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Abstract. Solute atom nanoscale precipitates are responsible for the favourable mechanical 
properties of heat treatable aluminium alloys such as Al-Mg-Si (6xxx). The shape, structure 
and strengthening properties of age-hardening precipitates depend on alloy composition and 
thermo-mechanical history. We seek an improved understanding of the physics related to 
nucleation and precipitation on the atomistic level in these alloys. Once these mechanisms are 
sufficiently well described and understood, the hope is that 'alloy design' simulations can assist 
tailoring of materials with desired properties. In pure Al-Mg-Si we have determined the 
structure of nearly all the known metastable precipitate phases, by combining advanced TEM 
techniques (such as high resolution TEM and nano-beam diffraction) with atom probe 
tomography and density functional theory. We are now studying effects of additions 
/substitutions of Cu, Ag and/or Ge that promote formation of more disordered precipitates, 
employing aberration corrected high angle annular dark field scanning TEM. We find that all 
metastable precipitates contain variations of a widely spaced 'Si/Ge network'. In spite of 
disorder or defects, this network is surprisingly well ordered, with hexagonal projected sub-cell 
dimensions a = b ≈ 0.4 nm and c (along the fully coherent precipitate main growth direction) 
equal to 0.405 nm or a multiple of it.  

1. Introduction 
The Al-Mg-Si(-Cu) alloys are an important group of age-hardenable materials. Properties like high 
strength/weight ratio, good formability and weldability, combined with an excellent corrosion 
resistance, rank them among the most attractive alloys and have made them widely used by the 
industry. 6xxx alloys find applications in a wide range of areas, such as in building constructions, 
automobiles and marine applications. The significant increase in hardness during the ageing heat 
treatment is caused by the formation of a high density of metastable (semi-)coherent precipitates in the 
Al matrix. There is an increasing demand for improved control of properties ('alloy design'). This in 
turn requires knowledge of the finest details of the precipitation sequence, as some precipitates have 
considerably stronger hardening effect than others. The task is manifold, including diffusion and 
solute clustering, nucleation, growth and phase transformations of the precipitates. These topics are 
inherently atomistic, meaning that knowledge and understanding of the atomic structures of the 
precipitates and their interfaces with Al is paramount. The quality of modern transmission electron 
microscopes (TEM), the use of recently developed quantitative analysis techniques and the availability 
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of computer power and programs to perform first principles calculations have enabled the crystal 
structures of most precipitates in the ternary Al-Mg-Si alloys to be solved. Disregarding the actual age 
temperature and time, for this system the following precipitation sequence can be given (with the 
structures largely determined within our group): 
 

SSSS → Clusters → GP (pre-β”[1,2]) → β”[3] → β’[4], U1[5,6], U2[5,7], B’[8,9] → β, Si 
  
Here, SSSS denotes the supersaturated solid solution. The U1, U2 and B’ phases are also called Type 
A, Type B and Type C, respectively [10]. With exception of the equilibrium phase β (Mg2Si) and Si, 
all phases are assumed metastable. Every stage of the sequence is complex and is a function of alloy 
composition, heat treatment (including cooling and heating rates) and storage time at room 
temperature prior to ageing. Cu additions to the ternary Al-Mg-Si system change the precipitation 
sequence and produce new phases [11-14]: 
 

SSSS → Clusters → GP → β” + L + S + QC → β’ + Q’→ Q 
  

This paper firstly reviews the methodology used in our studies [1,3-7,15] of precipitates in 6xxx 
alloys.  We then show some examples of how advanced TEM methods are used to acquire information 
on precipitate atomic structures at different stages, including quantitative diffraction and probe 
corrected annular dark field scanning TEM (ADF-STEM).  

2. Methodology  
Figure 1 shows the length scales involved in aluminium alloy development. Clustering, nucleation and 
precipitation are phenomena that must be studied near and at the atomic scale, as demonstrated on the 
right hand side of the figure. Usually, before attempting such detailed studies, in order to correlate the 
information obtained at the smallest scale, it is normal to characterize the materials properties and 
investigate at lower magnifications using more conventional methods, like optical and scanning 
electron microscopy. The length scales are demonstrated on the images on the left hand side of Figure 
1.  
 

 
 
Figure 1. The different length scales investigated in aluminium alloys. Tools for studying the 
nano/micro-structure as shown in the stippled box would include high resolution TEM and annular 
dark field scanning TEM, nano-beam diffraction, atom probe tomography and density functional 
theory calculations.  
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2.1. Experimental methods 
It is well established that age hardening strongly depends on the number density of precipitates as well 
as their type. Because all metastable precipitates in Al-Mg-Si(-Cu) have needle/lath/rod/plate 
morphologies with main growth direction along <001>Al, for most purposes the TEM specimens 
should be oriented in this zone axis. Images recorded in bright field TEM are used for finding 
precipitate number density and measuring the average precipitate length and cross-section that enables 
calculation of corresponding precipitate volume fractions. Early on, our group developed a 
methodology for accurate microstructure determination by taking into account errors originating from 
underestimation of average precipitate needle/lath/rod/plate length when some precipitates close to the 
specimen surface are cut during sample preparation [16]. Thicknesses of the samples are needed here, 
and are measured using electron energy loss spectroscopy. Often, precipitates can be distinguished 
based on morphology and orientation, see e.g. [17]. 

Atomic models of precipitate structures are constructed by analyzing high resolution TEM 
(HRTEM) images that give input on atomic column positions and crystal symmetry. Since these 
images can only be acquired in main growth axis projection (with the precipitate occupying the entire 
region across the sample thickness direction), they do not contain full information about atomic 
heights or atomic column composition (type).The heights can be inferred from projected inter-column 
distances, and approximate precipitate compositions can be obtained by Energy Dispersive X-ray 
Spectroscopy (EDS). With heavier atoms like Cu, Ag or Ge present in the precipitates, annular dark 
field scanning TEM (ADF-STEM) is a superior technique due to its Z-contrast information. In 
addition, ADF-STEM images are more directly interpretable than HRTEM images which rely on 
phase contrast [18]. The ADF-STEM technique has been greatly enhanced recently by the 
development of probe Cs-corrected STEM machines that are capable of achieving sub-Ångström 
resolutions at superior signal to noise ratios [19]. Consequently, ADF-STEM is increasingly replacing 
HRTEM. One drawback of the ADF-STEM technique is the presence of distortions in the images due 
to specimen drift during the electron scan. 

Figure 2. Overview of the methodology used to determine precipitate structures. Examples are shown 
for the main hardening phase β”. Experiments (1) include medium magnification bright field TEM, 
HRTEM, APT, ADF-STEM and nano-beam diffraction (NBD). Theses are used to construct an initial 
structure model (2) as input to the quantitative refinements (3) where NBD intensities are used in a 
Multi Slice Lest Squares (MSLS) program and density functional theory (DFT) calculations are done 
in a self-consistent loop to solve the structure (4). Abbreviations not explained are given in the text.  
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  In the early stages of clustering, when randomly distributed clusters have small sizes and are highly 
coherent with the face centred cubic (fcc) Al matrix, TEM based techniques have proven difficult. For 
Al-Mg-Si, even the exact pre-β'' structure is still a matter of debate [1, 2]. Atom probe tomography 
(APT) [20], is a unique method enabling real-space mapping of atoms with near-atomic resolution, 
and it is superior in the characterization of small clusters and precipitates in metallic alloys [21]. In 
addition to providing particle number density and morphology, APT gives information complementary 
to that of the TEM. For the case of well-developed precipitates APT can be used to accurately measure 
the particle composition. If precipitate compositional disorder is present, this will be most clearly 
revealed with APT [20]. Figure 2 shows an overview of the methodology.   

 
2.2 Quantitative refinements 
By combining some of the above-mentioned experimental techniques, good initial models of the 
precipitate atomic structures can be constructed. When possible, verification of these models is 
achieved by using quantitative electron diffraction. For this purpose, relative intensities of diffraction 
spots in nano-beam diffraction (NBD) patterns recorded from individual particles are compared with 
the corresponding relative intensities generated from the proposed atomic model, taking into account 
dynamical diffraction. This is acquired by use of a multi slice least squares (MSLS) method [22]. After 
the experimental and theoretical intensities are compared, the atomic model is adjusted to optimize the 
fit with experimental data. For 3D refinement of atomic coordinates, the MSLS program is dependent 
on input from a collection of electron diffraction patterns originating from different zone axes. In 
addition to atomic coordinate refinement, MSLS can also refine cell parameters, atomic occupancies 
and temperature factors. MSLS is presently an integrated part of our methodology [3-7,15]. However, 
since the MSLS program only optimizes a structure to fit experimental data, it needs to be verified 
whether or not the refined atomic structure has a favourable formation enthalpy. Also, precipitate 
compositional disorder can prove challenging, given the highly similar scattering cross sections of Al, 
Mg and Si. 

First principles density functional theory (DFT) [23,24] based total energy calculations represent 
the selected complementary theoretical tool to MSLS for clarifying the structure and composition of 
the experimentally observed precipitates [3-7,15]. We generally employ the Vienna ab initio 
simulation package (VASP) [25], a plane wave based benchmark tool for condensed matter theoretical 
studies. A combined MSLS and VASP analysis is highly advantageous: MSLS makes direct reference 
to experimental observations, but can leave doubts with regards to the composition [15]. DFT studies, 
on the other hand, involve well defined configurations, but within user defined restrictions (choice of 
unit cell size e.g.) of the analysis. When fed with input from a preliminary structural analysis, total 
energy calculations can provide a set of candidates for MSLS to analyze. In turn, the MSLS optimized 
structures may provide new information (such as the need of a larger unit cell) for VASP to address. In 
principle, this 'self-consistency loop', as shown in figure 2, can fully clarify the precipitate structure. 
Inclusion of APT investigations in the above described loop promises increased reliability of the 
results. 

When used for structural determination, theory conventionally ignores the precipitate interfaces 
with Al for reasons of computational efficiency. Evidently, a proper description of the precipitate 
interactions with Al requires interface studies [26-28].  

As expected from the comparative dominance of bulk over interface energy contributions, bulk 
calculations do tend to get the relative stabilities of the phases qualitatively right [8]. However, we 
emphasize the crucial importance of experimental input for the theory: For Al-Mg-Ge, only some of 
the Al-Mg-Si precipitates remain stable according to experiment [29], whereas bulk calculations 
reveal no exclusion of any of these precipitates.   

3. ADF-STEM on Cu-containing precipitates and the Si network 
The advantage of the ADF-STEM technique when investigating metastable precipitates in the 6xxx 
system was first realized in the Al-Mg-Si-Cu system [14]. Here, the distribution of Cu-columns along 
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the needles’ directions demonstrated that many of these precipitates had disordered structures. This, 
corroborated with the additional information provided by HRTEM images and NBD patterns enabled 
us to conclude that, as for the Al-Mg-Si system, the precipitates can be basically described as different 
arrangements of Al, Mg, Cu on a Si-network with projected hexagonal dimensions a = b ≈ 0.4 nm 
when viewed along the precipitates longest directions. A direct confirmation of this has been provided 
by aberration corrected ADF-STEM, where the Si atomic columns are clearly visible in Z-contrast. 
Figure 3 shows as example a partly disordered Q’ precipitate image in aberration corrected ADF-
STEM mode, with the Cu and Si atomic columns identified solely based on the Z-contrast 
information.  The importance of ADF-STEM is of equal importance when studying alloys where Si is 
replaced with Ge [29].  
 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. a) Unprocessed ADF-STEM 
image recorded along <001>Al of a partly 
disordered Q’ precipitate viewed along its 
lath direction; b) Noise was removed by 
applying a band pass mask that removed 
all distances shorter than 0.17 nm. A Q’ 
unit cell is marked; c) By enhancing 
contrast and reducing brightness of the 
image in b), the Cu and Si atomic columns 
inside the precipitate become visible, see 
arrows. The Si-network with projected 
hexagonal a = b ~ 0.4 nm is indicated.

4. Conclusions  
Advances on optimizing alloy properties for specific purposes will increasingly be relying on the 
fundamental understanding of precipitates as exemplified in this paper. We have developed a 
methodology combining several experimental techniques to study precipitate structures in Al-Mg-
Si/Ge(-Cu) alloys. This has revealed the existence of structural similarities between all metastable 
precipitates through a common Si network. ADF-STEM and NBD are central techniques in this 
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methodology, and probe Cs correction has proven extremely useful. Linking alloy composition and 
heat treatment with these results, ‘alloy design’ can be used to tailor materials with desired properties. 
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