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Abstract

The magnetic properties of a 15uc thick LSMO thin film on SrT iO3 (STO) substrate at

T=150K was investigated using the technique of ferromagnetic resonance (FMR). The FMR

measurement of the 15uc thick LSMO thin film at a frequency f = 9.75GHz and power

P = 0.6325mW as a function of the angle ψ between the static magnetic field H, and the

easy direction of magnetization within the sample plane in the ”in-plane” (IP) configuration

displayed an FMR spectrum. This resonance spectrum shows unequal resonance field peaks.

The unequal peaks in the resonance field may be attributed to the uniaxial anisotropy

field which satisfies the conditions for ferromagnetic resonance. The unequal peaks in the

resonance field shows a maximum and minimum with negative and positive curvature which

either increases or decreases with respect to the resonance field respectively. This increase

or decrease in the resonance field depends on the magnetization direction. It has been

shown that for a thick 15uc LSMO thin film at T = 150K the center position and the full

width half maximum (FWHM) of the resonance field were 1070.1875 Oe and 159.3125 Oe

respectively.
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Chapter 1

INTRODUCTION

1.1 MOTIVATION AND OBJECTIVES

Thin films have been a topic of much interest and importance over the last decades. With

the current drive towards greater data storage densities in computer disk drives, microelec-

tronics and low field sensors, attention is being focused on the magnetic properties of these

films. The technique of FMR can therefore be used for the study of the magnetic properties

of thin films.

Ferromagnetic resonance is one of such most powerful experimental techniques which can be

used for the study of magnetic properties of thin films as a result of its high sensitivity and

high resolution. With ferromagnetic resonance, essential parameters describing magnetic

properties of thin films such as the effective magnetization, magnetization density, magnetic

anisotropy, spin relaxation time, intrinsic α-Gilbert damping constant, the spectroscopic

splitting factor (which provides information on the orbital contribution to the magnetic

moment) and the ferromagnetic resonance linewidth (which provides a means of measuring

damping in especially magnetic materials) can be determined.

The objectives of this current thesis is to determine the ferromagnetic resonance of a 15uc

thick LSMO thin film. LSMO is the most researched and studied colossal magnetoresistant

manganite. Data which were obtained from the experiment were then plotted in Matlab

1
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and based on the plot the width and center position of the FMR spectrum of the 15uc thick

LSMO thin film at T = 150K was calculated.

1.2 BRIEF HISTORYOFMAGNETISMAND FERROMAG-
NETIC RESONANCE

The quest for an answer to what magnetism is and why the magnet has the ability to

attract ferrous objects has fascinated many people including Thales of Miletus (about 634-

546 BC) and the young Albert Einstein [11,2]. Thales of Miletus described magnetism as

the attraction of iron by ” lodestone”, which is a naturally occurring mineral of magnetite,

Fe3O4 [2]. According to Phiny’s account about the history of magnetism, the magnet stone

was named after its discoverer, Magnes whiles he was pasturing his flock and the tip of his

iron-nailed shoes stuck a ”magnetick” field [3,2].

The origins of magnetism lie in the properties of the electrons as explained by the laws of

quantum physics [11]. Magnetism can be explained by using the concepts of spin which

gives rise to the spin magnetic moment, the motion of electronic charges and the orbital

magnetic moment [2]. Part of an electron’s magnetic properties (spin magnetism) results

from its quantum mechanical spin state, while another part results from the orbital motion

of electrons around an atom’s nucleus (orbital magnetism ) and from the magnetism of the

nucleus itself (nuclear magnetism) [11,2].

The history of magnetism dates back to the Chinese in 2500BC, and to the Greeks as far

as 600BC and during those era, magnetic materials were classified into three main types,

namely; para, dia and ferromagnetics [1] and in order to have some theoretical understanding

about these class of magnetic materials, concepts from electromagnetism and atomic theory

was needed [1]. It was electromagnetism which brought about the unification of electricity

and magnetism and the ideas from electromagnetism showed that moving charges produce
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magnetic fields [1]. The theory of diamagnetism was explained using the idea of the Lorentz

force

FL = q[E + (
1

C
)V ×H] (1.2.1)

on an electron which is orbiting when a magnetic field H was applied [1] and paramagnetism

was explained using the idea that atoms or molecules possess a permanent dipole moments

and these permanent dipole moments arise as a result of the fact that every orbiting electron

in a current loop acts like a tiny magnetic shell [1]. The Lorentz force, FL gives the force

acting on a charge q moving with a velocity V which is subjected to an electric field, E

and a magnetic field, H. At the atomic level, it was really difficult for an explanation and

understanding of ferromagnetism but through the research work by Heisenberg in 1920

in quantum mechanics a new door opened for the understanding of such an important

phenomenon [1].

Classical electromagnetism was at its peak when research works were carried out by Michael

Faraday (1791-1867) and James Clerk Maxwell (1831-1879) [2]. In 1831 and 1845, Michael

Faraday discovered both the electromagnetic induction and the direct connection between

magnetism and light [2]. The direct connection between magnetism and light was placed

on a firm foot mathematically by Maxwell through the studies of equations describing both

the electric and magnetic fields [2]. This led to his famous conclusion that [2]

C =
1

√
µoεo

(1.2.2)

and that light is a form of an electromagnetic wave which travels with the speed of light C.

The magnetic and the electric fields together form the two components of electromagnetism

[11].

There are several reasons why magnetism is such an important branch of physics and some

of the reasons include the following. Firstly, it can be said that over the last 2500 years,
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magnetism has been applied in the field of navigation, power production, and ” high tech”

applications [2]. Currently, the permanent magnets has found its way in areas includ-

ing; high-tension magnetos, telephone generators, telephone receivers, gramophone pick up

units, moving-coil loudspeakers, television focus units and other equipments involving de-

flection of electron beams, electricity meters and thermostats [4]. Secondly, of all the four

forces in nature; electromagnetism, strong interaction, weak interaction and gravitation,

the electromagnetic force is considered to be the greatest and it forms the basics of con-

temporary physics [2]. Thirdly, the field of magnetism is constantly undergoing dynamic

developments and is also one of fastest forefront research areas in physics because of the

ever increasing desire for ” smaller and faster ” devices [2]. For instance, in the 1980s and

1990s a number of important discoveries in the field of magnetism were made [5]. Some

of these include; interface anisotropies and the interlayer exchange coupling mechanism [5].

Currently, the field of magnetism is driven by vitality as a result of new discoveries in this

area of research [2] and it was not a surprise to the physics community when the 2007 Noble

Prize in Physics was awarded to Albert Fert and Peter Grünberg for their discovery of giant

magnetoresistance (GMR) effect in multilayers alternating a ferromagnetic metal with a

non-magnetic metal ( e.g Fe/Cr or Co/Cu) [12].

Ferromagnetic resonance (FMR) is a basic technique which is used for the study of the

forces that determine the dynamical properties of magnetic materials [14]. This technique

of ferromagnetic resonance was discovered by Griffiths (1946) but the theory of the resonance

effect was proposed by Charles Kittel (1947) [15]. The main outcome of Kittel’s theory was

that, the resonance condition for a plane surface should be

ωo = γ
√
BH (1.2.3)

instead of the Larmor condition

ωo = γH (1.2.4)



5

[15]. Since the discovery of FMR, the technique has been applied in so many research

works including the determination of the g-factor, the magnetic anisotropy constant and

the interlayer magnetic coupling of films and multilayers [16]. FMR has also been used in the

study of superlattice and single films of few layers capped with a non-magnetic metal layer

[17]. In the field of FMR spectroscopy also, the technique of FMR can provide information

on the magnetic damping through the study of the linewidth of the absorption peak [18].

1.3 FERROMAGNETISM IN METALS

The phenomenon of ferromagnetism is characterized by a spontaneous magnetization even

in the absence of an applied external field [6,1]. At temperature (T=0) all the magnetic

moment are aligned parallel and this is as a result of the exchange interaction [6]. For

the elemental transition metals, only cobalt, iron and nickel are ferromagnetic whereas

chromium and manganese are antiferromagnetic [7]. In the periodic table also, metals in

the second and third transition series and those of the isoelectronic to the magnetic members

of the first series are not ferromagnetic [7].

Ferromagnetism in the elemental transition metals such as Fe, Ni, and Co occurs as a

result of the delocalized conduction electrons from the narrow 3d band [7,13] and also as a

result of the strong intraatomic interaction [8]. In metals, ferromagnetism occurs when the

susceptibility diverges spontaneously (Stoner criterion ). The Stoner criterion is roughly

true for Fe, Co and Ni [9,11]. Although the Stoner criterion chalked some success, it

failed in the explanation for the Pauli paramagnetism above the transition temperature

and also the prediction of the destruction of ferromagnetism at the Stoner temperature(Ts)

[9]. In the case of the Pauli type paramagnetism above the transition temperature, the

model fails because of the fact that ferromagnets display a Curie-Weiss susceptibility in

the paramagnetic phase [9]. On the prediction of the destruction of ferromagnetism, the

Stoner model predicts higher temperature for the Stoner temperatures (Ts) than the Curie
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temperature (Tc) [9]. This in reality might not be true because the orientation of the

moments fluctuates critically at the Curie temperature [9] and that, ferromagnetism usually

occurs below the Curie temperature. For iron, cobalt and nickel, the Stoner temperatures

predicted by the Stoner model were 6000K, 4000K and 2900K [9] respectively whiles the

Curie temperatures for iron, colbalt and nickel are 1028K, 1393K and 631K respectively

[10].

1.4 OUTLINE OF THESIS

This work consists of five main chapters. The first chapter provides the motivation and ob-

jectives of the work and also a brief history about magnetism and ferromagnetic resonance.

This chapter also gives a brief explanation of ferromagnetism in metals. The theoretical

aspect is discussed in the second chapter. Other issues to be addressed in this chapter

include; magnetocrystalline anisotropy, shape anisotropy, magnetic surfaces and interface

anisotropies, damping in magnetic ultrathin films, LSMO, and some potential applications

of the mixed valence manganites and LSMO. In the third chapter, the methodology describ-

ing how the experimental work was carried out is discussed. The fourth chapter focuses

on the results and discussions. The conclusions and recommendations derived from the

experiment are outlined in the fifth chapter. This chapter is followed by the bibliography

and list of abbreviations and constants.



Chapter 2

THEORETICAL
CONSIDERATION

In this chapter, a brief review of the important theoretical aspects of the work is pre-

sented. This includes; magnetization in ultrathin magnetic films, magnetic anisotropies in

thin films, shape anisotropy, magnetocrystalline anisotropy, magnetic surfaces and interface

anisotropies, Landau-Lifshitz-Gilbert (LLG) equation, ferromagnetic resonance, damping in

ultrathin magnetic thin films, LSMO and some potential applications of the mixed valence

manganites and LSMO.

For magnetization in ultrathin magnetic films, the concept is that there is a loss of the

internal degree of freedom in the ultrathin films. This then results in the exchange coupling

in the ferromagnetic layer being excited by a uniform applied magnetic field. In shape

anisotropy, the magnetization is affected by the macroscopic shape of the solid. For magneto

crystalline anisotropy, the magnetization is oriented along some specific crystalline axes.

Surface and interface anisotropies occurs as a result of the broken local symmetry which

is due to the contribution of the surface energy which depends on the orientation of the

magnetization on the surface. The LLG equation is a classical equation for the rate of change

of the magnetization which can be used in the study of dispersive theory of magnetization

in ferromagnets. Ferromagnetic resonance occurs as a result of the precession of the atoms

7
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under a magnetic field.

2.1 MAGNETIZATION IN ULTRATHINMAGNETIC FILMS

Intrinsic properties such as magnetization, Curie point, anisotropy and magnetostriction in

thin films may differ from their bulk counterparts. This differences can be attributed to

the special environments of the surface and the interface atoms and also as a result of the

strain which is induced by the substrate [11]. For instance vanadium and rhodium become

ferromagnetic in thin films which is 1-2 monolayer thick whiles their bulk counterpart is

nonmagnetic [11]. In the case of ultrathin films, the ultrathin layer looses its internal

degree of freedom and since the exchange coupling in the ferromagnetic layer is excited by

the uniform applied magnetic field in the film plane, the magnetic moments across the film

is nearly parallel [5].

2.1.1 MAGNETIC ANISOTROPY IN THIN FILMS

Ferromagnetic materials usually have two directions of magnetization, namely; the ”easy”

and the ”hard ” directions [20]. The amount of energy which is required to rotate the mag-

netization direction from the preferred axes (easy axes) into the hard direction is called the

magnetic anisotropy energy [2]. In thin films, some of the sources of anisotropy includes;

surface and mechanical strain or stress [11]. Surface anisotropy arises as a result of the cou-

pling between the surface atoms to the crystal field which is produced from the anisotropic

environment [11]. The magnetic anisotropy energy (MAE) is only a few tens of µeV/atom

of the total energy of the atom [19].

Technologically, magnetic anisotropy is one of the important properties of magnetic mate-

rials. This is because depending on a material’s application, a decision is made whether to

use a material with high, low or medium magnetic anisotropy [20]. Typical example is the

ferromagnetic thin films which has a high anisotropy which is used in modern perpendicular
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magnetic recording technology with a density storage of 1 Tbits/in.2 [21] .

There are other sources of magnetic anisotropy, namely; the magnetic dipolar interaction

and the spin-orbit coupling [20]. The absence of these two other sources of anisotropy

means that the total energy of the electron-spin system does not depend on the direction of

the magnetization [20]. The spin-orbit coupling which is considered as a weak relativistic

interaction which is responsible for Hund’s rule is the physical origin of magnetic anisotropy,

magnetocrystalline anisotropy, anisotropic magnetoresistance and spin Hall effect [21,11].

The magnetic anisotropy energy and the orbital momentum are related to the Hamiltonian

and the spin orbit coupling by [21,24]

H = ξL · S (2.1.1)

where ξ is the spin orbit coupling. The anisotropy energy density, Eani which is rotationally

symmetric with respect to the easy axis and also depends on the relative orientation of the

magnetization with respects to its axis can be expressed as a series expansion of the form

[2]

Eani = K1sin
2ψ +K2sin

4ψ +K3sin
6ψ + .... (2.1.2)

Where Ki(i = 1, 2, 3, ......) are the anisotropy constants and ψ is the angle between the

magnetization and the magnetic axis [2]. In the case of thin films, K1 � K2 and also K3

which means that Eq.(2.1.2) can be rewritten as [2]

Eani = K1sin
2ψ (2.1.3)

When Eq.(2.1.3) is differenciated with respect to ψ and equated to the effective torque

τeff = M ×Hani (2.1.4)

this yields

Hani =
2K1cosψ

M
(2.1.5)
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The above equation, (2.1.5) for the anisotropy field means that the field stimulates a pre-

ferred axis since it changes sign when ψ goes through π
2 [2]. The anisotropy constant, K1 can

be expressed as a sum of the shape anisotropy (Ks) and the magnetocrystalline anisotropy

(Ku). When K1 > 0 it means that the film prefers to be magnetized perpendicular to its

plane and when K1 < 0, it means that the easy direction will be in the plane of the thin

film [2].

The magnetic anisotropy of LSMO thin film which was deposited onto STO (110) substrate

was first studied by Suzuku et. al (1997). Suzuki and his coworkers observed that the in-

plane uniaxial behavior of the LSMO thin film which was deposited onto the STO substrate

with the easy axis was aligned with the [001] crystal direction [154]. Some of the important

magnetic anisotropies such as shape anisotropy, magnetocrystalline anisotropy and surface

and interface anisotropies are discussed in the next section.

SHAPE ANISOTROPY

Shape anisotropy usually arises as a result of the anisotropy of the demagnetizing field, Hd

due to the long-range dipolar interaction in the particle [11,22]. The relation between the

demagnetizing field, Hd and the magnetization, M is expressed as [11]

Hd = NM (2.1.6)

where N is the demagnetizing factor. The demagnetizing factors are different for different

samples with different geometrical shapes and magnetization direction [11]. For instance, a

thin film with magnetization direction parallel or perpendicular to it’s plane has demagne-

tizing factor of 0 or 1 respectively, whiles a sphere whose magnetization direction is in any

direction has a demagnetizing factor of 1
3 [11]. In the macroscopic limit, the dipole-dipole

contribution to the magnetic anisotropy is called shape anisotropy (Ks)[23].
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For homogeneous films, the shape anisotropy can be expressed as [23]

Ks = −2πM2
s (2.1.7)

where Ms is the saturation magnetization whiles in the case of multilayer films, one uses the

same expression for the shape anisotropy as in the homogeneous films but the saturation

magnetization is replaced by its average value, Ms [23]. The shape anisotropy is also

quadratic in magnetization since it can be diagonalized [22].

Inside an infinite system, the relation

B = µo(H +M) (2.1.8)

holds unlike a situation where we have a finite sample which possess poles at its surface

and this leads to a stray field outside the sample [6,2]. The stray field can be expressed as

Hs = 1
µo
B [2]. The occurrence of this stray field leads to a demagnetization field inside the

sample [6]. The stray field energy, Estr can be expressed as [11,6]

Estr = −1

2

∫
µoMHddV (2.1.9)

where Hd is the demagnetizing field inside the sample. Since a sphere has demagnetizing

factor of 1
3 [11], it means that the stray field energy density is

Estr =
1

6
µoM

2 (2.1.10)

and for an infinitely long cylinder, the stray field energy density is

Estr =
1

4
µoM

2sin2θ (2.1.11)

[6,11]. For very thin plate, thin magnetic film and multilayer films, the stray energy density

can be expressed as [6,24,20]

Estr =
1

2
µoM

2cos2θ (2.1.12)
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The stray field energy density for thin magnetic films and multilayers can also be rewritten

as [6]

Estr = Ko + χsin2θ (2.1.13)

Equation (2.1.13) means when θ = 900 the stray field energy reaches its minimum value [6].

MAGNETOCRYSTALLINE ANISOTROPY

The search for the understanding of the origin of magnetocrystalline anisotropy started

many years even before 1960 [24] and according to Van Vleck, the main origin of the

magnetocrystalline anisotropy is as a result of the relativistic spin-orbit interaction of the

electrons [24,6,2,22] and the crystal field interactions [11]. In the spin-orbit interaction, the

electron orbitals are closely linked to the crystallographic structure and due to the interac-

tion with the spins, they make the later prefer to align along a well-defined crystallographic

axes [6]. Which means that for a magnetic material there are certain directions in space

that are easier to magnetize than other directions and this is very useful for the designing of

new materials for information storage [6,25]. In addition to the crystal field interaction and

the relativistic spin-orbit interaction, the exchange interaction and the dipolar interaction

can also contribute to the magneto crystalline anisotropy[20]. The difference between the

exchange interaction and the dipolar interaction is that, the exchange interaction is inde-

pendent of the angle between the spins and the crystal axes whiles the dipolar interaction

depends on the orientation of the magnetization relative to the crystal axes [20].

Currently, an understanding of the magnetocrystalline anisotropy can be obtained from the

ab initio bandstructure calculations[20] and a typical example of such calculation was carried

out by Daaldrop(1991), where he concluded that the symmetry of the state determines

whether or not the state split if the direction of magnetization is perpendicular or parallel

to the film plane [20].
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In magnetocrystalline anisotropy, the magnetization process is different when the magnetic

field is applied along different crystallographic directions and this anisotropy reflects the

crystal symmetry of the particular crystal system which is under consideration [11]. Since

the magnetic anisotropy energy (MAE) can be defined as the amount of work which is

needed to rotate the magnetization from the easy to the hard direction [2], it means that if

this rotation is carried out at constant temperature, then the magnetocrystalline anisotropy

energy can be also be defined as the change in the free energy ∆F . When we consider a

closed system, thus a system in which there is no exchange of particles between the system

and its surrounding, it means that

dF = dW − SdT (2.1.14)

where W is the workdone, S is the entropy and T is the temperature which is constant,

then it means that

dF = dW (2.1.15)

and that

∆F = F2 − F1 =

∫ 2

1
dWMAE = MAE (2.1.16)

where 1 and 2 denotes the initial and the final directions of the magnetization. This mag-

netization is usually determined by the anisotropy as a result of the exchange interaction

which aligns the magnetic moment in a parallel direction [6]. The direction of magnetization

which is expressed as [6]

m =
M

|M |
(2.1.17)

relative to the coordinates axes can also be expressed by the directional cosines, αi as

m = (α1, α2, α3) where

α1 = sinθcosφ (2.1.18)

α2 = sinθsinφ (2.1.19)
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α3 = cosθ (2.1.20)

These three equations for the directional cosines also satisfies the condition that [6]

α2
1 + α2

2 + α2
3 = 1 (2.1.21)

Figure 2.1: Spherical coordinates system which is used for calculating directional cosines.
Adopted from ref.[118]

The magnetocrystalline energy per unit volume, E can be written as a power series expan-

sion of the components of the magnetization as [6]

E = Eo +
∑
i

biαi +
∑
ij

bijαiαj +
∑
ijk

bijkαiαjαk +
∑
ijkl

bijklαiαjαkαl + 0(α5) (2.1.22)

For cubic systems, the energy density can be written as [6]

E = K0 +K1(α2
1α

2
2 +α2

1α
2
3 +α2

2α
2
3 +K2α

2
1α

2
2α

2
3 +K3(α2

1α
2
2 +α2

1α
2
3 +α2

2α
2
3 + ......) (2.1.23)

For the tetragonal systems, the energy density can be written as [6,140]

E = Ko +K1cos
2θ +K2cos

4θ +K3sin
4θ(sin4φ+ cos4φ) (2.1.24)
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and for hexagonal system, the energy density can be expressed as [140]

E = K1sin
2θ +K2sin

4θ +K3sin
6θ +K ′3sin

6θcos6φ (2.1.25)

where θ is the angle between the magnetization and the z-axis and φ is the azimuthal angle.

These two angles, θ and φ can also be referred to as the polar angles of the magnetic

moment in the crystal axis frame [140]. Similar expressions can also be derived for other

crystal systems such as the orthorhombic systems[6]. The relations for the anisotropy can

also be expressed as a set of orthonormal spherical harmonics with anisotropy coefficient

Km
l and the crystal field coefficient Aml as [11]

E =
∑
l=2,4,6

Km
l A

m
l Y

m
l (θ, φ) (2.1.26)

.

SURFACE AND INTERFACE ANISOTROPIES

Surfaces and interface anisotropies are one of the most important magnetic anisotropies

[6]. The concepts of magnetic surface anisotropy (MSA) was predicted theoretically by

Néel(1954) [26,30,31,32,28]. Research interest in the area of magnetic properties of surfaces

and interfaces took a center stage in the early part of the 1970s [26]. This intense interest

was motivated by the need to understand the influence of ”defects” such as surface on the

formation of the properties of surface layer [26]. Some other important reasons why much

effort was concentrated on the magnetic properties of surfaces and interfaces was as a result

of its applications in devices especially the ultrathin magnetic films [27] and also the con-

nection between the magnetic surfaces and interfaces to the magnetic oligatomic films and

artificial superstructures [28]. One of the excellent tools which is used for the experimental

analysis of magnetic surface anisotropies is the torsion oscillation magnetometry (TOM)

which provides quantitative data on the magnetic surface and out-of-plane anisotropy of an

ultrathin film with monolayer resolution [29].
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Magnetic anisotropies come about as a result of the broken local symmetry due to the

contribution of the surface energy which depends on the orientation of magnetization on

the surface [30,28,33,6,55]. Néel proposed that the surface energy, σs is related to the angle,

β between the magnetization, M and the surface normal, n by considering only the leading

term [28]. This surface energy is expressed as [28]

σs = Kscos
2β (2.1.27)

where Ks is the out of plane magnetic surface anisotropy (MSA). Gradmann et.al later

proposed an additional term, Ks,psin
2βcos2ϕ to this surface energy by taking into account

the polar coordinates β and the azimuthal angle ϕ in the plane of the film, where Ks,p is a

constant of the in-plane MSA and is independent of Ks [28].

Experimentally, the magnetic surface anisotropy can be determined from the study of thin

film anisotropies as a function of the thickness of the thin film [31] and due to the broken

symmetry at the interfaces, the effective anisotropy constant is expressed as [34,6]

Keff = Keff
v +

2Keff
s

t
(2.1.28)

where Keff
v is the effective volume anisotropy constant and Keff

s is the interface anisotropy

constant and the factor 2 is as a result of the creation of two surface. Charppert and Bruno

later revealed that the value of Keff
s might not be purely due to the surface term but might

also contain a volume magnetostatic term as result of an epitaxial strain which is induced

on the thin film [35].

2.1.2 LANDAU-LIFSHITZ -GILBERT (LLG) EQUATION

When a magnetic dipole moment, µ is subjected to a magnetic field, H it experiences a

torque, τ . The equation of motion is described as [36,37,2,41,132]

dµ

dt
= −γ(µ×Ho) (2.1.29)
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dM

dt
= −γ(M ×Heff ) (2.1.30)

where γ = ge
2mc is called gyromagnetic ratio.

For a ferromagnetic material with majority of the electrons pointing their spin in a certain

common direction usually below a certain temperature range as high as 1000K [37], the

effective field, Heff is unknown and can be expressed as the sum of several anisotropic field

contributions (dipole, spin orbit, external and microwave) [36].

In studying the dispersive theory of magnetization of ferromagnets, Landau-Lifshitz (LL)(1935)

proposed the equation of ferromagnetic spin chain which is an important magnetization

equation, called Landau-Lifshitz (LL) equation. This LL equation is a classical theory for

the rate of change of magnetization as a function of space and time under the application of

an effective local field, Heff with the effect of damping term included [41]. The LL equation

is expressed as [42,11,2]

dM

dt
= −γ[M × µoHeff ]− λ

M2
s

[M × (M × µoHeff )] (2.1.31)

where λ is the damping term which is sometimes referred to as the relaxation frequency[42,6].

The first term in the Landau- Lifshitz(LL) equation describes the torque on the magneti-

zation vector which is exerted by the effective field, Heff and the second term describes

the damping torque which reorient the magnetization vector towards the effective field [42].

The LL equation describes both the evolution of spin fields in ferromagnets and also the

precession of the magnetization in an effective field [43,44].

In 1954, Gilbert modified the Landau-Lifshitz (LL) equation based on the idea of the La-

grangian and this equation became known as the Landau-Lifshitz-Gilbert (LLG) equation

[41]. The LLG equation can be expressed as [36,39,38,18,2,40,45,46,41,68,131,60,67,55,17,134,50,142,143]

dM

dt
= −γ[(M ×Heff )] +

G

γM2
s

[M × dM

dt
] (2.1.32)
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where α = G
γMs

, γ is the gyromagnetic ratio and G is the Gilbert damping term which

is also the relaxation rate per second [45,5]. The first term on the right hand side of

the LLG equation is the precessional torque and the second term represents the Gilbert

damping torque [38,18,39,45,46,67]. This LLG equation can be deduced from the lattice

spin Hamiltonian by choosen an appropriate Poisson bracket [41]. The LLG equation which

is valid for small magnetization motions [68] is a modification of Eq. (2.1.30) when the

effect of damping is included. It can be observed from Eq. (2.1.31) and Eq. (2.1.32) that

the precession term in the LL equation, M×µoHeff is replaced by dM
dt in the LLG equation

. The LLG equation can be transformed into the LL equation by using the transformation

that Λ = γ
1+γ2

and λ = αγMs

1+α2 [42,48].

Figure 2.2: Magnetization precission (a) without damping and (b)with damping. Adopted
from ref.[48,41]

Since the inception of the LLG equation it has been applied in many research fields including

the interpretation and prediction of some experiments including domain wall structure,

magnetization reversal and magnetic noise [49]. It has also been established that the LLG

equation has some close relationship with other physical systems including the motion of a

vortex filament, motion of curves and surfaces and the σ models in particle physics [41]. In
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the area of magnetic devices also such as the random access memory (MRAM), the Gilbert

damping coefficient has a close relation to the speed of switching a bit of information which

is encoded by magnetization direction of a ferromagnetic grain and the energy demands of

switching [50]. The quest for designing new materials for various applications can be more

successful when more research works are carried out on the Gilbert damping mechanisms

especially in the metallic ferromagnets [50].

Although the LLG equation has chalked some successes as a result of the fact it captures

essential features of the dynamics of magnetization which occurs in condensed matter sys-

tems, there are many problems which still remain unsolved[68]. On the experimental front,

the prediction of the α term in the LLG has been challenging due to insufficient nature of

experimental data [68]. Theoretically, the main challenge in the LLG equation has been the

derivation of the damping term and this is attributed to the fact that the damping term in

various kinds of relaxation processes are melded together in a single damping term [68].

There are also other forms of phenomenological damping term which is found in other

literature apart from the Gilbert damping term. Typical example is the Landau-Lifshitz

(LL) term which is expressed as −λ
γM2

s
(M × [M ×Heff ]) where λ is the Landau-Lifshitz (LL)

term [5]. For small damping, G
γMs

� 1, the Gilbert relaxation torque and the Landau-

Lifshitz relaxation terms, −G
γM2

s
[M × (M ×Heff )] are equivalent [38,5].

2.1.3 FERROMAGNETIC RESONANCE

Ferromagnetic resonance (FMR) is an experimental technique which is used for the study

of the magnetic properties of ultrathin films and magnetic thin films [51,17,132]. The origin

of ferromagnetic resonance is as result of the precession of the atoms under a magnetic

field, H[36]. The theory of ferromagnetic resonance effect was developed classically by C.

Kittel (1947) and also within quantum mechanical framework by D. Polder (1948) [52].

In a typical ferromagnetic resonance experiment, a ferromagnetic material is irradiated in
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an applied field with microwaves, where the applied field is swept at a fixed frequency

[53,18,122,39]. In order for precession to be observed in FMR, a high frequency radiation

usually in the GHz range must penetrate the sample and the resulting wavelength must be

greater the size of the sample [11]. For example, a frequency, f = 10GHz results in λ = 3cm

so that this condition is satisfied for a millimeter size sample [11]. Also, the motion of

the magnetization of ultrathin films such as LSMO in an FMR satisfies the condition that

the wavelength involved is greater as compared to the lattice constant [128]. Typical value

includes, frequency, f = 9.75GHz which is the X-band microwave frequency which yields

in a wavelength λ = 3.1cm which is greater as compared to the lattice constant of LSMO,

a = 0.388nm at room temperature.

The phenomenon of resonance can be described by applying a macroscopic equation of

motion to the behavior of the magnetization, M which is formed by the magnetic moments,

µ in the sample[54]. The magnetization, M is defined as [55,2,56]

M =
µ

Vo
(2.1.33)

where µ is the magnetic moment per atom and Vo is the atomic volume. For a single-domain

magnetic film with thickness below the ultrathin film limit, the magnetization is assumed

to be uniform throughout the sample [54]. In the ultrathin film limit, the thickness of the

film is less than the rf skin depth and the exchange length [17]. The skin depth is defined

as

δ =
c√

2πµωσ
(2.1.34)

and the exchange length can be expressed as

dex =
A√

2πM2
s

(2.1.35)

[56]. Typical values of skin depth and exchange length for bulk bcc Fe (001) at room

temperature are δ ∼ 6 × 10−5cm and dex = 3 × 10−7cm with the atomic planes of bcc Fe
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(001) film being separated by a distance of 1.425×10−8cm [56] which satisfies the ultrathin

film limit. In most practical ferromagnetic materials, the exchange length is usually in the

range of 2-5 nm [11].

There are two main techniques which are used in the determination of the resonance fre-

quency from the LLG equation of motion of the magnetization [17]. The first technique

involves the solution of the coupled differential equations for the time-dependent magnetiza-

tion components and the second technique involves the double derivatives FΨΨ, FΩΩ of the

anisotropic part of the magnetic free energy density, F. The second technique which involves

the double derivatives of FΨΨ, FΩΩ was developed by Smit and Beljers (1955) [17,57] with

the resonance condition expressed as [17,57,59,58,54,116,130]

ω =
γ

MsinΨ
[FΨΨFΩΩ − F 2

ΨΩ]
1
2 (2.1.36)

which is subjected to the equilibrium conditions of [59,17,54,116,130]

∂F

∂Ψ
= 0 (2.1.37)

and

∂F

∂Ω
= 0 (2.1.38)

where Ψ and Ω are the magnetization angles and γ is the gyromagnetic ratio. These

two equations, Eq.(2.1.37) and Eq.(2.1.38) clearly means that the ferromagnetic resonance

frequency must be evaluated at equilibrium angles of Ψ and Ω of the magnetization, M

(T,H) [17,54]. It can be observed from Eq.(2.1.36) that the resonance frequency is related

to the second derivatives of the free energy, F and is essentially a measure of the ”curvature”

of the free energy, F or of the ”stiffness” of magnetization.

In FMR spectrometers, two main parameters are usually measured [56]. These are the

microwave power, Pm absorbed by the sample as a function of the applied dc magnetic field,
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Figure 2.3: Geometry of magnetization and static field (H) in Smit-Beljers theory. Adopted
from ref.[116]

H and the derivative of the absorption with respect to the field, H [56]. The microwave

power, Pm which is absorbed by the sample is related to the component of the dynamic

susceptibility in the direction of the microwave, ho [56,60]. The susceptibility, χ can be

expressed as [60,55]

χ = χ′ − iχ′′ (2.1.39)

The real part of the susceptibility, χ′ is indicative of dispersive process and the imaginary

part, Im[χ] is indicative of dissipation process [60,61]. For conductive samples, dissipation

is mainly due to eddy currents and a non-zero imaginary susceptibility in ferromagnets

can indicate an irreversible domain wall movement or an absorption due to a permanent

moment [61]. The microwave power, Pm can be expressed as [60,56,17]

Pm =
1

2
ωIm[χy]h

2
o (2.1.40)

and this represents the energy which is transferred from the microwave to the sample[60].

The dissipation of this form of energy usually appears as heat as a result of the vibration

of the lattice [60].

The magnetic susceptibility which is associated with the rf-magnetic field can be expressed
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Figure 2.4: Real and imaginary parts of the longitudinal high frequency magnetic suscepti-
bility as a function of an applied magnetic field. Adopted from ref.[126]

as [42,15]

χrf =
Mx

Hrf
=

χH

1− ω2

ω2
o

(2.1.41)

where χH =
My

H . The magnetic susceptibility, Eq.(2.1.41) has a maximum when ω = ωo,

where ω is the frequency of the rf-magnetic field and ωo is the frequency of the magnetization

precession [42,15]. Ferromagnetic resonance therefore occurs when Im[χy] is maximum and

this corresponds to the maximum power which is absorbed by sample [56,42,17].

Since in an FMR experiment the microwave frequency, ω is fixed so that resonance can be

achieved by sweeping the external dc field, Ho the resonance field, HFMR can be expressed

as the real part of [55,56,132]

ω2

γ2
= [HFMR+4πMeff+

Keff
1

2Ms
(3+cos4θ)+

iωG

γ2Ms
]×[HFMR+

Keff
1

2Ms
cos4θ+

iωG

γ2Ms
] (2.1.42)

for the parallel configuration, where G is the Gilbert damping parameter and θ is the angle

between the field and the crystal axis. In the case of perpendicular condition, the resonance

condition can be expressed as [56,55,132]

ω

γ
= HFMR − 4πMeff +

2Keff
1

Ms
(2.1.43)
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Equation(2.1.42) and (2.1.43) are only valid in high applied magnetic fields in which the dc

magnetic moment is parallel to the external dc field, Ho [56,55].

Figure 2.5: Spherical coordinates for the magnetization and magnetic field vectors used in
the calculation of the ferromagnetic resonance frequency. Adopted from ref.[42]

For a thin magnetic film with an in-plane uniaxial anisotropy which is magnetized to sat-

uration along the easy axis by a static external field, the Kittel FMR resonance can be

written as [62]

ω = γµo[(Hext +Hk)(Hext +Hk +Ms)]
1
2 (2.1.44)

If we ignore the saturation magnetization in Eq. (2.1.44) by setting the saturation magne-

tization, Ms to zero, we observe that Eq. (2.1.44) reduces to

ω = γµo(Hext +Hk) (2.1.45)

Equation (2.1.45) is in agreement with [65,64] which is the experimentally observed fre-

quency at lower modes [63]. When equation (2.1.44) is simplified and also by assuming a

non-zero saturation magnetization, this result in the Kittel FMR resonance expression

ω = γµo[H
2
ext +H2

k + 2HkHext +Ms(Hk +Hext)]
1
2 (2.1.46)
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By assuming only second order terms in this expression, Eq.(2.1.46) reduces to

ω = γµo(H
2
ext +H2

k)
1
2 (2.1.47)

which is also in agreement with the fact that resonances are quadratically positioned as a

function of the applied field at higher modes [63].

There are certain factors which can affect the ferromagnetic resonance frequency. Some

of these factors include, shape anisotropy and the magnetocrystalline anisotropy [11]. In

the case of shape anisotropy this is so because different geometrical samples have different

demagnetizing factor [11]. This effect means that the ferromagnetic resonance frequency

condition for a sphere or a thin film whose field is either perpendicular to the plane or in

plane might not be the same because each has different demagnetizing factor [11].

2.2 DAMPING IN ULTRATHINMAGNETIC THIN FILMS

Phenomenologically, magnetic relaxation in metallic ferromagnetic films is expressed by the

LLG equation, Eq.(2.1.32) [66]. The damping term is described by the second term on the

right hand of Eq.(2.1.32). Clearly from Eq. (2.1.32), it can be observed that damping can

occur when the magnetization in time dependent. The application of the LLG equation to a

ferromagnetic thin film which is magnetized in plane or perpendicular to the plane leads to

the prediction of the ferromagnetic resonance linewidth [67]. The ferromagnetic resonance

linewidth, ∆Hpp is related to the magnetic damping parameter, α by [56,68]

∆Hpp =
2√
3
α
ω

γ
(2.2.1)

where α = G
γMs

. The ferromagnetic resonance linewidth, ∆Hpp is proportional to the mi-

crowave frequency, ω and inversely proportional to the saturation magnetization, Ms. This

is referred to as the intrinsic contribution to the linewidth [18]. However, it has been ob-

served experimentally that there is an additional frequency independent contribution to the
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linewidth and this is referred to as the inhomogeneous contribution [18]. This inhomoge-

neous contribution to the ferromagnetic resonance linewidth is as a result of disorder in the

sample[18]. This disorder occurs as a result of two main processes [18]. Firstly, fluctuations

in the magnetic properties of the material such as magnetization and secondly as a result

of the fact that in a typical ferromagnetic resonance experiment, uniform precissional mode

(k = 0) are excited and this then generate finite -k (k 6= 0) spin wave modes [18]. The

homogeneous and inhomogeneous contribution to the ferromagnetic resonance linewidth is

as a result of combined effect of the exchange interaction and the spin orbit coupling [68].

These two contributions to the ferromagnetic resonance linewidth are usually extracted

from the relation [68,66,17,134,132,137]

∆Hpp = ∆Hinhomo + ∆Hhomo = ∆Hinhomo +
2√
3
α
ω

γ
(2.2.2)

There are some mechanisms which can contribute to the ferromagnetic resonance linewidth.

These are the intrinsic Gilbert damping, the broadening induced which occurs as a result

of the magnetic inhomogeneity and the extrinsic magnetic relaxation [68].

Figure 2.6: The uniform motion of the magnetization with k = 0 in an FMR experiment.
Adopted from ref.[36,45]

In magnetic systems such as ultrathin films, the Gilbert damping torque describes the

relaxation of the magnetization and the origin of the Gilbert damping in ultrathin films is
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as a result of the spin-orbital coupling [47]. Experimentally, the Gilbert damping constant in

thin magnetic films can be studied by measuring the peak-to-peak ferromagnetic resonance

linewidth [68]. It has been established that, the Gilbert damping constant in ultrathin films

is larger compared to their bulk counterpart due to the higher damping in strained films as

compared to the relaxed films [68,69]. Typical example is Fe on semiconductor substrates

in which the value of the dimensionless Gilbert damping constant, α is 4.1 × 10−3 for the

thin films and 2.8× 10−3 for the thick films [69].

2.3 LMSO

This section of the thesis work gives some brief introduction about LSMO, crystal structure,

phase diagram, FMR of LSMO, some thin film techniques for fabricating LSMO and some

potential applications of LSMO and the mixed valence manganites.

2.3.1 INTRODUCTION

The compounds which have attracted renewed attention are the manganite perovskites

which have the form T1−xDxMnO3 where T is a trivalent lanthanide cation (eg. La, Pr,

Nd) and D is a divalent, eg. alkaline-earth (eg. Ca, Sr, Ba), cation [70,71,72]. The

manganite perovskites have interesting properties and some of the properties are given

below. The physical properties of the manganite perovskites, T1−xDxMnO3 can be tuned

by controlling the doping level, x [110]. The manganite perovskites are known to undergo

phase transformation from the ferromagnetic metal to paramagnetic insulator and this phase

transformation depends on the particular composition of the sample, internal stress, and the

structural defects [90]. Due to this phase transformation in the manganite perovskites, an

electron spin resonance (ESR) lines in the paramagnetic(PM) phase with large variations of

the line parameters as a function of temperature, T has been observed [129]. The manganite

perovskites have unusual electrical transport and magnetic properties [133]. This unusual
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electrical transport and magnetic properties depends on factors such as doping level, the

ratio of the Mn4+ to Mn3+ ions, and the interaction between the Mn4+/Mn3+ and O2−

ions [101]. The electrical and magnetic properties of the manganite perovskites are related

to the crystal structures as well as its microstructures [102]. Also, the interplay between the

charge, spin and the orbital degrees of freedom give rise to magnetoelectronic phenomena

in the manganite perovskites compounds [110]. One common feature which is exhibited by

the mixed valence manganites is that their physical properties are closely related to their

lattice constants and they have a strong dependence on hydrostatic pressure[123]. The

mixed valence manganites exhibit other interesting properties such as high temperature

superconductivity and ferroelectricity [123].

Research interest in the manganite perovskites was motivated by the need to develop insulat-

ing ferromagnet with high magnetization for high frequency applications and the discovery

of high-temperature superconductivity in the cuprates [71,72]. Also, the observation of

colossal magnetoresistance effect in the manganite perovskites added more interest to the

research work [72,89,135]. By colossal magnetoresistance effect, it means that the electrical

resistance of the these compounds changes as a result of the application of magnetic field

[73]. Typical examples of the manganite perovskites include; La1−xSrxMnO3 (LSMO),

La1−xCaxMnO3 (LCMO) and La1−xBaxMnO3 (LBMO).

The end members of the manganite perovskites, thus LaMnO3 and CaMnO3 are anti-

ferromagnetic and insulating but doping at x ≈ 1
3 yields a ferromagnetic and conduct-

ing material [71,74]. Typical examples include; La0.7Ca0.3MnO3(LCMO) which has a

Curie temperature, Tc = 220K and a low temperature resistivity, ρo = 10−5Ωm and

La0.7Ba0.3MnO3(LBMO) which has a Curie temperature, Tc = 310K[75,71]. For the per-

ovskite LaMnO3 which is an insulating layered antiferromagnetic with a Néel temperature,

TN = 150K, by replacing La3+ with a divalent cation ( eg. Ba,Ca or Sr), the mixed
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compound La1−xSrxMnO3 becomes ferromagnetic and conducting at room temperature at

x ≈ 0.3 [71,11].

The most researched of the manganite perovskites currently, is the alkaline-earth-substituted

lanthanum manganites, and a typical example is La1−xSrxMnO3 (LSMO). LSMO has spe-

cial properties such as high electrical conductivities, a high Curie temperature of 370K

which is above room temperature at x ≈ 1
3 [77,78,72,11,154] and the presence of superstruc-

tures at x = 1
8 and x = 1

2 [71]. In a situation where the strontium (Sr) concentration is

1
8 , (x = 1

8) various superstructure and characteristic temperatures have been observed. A

ferromagnetic state(FM) has been observed below Tc = 180K, metallic down to Tc = 150K

and insulating below Tc = 150K [141]. Also, around TJT = 280K the phenomenon of

Jahn-Teller transition has been observed from Ó to O phase and above TR = 475K, the

rhombohedral (R3̄C) R phase has also been observed [141]. Figure 2.7 shows the thermal

expansion vrs temperature of a single crystal La 7
8
Sr 1

8
MnO3 which can be used to explained

such a phenomenon.

Figure 2.7: Schematic diagram of thermal expansion vrs temperature of La 7
8
Sr 1

8
MnO3

single crystal. Adopted from ref.[141]

Thin films of La1−xSrxMnO3(LSMO) have fascinating magnetic and electric properties[79].



30

The electronic properties of LSMO are usually described by the band theory as nearly half-

metallic [80]. By half-metallic it means that LSMO has one spin-up or spin-down electron

states in its Fermi level [79,80]. Among the manganite perovskites, La0.7Sr0.3MnO3 is one of

the most studied compounds and has special properties including; high conductivity at room

temperature, fully spin -polarized conduction band, high stability of the crystal structure

under certain oxygen pressures and also the ability to behave as a p-type semiconductor at

room temperature [81,99,136].

2.3.2 CRYSTAL STRUCTURE

La1−xSrxMnO3(LSMO) belongs to the ABO3 perovskite oxide family. The ideal cubic

perovskite structure of ABO3 is indicated in figure 2.8 with a lattice constant of 0.388 nm

[71,82,72]. In figure 2.8, the larger rare earth ions (eg. La, Ca) is similar in size to O2−

and it occupies the 12 coordinated A-site and the transition metal ions (eg. Mn) occupy

the octahedral B-sites [71,98,72].

Figure 2.8: The ideal cubic perovskites, ABO3. A is a large cation similar in size to O2−,
B is a small cation such as Mn3+ or Mn4+, octahedrally-coordinated by oxygen. Adopted
from ref.[71,72]

LSMO has two types of crystal structures and this depends on the temperature, oxygen

pressure and the chemical composition [77]. These crystal structures are the rhombohedral
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(R3̄C) and the orthorhombic (Rbnm) and these structures have distorted vertex-sharing

of MnO6 octahedral [77]. Typical crystal structures of LSMO are shown in figure 2.9 and

figure 2.10

Figure 2.9: Schematic drawing of the arrangement of MnO6 octahedral in orthorhombic
LSMO lattice where the dashed lines corresponds to the unit cell of each lattice. Adopted
from ref.[77]

The end members of the manganite perovskite; CaMnO3 and LaMnO3 have Pbnm D16
2h

with Z = 4 orthorhombic structure at room temperature [83,82,72,71]. At a temperature

T ≈ 600oC, LaMnO3 shows an orthorhombic or rhomboherdal crystallographic transforma-

tion and this transformation is attributed to the oxidation of Mn3+ to Mn4+ ions [82]. The

crystal structure of La0.7Sr0.3MnO3 is rhombohedral with (R3̄C) D6
3d with Z = 2 space

group [83]. A typical Pbnm orthorhombic RMnO3 compound is structurally distorted with

respect to the cubic perovskite [83]. These distortions which occurs with respect to the

cubic perovskite is as a result of the rotation of the oxygen octahedra and the lanthanum

ion shifts like in the orthoferrite crystals and the Janh-Teller effect of the oxygen octahedra

of the e-type[139].

Generally, the structure of the manganite perovskites is governed by the tolerance factor, t

which is related to the ionic radii of the constituents atoms. This tolerance factor according



32

Figure 2.10: Schematic drawing of the arrangement of MnO6 octahedral in rhombohedral
LSMO lattice where the dashed lines corresponds to the unit cell of each lattice. Adopted
from ref.[77]

to Goldschmidt can be expressed as [71,72,11]

t =
(rA + ro)√
2(rB + ro)

(2.3.1)

For an ideally sized ions, t = 1 and for the perovskite structure, 0.89 < t < 1.02 is indicative

of a stable structure [71,72,11]. La0.7Sr0.3MnO3 which has special properties inculding spin-

polarized conduction and higher conductivity at room temperature [81,99] has a crystal

structure as in figure 2.11

2.3.3 PHASE DIAGRAM OF LSMO

Lanthanum-strontium manganites, La1−xSrxMnO3 (LSMO) materials display an enor-

mously rich phase diagram by varying the temperature and the doping level, x with phases

showing behaviors as interesting as colossal magnetoresistance [71,72]. For instance at

x ≈ 1
3 , the material behaves as a ferromagnetic half metal, that is, with the Fermi level

within a gap in the minority-spin density of states [71,11,80]. The rich phase diagram of

LSMO which is sometimes considered as complex with various magnetic phases which may

either be conductive or insulative can be attributed to the competition between the charge,
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Figure 2.11: Crystal structure of one of the most studied manganite perovskites,
La0.7Sr0.3MnO3. Adopted from ref.[82]

spin, orbital and the lattice [112,113]. There is a deep connection between the conductivity

and ferromagnetism and this can be expressed as [71]

σc = (
xe2

rh
)(
Tc
T

) (2.3.2)

where x is the doping and r is the Mn-Mn distance. This relation, Eq. 2.3.2 is only valid

in the limited range of 0.2 < x < 0.4 [71].

The existence of the ferromagnetic(FM) phase and the antiferomagnetic (AF) phases which

appears on the phase diagram is partly due to the coexistence of the AF superexchange

interactions [110]. The AF superexchange interaction is the type of interaction between

the t2g spins and the electronic anisotropy which arises from the orbital ordering of the

conduction eg electrons [110].

Konishi et. al (1999) studied the magnetic and transport properties of LSMO thin films

which were thinner than the coherence epitaxy, ζ. The LSMO thin films which were studied

were deposited on three different substrates and they observed a phase diagram which
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Figure 2.12: A schematic illustration of the magnetic structure in a FM magnetic state.
Adopted from ref.[115]

consisted of a ferromagnetic metal, A-type and C-type ferromagnetic insulators (AFI), in

the x against the c-axis/a-axis ratio plane [114]. Tandeloo et. al (2000) used the method

of neutron diffraction for an intensive research on LSMO and they observed two different

orthorhombic phases and one rhombohedral crystal structure [111]. A typical magnetic

structure in a FM state is shown in figure 2.12 above.

Typical phase diagram of La1−xSrxMnO3 (LSMO) is as shown in figure 2.13. In figure

2.13, it can be observed that LSMO is insulating up to about x = 0.15 (FI) whiles metallic

at x > 0.15 (FM). It can also be observed from figure 2.13, that LSMO shows an insulating

canted AF structure(CI) at doping level 0 ≤ x < 0.1 [72].

2.3.4 FERROMAGNETIC RESONANCE OF LSMO

Ferromagnetic resonance(FMR) which is one of the most powerful experimental technique

as a result of the its high resolution and high sensitivity can be used for the study of metallic

systems such as ultrathin metallic films (eg. LSMO) [90,54,124]. Ferromagnetic resonance

which can be described as the motion of the magnetization in an external magnetic field

can be expressed by the Landau-Lifshitz-Gilbert (LLG) equation, Eq.(2.1.32) with the FMR
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Figure 2.13: Phase diagram showing transition temperature versus concentration, x of single
crystals of La1−xSrxMnO3. Adopted from ref.[72]

linewidth given by Eq. (2.2.2) [124,68].

In thin magnetic films such as LSMO, the anisotropic energy can be expressed as Eq. (2.1.2)

and by taking the first two terms of Eq. (2.1.2) , the frequency at which resonance occurs

can be expressed as [90]

(
ω

γ
)2 = [Hcos(ψ− η)−Heffcos

2ψ+
2K2

M
]× [Hcos(ψ− η)−Heffcos2ψ+

K2

M
(1 + cos22ψ)]

(2.3.3)

where Heff is the effective field which is expressed as [90]

Heff = 4πM − 2K1

M
(2.3.4)

and η is the angle between the external magnetic field and direction z normal to the film

and ψ is the angle between the magnetization, M and the main axis. The angle ψ can be

determined from the equilibrium condition [90] as

Hsin(ψ − η)− 1

2
(Heff −

2K2

M
sin2ψ)− 2K2

M
sin2ψsin2ψ = 0 (2.3.5)

In an FMR experiment in ultrathin magnetic films such as LSMO, the magnetic anisotropy

of the film can be determined by analyzing the angular variation of the field, Hres [122]. The
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behaviour of the angular variation of the field, Hres at different fields shows sinusoidal-like

shape [122]. Typical FMR spectra measurement for different orientations for a bicrystalline

La0.75Sr0.25MnO3 films at temperature of 125K indicating this sinusoidal-like shape is

indicated in figure 2.14

Figure 2.14: The angular variation of the magnetic field, Hres of a bicrystalline
La0.75Sr0.25MnO3 film at a temperature of 125K. Adopted from ref.[122]

2.3.5 SOME TECHNIQUES OF FABRICATING LSMO AND MAN-
GANITE THIN FILMS

There are several techniques which are used for fabricating thin films. Some of these thin

films fabrication techniques include; sol-gel dip coating, molecular beam epitaxy (MBE),

pulsed laser deposition (PLD), metal organic chemical vapour deposition (MOCVP) and

spray pyroysis. But the pulsed laser deposition technique from sintered ceramic target have

mainly been used for the growth of the manganites thin films [71]. For pulsed laser deposi-

tion technique, critical factors such as the atmosphere in the chamber and the temperature

of the substrate are very critical for the growth of high quality thin films [71]. For example,

by using an oxygen pressure of 10−50Pa and a substrate of MgO, SrT iO3 (STO) or LaAlO3

(LAO) which has been heated to about 600 − 800oC, good quality films have been grown
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[71]. This technique has been used to grow quality thin films such as La0.7Sr0.3MnO3,

La0.67Bd0.33MnO3 and La0.7Ca0.3MnO3[71]. The pulsed laser deposition technique can be

used in growing thin films of the order 100nm or less but the molecular beam epitaxy tech-

nique is mainly used to grow highest quality films [71,84,11]. One of the disadvantages of

the pulsed laser deposition technique is the tendency for the micrometer-size droplets which

is ejected from the target to litter the growing film [11]. This barrier can be overcome by

working at an energy density which is close to the ablation threshold by using a fully dense

targets [11]. The ablation threshold which is a material and wavelength dependent property

is defined as the minimum fluence in which the expulsion of a given material in the form

of hot plasma is obtained[138]. Although the pulsed laser deposition technique is used in

growing quality thin films, the magnetron sputtering technique is more preferable than the

PLD technique as a result of its compatibility with current existing large scale integrating

(LSI) processes [87].

Figure 2.15: A schematic diagram of the pulsed laser deposition (PLD) experimental setup.
Adopted from ref.[117]

In molecular beam epitaxy, the pressure of the evaporating species is usually in the range
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of 10−6 − 10−4Pa. During the molecular beam epitaxy process in the fabrication of thin

films, sometimes the atoms from the evaporation source are scattered before they get to the

substrate [11]. In order to overcome this barrier, the mean free path of the emitted atoms

from the evaporation source must be greater than the size of the chamber. The mean free

path is expressed as 6
P , where P is the pressure [11]. The technique of electrochemistry

can also be used in growing thin films of the manganites. During this process, LaMnO3 is

deposited unto SrT iO3 substrate from a 1M solution of lanthanum and manganese nitrate

under ultraviolet illumination [71].

There are several oxide materials with perovskite structure which can be used as substrate

for high epitaxial growth of LSMO thin films but SrT iO3 (STO) and LaAlO3 (LAO)

substrates are mainly used for growing quality films as a result of the small misfits which

emerges after the fabrication process [86,91]. This is because the lattice constant of STO,

aSTO = 0.391nm and LAO, aLAO = 0.380nm are comparable to the lattice constant of

LSMO, aLSMO = 0.388nm at room temperature [71,91]. In the case of LSMO thin film

which is fabricated on STO substrate, one can observe a misfit strain, εm = 0.007732

at room temperature [79]. This misfit strain is smaller as compared to the misfit strain,

εm = 0.0079 at a temperature of 800oC [79]. The misfit strain was calculated using the

expression [79]

εm =
(aSTO − aLSMO)

aLSMO
(2.3.6)

Furthermore, STO has a thermal expansion coefficient (≈ 11 × 10−6K−1) which is close

that of LSMO (≈ 11.5 × 10−6K−1) and this guarantees a crystal misfit of less than 1

percent for all temperatures below 1000K [79]. For LSMO thin film which is fabricated

on LAO substrate, an in-plane compressive strain of -0.021 can be observed. The in-plane

compressive strain was calculated using the relation[119]

εc =
aLAO − aLSMO

aLAO
(2.3.7)
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Some of the other substrates which can be used in fabricating LSMO thin films using the

technique of pulsed laser deposition are ZnO, MgO, NdGaO3, LaGaO3 (LGO) and Al2O3

(AO)[81,90,87,121,127,149]. It can be observed from the above that most of the LMSO thin

films are deposited onto oxide substrates by pulsed laser deposition technique[87]. This is

done so that the effect of lattice mismatch can be minimized [91]. In order to achieve good

quality colossal mangnetoresistant manganites(CMR) thin films such as LSMO, there are

other two materials properties of CMR film and the substrate that are very critical apart

from lattice mismatch [91]. These are chemical reaction and different thermal expansion

[91]. The difference in the thermal expansion coefficients between the thin films of the oxide

and the substrate results in a structural phase transformations [91].

The presence of strain in fabricated LSMO thin films can be attributed to the difference in

crystal structure between the film and the substrate [79,120]. It has been established that

thin film properties of the manganite perovskites such as LSMO, LCMO and LBMO are

not only affected by lattice misfits but also by annealing conditions, layer thickness, and

mechanism of strain relaxation[88]. It has also been established recently that by depositing

Au on top of a 4 nm thick LSMO film results in a drastic reduction in the Curie temperature

to 188 K with respect to an uncoated LSMO thin films of the same thickness [100]. Also,

recently studies have shown that the magnetic and transport properties of the thin films

of the CMR materials can be improved by postannealing in oxygen. This improvement in

the magnetic and transport properties can be attributed to the oxygen incorporation which

transforms Mn3+ ions to Mn4+ with smaller ionic radii which induces the changes in the

unit-cell volume [101]. Research work on the effect of tensile strain on LSMO thin films

have also shown a reduction in the Curie temperature and this anomaly was successfully

explained using the idea of double exchange interaction [103]. The double exchange which

was proposed by Zener [129] explains this reduction in the Curie temperature as a result of

the increase of the in-plane Mn-O bond length which results in the decrease of the hopping
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term between the Mn3+ −Mn4+ ion [103].

The double exchange interaction in the colossal magnetoresistance (CMR) perovskites is

as a result of the the ferromagnetic(FM) interactions in the Mn ions [129]. Due to the

coupling between the Mn ions, the double exchange interaction model give rise to a magnetic

susceptibility that can be described by the isotropic Heisenberg-like interaction between the

Mn3+ −Mn4+ pairs. The Heisenberg-like model can be expressed as [129]

H = −2J
∑
<i,j>

Si1.S
j
2 + gµB

∑
(i,j)

(Si1 + Sj2).H (2.3.8)

where S1 and S2 are the spins of Mn4+ and Mn3+ species respectively, with S1 = 3
2 and

S2 = 2, H is the external magnetic field, and < i, j > runs over all possible Mn3+ −Mn4+

pairs [129].

2.4 SOME POTENTIAL APPLICATIONS OF LSMO AND
THE MIXED VALENCE MANGANITES

The potential applications of the mixed valence manganites are based on its physical and

chemical properties. Typical physical property is the temperature dependence of the resis-

tivity and the magnetoresistance [71]. Thin films of the manganite perovskite with ferro-

magnetic colossal magnetoresistance are potential candidates for tunable microwave filters

[93]. This process can be achieved when thin films of the manganite perovskite are stacked

on high temperature superconducting YBCO thin films [93]. It has been established that

microwave tunability has already been achieved by using ferromagnetic La0.67Sr0.33MnO3

and other thin films materials such as tunable barium strontium titanate paraelectric films

[94]. On the research front also, the manganite perovskites can be used to fabricate multi-

layers and also to investigate the magnetic interactions at the interfaces of other materials

due to the fact that the magnetic states of these manganite perovskites can easily be con-

trolled by changing the carrier doping and temperature [92]. The presence of the unusual
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electrical and magnetic properties of the colossal magnetoresistance in the manganites per-

ovskites have been considered for application including ferroelectric field effect transistor

(FeFET), infrared (IR) bolometric devices, spin tunnel junctions, microwave active compo-

nents, infrared optical sensors, photonic devices, magnetoelectronics, spin sensitive devices

and high-density memory application [95,91,96,89,90,85,89,75,99].

Among the colossal magnetoresistance materials, La0.7Sr0.3MnO3 has the highest Curie

temperature and this makes it very promising for room temperature applications [95,99]. In

spintronics technology, La0.67Sr0.33MnO3(LSMO) is considered as the favourite candidate

as a result of the half-metallicity [85,78]. The presence of half-metallicity allows for very high

spin polarization and this yields high tunnel magnetoresistance (TMR) values according to

the Julliere equation. The Julliere equation can be expressed as [97]

TMR =
P1P2

1− P1P2
(2.4.1)

where P1 and P2 shows the polarisation of top and bottom ferromagnetic layers. The predic-

tion of nearly 100 percent spin polarisation in La 2
3
A 1

3
MnO3 where (A = Ca, Sr,Ba) atoms

further boost the idea of 1850 percent TMR- ratio for La 2
3
Sr 1

3
MnO3/SrT iO3/La 2

3
Sr 1

3
MnO3

magnetic tunnel junctions at 4K [76,97,80,149]. Tunnel magnetoresistance (TMR) has po-

tential applications including magnetic field sensors or non-volatile magnetic random access

memories [97].

In the area of the magnetoresistance applications of the manganite perovskites, La1−xAxMnO3

where A is a divalent element such as Sr, Ca, Ba, due to the considerable changes in the

resistance in strong fields at 1T, practical applications have considerably been restricted

[125]. Progress in this area has been achieved through the use of fine-crystalline mangan-

ites as well as samples including microscale defects or spin-disordered areas where higher

magnetoresistivity has been observed for the fine-crystalline manganites than their single

crystal counterpart at low temperatures [125].
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The alkaline-earth-substituted lanthanum manganites, such as La1−xSrxMnO3(LSMO) has

potential applications including anode and interconnector materials for solid-oxide cells [77].

It has been anticipated that a manganite/superconductor layer structures could be useful

for ultrasonic wave amplification, thermal switching and thermocouple infrared detection

[71].

The manganite perovskites have intrinsic magnetocaloric effect which makes it an inter-

esting material for magnetic refrigeration such as the Ericsson-cycle magnetic refrigerator

which has a wide working span [71,107,106]. Magnetic refrigeration which is based on the

idea of magnetocaloric effect(MCE) is a viable and competitive cooling technology which

has potential advantage of environmental friendliness than the gas refrigeration [107]. By

magnetocaloric effect it means that an application or removing of magnetic field to the

manganite perovskites results in an isothermal entropy change, ∆S and adiabatic change

in temperature ∆Tad [108,109]. It has been established that magnetic cooling which is

based on MCE is a promising alternative technology to the classical refrigeration such as

air conditioning and liquefaction of gases [109]. In the chemical industries also, some of the

potential applications of the manganites include catalysis, such as catalysts for automobile

exhausts, oxygen sensors and solid electrolytes [71].

There are several reasons why currently it has been difficult for commercial devices based

on LSMO to be achieved especially in the area of semiconductor technology. Some of

the reasons include, large lattice mismatch between the CMR manganites films and the

semiconductor substrate (eg. Si) [91]. Typical values include, the CMR manganite which

has a lattice parameter a = (3.8 − 3.9) × 10−10m and the semiconductor substrate has a

lattice parameter a = 5.431× 10−10m for Si and a = 5.653× 10−10m for GaAs [91]. Also,

the large difference in thermal expansion coefficient between the CMR thin films and the

substrate and the severe chemical reaction between the substrate (eg. Si) and the deposited
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film layer have also contributed to this problem [104]. The thermal expansion coefficient for

a typical CMR material such as LSMO at room temperature is 11.5× 10−6K−1 whiles the

thermal expansion coefficient for the single crystalline Si substrate at room temperature is

9× 10−8K−1 [105].



Chapter 3

EXPERIMENTAL METHOD

3.1 INTRODUCTION

Conventionally, in the experimental determination of the ferromagnetic resonance of a mag-

netic sample, measurements are usually carried out using a resonator and a waveguide but

recent studies in the area of microfabrication techniques have also shown that FMR mea-

surements in the case of small-sized samples over a wide frequency range can also be achieved

using the coplanar waveguide (CPW) technique [144,18,145]. These above mentioned tech-

niques for FMR determination ensure that a high frequency magnetic field is concentrated

onto a remarkably narrow signal line [144]. The shorted waveguide technique can also

be used experimentally in the determination of the FMR especially the angle dependence

of ferromagnetic resonance linewidth and two magnon losses [146] but in the case of this

work, the EPR spectrometer was used in the determination of the FMR. In all the above

mentioned techniques of determining FMR experimentally, the coplanar waveguide (CPW)

technique provides one of the best means to perform a large angle ferromagnetic resonance

as a result of the fact that the power which is coupled to the device is most effective than

the usual conventional cavity or the hollow waveguide technique[147]. When the coplanar

waveguide technique is to be used to determine the FMR, a static magnetic field can be

applied parallel to the magnetic sample and the FMR signals are measured using a vector

44
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network analyzer (VNA) [144]. In the next section of the experimental method, a sum-

mary of issues concerning the LSMO samples and basics of the EPR spectrometer and the

experimental procedure are discussed.

3.1.1 LSMO SAMPLES AND BASICS OF THE EPR SPECTROME-
TER

LSMO thin film of different unit cells were grown using the pulsed laser deposition technique

on (001) SrT iO3(STO) substrate. The thin films were cut into smaller dimensions of

1 × 1mm2 pieces. This was done in order to keep a resonance value of the quality factor.

The quality factor, Q is related to the sensitivity of the EPR spectrometer. As the quality

factor is increased, the sensitivity of the EPR spectrometer also increases. The microwave

cavity which is characterized by the quality factor Q, indicates how efficiently the cavity of

the EPR spectrometer stores the microwave energy. The quality factor, Q can be expressed

as

Q =
2π(Es)

Ed
(3.1.1)

where Es is the energy stored and Ed is the energy dissipated per cycle. The energy which

is dissipated per cycle is the amount of energy which is lost during the microwave period.

FMR measurements were carried out with a Bruker Elexsys E 500 EPR spectrometer using

an X-band frequency of 9.75GHz microwave source and a TE102 model cavity. In this

spectrometer, the applied dc magnetic field was in the horizontal plane and the microwave

magnetic field was vertical. A block diagram of the Bruker Elexsys E 500 EPR spectrometer

system is shown in figure 3.1. A personal computer was used as a system controller and

for data acquisition. In figure 3.1, the microwave bridge houses the microwave source and

the detector and then the magnet which generates the required dc magnetic field which is

needed for the experiment.

The block diagram of the microwave bridge is shown in figure 3.2. The microwave frequency
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Figure 3.1: A schematic block diagram of an EPR spectrometer. Adopted from ref.[148]

of the microwave resonance cavity of the Elexsys E 500 spectrometer is fixed to an eigen

frequency of the cavity and the magnetic field is increased until resonance absorption of the

spin system occurs. In the ideal case, the cavity stores all the microwave energy at eigen-

resonance (resonance). In figure 3.2, the microwave power from the source, A is reflected

from the cavity and is detected at the diode.

3.1.2 EXPERIMENTAL PROCEDURE

FMR measurement was carried out on the 15uc thick LSMO thin film. This was done

by positioning the 15uc thick LSMO thin film in a particular orientation (eg.[001]) in the

sample holder made of glass. The sample holder which contains the LSMO thin film was

inserted in the cavity of the Elexsys E 500 spectrometer for angular dependence of FMR

spectrum to be recorded on the computer. This was achieved by rotating the sample

holder which contains the LSMO thin film with a goniometer which was mounted on top

of the cavity of the Bruker Elexsys E 500 spectrometer. The applied dc magnetic field

was swept through the LSMO sample in the cavity till ferromagnetic resonance is achieved.

At ferromagnetic resonance, the power which was absorbed by the LSMO thin film is a

maximum. The FMR spectrum was recorded on the Bruker Elexsys E 500 spectrometer

at a frequency of 9.75GHz, with a power of 0.6325mW, tolerance of 1.00K, modulation
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Figure 3.2: A block diagram of a microwave bridge. Adopted from ref.[148]

frequency of 100.00kHz, modulation amplitude of 10.00 and power attenuation of 25.0dB.

In order to avoid contaminating the microwave cavity of the spectrometer with paramagnetic

contaminants which produces spurious EPR signals, the sample tube was consistently wiped

with a tissue paper.

Angular dependence of FMR spectra were recorded with the magnetic field rotated in the

film plane ( in-plane geometry) or in the plane which is perpendicular to film plane ( out

-of-plane geometry). It should be noted that due to restrictions of the experimental setup

in the in-plane geometry, the microwave magnetic field is perpendicular to the film whiles

in the case of the out-of-plane geometry, this field is in the plane of the film. The coordinate

system which was used for the measurement and analysis of the out-of-plane dependence

is as shown in figure 3.3. The goniometer was used to carry out the measurement of the

out-of-plane dependence of the FMR. The data obtained from the experiment were then
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Figure 3.3: The coordinate system which was used for the measurement and analysis of the
out-of-plane angular dependence of FMR. Adopted from ref.[131]

analyzed using Matlab.



Chapter 4

RESULTS AND DISCUSSIONS

The ferromagnetic resonance (FMR) spectrum at T = 150K observed for the 15uc thick

LSMO thin film which was deposited on STO substrate is illustrated in figure 4.1. The

coordinate system which was used for the measurement of the FMR spectrum is shown

in figure 3.3. As shown in figure 4.1, the spectrum clearly evolves as the resonance field,

Hres is rotated in-plane. The spectrum in figure 4.1 is sinusoidal-like in nature which is

in agreement with ref.[122]. That is, the angular variation of the resonance field, Hres

presents a sinusoidal-like shape. In figure 4.1, it can be observed that there is a critical

orientation for only a single uniform FMR mode. This single uniform FMR mode according

to Puszkarski(1970) is attributed to the fact that at surfaces of a ferromagnetic film such as

LSMO, there exists surface anisotropy which allows the excitation of an exchange-dominated

non-propagating surface mode [143].

The resonance widths of the 15uc thick LSMO thin film such as in figure 4.1, is as a result

of the homogeneous and inhomogeneous contributions [90]. The homogeneous contribution

to the resonance width depends on factors such as microwave frequency and saturation

magnetization [18]. The inhomogeneous contribution to the width of the FMR spectrum

such as in figure 4.1 can be related to the variation of the magnetization, demagnetization

parameters, anisotropy field and damping parameters in the LSMO thin film sample[90].

49
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The significance of the resonance width in the LSMO sample is that it can give some infor-

mation on the spin-lattice relaxation in the magnetic sample[2]. Also, another significance

to the width of the resonance line in the 15uc thick LSMO sample is that it can be used to

characterize the contribution of the intrinsic loss mechanisms and the determination of the

magnetic inhomogeneities in the LSMO thin film [55].

The maxima and minima with negative and positive curvature (as depicted in figure 4.1)

would either increase or decrease the resonance field respectively, and this depends on the

magnetization direction [130]. The maxima and minima of the resonance spectrum in figure

4.1, are as a result of the singled-valued double differentiable function in the resonance

condition of Eq. (2.1.36)[130]. The resonance position of the FMR spectrum in figure 4.1,

is indicative of in-plane anisotropy. The in-plane anisotropy in the LSMO thin film can

occur when an oriented or an epitaxial film of the magnetic material is grown with its

easy axis perpendicular to the film plane[11]. Usually, in LSMO, the easy axis is aligned

with the maximum tensile strain direction [154]. According to Boschker et. al (2010) they

observed that an LSMO which was fabricated on STO (110) substrate, the tilt of the [110]

vector was in the [001] direction favours a partially out-of-plane axis. The occurrence of

the component of the easy axis results in magnetic domain formation which is due to the

high demagnetization energy of the LSMO thin film in the out-of-plane direction [154].

The main feature of the FMR spectrum of the 15uc thick LSMO sample in figure 4.1 is

broad which is basically single FMR line. This is also in agreement with FMR results on

(La, Sr)MnO3 bicrystalline films which were deposited on STO substrate [122]. The FMR

spectrum of the 15uc thick LSMO sample has a maximum for orientation angles; 15o, 46o,

104o and 151o and the minimum of the FMR spectrum occurs at 28o, 77o, 118o and 167o.

The mean maximum of the resonance field was 1229.5 Oe and the mean minimum of the

resonance field was 910.875 Oe. The mean maximum and minimum of the resonance fields
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were obtained by taking the mean of maximum of the four maxima from the amplitude of

the sinusoidal-like shape and the mean minimum was also obtained by taking the mean of

the minima of the amplitude of the sinusoidal-like shape or the ferromagnetic spectrum.

From the mean maximum and mean minimum of the resonance field, this results in a center

position of 1070.1875 Oe and the width which is sometimes approximated as the full width

half maximum (FWHM) of 159.3125 Oe. As can be observed in figure 4.1, the amplitude of

the FMR spectrum are unequal and this might be attributed to the existence of a uniaxial

anisotropy [122]. This uniaxial or planar anisotropy which might have occurred during the

growth of the 15uc LSMO thin film is due to the film substrate thermal expansion mismatch,

lattice mismatch or the film microstructure[146]. According to Celinski et.al (1997) [56],

the angular dependence of the resonance field, Hres yields Keff
1 . The surface plot of the

15uc thick LSMO thin film at T = 150K as shown in 4.2.

Figure 4.1: Resonance field/Oe against angle/o of FMR spectrum observed for the 15uc
LSMO film at T = 150K

The frequency at which resonance occurs in LSMO [90] is expressed as Eq.(2.3.3). Equation
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(2.3.3) was derived using the famous Smit and Beljers model. But according to Baselgia

et.al (1988) there exists discrepancy in the model which cannot be eliminated and therefore

a new model which can eliminate this discrepancy was proposed. The main source of the

discrepancy is the origin of the different terms in the free energy, F which is obscured by

an angular dependent mixing [57].

Figure 4.2: Surface plot of 15uc LSMO thin film at T = 150K

As can be observed in figure 4.3, there is an increase in the coercive field as the thickness

of the three LSMO samples decreases. This is consistent with ref.[150,151]. This increase

in the coercive field as the thickness of the LSMO sample decreases is usually towards a

thickness which is comparable to the width of the domain wall of LSMO [151]. Also, in

figure 4.3, it can be observed that the Curie temperature increases as the thickness of all the

three LSMO sample increases. This is in agreement with ref.[99,152]. The increase in Curie

temperature as the thickness of the LSMO sample increases is usually towards a thickness

which is comparable to the spin-spin correlation length [151].
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Figure 4.3: Coercive field [Oe]/ Curie temperature[K] vrs film thickness [unit cells] of the
LSMO sample at T = 5K.

In figure 4.4, it can be observed that as the thickness of the LSMO sample increases, the

volume magnetization also increases. This is also consistent with ref.[153,152] in which the

magnetization of LSMO thin film which was fabricated on STO substrate at T = 5K was

measured.
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Figure 4.4: Volume magnetization [emu/cm3] vrs film thickness [unit cells] of LSMO sample
at T = 5K.



Chapter 5

CONCLUSION AND
RECOMMENDATIONS

5.1 CONCLUSION

Ferromagnetic resonance at a temperature, T=150K has been observed in a 15uc thick

LSMO thin film. The ferromagnetic resonance spectrum is sinusoidal-like in nature with

maximum and minimum curvatures. This maximum and minimum curvatures of the res-

onance spectrum might be attributed to the singled-value double differentiable function in

the resonance equation. The 15uc thick LSMO sample which was deposited on the STO

substrate showed unequal resonance field. The center position and the full width half max-

imum of the 15uc LSMO thin film were 1070.1875 Oe and 159.3125 Oe respectively. The

Curie temperature, Tc of the LSMO samples which were measured at temperature, T=5K

increases with increasing film thickness whiles the coercive field decreases with increas-

ing film thickness. Also, the volume magnetization of the LSMO samples increases with

increasing film thickness.

5.2 RECOMMENDATIONS

Further experiments are required to confirm ferromagnetic resonance in LSMO thin films.

This can be achieved when more angular dependence of FMR are carried out on different film

55
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thickness [unit cells] of the LSMO samples. Since ferromagnetic resonance is an experimental

technique which can be used in determining the magnetic properties of thin films, magnetic

hysteresis measurement can also be performed on the LSMO sample to ascertain its magnetic

properties. Further research can also be done on the frequency dependence of the resonance

field, Hres which determines the gyromagnetic ratio so that the g-factor can also calculated

for the LSMO sample. Due to discrepancies between experimental results and theory for

the frequency at which resonance occurs using the Smit and Beljers model, the modified

model which was proposed by Baselgia et. al (1988), which avoids mixing in the free energy,

F which obscures the angular dependent terms can be used instead.
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List of Abbreviations and

Constants

C- speed of light

µo - permeability of free space

εo - permittivity of free space

FL - Lorentz force

E - electric field

H - magnetic field

FMR - ferromagnetic resonance

γ - gyromagnetic ratio

LL - Landau-Lifshitz

LLG - Landau-Lifshitz - Gilbert

MAE - magnetic anisotropy energy

H - Hamiltonian

Eani - anisotropy energy density

Hd - demagnetizing field

M - magnetization

N - demagnetizing factor

Ks - shape anisotropy
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Ku - magnetocrystalline anisotropy

Ms - saturation magnetization

F - free energy

S - entropy

T - temperature

MSA - magnetic surface anisotropy

TOM- torsion oscillation magnetometry

σs - surface energy

Keff - effective anisotropy constant

Keff
v - effective volume anisotropy constant

Keff
s - interface anisotropy constant

µ - magnetic dipole moment

τeff - effective torque

Heff - effective field

G - Gilbert damping term

MRAM - Magnetoresistive random access memory

Vo - atomic volume

δ - skin depth

dex - exchange length

Pm - microwave power

Ho - external dc field

∆Hpp - ferromagnetic resonance linewidth

α - magnetic damping

ESR - electron paramagnetic resonance

Tc - Curie temperature

t - tolerance factor
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ζ - coherence epitaxy

εm - misfit strain

εc - in-plane compressive strain

P - pressure

σc - conductivity

TMR - tunnel magnetoresistance

MCE - magnetocaloric effect

∆Tad - adiabatic change in temperature

a - lattice constant

CPW - coplanar waveguide

VNA - vector network analyser

Q- quality factor

r- Mn -Mn distance

ξ - spin orbit coupling

ψ - angle between the magnetization and magnetic axis

θ and φ - polar angles of magnetic moment in the crystal axis frame

β - angle between the magnetization, M and surface normal, n

ϕ - azimuthal angle

Ψ and Ω - magnetization angles

η - angle between the external magnetic field and direction z normal to the film

Ki - anisotropy constants

Hs - stray field

τ - torque

λ - relaxation frequency

q - charge of electron
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