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1. INTRODUCTION

In underwater inspection, maintenance and repair (IMR)
operations, the use of autonomous underwater vehicles
(AUVs) as an alternative to remotely operated vehicles
(ROVs) constitutes a significant potential for saving costs.
The benefits are particularly related to the ability of au-
tonomous systems to operate in complex, harsh and re-
mote environments without the support of a surface vessel.
The day rate for surface vessels is high and operations
are highly dependent on the weather and climate. The
use of autonomous systems will lead to enhanced cost-
effectiveness, reduced downtime, and may have a positive
impact on health, safety and the environment (HSE), see
Winnefeld and Kendall (2011).

AUVs are exposed to random environmental conditions
and operational hazards challenge the risk management of
the IMR operations. In this context, a direct approach to
risk control is path planning adaptation, specially related
to AUV inspection task where collision is one of the
major undesired events. This gives significant advantages
compared to existing systems which mainly optimize the
path planning on minimal cost or operational time. Note
that the application developed in this paper is AUV
operations but the approach can be applied for other
autonomous operations.

Several related works can be mentioned. Bae et al. (2015)
consider a problem of finding a risk-constrained short-
est path for an unmanned combat vehicle. The prob-
lem is solved by the use of a dynamic programming ap-
proach. The problem of computational time is tackled by
a straightforward limitation of the explored area. Pereira
et al. (2013), as Greytak and Hover (2009), use the A-Star
algorithm to find minimum risk path for an AUV or under-
actuated surface vessel. The dealing between path length
and risk is also discussed but no solution is suggested to
balance out the inefficiency of the considered heuristic in
A-Star. De Filippis et al. (2011) discuss the use of A-Star
and genetic algorithm to find minimal risk path.

The main contribution of this paper is to propose a
trade-off between computational requirements and the
optimality of the found path. This is obtain through
the hierarchical path planning methodology. This method
enables, in a certain way to compensate the inefficiency
of the heuristic associated to the integration of the risk
of collision in the path optimization. To a lesser extent,
this paper does not integrate risks of collision as given
quantities but decompose risk through the probabilities of
collision and consequences cost. ?

The remainder of this paper is organized as follows: sec-
tion 2 gives an overview of risk and general considerations
on how the risk can be associated to the path planning
task. Section 3 focuses on path planning algorithms, on
the definition of a relevant heuristic in association to the
risk. The proposed approach is developed in this section.
Section 4 presents the case study. Section 5 provides com-
putational experiments to illustrate the developed strat-
egy. Finally, the article ends with concluding remarks and
perspectives.

2. RISK IN PATH PLANNING

The aim of this section is, firstly, to provide a brief
introduction to risk. Secondly, the interactions between
risk and AUV control and especially the path planning are
discussed. Then, risk assessment along a path is presented.

2.1 Risk

According to Kaplan and Garrick (1981) and Rau-
sand (2011), risk analysis answers three main questions:
1. What can go wrong? 2. What is the likelihood of that
happening? and 3. What are the consequences? Let risk
be defined as a set of nR triplets where Ei denotes the
hazardous event i, Pr {Ei} the probability of occurrence of
this event and Ci the cost associated to its consequences.

R = {(Ei,Pr {Ei} , Ci)}nR

i=1 (1)

The risk management framework, proposed in ISO (2009),
identifies the steps for risk identification (i.e., identification



of the set R). If all hazardous events have been considered
and included, the set of triplets is considered complete
and represents risk. Let rT be the random variable which
characterises the cost associated to the occurrence of the
hazardous events:

rT =

nR∑
i=1

CiI{Ei} (2)

The total risk RT is defined as the mean value of rT :

RT = E [rT ] = E

[
nR∑
i=1

CiI{Ei}

]
=

nR∑
i=1

CiE
[
I{Ei}

]
=

nR∑
i=1

CiPr {Ei}
(3)

One of the major steps in the process of risk identification
is the determination of the risk influencing factors (RIFs).
RIFs can be defined as an aspect (event/condition) of
a system or an activity that affects the risk level of
this system or activity, see Oien (2001). In the context
of AUV operation they are related to the situation of
the vehicle and represented by parameters, e.g., energy
capacity, vehicle speed and/or location, environmental
conditions like wind, waves, current. The most part of
these parameters are connected to the vehicle path.

TODO: Try to insert here some elements about the fact
that we focus in the following only on the risk of collision.

2.2 Integration of risk in path planning

Referring to National Research Council (US) (2005), an
AUV is a vehicle that possesses self-governing capabilities
allowing it to carry out tasks without human intervention.
Basically, the following units constitute the control archi-
tecture of an AUV (See Fig. 1).

• the definition of a path is achieved by the path plan-
ning unit. This one integrates vehicle environment
(e.g., obstacles) and vehicle characteristics (e.g., di-
mensions).
• the estimation of the vehicle state (e.g., position) is

achieved by the navigation unit which may rely on
satellite navigation system and on inertial measure-
ment unit.
• the determination of the trajectory that minimizes

the distance apart the theoretical position of the
vehicle and its actual one (respectively provided by
path planning and navigation units) is achieved by
the guidance unit.
• At last, the command of actuators to pursue the

trajectory defined by the guidance unit is achieved
by the control unit.

Path
planning

Guidance Control
Actuators

AUV

Navigation

Fig. 1. AUV flying control architecture

According to Campbell et al. (2012) -see also Khorrami
and Krishnamurthy (2009)- a simple way to integrate
risk is at the supervision level through the adaptation
of the vehicle path to the safety requirements. Basically,

this task is achieved offline on the basis of a mapped
environment with known static obstacles. The increase of
sensing capabilities enables to consider the implementation
of online and embedded path (re)planning to take into
account changing environment. One of the challenge is
then to carry out this new capability in combination with
standard reflexive avoidance strategies. Another one is to
provide path (re)planning solutions in accordance with the
computational capabilities and time constraints intrinsic
to embedded system in AUV applications.

The approach proposed is this paper stands at an interme-
diate level. The aim is to provide a solution for path plan-
ning, with risk integration, compatible with an embedded
use, i.e., requiring a limited amount of time. A mapped
environment with known static obstacles is assumed. Start
and goal position, as well as weights put on the different
criteria considered for path planning might be provided by
the AUV itself, increasing by this way its autonomy. ?

In the next section path planning problem and the inte-
gration of risk is formalized.

2.3 Problem formalization

Path (or motion) planning is the subject of an extensive
literature. For an overview see for instance LaValle (2006)
or Paull et al. (2013). The general problem statement is
to find a path between given start and goal states (i.e.,
positions). Generally, this problem is associated with the
optimisation of a performance criterion (e.g., path length,
travel time) and is potentially subject to constraints (e.g.,
path smoothness). So, risk integration in path planning
can be seen as adaptation of the performance criterion or
of the constraints.

There are several approaches to achieve the path plan-
ning: e.g., potential fields, sampling-based (randomized)
approaches, combinatorial (deterministic) approaches. To
avoid the inherent problem of potential fields to get
trapped in local minima and the intrinsic weaker of
random approaches (near optimal solution if a solution
is found), the combinatorial approaches and especially
heuristic based algorithm are considered in the following.
Therefore, it is assumed that the continuous vehicle en-
vironment (i.e., the search space) can be modelled as a
graph G = (S,E) where S = {s1, s2, . . . , sn} is the set
of possible state (e.g. locations of the vehicle) and E =
{(si, sj) : si, sj ∈ S, si 6= sj} the set of possible transitions
between states S. All transitions in E can be weighted
with several non negative values (e.g. length, travel time,
risk).

Path planning corresponds to the search in G of a path
from a starting state ss to a goal state sg (ss, sg ∈ S).
A path pss,sk = [ss, si, . . . , sj , sk] defines the successive
states that have to been reached to go from the starting
state ss to the state sk. In the following, path pss,sk is
noted psk if the starting state is ss; psk(i) denotes the
ith states reached and |psk | is the number of states in the
path. Path planning can be formulated as an optimisation
problem

p∗sg = arg min
psg∈Psg

g
(
psg
)

(4)



where p∗sg denotes the path, amongst the set Psg of possible
paths from ss to sg, that minimizes the cost function g.

Constraints may be added to equation 4 (e.g., f (i)(psg )−
f
(i)
th < 0 where f (i),∀i = 1, . . . , nc is a set of cost functions

and f
(i)
th a set of specified maximal threshold). Through

this formulation path planning problem may be formulated
as the search of i) the minimal length path, ii) the minimal
risk path, iii) the minimal length (respectively risk) path
subject to constraint of a maximal level of risk (resp.
length).

2.4 Cost assessment along a path

We define here several cost functions g depending on the
criteria considered for path planning (length and risk).

Path length is defined by the equation (5) where the
distance associated to the transition from state psg (i− 1)

to state psg (i) is denoted by d
(
psg (i− 1), psg (i)

)
.

glength(psg ) =

|psg |−1∑
i=1

d
(
psg (i), psg (i+ 1)

)
(5)

Regarding risk, as mentioned before, we focus only on the
risk of collision. Moreover it is assumed that whatever is
the collision consequence and whenever it occurs, it leads
to:

• the aborting of the mission. Therefore only the first
collision is of interest.
• to a constant cost CCo

and this without loss of
generality ?.

We consider the function Co(si, sj) which equals 1 if there
is collision on the transition from the states si to sj with
(si, sj) ∈ E and equals 0 if not. Let Pr {Co(si, sj) = 1}
be the probability that a collision occurs during this
transition. Such quantity is associated to all transitions in
the set E of G. Due to the sequencing of displacements, the
risk associated to the path psg corresponds to the product
of the cost CCo

with the probability that:

• the collision occurs during the transition from the
node psg (1) = ss to the second state of the path
psg (2),
• or, that the collision occurs during the transition from

state psg (i) to psg (i + 1) with 2 ≤ i < |psg | − 1 and
has not occurred during the previous transitions.

Hence:

grisk(psg ) = CCo

[
Pr
{
Co(psg (1), psg (2)) = 1

}
+

|psg |−1∑
i=2

Pr
{
Co(psg (i), psg (i+ 1)) = 1

}
i−1∏
j=1

(
1− Pr

{
Co(psg (j), psg (j + 1)) = 1

}) ]
(6)

Note that a conservative approach would be to consider
the formulation of equation (7) for risk assessment along
the path. This more simple formulation leads to equivalent
solutions when the minimal risk path is targeted but is
not fully relevant, although conservative, when risk is

formulated as a constraint of equation (4) since risk is
overestimated.

g′risk(psg ) = CCo

|psg |−1∑
i=1

Pr
{
Co(psg (i), psg (i+ 1)) = 1

}
(7)

3. PATH PLANNING ALGORITHNS

In this section we briefly present A-Star and Disjkstra’s
algorithms and propose heuristics in accordance with the
different cost functions developed in 2.4. Then we present
the hierarchical approach for path planning that can
exploit one or other of the two mentioned algorithms.
And finally, we give some elements about constrained path
planning.

3.1 A-Star, its heuristics, and Dijkstra’s algorithm

A-Star and Disjkstra’s algorithms are very common so-
lutions to solve minimal cost path planning. The reader
is refereed, for instance, to Ferguson et al. (2005) for
further description of these algorithms. These two algo-
rithms operates in a similar way but A-Star relies on an
estimate, a heuristic h, to drive the graph exploration to
the most favourable areas. By this way, A-Star may be
much less computationally expensive than the Dijkstra’s
algorithm and leads, as the Dijkstra’s algorithm, to an
optimal solution provided that the considered heuristic is
admissible.

Let h(sk, sg), with sk, sg ∈ S, an estimate of the cost to
reach the state sg from the state sk, without presuming
a specific path. This heuristic is admissible if it does not
overestimate the effective minimal cost h∗ to reach the
goal state (i.e., h(sk, sg) ≤ h∗(sk, sg) ∀sk ∈ S). Dijkstra’s
algorithm can be seen as a special case of A-Star when
h(sk, sg) = 0 ∀sk ∈ S which constitutes an admissible
heuristic but not an efficient one.

When length cost is considered, equation (5), an admissi-
ble heuristic is

hlength(sk, sg) = de (sk, sg) (8)

where de denotes the euclidean distance between the two
states.

When risk cost is considered, equation (6), an admissible
heuristic is

hrisk(sk, sg|psk) = CCo
Prmin {Co = 1}

α(psk)
1− (1− Prmin {Co = 1})N+1

1− (1− Prmin {Co = 1})
(9)

where:

• N is the minimum number of transitions between the
state sk and the goal one:

N = bde (sk, sg)

dmax
c (10)

with dmax the maximum euclidean distance between
adjacent states,

• Prmin {Co = 1} is the minimum collision probability
affected to a transition in the graph G.

Prmin {Co = 1} = min
(si,sj)∈E

Pr {Co(si, sj) = 1} (11)



• α(psk) is a coefficient enabling to take into account
the path followed from ss to sk

α(psk) =


1, if |psk | = 1,
else,
|psk
|−1∏

i=1

1− Pr {Co (psk(i), psk(i+ 1)) = 1}

The third term of equation (9) corresponds to the terms of
the geometrical suite generated by the N transitions with
a probability of collision equals to Prmin {Co = 1}.
If the considered cost function for risk is expressed by
equation (7), an admissible, and more simple, heuristic
is

hrisk(sk, sg|psk) = N CCo Prmin {Co = 1} (12)

where N and Prmin {Co = 1} are respectively expressed
by equations (10) and (11).

3.2 Hierarchical approach

BlaBla

3.3 Constrained optimization

BlaBla

4. CASE STUDY

The considered use-case is in two dimensions but can
be expanded to a higher dimensions (e.g., vehicle depth,
vehicle speed) without loss of generality. As mentioned
before, only the risk of collision is considered. In addition,
the collision cost is assumed to be constant all along the
travel. Therefore, for simplicity, risk is reduced to the
collision probability in the following (i.e., CCo = 1).

4.1 Environment

Since 2012, the Applied Underwater Robotics Laboratory
(AUR-Lab) at NTNU uses an area of Trondheim har-
bor, not far from Munkholmen, as a testing ground for
applications of underwater robots and sensors to marine
archaeology. This area is called The Reference Wreck due
to the presence of a shipwreck dated to late 17th century
at 60 meters depth. In the following we use the map of this
area to illustrate the proposed approach.

Obstacles inside this area are defined according to 3
different ways:

(1) a first class of obstacles has been defined based on a
simple threshold on the depth of the area;

(2) a second class of obstacles has been defined in such a
way that it is forbidden to the vehicle to go outside
the mapped area;

(3) at last, to make the path planning task more chal-
lenging, a third class of additional obstacles has been
defined. Dimensions and positions of these obstacles
have been randomly generated.

Whatever the way in which obstacle have been defined
they have the same ”behavior”.

A basic cellular decomposition technique into non overlap-
ping cells of simple predefined shapes is used to discretize

the search space. The entire cell is considered as an obsta-
cle, and is considered as an invalid state, if it encompasses
a part of an obstacle. The cells dimension and connectivity
directly yields the size to the graph figuring the search
space. In the following, cells are a 0.125m square side, 8-
connected neighbourhood, leading to a graph composed by
18495 nodes and 138908 edges.

4.2 Map of collision probability

According to section 2.4 it is assumed that all transitions
(si, sj) ∈ E, in addition to the distance between state
si and sj (de(si, sj)), are valuated with the probabil-
ity Pr {Co(si, sj) = 1}. To determine this probability, a
”map” is used where each state (i.e., each cell) si ∈ S is as-
sociated to a collision probability denoted Pr {Co(si) = 1}
where Co(si) is a function which equals 1 if there is colli-
sion in si and 0 if not. The probability of collision during
a transition between si and sj , (si, sj) ∈ E, is defined as
the average of probabilities of collision cells associated to
states si and sj

Pr {Co(si, sj) = 1} =
1

2
(Pr {Co(si) = 1}+ Pr {Co(sj) = 1}) (13)

The probability Pr {Co(si) = 1}, ∀si ∈ S is the result of
the aggregation, trough an ”or” rule, of collision proba-
bilities to each obstacle j for j = 1 to nO present in the
environment

Pr {Co(si) = 1} = 1−
nO∏
j=1

(
1− Pr

{
C(j)

o (si) = 1
})

(14)

where Pr
{
C

(j)
o (si) = 1

}
is the collision probability be-

tween the vehicle and the obstacle j when the reference
state of the vehicle is si.

The function used to determine Pr
{
C

(j)
o (si) = 1

}
for

∀si ∈ S and all obstacles j is not detailed here. It de-
pends on several parameters, typically RIFs, like: e.g., the
shortest distance between the state si and the obstacle j,
the current intensity and orientation, the visibility and the
way the states si is crossed (a pass with a diagonal way is
longer than a pass with a longitudinal or a lateral way).
In practice this function might be tuned on the basis of
experts judgement and/or collected data.

In the present application, there is no current, visibility
is assumed to be constant and the collision probabilities
is homogeneously distributed around single obstacle. The
resulting map of collision probabilities is illustrated on
figure 2. Obstacles are depicted in black. Start and goal
positions have been arbitrarily set around and are depicted
white white and red dots respectively.

5. SIMULATION RESULTS

Speak here about the pre processing map and the time
required for this step.

5.1 Minimal length path

In this section, the problem of determination of the mini-
mal length path is considered.
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Fig. 2. Map of collision probabilities
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Fig. 3. Minimal length path.

Comments:

• Dijkstra and A-Star algorithms do not lead to the
same paths (see figures above) but distances are equal
and are the minimal one that can be expected. The
fact that these two paths are different explains that
the associated risk are slightly different.
• Hierarchical algorithms do not give neither the same

paths. The distance of obtained paths are around
1% higher than the optimal one. But, in return, the
computational time is reduced by a factor 12 in the
case of the Dijkstras algorithm; and by a factor close
to 3 in the case of the A-Star algorithm.
• Risk are different for each path. It is consistent with

the fact that all paths are different and that the risk
was not considered in the path determination process.

Table 1. Minimal length path.

Algorithm Distance Risk Duration

Dijkstra 17.99 1.16E-02 100.00%
A-Star 17.99 1.22E-02 14.08%

Hierarchical Dijkstra 18.16 1.36E-02 7.62%
Hierarchical A-Star 18.16 1.24E-02 2.80%

5.2 Minimal risk path

The problem of determination of the minimal collision risk
path is considered in this subsection.

Comments:
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Fig. 4. Minimal risk path.

• Due to the ”inefficiency” of the used heuristic, the
A Star algorithm does not enable to reduce the
computational time as seen in the previous section.
But the heuristic is admissible and we can note that
the same optimal risk (and actually, the same paths:
see figures above) are obtained with Disjkstra and A-
Star algorithms.

• Hierarchical approaches are here still relevant and
lead to a reduction of the computational time by a
factor of around 9 in return of a non-optimality of
the obtained paths (+8%).

Table 2. Minimal risk path.

Algorithm Distance Risk Duration

Dijkstra 28.36 2.28E-03 107.89%
A-Star 28.36 2.28E-03 108.88%

Hierarchical Dijkstra 30.89 2.46E-03 12.30%
Hierarchical A-Star 30.89 2.46E-03 13.74%

5.3 Pareto curve

In this section, the problem of determination of the mini-
mal length, respectively risk, path under the constraint of
maximal risk, respectively length is considered.

The figure below shows the Pareto curve: minimum risk
(i.e., collision probability along the path) depending on
the minimum path length. 4 curves are depicted depending
of the algorithm used but Dijkstra and A-star curves are
overlapped because of the admissibility of the heuristic
used with the A-Star algorithm.

The non-optimality of solutions provided by hierarchical
algorithms is obvious (see Figure 5) but it is in return of
a drastic reduction of the computational time as it can be
seen on the Figure 6 where the gain is around a factor 10.

In addition, we clearly see on figure 6 the impact on the
computational time of the ”inefficiency” of the heuristic
associated to the risk: greater is the λ value, greater is
the weight put on this criteria and more important is the
computational time. This is not only true for the A-Star
algorithm but also to the Hierarchical A-Star even if it is
less visible on this graph.

At last we can notice an unexpected effect with the
decreasing of the computational time for the different
curves even if it is more pronounced on the Dijkstra ones.
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Fig. 6. Computational time for the Pareto curve.

After investigations it appears that the number of visited
nodes decreased when the weigh on the risk cost increased.
This is due to a ”gate” effect.

6. CONCLUSIONS AND FUTURE WORKS

See ?, ?, ? and ?
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