs wild-type M. brassicae challenged.
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wild-type and MINELESS M. brassicae-challenged seedlings. 
Similarly, indole glucosinolate biosynthesis genes (CYP79B2, 
CYP79B3, SUR2, SUR1, and GSTF9), also showed upregu-
lation in both wild-type and MINELESS after M.  brassicae 
feeding. The genes CYP79B2 and SUR2, catalysing the con-
version of tryptophan to indole-3-acetaldoxime (IAOx), also 
showed induction in B. oleracea and Arabidopsis after P. rapae 
feeding (Reymond et  al., 2004; Broekgaarden et  al., 2008). 
Similar responses for these genes have also been observed in 
Arabidopsis ecotypes upon feeding by aphids Brevicoryne bras-
sicae and Myzus persicae (Kusnierczyk et al., 2007). An induc-
tion of genes of the indole glucosinolate pathway, and of indole 
glucosinolates levels, has frequently been reported as a herbi-
vore response in Brassicaceae and the model plant Arabidopsis 
(Bodnaryk, 1992; Hopkins et  al., 1998; Bartlet et  al., 1999; 
Kusnierczyk et  al., 2007; Kusnierczyk et  al., 2008; Poelman 
et al., 2008; Textor and Gershenzon, 2009). CYP81F4 (strongly 
induced in wild-type seedlings) has been shown to be mainly 
responsible for the production of 1MO-I3M (Pfalz et al., 2011) 
(Figs. 9 and 10A). Our results showed a corresponding increase 
in glucosinolate 1MO-I3M in wild-type seedlings after M. bras-
sicae feeding (Fig. 5), thereby supporting the role of CYP81F4 
in production of glucosinolate 1MO-I3M. A very similar trend 
was also observed for its hydrolysis product 1MI3M NIT 
(Fig. 6E).

The induction of JA synthesis and signalling pathways, and 
JA responsive genes, is a well known response to insect attack 
(Acosta Iván and Farmer Edward, 2010; Ballaré, 2011; Verhage 

et  al., 2011). Genes involved in the biosynthesis of JA are 
upregulated after feeding by insect herbivores such as P. rapae 
and P. xylostella (Reymond et al., 2004; Broekgaarden et al., 
2007; Ehlting et al., 2008; Kusnierczyk et al., 2011), and JA has 
been shown to be responsible for Arabidopsis resistance to cab-
bage looper (T. ni) (Chehab et al., 2011). It is therefore not sur-
prising that key genes involved in JA synthesis and signalling, 
such as LOX2, AOS, AOC2, OPCL1, OPR1, ACX1, KAT1, 
MYC2, and several JAZs, were upregulated in wild-type seed-
lings after M. brassicae feeding. However, in MINELESS seed-
lings after M. brassicae feeding, only a few genes (LOX2, AOS, 
OPCL1, and JAZ9) showed upregulation with relatively low 
induction levels compared to the wild-type (Fig. 8). The regula-
tion of fewer genes of the JA pathway, and their low expression 
levels in MINELESS compared to the wild-type, could be due 
to the reduced feeding by M. brassicae larvae on MINELESS 
plants. However, we cannot rule out the possibility that it could 
also be due to lower levels of myrosinase and glucosinolate–
myrosinase hydrolysis products, leading to reduced induction 
of genes in the JA-signalling pathway in MINELESS plants 
after attack by M. brassicae larvae.

Conclusions and perspectives

Plant–insect interactions have been studied using the insect 
herbivore cabbage moth (M.  brassicae), and wild-type and 
MINELESS B.  napus plants that lack plant defence cells 

Fig. 10. qRT-PCR analyses of genes (log2 ratios) belonging to jasmonic acid (JA), and glucosinolate biosynthesis pathways from control and M. 
brassicae-challenged seedlings. (A) Wild-type M. brassicae vs. wild-type control. (B) MINELESS M. brassicae vs. MINELESS control. (C) MINELESS 
M. brassicae vs. wild-type M. brassicae. Information about Brassica genes (with Arabidopsis homologues) is given in Supplementary Table S2 and the 
primer sequences are given in Supplementary Table S3. Transcript levels were normalized to NADH measured in the samples. Values are means of four 
independent biological replicas.
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called myrosin cells, also known as the toxic mustard oil 
mines. The results showed that M. brassicae larvae chewed 
more and performed better on wild-type B. napus plants 
than on MINELESS B. napus plants. The reduced perfor-
mance of M. brassicae larvae on MINELESS seedlings is 
possibly due to the higher levels of indole- and total glucosi-
nolates in MINELESS control (non-infested) seedlings. Due 
to the reduction in myrosinase levels, MINELESS plants 
have reduced amounts of glucosinolate hydrolysis products. 
However, the glucosinolate–myrosinase hydrolysis products, 
1MTPe and 1MTHx, were observed in very high amounts in 
MINELESS compared to the wild-type seedlings, which might 
be affecting preference or feeding behaviour. The results also 
highlight that M. brassicae, which is a generalist herbivore but 
has some preference for Brassicaceae plants, can be a specialist 
for brassicas and not a generalist. As expected, the transcrip-
tional responses showed JA as the key mediator of the defence 
response towards insect herbivory as several genes involved in 
the JA biosynthesis pathway, signalling, and JA responsive-
ness were upregulated in both wild-type and MINELESS 
seedlings. The genes belonging to tryptophan biosynthesis 
and indole glucosinolate pathway genes were induced, and 
the indole glucosinolate levels were elevated by M. brassicae 
feeding in both types of plants. A  much higher induction 
of 1MO-I3M glucosinolate was observed for M.  brassicae 
in wild-type plants compared with MINELESS plants. The 
comparison of wild-type M. brassicae and MINELESS M. 
brassicae-challenged seedlings showed a number of genes 
for JA biosynthesis, signalling, and JA-responsiveness, and 
tryptophan and glucosinolate biosynthesis, to be downregu-
lated in MINELESS seedlings. The downregulation of genes 
ASA1, IGPS, TSA1, TSB1, TSB2, CYP79B2, CYP79B3, 
CYP83B1, GSTF9, and SUR1 in MINELESS brassicae-
challenged seedlings compared to the wild-type M. brassicae-
challenged seedlings probably leads to lower accumulation of 
the glucosinolates indolyl-3-yl-methyl, 1-methoxy-indol-3-yl-
methyl, and 4-methoxy-indol-3-yl-methyl with respect to their 
control (non-infested) seedlings. Moreover, the induction of 
fewer genes and lower expression levels in MINELESS after 
M. brassicae feeding compared to the wild-type could be due 
to less feeding by M. brassicae larvae in comparison to the 
wild-type, which needs to be explored further. Currently, we 
are using MINELESS plants as a representative model for 
studying defence responses against other insect herbivores, 
including both generalists and specialists, and above- and 
below-ground herbivores, to get an overview about the role of 
myrosin cells in plant–insect interactions. We think that per-
forming such studies will provide more information about the 
importance of plant defence cells in Brassicaceae plants.

Supplementary material

Supplementary data can be found at JXB online.
Supplementary Table S1. Time-line of insect no-choice and 

induction experiments.
Supplementary Table S2. Selected B. napus genes confirmed 

by qRT-PCR based on differential regulation in microarray 
results.

Supplementary Table S3. Primer sequences.
Supplementary Table S4. Regulation of JA biosynthesis, 

signalling, and JA-responsive genes; and tryptophan and glu-
cosinolate biosynthesis pathway genes. This is in wild-type 
M. brassicae-challenged seedlings, after comparison of these 
to wild-type control seedlings.

Supplementary Table S5. Regulation of JA biosynthesis, 
signalling, and JA- responsive genes; and tryptophan and glu-
cosinolate biosynthesis pathway genes. This is in MINELESS 
M. brassicae-challenged seedlings, after comparison of these 
to MINELESS control seedlings

Supplementary Table S6. Regulation of JA biosynthesis, 
signalling, and JA- responsive genes; and tryptophan and glu-
cosinolate biosynthesis pathway genes. This is in MINELESS 
M. brassicae-challenged seedlings, after comparison of wild-
type M. brassicae-challenged seedlings to MINELESS M. 
brassicae-challenged seedlings

Supplementary Figure S1. Control (non-infested) and M. 
brassicae-damaged cotyledons of wild-type and MINELESS 
seedlings from no-choice feeding experiments. (A, E, I, M) 
Wild-type control cotyledons from day 3, 8, 10, and 12, 
respectively. (B, F, J, N) Wild-type damaged cotyledons from 
day 3, 8, 10, and 12, respectively. (C, G, K, O) MINELESS 
control cotyledons from day 3, 8, 10, and 12, respectively. (D, 
H, L, and P) MINELESS damaged cotyledons from day 3, 8, 
10, and 12, respectively.

Supplementary Video S1. M. brassicae larvae feeding on 
wild-type plants.

Supplementary Video S2. M. brassicae larvae feeding on 
MINELESS plants.
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