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Abstract 

In this thesis the results from simulations of a tandem intermediate band solar cell are 

presented and discussed. Renewable energy sources have become increasingly important, 

because of global environmental concerns. To make the solar cell technology more viable as 

an energy source, the study of how to increase the solar cell efficiency is important. The 

intermediate band solar cell (IBSC) has been introduced as a cell with potential to enhance 

the efficiency of the conventional single-junction cell. IBSCs have limiting efficiencies of 

63.3%. This limit can be further increased by combining two different IBSCs in a tandem cell 

or combining an IBSC with a conventional single-junction cell.  

The principle of detailed balance is used to find the limiting efficiencies for possible band gap 

combinations. Similar analysis of the intermediate band tandem cell has been done previously 

for black-body radiation. In this thesis the reference AM1.5 spectra have been used, and 

concentration levels of 1, 100 and 1000 suns. During the work, a model of the intermediate 

band solar cell, single-junction cell and the complete tandem cell have been coded in Matlab. 

The tandem intermediate band solar cell will have six different band gaps and is hence 

comparable with a six single-junction tandem cell. Tandem cells with combinations of a 

single-junction cell and an intermediate band solar cell, having in total four different band 

gaps, have also been simulated. 

In addition to a higher maximum efficiency, the tandem IBSCs are found to have large ranges 

of useful band gap energies. Semiconductor materials not considered for the single-junction 

cell or the single intermediate band cells are viable for making tandem IBSCs. 

The main results in this thesis conclude that the four terminal tandem IBSC has a maximum 

efficiency of 54.93% for 1 sun, 62.74% for 100 suns, and 67.23% for 1000 suns. These 

maximum efficiencies are about 11% higher than that of a single IBSC under the same 

conditions. The maximum efficiencies for the other tandem cells are all higher than that of a 

single IBSC, with an increase from 1.50% to 9.05%. A wide range of main band gap 

combinations for the four terminal tandem cells give high efficiencies, but the range is 

strongly reduced for the two terminal tandem cell. For variations in the band gaps away from 

their optimal values, the efficiency is affected mostly by variation of the sub-band gap of the 

top IBSC. 
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1 Introduction 

The photovoltaic market is currently in rapid growth, with a cumulative installed capacity of 

roughly 40 GW worldwide in 2010 [1], compared with the cumulative capacity of about 2 

GW in 2002 [2]. In 2010 alone there was an added capacity of 16.6 GW, a large increase 

from the 7.2 GW installed in 2009. With a production capacity of 30 GW in 2010, Europe is 

leading the way. About 1.2% of the EU’s electricity demand can be covered by the 

photovoltaic power plants the in 2011, with the possibility of producing 35 TWh electricity in 

one year [1]. 

The first functional, intentionally made photovoltaic device was by Fritts in 1883 [2], but it 

was not before 1954 that a solar cell with an efficiency of 6% was demonstrated. A couple of 

years later NASA started using solar cells as power sources for satellites. The worldwide oil 

crisis in the 1970’s increased the interest for renewable energy sources, such as photovoltaics 

for a short period. Global environmental concerns did also soon after increase the interest in 

solar cell technology, especially after the IPCC reports in 2001 and Al Gore was awarded 

with the Nobel Peace Price in 2007. In the 1980s, the solar cell industry was starting to 

establish itself in countries around the world. Compared to the other established energy 

technologies the solar cells were too expensive to be used, except for applications very 

unpractical or expensive for other energy sources. As solar cell production increased during 

the following years, partly due to generous subsidies such as feed-in tariffs, a reduction in 

cost opened up new markets. In 1997 worldwide photovoltaic production reached 100 MW 

per year [2]. 

For photovoltaics to get a stronger foothold in the market, more cost effective solar cells are 

needed. As a response to this there are two ways to go: a reduction in cost as with the second 

generation thin-film solar cells, or an increase in efficiency like the third generation high-

efficient solar cell. Among the third generation solar cells are the intermediate band solar cell 

and the tandem cell, increasing the efficiency of the cell by utilizing more of the incoming 

solar energy. 

The source to the electric power created by the solar cells is the radiation emitted by the sun, 

hence radiation physics is an important aspect of understanding how a solar cell works. 

Chapter 2 discusses the radiation emitted from the sun, and both the black-body radiation and 

the AM1.5 spectra used in the calculations. Both the sun and the solar cell emit radiation with 

a distribution similar to that of a black body, and the equation for the emitted photon flux is 

essential to the solar cell model. 

The physics of the basic solar cell itself and how it operates is treated in chapter 3. In addition 

the principle of detailed balance is presented as a method for finding the limiting efficiency of 

a solar cell. Possible ways to increase the efficiency of the cell is discussed. In chapter 4 one 

of the methods to increase the efficiency by use of an intermediate energy band is presented. 

Basic principles of how the intermediate band solar cell works and the theoretical limiting 

efficiency of the cell are presented in this chapter, as well as how this cell can be realised. 

Another multiple band gap cell, the tandem cell is the focus of chapter 5. In this chapter both 

the tandem cell consisting of single-junction cells and intermediate band cells are treated. 
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The model used in for calculating the limiting efficiencies is presented in chapter 6, where the 

parameters for the simulations and the code itself are discussed. Further improvements to the 

code are also suggested in this chapter. 

In chapter 7 the results from the simulations are given along with discussions, and the 

conclusions are given in chapter 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 3 

2 Radiation from the sun  

The solar cell converts sunlight into electric power, and thus understanding the radiation from 

the sun is therefore important for simulating the efficiency of a solar cell. This chapter will 

describe properties of the radiation from the sun, starting in section 2.1 with the black-body 

radiation. The electromagnetic radiation from the sun hitting the earth’s surface will be 

treated in section 2.2. The solar cell performance dependence on spectral distribution and 

intensity will be presented in section 2.3. 

2.1 Black-body radiation 

This section is based on the book “Third Generation Photovoltaics” by M. Green  [3].  

A black-body is an object that is a perfect absorber of light and therefore also a perfect 

emitter. Although the perfect black-body represents a theoretical ideal, physical objects can 

approach close to black-body properties. Not only does the sun emit radiation close to a 

black-body at a temperature of about 5800 K  [4], but as the ideal solar cell is a good 

absorber, the cell will also relate to the black-body as an emitter. The physics of black-body 

radiation is consequently very important in relation to solar cell physics. 

The energy flux emitted from a black-body at a temperature T per unit surface area into a 

hemisphere over the energy range, E1 to E2 are given by 

 
2

1

3

1 2 3 2

2
( , )

1

E

E kT

E

E
E E E dE

h c e

π
=

−∫ɺ   (2.1.1) 

where h is Planck’s constant, c the speed of light, k Boltzmann’s constant, and E the photon 

energy. 

The photon flux emitted is calculated from (2.1.1) by dividing with the photon energy: 

 
2

1

2

1 2 3 2

2
( , )

1

E

E kT

E

E
N E E dE

h c e

π
=

−∫ɺ  (2.1.2) 

2.2 Solar spectra at the surface of the earth 

This section is based on the two books “Solar electricity” by T. Markvart [4], and “Solar 

cells” by M. A. Green [5].  

Only a small part of the light emitted from the sun will reach the earth, since the sun emits 

light in all directions from its surface. The average incident power outside earth’s atmosphere 
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per unit area on a plane perpendicular to the rays is known as the solar constant, and equals 

on average 

 21367 /S W m=  . (2.2.1) 

As the sunlight passes through the earth’s atmosphere, some of the energy is lost due to: 

• Rayleigh scattering or scattering by molecules in the atmosphere. This mechanism is 

most effective at short wavelengths. 

• Scattering by aerosols and dust particles. 

• Absorption by the atmosphere, in particular by the gases: oxygen, ozone, water 

vapour and carbon dioxide. 

Due to absorption and scattering, the distance travelled through the atmosphere affects the 

intensity and spectral distribution of the solar radiation that hits the earth’s surface. The 

length of the path is described by the air mass (AM), a ratio compared to the minimum length 

when the sun is directly overhead (AM1). In general terms the air mass is calculated in a 

following manner 

 
1

 mass = 
cos

Air
θ

 (2.2.2) 

where θ represents the angle of the sun to the surface normal (,the zenith angle). 

The solar spectrum just outside the earth’s atmosphere is referred to as the air mass zero 

(AM0) spectrum. The AM0 spectrum differs from the 6000 K black-body radiation as shown 

in figure 2.1. This is due to varying transmissivity for the different wavelengths in the sun’s 

atmosphere. 
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Figure 2.1:  Spectral distributions for black-body (6000K) radiation, AM0 

radiation, AM1.5 global and direct radiation (from the reference spectra 
ASTM G173-03 [6]). 

The two AM1.5 spectra labelled “global” and “direct and circumsolar” differ because the 

global spectrum includes the diffuse radiation; radiation scattered in the atmosphere that still 

reaches the earth’s surface. The direct and circumsolar radiation includes only the radiation 

from the solar disk and circumsolar radiation, as seen from the earth’s surface. The 

circumsolar radiation is the irradiance within a +/- 2.5 degree field of view centered on the 0.5 

degree diameter solar disk, but excludes the radiation from the solar disk itself  [6]. In the 

next section the importance of the last spectrum will become clear. Details of how the AM1.5 

spectra are used in the simulations is found in section 6.2. 

2.3 Spectral dependence of solar cell efficiencies 

The current produced by a photovoltaic cell is directly dependent on the photon flux. As the 

absorption rate for the photons varies with photon energy, both the intensity of the radiation 

and its distribution over different photon energies affect the efficiency of the cell. The physical 

processes in the cell will be explained in greater detail in the next chapter. 

To increase the irradiance on the cell, concentration devices can be used [5]. Concentrators 

focus light onto the cell, but the higher the concentration ratio the smaller range of angles for 

the light rays will be focused on the cell. At a concentration ratio higher than 10, the 

concentrator will only accept the direct radiation. To include concentrated systems in the 

simulations, spectral distribution for the direct and circumsolar radiation is needed. These 

systems will be discussed in more detail in section 3.4.  
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3 Solar cell basics 

This chapter is based on the book “The Physics of Solar Cells” by J. Nelson ,[7]. The basic 

principles of how a solar cell device works are presented in section 3.1. Section 3.2 covers 

the topics of generation and recombination in the cell. The principle of detailed balance is 

explained in section 3.3. Concentrator systems are discussed in section 3.4 and other methods 

to increase the efficiency in section 3.5. 

3.1 Principle of operation 

The solar cell converts electromagnetic energy to electric energy and is, in most cases, 

essentially a pn-junction under illumination. The absorbed photons excite electrons from the 

valence band to the conduction band, where the electrons are free to move and thus conduct a 

current. The empty state that is left in the valence band is referred to as a “hole”, so that 

absorption of one photon leads to the creation of an electron-hole pair. The electron and the 

hole can then be separated by an electric field or by a gradient in the charge space density. If 

the electron and the hole are separated before they recombine, they can reach the outer 

contacts of the cell and be fed to an external circuit. The higher potential of the electrons on 

one side compared to the holes’ potential on the other side of the cell generates a potential 

difference, the electromotive force that drives the current through a load in the external 

circuit. 

 

Figure 3.1: a) Electrons diffuse from the n-type material to the p-type 

material. b) An electric field is created in the depletion layer opposing the 

diffusion of electrons. 

A pn-junction is created by n-doping one part and p-doping another part of the same 

semiconductor, see figure 3.1. An n-type doped semiconductor has impurities added, which 

have more valence electrons than the bulk material. The additional electron is not used in the 

strong directional covalent bonding and is therefore only loosely bound in a Coulombic bond 

with its atom. Similarly a p-type doped semiconductor has impurities added. These impurities 
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have one less valence electron than the bulk material. The impurity atoms become ionised by 

removing a valence electron from another bond to complete the bonding with the four 

neighbouring atoms, thus releasing a hole into the valence band. N-type semiconductors have 

an increased Fermi level while p-type semiconductors will have a decreased Fermi level.  

The loosely bound electrons in the n-type doped material will diffuse to the ionised impurities 

in the p-type material (figure 3.1 a), and be used in the bonding of the impurity atoms. This 

space charge sets up an electric field opposing the diffusion, (figure 3.1 b). The energy bands 

are sketched in figure 3.2 below.  

 

Figure 3.2: a) Band gap diagram of a pn-junction in equilibrium. b) Band 
gap diagram of a pn-junction under illumination. V is the potential 

difference between the two outer contacts and is the voltage output of the 

cell. 

As seen in figure 3.2 the illuminated cell will have a raised potential, creating a split in the 

Fermi level over the junction. This split in the Fermi level provides a difference in the 

potential between the two contacts of the device. The electron is excited and separated from 

the hole, as seen in figure 3.2 b), by the electric field and can be fed to the outer circuits. 

The current in a solar cell can be expressed as 

 
0( ) ( 1)cqV NkT

LI V I I e= − −  (3.1.1) 

where IL is the current generated by the absorbed light, and the second term is called the dark 

current or diode current, which depends on the voltage V over the cell. N is an ideality factor 

and has a value typically between 1 and 2. I0 is a constant of usually much lower value than 

IL, q the charge on the electron, and TC is the cell temperature [3]. 
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Figure 3.3: A sketch of an I-V plot for an ideal solar cell 

Figure 3.3 shows the current voltage relationship of an ideal solar cell. VOC is a notation for 

the open circuit voltage; the voltage over the contacts when the contacts are not connected 

through an external circuit. As can be seen from figure 3.3, the current will decrease fast to 

zero as the voltage gets close to the open circuit voltage. The power a cell can produce is 

found by multiplying the cell voltage with the current: 

 ( ) ( )  P V I V V= ⋅  (3.1.2) 

To find the highest efficiency for a cell, the power output of the cell needs to be optimized for 

the voltage and divided by the total incident power from the sunlight: 

 
( ) max,max
 ( )   

cell

incident incident

I V V P

P P
η

⋅
= =  (3.1.3) 

3.2 Generation and recombination 

Generation is an excitation event which increases the number of free carriers available to carry 

charge. The opposing event reducing free carriers by relaxation is called recombination. 

Energy conservation requires these events to occur by particle interaction with incident 

photons, phonons or other particles in the material. Semiconductor material has an energy 

band gap between the conduction band and the valence band. Electrons have no possible 

energy states to occupy in this gap, with an exception of traps or localised states in the gap. 

These traps are an effect of impurities or defects in the material. Transitions over this band 

gap therefore have an energy threshold equal to the energy of the band gap.  
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3.2.1 Generation 

Generation of free carriers requires energy, since the electrons are excited to a higher energy 

state. The energy can be provided by phonons (lattice vibrations), photons (photogeneration) 

or already excited electrons in the material, see figure 3.4. Excited electrons in the conduction 

band and holes created in the valence band will quickly relax to the edges of their band. This 

process is called thermalisation, as the energy dissipates by creating phonons and thereby 

increasing the material temperature. 

 

Figure 3.4: Generation of free carriers. The carriers are relaxed to the 

band edge by thermalisation. a) Photogeneration, b) generation by kinetic 

energy transfer between particles (Auger generation), and c) electron 
excited from trap state by phonons.  

Generation by energy transfer between particles will be described in section 3.5. 

Photogeneration is the most important process in solar cells as it normally provides far more 

mobile carriers than the other methods of generation. Assuming that all photons are absorbed 

to generate free carriers, the rate of carrier generation from photogeneration, per unit area, at 

a depth x in the material is given by 

 ( ) 0

( , ') '

( , ) 1 ( ) ( ) ( )

x

E x dx

g E x R E E b E e
− α∫

= − α   (3.2.1) 

where b(E) is the incident photon flux at a given energy, α(E) is the absorption coefficient and 

R(E) is the reflectivity of the surface of normally incident light.  The exponential term is 

added as a fraction of the light already will be absorbed in the material at the depth x.  

Integrating over all the photon energies will give the total generation rate at x: 

 ( ) ( , )G x g E x dE= ∫  (3.2.2) 
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Auger generation will be treated in section 3.5.1. Electrons excited from trap states to the 

conduction band contribute little to the generation rate of free carriers. The probability for an 

electron to be excited from the valence band to the conduction band through trap states is 

very small. These electrons are most likely relaxed into the trap state from the conduction 

band. Although excitation of electrons through several steps by localised states, from the 

valence band to the conduction band is possible, it is very unlikely to contribute much to the 

generation rate. If these contributions are neglected the lower integration limit of (3.2.2) can 

be set to that of the band gap. 

3.2.2 Recombination 

Recombination describes the transition of an electron to a lower energy state, where it 

recombines with a hole. The process releases energy by photon emission (radiative 

recombination), phonon emission (non-radiative recombination) or transferring kinetic energy 

from the electron or hole to another free carrier (Auger recombination), see figure 3.5. 

 

 

Figure 3.5: Recombination of "electron-hole pairs". a) Radiative 

recombination,  b) Auger recombination , and c) recombination through a trap 
state by phonon emission. 

Both radiative recombination and Auger recombination are unavoidable processes in a 

semiconductor material. Relaxation by emission of phonons through trap states, also known 

as Shockley Read Hall recombination (SRH), is avoidable as it is a result of localized states in 

the band gap of the material. The localised states are a result of impurities and defects in the 

semiconductor material and can potentially be avoided or removed during fabrication. 

Usually, the Shockley Read Hall recombination is dominant for real solar cells, but the Auger 

recombination rate can be higher for situations with a high density of mobile carriers. 



 12 

3.3 Detailed balance 

The principle of detailed balance is one of the fundamental physical limitations on the 

performance of the photovoltaic cell. As the cell absorbs photons, it will also emit photons by 

thermal radiation. By looking at the device from the outside, the photon flux entering the cell 

and leaving the cell surface can be calculated. Assuming a perfect mirror on the back of the 

cell both simplifies the calculations and increases the efficiency of the cell by leaving only one 

surface for the cell to emit radiation. Under the assumption that each photon absorbed adds 

one charge carrier to the current, the generated current density by absorption is given by 

 ( )( ) 1 ( ) ( ) ( )genJ E q R E a E b E= −  (3.3.1) 

where a(E) is the absorptance, the probability of absorption of a photon of energy E, R(E) is 

the reflectivity at the surface and b(E) the incoming photon flux. For incident black-body 

radiation b(E) is given as 

 ( ) ( ) (1 ) ( )s
s a

a

F
b E b E b E

F
= + −  (3.3.2) 

where bS(E) is the incident photon flux from the sun 

 
2

3 2

2
( )

1s
s s E kT

E
b E F

h c e
=

−
 (3.3.3) 

and ba(E) from the ambient 

 
2

3 2

2
( )

1a
a a E kT

E
b E F

h c e
=

−
 (3.3.4) 

Fa and FS are geometrical factors, and are a result of the distance from the source. At the 

surface of the source the factor equals π, but at a given distance from the source the factor 

reduces to 

 2sinF π θ=  (3.3.5) 

where θ is half the angle subtended by the radiating source to the point where the flux is 

measured. For the sun as seen from earth this angle is θ=0.26° and as a 

result 52.16 10sF π−= ⋅ . 

The emitted radiation from the cell is restricted only to be a result of the radiative 

recombination. The cell is assumed to radiate like a black-body, but under illumination a part 

of the electron population will have a raised electrochemical potential. The spectral photon 

flux per unit surface area from a body of temperature TC and with a chemical potential µ, with 

a surrounding medium with refractive index no, can be expressed as 

 
2

2

0 3 2

2
( , )

1c
e E kT

E
b E n

h c e
µ

π
µ

−
=

−
 (3.3.6) 
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The refractive index for air is very close to one, simplifying be(E, µ) to 

 
2

3 2

2
( , )

1c
e E kT

E
b E

h c e
µ

π
µ

−
=

−
 (3.3.7) 

The current density lost in radiative recombination is given by 

 ( )( , ) 1 ( ) ( ) ( , )rad eJ E q R E E b Eµ µ= − ε  (3.3.8) 

where R(E) is the reflectivity of the cell surface and ε(E) is the probability of photon emission 

called emittance. The emittance will equal the absorptance, because the probability of an 

electron to be excited by a photon is equal to the probability of an electron spontaneously 

recombining and emitting a photon.  

 ( ) ( )E a Eε =  (3.3.9) 

The net current density is simply given from retracting (3.3.1) from (3.3.8):  

 ( , ) ( ) ( , )tot gen radJ E J E J Eµ µ= −  (3.3.10) 

Assuming µ is constant everywhere in the cell and assuming no voltage loss in the contacts, 

the chemical potential µ is equal to q multiplied with the voltage over the cell contacts. The 

total current density is then given by integrating over all energies: 

 ( ) ( )( )   1 ( ) ( ) ( ) ( , )  
tot e

J V q R E a E F E b E qV dE= − −∫  (3.3.11) 

The maximum efficiency for the cell is found for zero reflectivity and an absorptance equal to 

one, for energies higher than the band gap: 

 

( ) 0    E

( ) 0    E<E

( ) 1    E>E

G

G

R E

a E

a E

= ∀

=

=

 (3.3.12) 

The total current density is then given by 

 
,limit ( )  ( ) ( , ) dE

G

tot e

E

J V q F E b E qV

∞

= −∫  (3.3.13) 

The maximum efficiency will be given by optimizing (3.3.13) multiplied with the voltage and 

divide by the incident power density: 

 
( ),limit max

limit

,

( )tot

density incident

J V V

P

⋅
η =  (3.3.14) 

This limit is the highest theoretical efficiency of a pn-junction solar cell and is called the 

“Schokley-Queisser limit”, after the first to calculate the limit for a solar cell. For radiation 

from a black-body at a temperature of 6000 K, the efficiencies are 31% and 40.8% for a cell 
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with no concentration and maximum concentration respectably. The estimated efficiencies for 

direct normal irradiance from the ASTM Standard (E891-87) reference radiation are 32.5% 

and 44.6%, for no concentration and maximum concentration respectably [8] . 

These efficiencies are the highest limit for a single pn-junction solar cell. Because of other 

recombination processes and resistance in the solar cell, the highest practical efficiency 

reached is 27.6% for a single-junction cell measured under the global AM1.5 spectrum 

(ASTM G-173-03) [9]. When calculated from laws of thermodynamics, the maximum 

efficiency possible for solar cells is 86,8% [3], with an ambient temperature at 300K and the 

temperature of the sun at 6000K. This is far higher than the “Shokley-Queisser limit”. Section 

3.5 will discuss methods to increase the efficiency, narrowing the difference between the 

“Shokley-Queisser limit” and the thermodynamic limit. 

3.4 Concentrator systems 

Concentration of the sunlight has already been introduced and as seen in the previous section 

increased the original “Shokley-Queisser limit” of 31% to 40.8% [8]. The concentrators 

collect light over a large area and then focus it on the surface of the solar cell. Photon flux 

incident on the cell is increased by multiplying with a factor X, which is basically dependent 

on the ratio between the area of the collection area and the cell surface. As mentioned earlier, 

only the normal incident radiation will be focused on the cell.  

Concentrating the light is equivalent to expanding the angular range subtended by the sun and 

consequently increase the geometrical factor: 

 2 2sin sinX X sunF Xπ θ θ= =  (3.4.1) 

As the angle θX can only be expanded to 90°, the maximum concentration Xmax is 46050. 

The increase in photon flux will increase the open circuit voltage of the cell and hence 

increase the efficiency of the cell. By an adjustment of equation (3.1.1) where the current is 

set to 0, the open circuit voltage for a cell under concentrated light is found to be 

 
0

( ) ln( 1) (1) lnL
oc oc

X INkT NkT
V X V X

q I q

⋅
= + ≈ +  (3.4.2) 

Assuming that the ratio between the maximum voltage and open circuit voltage are 

unchanged, and likewise for the maximum current and short circuit current, the increase in 

efficiency is found by dividing (3.4.2) with the open circuit voltage under no concentration, 

VOC(1). The efficiency will consequently be increased by a factor 

 1 ln
(1)oc

NkT
X

qV
+  (3.4.3) 

In real concentrated systems the dark current is also affected. Increasing the cell temperature 

and large carrier densities leads to high injection conditions which will lower the effect on the 
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open circuit voltage in (3.4.2). High injection conditions effects the radiative and Auger 

recombination, as they will no longer be nonlinear with the high carrier density. 

3.5 Over the S-Q limit 

As seen in the earlier section, concentrator systems increase the solar cell efficiency by 

increasing the intensity of the light incident on the cell. In this section other methods of 

increasing the solar cell efficiency will be presented. These methods will increase the 

efficiency of the cell by reducing the thermalisation losses and making the cell absorb a larger 

part of the incident radiation. 

3.5.1  “Hot” carrier solar cells and impact ionisation 

“Hot” carrier solar cells are designed to be able to collect the excited carriers while they are 

still “hot”, which means before they relax by thermalisation to the band edges. The “excess” 

kinetic energy will then contribute to the output power rather than heating up the cell. 

Collection of the carriers must happen quickly, and the phonon-carrier interactions must be 

severely slowed down. A similar approach is to use the “excess” kinetic energy of the carriers 

to generate more mobile carriers, called impact ionisation or Auger generation. The phonon-

carrier interactions need to be reduced so that radiative and Auger processes are dominant. 

Auger generation is the reverse of the Auger recombination. A collision between an excited 

electron in the conduction band and an electron in the valence band excites the latter to the 

conduction band. Thus several mobile carriers can be generated by one photon and increase 

the efficiency of the cell. 

3.5.2 Multiple band gap solar cells 

Another method to use the energy of the photons more efficiently, is to increase the number 

of band gaps. With the use of multiple band gaps, more of the irradiance spectrum can be 

used without a huge loss to thermalisation processes. Tandem cells use multiple junctions 

with different band gaps to increase the cells efficiency, but intermediate band solar cells have 

extra band gaps in a single junction. The principle and effect of these methods are explained in 

the following chapters. 
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4 Intermediate band solar cells 

This chapter is based on papers by A. Luque and A. Martí [10, 11]. The intermediate band 

solar cell is a device that has theoretical efficiency limits surpassing that of the single-junction 

cell, by absorbing more of the incident radiation without loss in voltage. In the first section, 

the working principle of the intermediate band solar cell is introduced. Section 4.2 covers two 

possibilities for implementing an intermediate band to a semiconductor. The detailed balance 

principle for an intermediate band solar cell is discussed in section 4.3. 

4.1 The working principle of the intermediate band solar 
cell 

Intermediate band solar cells are designed with an additional energy band in the band gap 

between the conduction band and the valence band. The main band gap (EG) between the 

conduction band and the valence band is then split into two sub-band gaps, the smallest EL 

and largest EH. Electrons can be excited to the conduction band directly from the valence 

band or through the intermediate band, as shown in Figure 4.1.  

 

 

Figure 4.1: Simplified band diagram showing the possible photogeneration 

processes. EL is the smallest sub-band gap and EH the largest, EG denotes 

the main band gap. 

 

The increase in efficiency by the intermediate band is from the use of photons with energy 

lower than the main band gap. As these photons can excite electrons to and from the 

intermediate band, they can be absorbed and contribute to increased current. For the device to 

work optimally, a photon needs to excite electrons over the largest band gap possible for its 

energy. Under ideal circumstances the absorption coefficients should be: 
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In practical devices this will not be achievable. Figure 4.2 shows the difference between the 

ideal case (a) and a more realistic case (a).  

 

 

Figure 4.2: Showing two different plots of the absorption coefficients. a) 

The ideal case and b) a more realistic case. Figure from [10] with altered 

symbols to match this thesis. 

 

The ideal case in figure 4.2 a) follows the ideal case represented in (4.1.1). In the more 

realistic case for a practical device in figure 4.2 b), all absorption coefficients are non-zero for 

the higher energies. It is then preferable that the absorption coefficient is highest for the 

largest band gaps, and decrease in the order of smaller gaps. 

Electrons need to be collected only from the conduction band and holes only from the valence 

band, for the intermediate band solar cell to operate as intended. The electrons in the different 

energy bands then need to be associated with three distinct chemical potentials, or quasi-

Fermi levels. The intermediate band also needs to be isolated from the metal contacts to the 

outer circuit. To achieve distinct quasi-Fermi levels, the gaps between the energy bands need 
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to be larger than the maximum phonon energy. The bands will then be thermally isolated. If 

the bands are not thermally isolated the cell will operate as a single-junction cell.  

The intermediate energy band needs to have delocalized electron-states, as in the conduction 

band and the valence band, to maximize the device efficiency. Electrons in delocalized states 

will have a distinct momentum, explained in quantum mechanics as the Heisenberg’s 

uncertainty principle [12]. This aids the transport of electrons and suppresses phonon 

scattering. The momentum is conserved at phonon-electron interactions, and if the electron 

has a distinct momentum state the probability of interactions between the particles decreases. 

At localised states in the main band gap electrons will have a wide range of momentum states, 

and therefore have a higher probability for relaxing through phonon interactions. Even as the 

gap between the energy bands is larger than the maximum phonon energy, multiple phonon 

scattering can still be allowed and the electron can relax to lower energy states by emission of 

several phonons.  

In steady state conditions such as in a solar cell under illumination, there can be no 

conservation of charge in the intermediate band. The number of electrons excited from the 

valence band to the intermediate band needs to equal that from the intermediate band to the 

conduction band. To maximize the effective absorption the intermediate band should be half-

filled, leaving unoccupied states to receive electrons from the valence band and occupied 

states to promote electrons to the conduction band. 

 

4.2 Quantum dot and bulk intermediate band 

Two concepts of implementing an intermediate band in the semiconductor band gap is 

described in this section, based on [10]. The first concept is based on quantum dots, which 

are nano-crystals of a material immersed in a semiconductor material, or the barrier material. 

The intermediate band would in this case typically arise from the confined states of the 

electrons in the conduction band tridimensional potential wells, originated by the conduction 

band offset between the dot and barrier material [10]. In the previous section it is discussed 

why the intermediate band needs to be partially filled, and this is achieved by n-type doping in 

the barrier. The quantum dots need to be close enough in proximity to each other to create an 

energy band, with delocalized states as to prevent SRH recombination. 
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Figure 4.3: Simplified band gap diagram of a quantum dot intermediate 

band solar cell. Quantum dots are placed in a “near” intrinsic layer 

between a p-type and n-type doped semiconductor material [10]. 

The quantum dots are placed in a layer of close to intrinsic material, between a p-type and a 

n-type doped material, see figure 4.3. As also seen in figure 4.3, the energy bands should be 

flat in the intrinsic layer, to acquire partial filling of the intermediate band [13]. The highest 

current efficiencies published for a quantum dot intermediate band solar cell is 18.3%, which 

is lower than for the comparing reference cell with an efficiency of 23.77% [10]. 

Bulk intermediate band material is the second concept. Here the actual material has an 

intermediate energy band structure. A high concentration of impurities producing deep levels 

in the semiconductor may produce intermediate band materials with reduced non-radiative 

recombination. As these materials can support higher densities of intermediate band states, 

they can lead to stronger absorption of sub-band gap photons. The low absorption of these 

photons is one of the reasons for the low efficiency of the quantum dot intermediate band 

solar cells.  
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4.3 Detailed balance of the intermediate band solar cell 

The principle of detailed balance for the intermediate band solar cell was first described by A. 

Luque and A. Martí [11], and is presented in this section. Conditions similar to the case of a 

single-junction cell as in section 3.3 is assumed: non-radiative transitions between the bands 

are forbidden, a mirror at the back restricts emission out the front surface of the cell, the 

reflectivity at the cell surface is set to zero, and the carrier mobility is infinite. This means that 

only radiative recombination and photogeneration are the allowed transitions between the 

energy bands. The three quasi-Fermi levels are also constant through the device as a 

consequence of infinite carrier mobility. The absorption coefficients have optimum values as 

in (4.1.1), and the intermediate band width is assumed negligible. Every absorbed photon 

contributes to excite one electron, and all electrons excited to the conduction band contribute 

to the output current of the cell. 

The total current density extracted from the conduction band is given by: 

 ( , , ) ( , , )tot G CV H G HJ J E J E Eµ µ= ∞ +  (4.2.1) 

where the functions J(·) are  

 
max

min

min max( , , )  ( ) ( , ) dE

E

e

E

J E E q F E b Eµ µ= −∫  (4.2.2) 

The factors in (4.2.2) are the same as in (3.3.13), and the chemical potentials are over the 

relevant band gaps. The first term in (4.2.1) is the total current density gained from the 

absorption and emission processes over the main band gap. The second term is the total 

current density from the same processes between the intermediate band and the conduction 

band. There can be no charge accumulation in the intermediate band, as explained in the 

previous section, and consequently the number of electrons in the band is constant. This gives 

one constraint to the value of the internal chemical potentials: 

 ( , , ) ( , , )
L H L H G H

J E E J E Eµ µ=  (4.2.3) 

Equation (4.2.3) also reveals why it is irrelevant if the smallest band gap is between the 

intermediate band and the conduction band or the intermediate band and the valence band, as 

equation (4.2.1) is the same regardless. The chemical potentials also have the following 

second constraint: 

 
L H CV

qVµ µ µ+ = =  (4.2.4) 

where V is the voltage over the cell contacts. By solving these two equations the chemical 

potential (
H

µ ) in (4.2.1) can be found. The efficiency of the intermediate band solar cell can 

then be found as for the single-junction cell in (3.3.14). 

In the paper by A. Luque and A. Martí [11] the highest efficiency is found to be 63.1%  for 

maximum concentrated illumination from a black-body source at 6000K, and with a cell 

temperature of 300K. Another multiple band gap cell, the tandem cell, capable of numerous 

band gaps in one cell is treated in the next chapter. 
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5 Tandem cells 

This chapter is based on [7] and [3]. Tandem cells are similar to intermediate band solar cells 

with multiple band gaps, but the band gaps in the tandem cells are distributed over an equal 

amount of junctions. The fundamental principle of increased efficiency is absorption of a 

larger part of the spectrum by use of several single-junction cells in one device. Spectral-

distribution over the different junctions is described in the first section. The difference 

between two terminal cells and four terminal cells are treated in section 5.2. In section 5.3 

intermediate band solar cells in tandem are discussed. 

5.1 Spectrum splitting and stacking 

The increase in efficiency of the tandem cell depends on the optimal use of the photon energy, 

as for the intermediate band cell, photons should preferably excite electrons over the largest 

band gap possible. Thermal losses by relaxing to the band edge are then minimal. One way is 

to split the spectrum in to various energy ranges, and direct the different ranges to the cell 

with the appropriate band gap. This could be done by use of spectrally sensitive mirrors 

illustrated in figure 5.1 (a). 

 

Figure 5.1: Tandem cell concepts: (a) Spectrum splitting and (b) cell 

stacking.  The figure is from [3]. 

Figure 5.1 also shows the concept of cell stacking (b), another and more practical way to split 

the spectrum. In this concept the tandem cell is constructed by stacking cells with decreasing 

band gap energies. In principle, high energy photons are absorbed by the top cell with the 

largest band gap. Photons with lower energies than the band gap of the top cell are not 

absorbed and travel through to the next cell. 

Cell stacking allows for interaction between the cells. The cells emit radiative radiation both 

out the front surface and to the adjacent cells as illustrated in figure 5.2. This radiation can be 

absorbed by other cells and contribute to the generated current. The efficiency of the tandem 

cell can be slightly increased by isolating the cells with a wavelength filter. The filter transmits 

only photons of a lower energy than assigned to it, and will reflect higher energy photons 

emitted back to the cell, illustrated in Figure 5.2 (b). 
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Figure 5.2: Radiative connections between the N cells in tandem: (a) 
Tandem cell with no wavelenght filters, “free” thermal radiation emition and 

absorption between the cells  and (b) tandem cell with filters between each 

cell, reflecting part of the radiative radiation back to the emitting cell [3]. 

In the following sections of this chapter wavelength filters between each cell will be assumed 

as this assures highest efficiency, and simplifies the calculations by removing the thermal 

interactions between the cells. 

5.2 Two or more terminals 

Tandem cells can have two or more terminals (contacts) to the external circuit. The concept is 

illustrated for a tandem cell with two band gaps (or two single-junction cells) in figure 5.3.  

 

Figure 5.3: Tandem cell in two terminal (series connected) and four 

terminal (separately connected) configurations [7]. 

As seen on the left in figure 5.3, the four terminal cell contains two separately connected 

single-junction cells. Tandem cells with separate connections for each cell can be treated as 
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several single-junction cells illuminated by different parts of the spectrum. All the individual 

cells can then operate at the voltage giving maximum efficiency for that cell. The two terminal 

tandem cell to the right in figure 5.3 has two single-junction cells connected in series. This 

concept is more appealing as it has the possibility of integrating different junctions in one 

multilayered device. To connect the different p-n junctions, tunnelling junctions are used. The 

tunnelling junction is a heavily doped n-p junction connected to the p terminal of one cell and 

the n terminal of the next. 

 

The efficiency of the tandem cell with more than two terminals is calculated by adding the 

power output of each separate cell and dividing the sum by the power of the total spectrum. 

With the use of equation (4.2.2) the highest efficiency using detailed balance is found to be 

 
( ) ( ) ( )1 1 2 1 1 2 2 3 2 2max max max

unconnected Tandem

,

( , , ) ( , , ) ... ( , , )G G G G N GN N N

density incident

J E E qV V J E E qV V J E qV V

P

⋅ + ⋅ + + ∞ ⋅
η =  (5.2.1) 

In the two terminal tandem cell, all the separate cells are series connected. This means that all 

the cells must have the same current density: 

 
1 2

...
N

J J J J= = = =  (5.2.2) 

To find the highest efficiency, the total voltage of all the separate cells multiplied with the 

current needs to be maximized: 

 
( )1 1 2 1 1 2 max

connected Tandem

,
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P
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The constraint on the two terminal tandem cell will decrease its efficiency compared to the 

tandem cell with separate terminals for each single-junction cell, as seen in figure 5.3.  
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Figure 5.4: Unconstrained and two terminal limiting efficiencies for various 
radiation sources [14]. 

Figure 5.4 shows that the decrease in efficiency for the tandem cell with two terminals is small 

compared to the efficiency. For the AM1.5 global radiation, the largest decrease in efficiency 

is from 55.6% to 54.9% for the tandem cell consisting of four single-junction cells [14], a 

1.26% difference in efficiency . 
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5.3 Intermediate band solar cells in tandem 

Intermediate band solar cells can also be arranged in tandem cells, both series connected and 

separately connected, leading to a tandem cell with a reduced number of junctions and still 

several different band gaps. Each of the intermediate band solar cells has three different band 

gaps. In a tandem cell the intermediate band solar cells are be stacked similar as for the single-

junction cells; the cell with the highest band gaps is on top and the rest of the cells will be 

stacked by decreasing band gap widths, see figure 5.5. 

 

Figure 5.5: Two terminal and four terminal tandem intermediate band solar 

cells. 

 Calculations for each separate intermediate band can be handled as in chapter 4, and then 

used in the equations in the previous section as for single-junction cells. The voltage over 

each separate cell is consistent with the voltage over the main band gap of the intermediate 

band solar cell. If the absorption coefficients are ideal as in equations (4.1.1), only the 

photons with lesser energy than the lowest sub-band gap of the intermediate cell is 

transmitted through to the next cell in the stack. 
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6 Modeling of solar cell efficiencies 

In this chapter both Matlab as a modeling tool and the code for the simulations will be 

discussed. The first section presents the use of Matlab for solar cell simulations. In section 6.2 

the spectra used and changes made to the tabulation is discussed. The code itself and methods 

used in the calculation is treated in section 6.3. Section 6.4 is devoted to discuss problems 

with the simulation code and possible further improvements. Most of the Matlab code used in 

the simulations for this master thesis is found in Appendix A. 

6.1 Matlab as a modeling tool 

Matlab is a program usually used for numerical analysis and matrix operations. The data from 

the calculations are stored in huge matrixes, which can easily be accessed in Matlab. Matlab 

allows use of functions and as some operations are run several times, this is advantageous. 

NTNU provides Matlab as a computational tool and it is used in other master and PhD 

projects at the department of physics. This is partly the reason why Matlab has been chosen as 

a modeling tool for this thesis. The scripts in Matlab need to be compiled each run, which 

makes it slower than scripts written in other programs. It is possible to compile the Matlab-

code before running the code to reduce the run-time, but as an inherent function in Matlab is 

used in the calculations in this master project, the compilation does not reduce the run-time 

significantly. Running the simulation in Matlab has proven to be very time consuming and this 

affects energy resolution in the simulations.  

6.2 The solar spectra 

The ASTM G173 spectra are reference spectra for air mass 1.5 and modelled by using 

SMARTS (version 2.9.2). The modelled spectra are available from the National Renewable 

Energy Laboratory (NREL) website [6]. The global AM1.5 spectrum (AM1.5G) includes 

both the diffuse and the direct light, and is modelled for a 37° tilted surface facing the sun 

(that is, the surface normal points to the sun, at an elevation of 41.81° above the horizon). It 

has a total irradiance of 1000.37 W/m² (calculated in Matlab). The direct and circumsolar 

AM1.5 spectrum (AM1.5D) is the direct radiation on a surface normal to the direction of the 

sun, and has a total irradiance of 900.14 W/m² (calculated in Matlab). Figure 2.1 shows all of 

the ASTM G173 spectra, including the extraterrestrial AM0 spectrum.  

The calculated ASTM G173 spectra on NREL’s website range from 0.31 eV to 4.428 eV in 

photon energies. The photon flux at photon energy 4.428 eV is less than 1 m
-2

nm
-1

, so photon 

flux values at higher energies are not needed. For photon energies lower than 0.31 eV there is 

still a considerable photon flux even if the intensity of the light is small, because of the low 

photon energy. As there are no values for the photon flux at these values for the available 

ASTM G173 spectra, the band gaps with lower energy than 0.31 eV will receive a smaller 

photon flux in the simulations than what they should for a more complete spectrum.  
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The radiation distributions from ASTM G173 are tabulated for varying wavelength steps, but 

have in this thesis work been interpolated using Matlab to steps of 1 nm. This is done to 

simplify the calculations of the photon flux as all steps now have the same length. The photon 

flux from the ASTM G173 spectra is calculated by summing the photon flux from one 

wavelength to another. (As the band gap energies are in eV, the photonenergy for each 

wavelength has been calculated and used to find the intervals needed in each case.) Since the 

flux data used in this project have a 1 nm step, the photon flux in a given wavelength interval 

will have some deviation from the values in the ASTM G173 tables. The interpolated AM1.5 

spectra used in this simulation have a total irradiance of 1000.37 W/m² for the global AM1.5 

spectrum and 900.14 W/m² for the direct AM1.5 spectrum. These values for the total 

irradiance are equal to the rounded values to two decimals for the ASTM G173 spectra found 

on NREL’s website, and close to the normally used total irradiance of 1000 W/m² for the 

global radiation and 900 W/m² for the direct radiation. 

6.3 The solar cell simulations 

The aim for the simulations is to calculate the limiting efficiencies, using the principle of 

detailed balance, for tandem cells with either two IBSCs or a combination of an IBSC and a 

single-junction cell. The theoretical model for detailed balance is explained in section 3.3 for 

the single-junction cell, in section 4.3 for the IBSC, and section 5.2 and 5.3 for the tandem 

cell. Assumptions made in these sections are used in the simulations. A perfect wavelength 

filter, as presented in section 5.1, between the two cells in the tandem cell is used in the 

simulations. The connection between the two separate cells in the two terminal case is 

assumed to be an ohmic contact with no loss. Efficiency and optimum IB gaps are found for 

ranges of main band gaps (EG) for both solar cells. 

The steps for the band gap energies are set to 0.05 eV. Higher resolution for the bottom cell 

is not feasible, because the simulation code is time consuming to run. In the simulations the 

bottom cell main band gap is also set to be smaller than the lowest band gap of the top cell, 

reducing the run time for the bottom cell simulations. The models include both tandem cells 

of two intermediate band solar cells and tandem cells with one single-junction cell and one 

intermediate band cell. Voltage and current characteristics of each cell have been calculated 

for the top and bottom cell separately. The common variable for the top and bottom cell is the 

photon energy that splits the spectrum between them. This photon energy is the lowest 

photon energy that can be absorbed by the top cell, and therefore also the upper limit to the 

photon energy absorbed by the bottom cell. 

The voltage and current characteristics for the conventional single-junction cell is found by 

calculating equation (3.3.13) for 500 different voltages. The voltage range is in each case 

from the voltage where the current has a change from the short circuit current value, to the 

open circuit voltage. For a single cell the highest efficiency is found from this dataset by use 

of equation (3.3.14). 

Similar calculations are done for the intermediate band solar cell, with the use of equation 

(4.2.1). Additional calculations are needed to include the constraint in equation (4.2.3). If the 

constraint in equation (4.2.3) is not met, the lower of the two current densities is used in 

equation (4.2.1) to calculate the total current density. The smallest electron flow is selected 
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because the electrons need to be excited over both sub-band gaps to contribute to the current. 

If the flow of electrons from the valence band to the intermediate band is larger than the flow 

from the intermediate band to the conduction band, the intermediate band will start to fill up 

with electrons. With less empty states in the intermediate band there will be fewer states for 

electrons to be excited to, and the flow of electrons to the intermediate band from the valence 

band will decrease, as the probability of excitation is proportionally dependent on the number 

of empty states in the intermediate band. More occupied states will increase the probability of 

exciting an electron from the intermediate band to the conduction band. Similarly, if the flow 

of electrons from the intermediate band is larger than the flow into the intermediate band, 

there will be an increase in empty electron states. This will increase the flow of electrons to 

the intermediate band and decrease the flow from the band, again because the excitation of 

electrons is dependent on the number of empty and occupied states in the intermediate band.   

The data from the top and bottom cell have then been used to calculate both the separately 

connected (four terminal) and the series connected (two terminal) tandem cell. To find the 

total maximum efficiency for the separately connected tandem cell, the maximum efficiencies 

for the top and bottom cell are simply added. For the series connected tandem cell the 

calculation is a bit more tedious, as the two cells need to have an equal current. The current-

voltage characteristics of the two cells have therefore been evaluated together by use of 

interpolation to find the maximum efficiency. Band gap combinations that provide the highest 

efficiency for the complete tandem cell are used. 

Since the AM1.5 spectra only have data for photon energies larger than 0.31 eV, the lowest 

band gap used in the simulations is set to 0.30 eV. Photon flux values for the AM1.5 spectra 

between 0.30 eV and 0.31 eV are not added in the simulations, and consequently the 

absorbed photon flux in cells with a band gap set to 0.30 eV will be lower than it should for 

more complete spectra. Lower band gaps are also more affected by the Auger recombination 

process through phonon interaction, so very low band gaps are realistically less viable for 

solar cell devices.  

The maximum band gap energy for the top cell is set to 4.80 eV. The AM1.5 spectra have 

essentially no photons of energies larger than 4.42 eV. Ohmic contacts on semiconductors 

with extremely high band gaps are difficult to produce [15] and therefore a cell with  band 

gap larger than 4.80 eV is unlikely to be used in real devices. The highest main band gap used 

for the single-junction cell used on top of an IBSC is only 2.8 eV, since a higher value would 

require a significantly increase in run time for the model of the bottom IBSC. The complete 

ranges are presented in table 6.1 below.  

Table 6.1: Band gap ranges for the tandem cells 

Cell  Lowest sub-band gap (eV) Main band gap (eV) 

Top , IBSC 0.7   -   2.35 1.1   -   4.8 

Bottom , IBSC 0.3   -   1.35 0.65    -   0.275 

Top , single-junction  0.7   -   2.8 

Bottom , single-junction  0.3   -   2.3 
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6.4 Discussion of the code 

In retrospect, it can be argued that the runtime of the code could be improved, and more band 

gaps could have been evaluated. The calculation of the emitted radiation from the radiative 

recombination is the (single) operation that consumes most of the runtime. To reduce the 

runtime, the calculations could be done by a linear combination of incomplete Riemann zeta 

integrals, as described in a paper by M. Levy and C. Honsberg [16], instead of the canonical 

Bose-Einstein integral used in this thesis.  

The photon flux data for photon energies between 0.30 eV and 0.31 eV could have been 

extrapolated from the AM1.5 spectra to correct for the missing photon flux data in this 

energy range. This would especially improve the results for the efficiency of the cell where all 

band gaps are at their lowest. The lowest band gap in the calculations could also have been 

set to 0.31 eV. The method for calculating the incident photon flux from the AM1.5 specta 

could also have been improved to be more accurate. 
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7 Results and discussion 

This chapter contains the results and discussion of efficiencies as a function of band gap sizes 

for the two and four terminal tandem cells, with single-junction and intermediate band solar 

cells (IBSCs) in various configurations. The efficiencies have been calculated for the AM1.5 

spectra under a concentration of 1 sun, 100 suns, and 1000 suns. For concentrated radiation, 

the AM1.5 direct spectrum is used, as concentrator systems do not use the diffuse radiation.  

The efficiencies of the solar cells are calculated using the principle of detailed balance, 

described in sections 3.3 and 4.2. In chapter 6 the model used in the simulations was 

described in detail. 

In section 7.1 results from the simulations used in this thesis will be validated by comparing 

results from this work and other publications, using the same parameters. 

Results from tandem cells with two IBSCs are presented and discussed in section 7.2. The 

tandem cells with a combination of IBSC and single-junction cells are treated in section 7.3. 

In these two sections the maximum efficiencies for the main band gaps of the two connected 

cells are presented and discussed, as well as the optimum sub-band gaps at the maximum 

efficiencies. Differences in the two and four terminal tandem cell are also covered. 

The calculations are made with band gap energy steps of 0.05 eV. Band gap combinations 

between the selected numerical values can possibly yield higher efficiencies than found in this 

thesis. The figures showing plots of the various results are also affected by the large energy 

steps, and have a slightly low resolution. The consequences of the large energy steps are 

discussed in section 7.4.  

Fabrication of IBSC with very specific band gap combinations can be difficult to achieve. In 

section 7.5 the band gaps giving the tandem cells high efficiencies are more closely examined. 

7.1 Validation of the Matlab code 

To validate the Matlab code, the model is used to calculate results that can be compared with 

other work. First the tandem IBSC is calculated for black body radiation and compared with 

the PhD thesis by Elisa Anotlin Fernández [15]. In this thesis work the performance of the 

tandem IBSCs are simulated using the AM1.5 spectra. The inclusion of the AM1.5 spectra in 

the Matlab code is tested by comparing the model for a single IBSC with results in a paper by 

S.P. Bremner [17], where the AM1.5 spectra is used. 

7.1.1 Tandem IBSC under black body illumination 

In the PhD thesis by Elisa Anotlin Fernández [15] the efficiencies of tandem cells have been 

calculated using the principle of detailed balance. The efficiencies for the same band gap 

combinations as found in the PhD thesis are calculated. The results are listed in table 7.1, 
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together with the results from the PhD Thesis. The incident radiation is taken to be that of a 

black body at 6000K under maximum concentration and the cell temperature is set to 300 K.  

Table 7.1: Efficiencies of the tandem cell under maximum concentration of 
black body radiation (6000K), and cell temperature at 300 K. Results from 

this project (6
th
 column) and Ref. [15] (5

th
 column) for the given band gap 

energies. 

EG,Top EG,Bot EL,Top EL,Bot Phd Thesis 

Efficiency (%) 

This Work 

Efficiency(%) 

2 IBSC, four terminal 

3.62 1.13 1.53 0.37 73.2 73.11 

2 IBSC, two terminal 

2.98 0.93 1.21 0.29 72.7 72.70 

Single-junction top cell and IBSC bottom cell, four terminal 

2.39 1.59  0.55 68.6 68.6 

Single-junction top cell and IBSC bottom cell, two terminal 

1.65 1.39  0.47 64.6 64.59 

IBSC top cell and single-junction bottom cell, four terminal 

2.48 0.49 0.96  68.5 68.43 

IBSC top cell and single-junction bottom cell, two terminal 

2.83 0.52 1.13  67.9 67.85 

 

As we can see from table 7.1, the results from this project and the PhD thesis have equal 

results when rounded off to one decimal, except for the four terminal IB tandem cell and the 

tandem cell with an IB top cell and a single-junction bottom cell. The IBSC tandem cell has 

the highest difference of about 0.12%, even lower when considering rounding off the 

efficiency to one decimal. 

Discussion 

The differences in efficiency values in table 7.1 are difficult to explain without comparing the 

codes in detail. The same spectrum is used, and hence it can not be responsible for the 

anomalies. As the current densities for the processes over both sub-band gaps are near equal 

in the simulations used in this master project, the efficiencies are not affected by which of the 

two current densities in equation (4.2.3) is used in equation (4.2.1). Difference in the method 

used to calculate the emitted photon flux can result in a small difference in the efficiency, but 

it is more likely that there is some variance in the code when finding the optimum voltage for 

the cells. As the code for the two terminal tandem cell is more extensive and complicated it 

would be expected that the largest difference would be found here, but table 7.1 shows the 

opposite. An increase in the number of voltage points in this thesis work to get a better 

accuracy, did not affect the efficiencies noticeably.  

Even if there is a difference in the efficiencies compared with the results in [15], the 

dissimilarities are relatively small. The tandem model is therefore assumed to be well suited 

for an analysis of the intermediate band tandem solar cell. 
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7.1.2 Intermediate band solar cell with AM1.5 spectra 

In a paper by S. Bremner, M. Levy and C Honsberg [17], the intermediate band solar cell has 

been modelled for the AM1.5 spectra. The same band gap values and concentration levels as 

in that paper have been used to reproduce results in this work. Band gap energies have been 

set at a range between 1.00 eV and 1.55 eV for the largest gap (0.99 eV and 1.60 eV in [17]) 

and 0.50 eV to 1.00 eV for the smallest gap (0.50 eV to 0.99 eV in [17]), with a step of 0.01 

eV. The AM1.5 spectra from ASTM G-173 is used in this thesis and it is assumed that this is 

also used in [17], as the paper is published in 2008 and the G-173 spectra has been used as 

the standard AM1.5 spectra since 2003. 

The maximum efficiencies and band gap energies from the referred paper are shown together 

with the efficiencies at the same band gap energies from this thesis work in table 7.2. We see 

from the table that the efficiencies in [17] are slightly larger than in this work, for the selected 

band gap values. Therefore the band gaps was varied slightly to find the maximum efficiencies 

for the simulations in this work, see table 7.2. In figure 7.1 the efficiencies calculated in ref 

[17] (left column) and this work (right column) are plotted as a function of the band gaps. 

Table 7.2: Comparing band gap energies at the highest efficiencies from 

this thesis and the Ref. [17]. 

Source 

Eg (eV) EHigh             

(EIV in [17]) (eV) 

Elow                

(EIC in [17]) (eV) Suns Efficiency (%) 

[17], peak D 2.4 1.48 0.92 1 49.4 

This thesis 2.4 1.48 0.92 1 49.30 

This thesis, max 2.42 1.49 0.93 1 49.41 

 

[17], peak C 2.06 1.33 0.73 100 56.8 

This thesis 2.06 1.33 0.73 100 56.21 

This thesis, max 1.93 1.23 0.7 100 56.37 

 

[17], peak B 1.94 1.24 0.7 1000 60.9 

This thesis 1.94 1.24 0.7 1000 60.65 

This thesis, max 1.91 1.22 0.69 1000 60.80 

 

The band gap energies of the peak efficiency values are in fairly good agreement, see table 

7.2. At the band gap combinations with the maximum efficiencies in [17], the largest 

deviation in efficiency is less than 1.04%. The largest deviation of both efficiency and band 

gap energies for maximum efficiency is found for the concentration value of 100 suns. In 
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figure 7.1 (b) the peak B is seen to also have a high efficiency at 100 suns, and at band gap 

energies very close to the highest efficiency from the results in this project.  

 

Figure 7.1: Efficiency contour plots under concentration (a) 1 (AM1.5 G), 
(b) 100 (AM1.5 D), and (c) 1000 (AM1.5 D). Plots on the right are results 

from this thesis work, while the plots on the left are Ref. [17]. Efficiency is 

given in percentage. Note that there are some small differences in the 
length of the axes. 

Figure 7.1 shows that the efficiency contours follow a similar pattern for all concentration 

levels. The results from this master’s project show higher efficiency for most band gap 

combinations under the global radiation, with no concentration of the light, see figure 7.1 a). 

This is very noticeable by the wider range of band gap combinations providing the cell with 
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efficiency over 48%. Efficiencies for 1000 suns concentration (figure 7.1 c) are also higher 

close to the lowest energy values for both band gaps. 

For most band gap combinations with EHigh values above 1.15 eV, the efficiencies for 

concentration level of 100 (b) and 1000 (c) are higher in [17]. This is for example clearly seen 

at band gap values near EHigh = 1.43 eV and ELow = 0.84 eV, also close to EHigh = 1.10 eV and 

ELow = 0.90 eV, and EHigh = 1.40 eV and ELow = 0.53 eV.  

Discussion 

The dissimilarities in efficiency are not easily explained as the scripting code cannot be 

compared in detail, but as the difference in efficiency is about 10 times larger than for the 

tandem cell with black body radiation discussed in 7.1.1, it is more likely the error is in the 

handling of the spectra. Differences in the photon flux absorbed because of the interpolation 

of the spectra, as well as the method used to find the highest and lowest photon energies 

limiting the summation of the flux, will result in some deviation in efficiency. This is coherent 

with the similarity in the deviations found for the results using the same direct spectrum for 

both 100 and 1000 suns concentration.  

In [17] the radiative recombination has been calculated using a rapid flux calculation 

technique based on incomplete Riemann Zeta integrals (IRZIs). As this method has not been 

used in this thesis, there will possibly be deviations in the calculated photon flux emitted from 

the cell. In many cases the smallest of the current densities will not be completely equal, as 

equation (4.2.3) states they should be. In this thesis the smaller of the two current densities 

will then be added to the total current as the last current density in equation (4.2.1). If the 

comparing paper has a higher accuracy in solving equation (4.2.3) or only uses the current 

density gained from the transitions between the intermediate band and the conduction band, it 

would explain some of the lower efficiencies in the results from this master’s project.  

The similar traits for the contours in figure 7.1 and an error of only 1.04% in the maximum 

efficiencies makes the model viable for simulating the intermediate band solar cell with the use 

of the AM1.5 spectra. 

7.2 Tandem IBSC under AM1.5 illumination 

In this section the tandem cell composed of two IBSCs will be treated. The cell has been 

simulated for the concentration levels 1, 100 and 1000 suns. Results for both the two and four 

terminal cell are presented, starting with the four terminal tandem cell. High efficiency is a 

term assigned to efficiencies above 90% of the maximum efficiency for the cell under the 

same conditions. In the efficiency plots the 90% efficiency is shown indicated by a black line. 

As there are six different band gaps in the tandem cells consisting of IBSCs, some notations 

are introduced to make the text more readable. EG,Top and EG,Bot refers to the main band gap 

energies of the top and bottom cell respectively. The notations EL,Top and EL,Bot will refer to 

the lowest sub-band gap of the top and bottom IBSCs. 
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7.2.1 Four terminal IBSC 

The four terminal tandem cell has the highest efficiency, as both the top cell and the bottom 

cell operate at their optimum voltage.  

Efficiencies at 1 sun 

The efficiency for the cell simulated for 1 sun concentration is presented in figure 7.2.  
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Figure 7.2: Efficiency of the tandem cell under 1 sun, area function of the 

main band gap energies of the top and bottom cell. 

The maximum efficiency is 54.93%, for a top and bottom cell main band gap energy of 4.05 

eV and 1.65 eV respectively, and lowest band gap energy of 1.80 eV and 0.55 eV 

respectively. For band gap combinations with EG,Top in the range of 2.40 eV to 4.80 eV and 

EG,Bot in the range of 0.75 eV to 2.15 eV, efficiency over 49.44% (90% of 54.93%) is 

achieved, represented by the black line in figure 7.2. The band gap range giving high 

efficiencies for EG,Top is limited by the simulation, as values above 4.80 eV for EG,Top are not 

included. Larger band gap ranges for both EG,Top and EG,Bot giving high efficiencies are thus 

expected. 

As it would be interesting to see how much and at what band gap energies the top and bottom 

cell contribute to the cell total power, the separate contributions to the total efficiency from 

the bottom and top cell are displayed in figure 7.3 and 7.4. 
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Figure 7.3: Efficiency at different band gap energy values for the bottom 
cell under 1 sun concentration. 

The bottom cell reduces the efficiency of the complete tandem cell for some combinations 

with bottom main band gap energies in the range 0.65 eV to 0.75 eV, see figure 7.3. The 

efficiencies for the bottom cell increase with an increase of EG,Bot and consequently also EG,Top.  
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Figure 7.4: Efficiency for different main band gap combinations for the top 

cell under 1 sun concentration. 
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The top cell has the highest efficiency within the EG,Top range from 1.75 eV to 3.40 eV, but 

the efficiency then decreases as EG,Top increases. For each value of EG,Top, the efficiency drops 

when EG,Bot is increased close to its maximum for that specific value of EG,Top. At these band 

gap combinations the efficiency for the bottom cell is also increasing rapidly, see figure 7.3.  

Discussion 

The tandem cell consisting of two IBSCs has an increase in the limiting maximum efficiency 

of 11% compared to the single IBSC in section 7.1.1 (, from 49.41% to 54.93%). Series 

connected cells are expected to have an even lower increase in efficiency. Similar to the single 

IBSC, the tandem cell has high efficiency for a wide range of main band gap energies. The 

band gap combinations for the top and bottom cell that provide the highest efficiency for the 

tandem cell, are mostly at band gap energies that are above or below the optimum values for 

the single IBSC. EG,Top values are above the optimum band gap values for the single IBSC, 

but the highest EG,Bot values are also optimum for the single IBSC. Figure 7.5 shows the 

maximum efficiency for a single IBSC at the different main band gap values. Semiconductor 

materials that cannot be used for single IBSC, can then be considered for high efficiency 

tandem cells.  
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Figure 7.5: The maximum efficiencies for the single IBSC at various main 
band gap values. 

With main band gap energies for the top cell from 3.15 eV to 4.80 eV (the highest band gap 

used) and for the bottom cell from 1.05 eV to 2.15 eV, there are combinations that give 

efficiencies over 52% for the tandem cell. At most of these band gap energies, the single 

IBSCs have lower efficiencies, see figure 7.5, but an increase in efficiency close to 20% is 

feasible with such IBSCs in a tandem cell. 

As can be expected, the top cell contributes more to the power output for low band gap 

energies, and the power decreases as the band gap increases. At larger band gaps more of the 
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radiation is transmitted through the top cell and absorbed by the bottom cell, hence increasing 

the power output of the bottom cell and reducing the power output of the top cell. For a 

given value of EG,Top there is a decrease in efficiency of the top cell and increase in the bottom 

cell efficiency as EG,Bot is getting increasingly closer to its highest value, for that specific value 

of EG,Top. This is a result of an increase in EL,Top at these band gap regions, as seen in figure 

7.10 later in this section. The increase in EL,Top is due to a restriction in the model, mentioned 

in section 6.3, where EG,Bot needs to be smaller than  EL,Top. This causes the values for EL,Top to 

increase in these regions to compensate for higher values of EG,Bot, and as these values of 

EL,Top are not the optimum for the top cell the efficiency is reduced. The effect of this is also 

seen in the efficiency of the complete tandem cell. 

The bottom cell has a negative current at low band gap energies and consequently a negative 

efficiency in the simulations. Figure 7.6 shows the photon fluxes absorbed and emitted for the 

bottom IBSC using the AM1.5G spectrum under 1 sun concentration, where the band gaps 

are set at EL,Top = 1.15 eV, EG,Bot = 0.30 eV and a varying EG,Bot from 0.65 eV to 0.85 eV. In 

figure 7.7 the same case has been simulated using the black-body radiation (6000K). The 

photon fluxes are the total flux from the bottom IBSC; the sum of flux absorbed (or emitted) 

for the main band gap and one of the sub-band gaps. Only the flux from the processes over 

one of the sub-band gap is used. The sub-band gap process that has the lowest emitted flux 

compared to the absorbed flux is chosen, similar to the other simulations in this thesis. This 

causes the flux to fluctuate in value for the different main band gap energies. As the flux has 

been calculated for a varying EG,Bot value of 0.01 eV in each step, the graphs only show the 

photon flux roughly, and do not show the exact flux value for the continuous energy 

spectrum of EG,Bot. 
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Figure 7.6: Photon flux emitted (red) and absorbed (green) by the bottom 
IBSC, using the AM1.5G radiation with 1 sun concentration. Only the 

points at 0.01 eV steps are results from the calculation. 
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Figure 7.7: Photon flux emitted (red) and absorbed (green) by the bottom 
IBSC, using the black-body radiation (6000K) with 1 sun concentration. 

Only the points at 0.01 eV steps are results from the calculation. 

Figures 7.6 and 7.7 both show a higher emitted photon flux than absorbed for the lowest main 

band gaps of the bottom cell. The photon flux from the black-body spectrum is higher than 

the flux from the AM1.5 spectrum. This is probably an effect of the AM1.5 spectra missing 

data for the photon flux at photon energy lower than 0.31 eV. The negative current 

contribution by the bottom cell is clearly an effect of the high emitted photon flux, and not an 

effect of the missing data for the AM1.5 spectra, as the simulations using the black-body 

radiation has a similar result.  

 

Efficiencies at 100 and 1000 suns 

The efficiencies for the tandem IBSC with concentrated sunlight are shown in figure 7.8 for 

100 suns and figure 7.9 for 1000 suns. For concentrated sunlight the bottom cell does not 

have a negative efficiency, as was the case with no concentration. 
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Figure 7.8: Efficiency of the tandem cell under 100 suns, area function of 
the main band gap energies of the top and bottom cell. 

The maximum efficiency for 100 suns concentration is 62.74%. It is found at the main band 

gap energies 3.75 eV and 1.50 eV, and at the lowest sub-band gap energies 1.65 eV and 0.50 

eV for the top and bottom cell respectively. The tandem cell has a high efficiency over 

56.47%, with band gap combinations found at the EG,Top range from 1.95 eV (, even if the 

plot seems to show 2.00 eV,) to 4.80 eV and the EG,Bot range from 0.65 eV to 2.15 eV. 
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Figure 7.9: Efficiency of the tandem cell under 1000 suns, area function of 
the main band gap energies of the top and bottom cell. 
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The maximum efficiency for 1000 suns concentration is 67.23%, with the main band gap 

energies 4.30 eV and 1.50 eV, and lowest sub-band gap energies 1.95 eV and 0.50 eV for the 

top and bottom cell respectively. Band gap combinations that give efficiencies over 60.51% 

are found at the range for EG,Top from 1.90 eV to 4.80 eV and for EG,Bot from 0.65 eV to 2.15 

eV. Both of the efficiency plots for tandem cells under concentrated sunlight show a high 

efficiency for wide ranges of band gap combinations, similar to the plot in figure 7.2 for the 

cell under no concentration.  

Discussion 

Compared to the single cell IBSCs under concentrated radiation, the maximum efficiency has 

an increase close to 11% for the tandem cells, which is similar to the case with no 

concentration. Since the efficiency is only calculated for band gap energies with a 0.05 eV 

step, there will probably be band gaps between the steps that provide higher efficiencies. The 

band gap energies at the maximum efficiencies vary a lot for the different concentration 

values, but there are local efficiency peaks at similar band gap combinations for all the various 

levels of concentration. The range of band gaps that provide the tandem cell with high 

efficiency increases with concentration level. It is most noticeable for the top cell ranges from 

the concentration level of 1 sun to 100 suns, while there is only a slight increase from 100 

suns to 1000 suns. The increase in the band gap range is possibly a consequence from the 

difference in the light distribution, as the diffuse radiation is not used by the cell under 

concentrated light. The diffuse radiation increases the photon flux at high photon energies and 

could then have the discussed effect on the band gap ranges. 

 

Sub-band gap energies 

The sub-band gaps in the IBSC are the gaps between the valence band and the intermediate 

band and between the intermediate band and conduction band. The efficiency of an IBSC is 

very dependent on the position of the intermediate band in the main band gap, and 

consequently also on the sub-band gap energies. How the optimum sub-band gap energies 

change for the variation in the main band gaps is hence also presented for each of the tandem 

cells in this chapter.  

The optimum band gap energies for the lower sub-band gaps in the top (EL,Top) and bottom 

(EL,Bot) IBSC are displayed in figures 7.10 to 7.15. These are the band gap combinations for 

the highest tandem cell efficiencies, and the figures show the optimum lowest sub-band gaps 

for the specific main band gaps.  
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Figure 7.10: The optimum lowest sub-band gap energies for the top cell 

(EL,Top). Concentration level is 1 sun. 
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Figure 7.11: The optimum lowest sub-band gap energies for the top cell 
(EL,Top). Concentration level is 100 suns. 
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Figure 7.12: The optimum lowest sub-band gap energies for the top cell 

(EL,Top). Concentration level is 1000 suns. 

Figure 7.10, 7.11 and 7.12 all show that EL,Top increases as the top main band gap increases. 

The optimum lowest sub-band gap is almost constant for each of the main band gap energies 

of the top cell, but increases sharply as the bottom main band gap increases closer to its 

maximum value. The concentration level seems to have a small effect on the optimum EL,Top 

values. 
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Figure 7.13: The optimum lowest sub-band gap energies for the bottom 
cell (EL,Bot). Concentration level is 1 sun. 
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Figure 7.14: The optimum lowest sub-band gap energies for the bottom 
cell (EL,Bot). Concentration level is 100 suns. 
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Figure 7.15: The optimum lowest sub-band gap energies for the bottom 

cell (EL,Bot). Concentration level is 1000 suns. 

The optimum lowest band gap values are similar for all concentration levels. EL,Bot is at its 

minimum (0.30 eV) for all EG,Bot values up to 1.10 eV. The optimum lowest sub-band gap 

then increases with higher values of EG,Bot, with some small irregularities at the value of EG,Bot 

close to 1.20 eV and also at 1.90 eV for the 1 sun concentration. Figure 7.14 and 7.15 show 

that for EG,Bot =1.20 eV,  EL,Bot  drops in value when EG,Top is over 3.85 eV. 
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Discussion 

The optimum lowest sub-band gap for both the top and the bottom cell increases as the 

respective main band gap increases. As a result, a similar ratio between the two sub-band 

gaps will remain for the various main band gap energies. The electrons need to be excited 

over both sub-band gaps to be collected by the cell contacts. High efficiencies will then be 

found when the absorbed photon flux is divided similarly for the processes over the two sub-

band gaps. 

As discussed previously in this chapter, the increase in EL,Top in figure 7.10, 7.11 and 7.12 for 

high values of the bottom main band gap is a consequence of constrictions in the model 

(EL,Top > EG,Bot). 

The optimum EL,Bot values have some irregular behaviour when EG,Bot is about 1.2 eV. It is 

clearly seen for the case with 100 and 1000 suns concentration in figure 7.14 and 7.15 at 

EG,Bot = 1.20 eV. For high values of EG,Top (3.90 eV for 1000 suns), the optimum value for  

EL,Bot drops to 0.30 eV. This is an effect of an increase in the current in the bottom cell, as the 

photon flux absorbed by the bottom cell increases as the value of EL,Top is raised. For a more 

detailed study of this behaviour, the I-V characteristics for the EL,Bot values 0.30 eV (red 

curve), 0.35 eV (blue curve) and 0.40 eV (black curve) for an IB bottom cell at 1000 suns are 

plotted in figures 7.16, 7.17 and 7.18. The characteristics for two different values of EL,Top 

(1.80 eV and 1.45 eV) are displayed, each for a corresponding EG,Top value above and below 

3.90 eV. In figure 7.16 the I-V characteristics where EG,Bot has the value 1.20 eV are plotted.  
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Figure 7.16: I-V plots for the bottom IBSC in a tandem cell (1000 suns 

concentration) with EG,Bot = 1.20 eV, for 3 different values of EL,Bot and two 

different values for EL,Top. The three highest current values are from the 

results where EL,Top= 1.80 eV, and three lowest currents have EL,Top=1.45 
eV. The values for EL,Bot are: 0.30 eV (red) , 0.35 eV (blue) and 0.40 eV 

(black). The crosses show the point of highest power. 
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Figure 7.16 shows that the I-V characteristics of the different EL,Bot values are very close for 

these main band gap values. It is clear that when EL,Top is raised from 1.45 eV to 1.80 eV the 

current is significantly increased in the bottom cell. Thus a small increase in voltage has a 

larger effect on the efficiency. As can be seen from Figure 7.16, the curves for the lowest 

values of EL,Bot have a higher voltage at the same current. The efficiencies from the bottom 

cell used in figure 7.16 vary from 32.21% to 32.31% and from 21.09% to 21.28%. 

EG,Bot has the value 1.00 eV in figure 7.17 and 1.35 eV in figure 7.18. 
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Figure 7.17: I-V plots for the bottom IBSC in a tandem cell (1000 suns 
concentration) with EG,Bot = 1.00 eV, for 3 different values of EL,Bot and two 

different values for EL,Top. The three highest current values are from the 

results where EL,Top= 1.80 eV, and three lowest currents have EL,Top=1.45 
eV. The values for EL,Bot are: 0.30 eV (red) , 0.35 eV (blue) and 0.40 eV 

(black). The crosses show the point of highest power. 
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Figure 7.18: I-V plots for the bottom IBSC in a tandem cell (1000 suns 

concentration) with EG,Bot = 1.35  eV, for 3 different values of EL,Bot and two 

different values for EL,Top. The three highest current values are from the 

results where EL,Top= 1.80 eV, and three lowest currents have EL,Top=1.45 
eV. The values for EL,Bot are: 0.30 eV (red) , 0.35 eV (blue) and 0.40 eV 

(black). The crosses show the point of highest power. 

The reason that there are irregularities only for a few of the EG,Bot values, is because at these 

values the current-voltage characteristics for the three different EL,Bot values are very similar 

to each other. For other values of EG,Bot, the I-V plots have larger differences in current 

densities, as can be seen from the figures 7.17 and 7.18. 

 

A rule of thumb used in positioning the IB in the main band gap is to have the smallest sub-

band gap size set to about a third of the main band gap. As the IBSCs in the tandem cell show 

a higher ratio for the top cell for all EG,Top and for some values of EG,Bot for the bottom cell, 

the ratios have been compared with the single IBSC used in section 7.1.2. Figure 7.19 shows 

the ratios for all three IBSCs under the AM1.5G spectrum and with a concentration level of 1 

sun. The optimum lowest sub-band gaps for the top IBSC used to calculate the ratios are the 

EL,Top values found for the EG,Bot value of 0.65 eV. The ratios for the bottom cell are 

calculated using the EL,Bot values for the EG,Top value of 4.80 eV. 
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Figure 7.19: The ratios between the optimum lowest sub-band gap and 

the main band gap of the IBSCs. The ratio for a single IBSC (red), the top 

IBSC in a tandem cell (blue) and the bottom cell in a tandem cell (green) 

are all shown in the plot. Concentration level set to 1 sun. 

In figure 7.19 there are some high ratios for the smallest main band gaps for both of the 

IBSCs in the tandem cell. This is most likely a consequence of constricting the smallest sub-

band gap to 0.70 eV for the top IBSC and 0.30 eV for the bottom IBSC. The ratio values 

below the main band gap energy of 1.95 eV for the top IBSC and below the main band gap 

value of 1.2 eV for the bottom cell, are thus ignored. 

The band gap ratios for the three IBSC seem to follow a similar increase in the optimum value 

for the smallest sub-band gap, as the main band gap increases. It is seen in figure 7.19 that the 

ratio for a single IBSC for main band gap energies above 2 eV is also higher than one third. 

The largest deviation in ratio for the tandem IBSCs from the ratio for a single IBSC is below 

5%, and it is concluded that connecting an IBSC in a four terminal tandem cell has a small 

effect on the ratio between the smallest sub-band gap and the main band gap. An exception to 

this is for some main band gaps of the bottom IBSC, for example when EG,Bot is close to 1.20 

eV, as discussed earlier in this section. 
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7.2.2 Two terminal IBSC 

The following results are for the series connected tandem cell with two IBSCs. The two 

IBSCs are constrained by having an equal current, as described in section 5.2.  

Efficiencies for 1, 100 and 1000 suns 

The following three figures show the efficiency for the two terminal tandem IBSC with the 

concentration levels 1, 100, and 1000. 
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Figure 7.20: Efficiency of the series connected tandem cell under 1 sun, 
area function of the main band gap energies of the top and bottom cell. 

For the lowest concentration level the maximum efficiency is 53.88% with the following band 

gap values: EG,Top at 3.30 eV , EG,Bot at 1.35 eV, EL,Top at 1.40 eV and EL,Bot at 0.40 eV.  The 

efficiency is over 48.49% for band gap combinations in the range of EG,Top from 2.95 eV to 

3.70 eV and EG,Bot from 0.80 eV to 1.55 eV. Comparing figure 7.20 with figure 7.2 shows 

that the range of band gap combinations providing the cell with high efficiency is much lower 

than for the four terminal cell.  

The efficiency has not been calculated for the band gaps of the bottom cell where the current 

is negative, because this would result in a negative efficiency for the complete tandem cell. In 

figure 7.20 this band gap area has instead an efficiency set to zero. The negative efficiency in 

the bottom IBSC has already been discussed in section 7.2.1. 
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Figure 7.21: Efficiency of the series connected tandem cell under 100 

suns, area function of the main band gap energies of the top and bottom 

cell. 

For the cell under 100 suns the maximum efficiency is increased to 61.01%, with the band gap 

values: EG,Top = 3.20 eV , EG,Bot = 1.25 eV , EL,Top = 1.35 eV and EL,Bot = 0.35 eV. Band gap 

combinations in the EG,Top range from 2.75 eV to 3.50 eV and the EG,Bot range from 0.65 eV 

to 1.45 eV give efficiencies over 54.91%. 
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Figure 7.22: Efficiency of the series connected tandem cell under 1000 

suns, area function of the main band gap energies of the top and bottom 
cell. 
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The maximum efficiency for a cell under radiation with concentration level 1000 is 65.34% 

with band gap energy values: EG,Top = 2,95 eV, EG,Bot = 0.95 eV , EL,Top = 1.20 eV and EL,Bot = 

0.30 eV. For band gap combinations in the EG,Top range from 2.75 eV to 3.50 eV and the 

EG,Bot range from 0.65 eV to 1.45 eV, efficiency over 58.81% is achieved.  

 

Discussion 

The maximum efficiencies for the series connected tandem cell are concentrated at a smaller 

range of band gaps than for the separately connected cell. This is more noticeable than the 

decrease of the maximum efficiency, which is a decrease of 2.8% points at most. Compared 

to the four terminal tandem cell, the range of different semiconductor material that will 

provide a two terminal cell with high efficiency is much smaller.  

Low efficiency at high values of EG,Top when compared to the four terminal cell, is mainly a 

consequence of a low photon flux absorption in the top cell, thus causing a low current in the 

top IBSC. As the two cells are series connected, the bottom cell, which has high photon flux 

absorption at this band gap combination, will not provide the complete cell with a high 

current as for the four terminal case. 

The main band gap ranges with high efficiency for the concentration levels 100 and 1000 are 

the same, indicating that these main band gap energies would provide good efficiency for two 

terminal tandem cells under concentrated radiation. The high efficiency main band gap ranges 

for the cell under 1 sun are at higher energies than the cells under 100 and 1000 suns. This is 

similar to the results for the four terminal cell, and probably an effect of the difference in the 

radiation distributions AM1.5G and AM1.5D.  

 

 

Sub-band gap energies, top cell 

The following three figures show the optimum lowest band gaps of the top cell (EL,Top) of the 

series connected tandem IBSC for 1, 100 and 1000 suns.  
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Figure 7.23: The optimum lowest sub-band gap energies for the top cell 

(EL,Top). Concentration level is 1 sun. 

The optimum top cell sub-band gaps are very similar to that of the four terminal tandem cell; 

the smallest sub-band gap increases with the main band gap of the top cell. The difference 

from the four terminal tandem cell is most significant at the EL,Top range 1.45 eV to 3 eV. In 

the four terminal case in figure 7.10, EL,Top is more stable for each main band gap energy of 

the top cell. 
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Figure 7.24: The optimum lowest sub-band gap energies for the top cell 

(EL,Top). Concentration level is 100 suns. 



 56 

 0.7
    
 0.8
    
 0.9
    
   1
    
 1.1
    
 1.2
    
 1.3
    
 1.4
    
 1.5
    
 1.6
    
 1.7
    
 1.8
    
 1.9
    
   2
    
 2.1
    
 2.2
    
 2.3
    

O
p

ti
m

u
m

 E
L

 t
o

p
 (

e
V

)

Eg bottom cell (eV)

E
g

 t
o

p
 c

e
ll
 (

e
V

)

0.8 1 1.2 1.4 1.6 1.8 2 2.2

1.5

2

2.5

3

3.5

4

4.5

 

Figure 7.25: The optimum lowest sub-band gap energies for the top cell 
(EL,Top). Concentration level is 1000 suns. 

Similar to the plot in figure 7.23, the cells under concentrated radiation, see figures 7.24 and 

7.25, have differences for EL,Top compared to the four tandem cell in figures 7.11 and 7.12. 

Significant variations are found for the lower main band gaps of the top cell, but only up to 

the energy of about 2.85 eV. Comparing figure 7.24 and 7.25 shows that an increase in 

concentration level does not seem to give a significant difference in the values of EL,Top. 

Discussion 

Comparing the results for the two terminal cell with the four terminal cell, we find that the 

most significant difference is in the low main band gap ranges for the top cell. The two 

terminal cell has lower values for EL,Top at these ranges, and the difference is at most 0.30 eV. 

For higher values of EG,Top there is only a small increase in EL,Top for some main band gap 

combinations. The ratio between the optimum lowest sub-band gap and the main band gap 

are similar to the four terminal case for the top IBSC. 

 

 

Sub-band gap energies, bottom cell 

Figures 7.26, 7.27 and 7.28 show the optimum lowest sub-band gap energies of the bottom 

IBSC for 1, 100 and 1000 suns respectively. 
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Figure 7.26: The optimum lowest sub-band gap energies for the bottom 
cell (EL,Bot). Concentration level is at 1 sun. 

0.30 eV, which is the smallest band gap used in the simulations, is the optimum lowest sub-

band gap for most of the main band gap values as can be seen in figure 7.26. Higher values 

for EL,Top is found at high values for both EG,Bot and EG,Top, reaching the value of 0.50 eV. 
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Figure 7.27: The optimum lowest sub-band gap energies for the bottom 

cell (EL,Bot). Concentration level is at 100 suns. 
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Figure 7.28: The optimum lowest sub-band gap energies for the bottom 

cell (EL,Bot). Concentration level is at 1000 suns. 

Increasing the concentration level also increases the values of EL,Bot for some of the main band 

gap energies, as can be seen from figure 7.27 and 7.28, but for most of the lower main band 

gap values for the bottom cell, EL,Bot is still at its lowest value of 0.30 eV. Similar to 

concentration level 1 the highest values for EL,Bot are at high values of both main band gaps. 

 

Discussion 

The values for EL,Bot in the two terminal IBSC are very different from the ones found in the 

four terminal tandem IBSC. For the two terminal tandem IBSC, the optimum values for EL,Bot 

do not increase with the EG,Bot for all values of EL,Top. The high optimum band gap values for 

EL,Bot are only found where both main band gaps are large and the ratio between them low, 

i.e. along the diagonal of the plot. For the four terminal tandem IBSC, the values for EL,Bot are 

at 0.30 eV only for low main band gap energies for the bottom cell. It is clear that the ratio 

between the sub-band gap and the main band gap for the bottom IBSC in the two terminal 

tandem cell is generally much lower than for the four terminal cell. 

As stated earlier in the discussion of the efficiencies for the two terminal cell, the top cell has 

a low current at high EG,Top values. A low current for the top cell is also a consequence when 

EL,Top increases close to its maximum value, just below half the value of EG,Top. The values for 

EL,Top are pushed up by an increase in EG,Bot when EG,Bot reaches its highest values possible for 

a specific EG,Top. The highest efficiency is then found when the bottom cell provides a high 

voltage at a low current, equal to the top cell current. This can be seen by plotting the I-V 

characteristics for the bottom IBSC with various EL,Bot and compare the curves with the 

highest current achievable in the top IBSC, see figure 7.29. 
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The figure shows the I-V characteristics of the bottom cell for two different EL,Bot values: 

0.30 eV, the optimum for the two terminal cell, and 0.50 eV, the four terminal optimum 

value. The other band gaps are EG,Top = 4 eV, EG,Bot = 1.60 eV, and EL,Top = 1.75 eV. 

Concentration level for this cell is 1 sun. The green line represents the highest current for the 

top cell at these band gap values. 
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Figure 7.29: The I-V characteristics of the bottom cell for two different 

values of EL,Bot: EL,Bot is 0.30 eV (blue) and EL,Bot is 0.50 eV (red). The 

green line represents the highest value (Current / Total incident power) for 
the top cell. The other band gaps are: EG,Top is 4 eV, EG,Bot is 1.60 eV, EL,Top 

is 1.75 eV. 

It is clear from figure 7.29 that below the maximum current for the top cell the value of EL,Bot 

at 0.30 eV provides a higher voltage than EL,Bot at 0.50 eV. This explains why low values of 

EL,Bot provide the highest efficiency for the two terminal cell at certain main band gap 

combinations. An increase in the concentration level increases the photon flux and thus the 

current in the top cell, and higher values for EL,Bot can then give better efficiencies for higher 

levels of concentration.  

7.2.3 Two and four terminal summary 

The maximum efficiencies for the two terminal and four terminal tandem IBSCs and the 

corresponding band gaps, are listed in table 7.3. 
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Table 7.3: Band gap energies and maximum efficiencies for the tandem 
IBSC. 

Concentration 

level 
EG,top (eV) EG,bot (eV) EL,top (eV) EL,bot (eV) 

Maximum 

Efficiency (%) 

4 terminal tandem IBSC 

1 sun 4.05 1.65 1.8 0.55 54.93 

100 suns 3.75 1.5 1.65 0.5 62.74 

1000 suns 4.3 1.5 1.95 0.5 67.23 

2 terminal tandem IBSC 

1 sun 3.3 1.35 1.4 0.4 53.88 

100 suns 3.2 1.25 1.35 0.35 61.01 

1000 suns 2.95 0.95 1.2 0.3 65.34 

 

From the table, we see that the maximum efficiencies for the two terminal tandem IBSC are, 

as expected, lower than for the four terminal cell. Differences in the efficiencies are 1.91%, 

2.76% and 2.81% for the 1 sun, 100 suns and 1000 suns concentration respectively. The 

efficiency has a larger loss for the tandem IBSC than for the six junction tandem cell under 

the AM1.5 global radiation treated in [14]. In [14] the loss in efficiency is 0.67% when series 

connecting the six junction tandem cell for 1 sun, but the resolution of the band gap energies 

is much higher (up to 0.001 eV) than in this master’s thesis (0.05 eV) and there can be 

differences in the AM1.5 spectrum. A higher resolution of the band gap energies would 

probably increase the efficiency of the two terminal cell more than for the four terminal cell. 

This is reinforced by the results in table 7.1, showing that the tandem IBSC under full 

concentrated black-body radiation (6000K) has a loss of 0.68% when series connected (in the 

results from [15]). 

 

7.3 Single-junction and IB tandem cell under AM1.5 
illumination 

In this section the results of the tandem cell composed of one single-junction cell and one IB 

cell are presented and discussed. Simulations have been run with the IBSC as the top cell and 

the single-junction cell as bottom cell, and the IBSC as the bottom cell and the single-junction 

cell as the top cell. The single-junction cell has a different range of band gaps than the IBSC, 

see table 6.1. The black line in the efficiency plots, shows where the efficiency is 90% of 

maximum. 
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7.3.1 Four terminal IB top cell and single-junction bottom cell 

Efficiencies for 1, 100 and 1000 suns 

The efficiencies for a tandem cell with an IB top cell and a single-junction bottom cell are 

presented in figure 7.30 (1 sun), 7.31 (100 suns) and 7.32 (1000 suns).  

The maximum efficiency for 1 sun is calculated to 53.18% at the band gap values EG,Top = 

2.85 eV, EG,Bot = 0.70 eV  and EL,Top = 1.15 eV. For concentration level of 100 and 1000 suns 

the maximum efficiencies are at 60.23% and 64.48% respectively. Both maximum efficiencies 

are set at band gap values EG,Top = 2.45 eV, EG,Bot = 0.50 eV  and EL,Top = 0.95 eV. 
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Figure 7.30: Efficiency of the tandem cell under 1 sun, area function of the 
main band gap energies of the IB top cell and single-junction bottom cell. 

High efficiencies over 47.86% for 1 sun are achieved with band gap combinations in the EG,Top 

range from 1.95 eV to 4.25 eV and the  EG,Bot range from 0.30 eV to 1.15 eV. For 100 suns 

the high efficiencies are over 54.21%, and the band gap range for EG,Top is from 1.85 eV to 

3.95 eV and for EG,Bot from 0.30 eV to 1.05 eV. The high efficiencies for 1000 suns are over 

58.03%, with band gap combinations within the EG,Top range from 1.85 eV to 3.85 eV and the 

EG,Bot range from 0.30 eV to 1 eV.  
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Figure 7.31: Efficiency of the tandem cell under 100 suns, area function of 
the main band gap energies of the IB top cell and single-junction bottom 

cell. 
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Figure 7.32: Efficiency of the tandem cell under 1000 suns, area function 
of the main band gap energies of the IB top cell and single-junction bottom 

cell. 
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Discussion 

Comparing this cell with the single IBSC shows that the maximum efficiency is increased at 

most with 7.63%. The highest increase is for the tandem cell with a concentration level of 1 

sun. The band gaps at the maximum efficiency are larger for the IB top cell compared to the 

single IBSC. The single IBSC has a high efficiency at the main band gap energies close to 

2.85 eV (for 1 sun), as can be seen in figure 7.5. Thus semiconductor materials with band 

gaps providing high efficiency for the top IBSC in the tandem cell also have a high efficiency 

when used in a single IBSC. 

The band gaps for the maximum efficiency are lower for the tandem cells under concentrated 

radiation, similar to the single IBSC. As discussed earlier in this chapter this is an effect of the 

difference in distribution of the radiation as well as the concentration of the radiation. 

Sub-band gap energies for the top cell 

The following three figures show the optimum lowest sub-band gap energies for the IBSC in 

the tandem cell at various concentration levels. 
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Figure 7.33: The optimum lowest sub-band gap energies for the top cell 
(EL,Top). Concentration level is 1 sun. 
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Figure 7.34: The optimum lowest sub-band gap energies for the top cell 

(EL,Top). Concentration level is 100 suns. 
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Figure 7.35: The optimum lowest sub-band gap energies for the top cell 
(EL,Top). Concentration level is 1000 suns. 

As seen from figures 7.33, 7.34 and 7.35, EL,Top increases with the values of the main band 

gap of the top cell. The plots are very similar to those of the EL,Top values for the tandem 

IBSC in section 7.2.1. When comparing these plots with the plots in section 7.2.1, notice the 

difference in the range of EG,Bot, as this causes some difference in the appearance of the plots. 
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Discussion 

The optimum values for EL,Top are very similar for the tandem IBSC and the tandem cell with 

an IB top cell and single-junction bottom cell, showing that the choices for EL,Top are not 

strongly affected by the bottom cell.  

The lowest value used in the simulations for EL,Top is 0.70 eV. The cell would probably have 

higher efficiency for the lowest main band gap values if lower values for EL,Top had been used 

in the calculations. This is seen as the efficiencies in figure 7.30, 7.31 and 7.32 all decrease 

abruptly for EG,Top values lower than 1.85 eV. The maximum efficiencies are all found for 

higher EG,Top values, and the efficiencies are decreasing as EG,Top goes from 2 eV to 1.85 eV. 

It is therefore assumed that a higher maximum efficiency would not be found in the region 

where EG,Top is below 1.85 eV, but that the high efficiency band gap range for EG,Top will be 

larger than found in these results. 

7.3.2 Four terminal single-junction top cell and IB bottom cell 

In this section the results for the four terminal tandem cell with a single-junction top cell and 

an IB bottom cell are presented and discussed. The single-junction top cell has been 

calculated for a smaller range of main band gaps than the IBSC, but the results still includes 

the band gaps that provide the cell with high efficiencies.  

Efficiencies for 1, 100 and 1000 suns 

The following three plots show the efficiencies for the tandem cell at 1 sun, 100 suns and 

1000 suns concentration. 
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Figure 7.36: Efficiency of the tandem cell under 1 sun, area function of the 

main band gap energies of the single-junction top cell and IB bottom cell. 
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For the tandem cell with the concentration of 1 sun the maximum efficiency is 52.62%, and 

found at the band gap values EG,Top = 2.30 eV, EG,Bot = 1.95 eV  and EL,Bot = 0.70 eV.  
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Figure 7.37: Efficiency of the tandem cell under 100 suns, area function of 

the main band gap energies of the single-junction top cell and IB bottom 

cell. 
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Figure 7.38: Efficiency of the tandem cell under 1000 suns, area function 
of the main band gap energies of the single-junction top cell and IB bottom 

cell. 
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The maximum efficiency calculated for 100 and 1000 suns are 60.31% and 64.81% 

respectively, at band gap values EG,Top = 2.10 eV, EG,Bot = 1.65 eV  and EL,Bot = 0.55 eV for 

100 suns and EG,Top = 2.05 eV, EG,Bot = 1.50 eV,  and EL,Bot = 0.50 eV for 1000 suns. 

For 1 sun the high efficiencies are calculated to be over 47.35% and found for band gap 

combinations in the EG,Top range from 1.50 eV to 2.80 eV and the EG,Bot range from 1.20 eV 

to 2.75 eV. The high efficiencies for 100 suns and 1000 suns are over 54.28% and 58.33% 

respectively, and the corresponding band gap ranges are EG,Top from 1.45 eV to 2.80 eV and 

EG,Bot from 1 eV to 2.55 eV for 100 suns and EG,Top from 1.40 eV to 2.80 eV and EG,Bot from 

0.95 eV to 2.55 eV for 1000 suns. It is clear from figures 7.36, 7.37 and 7.38 that band gap 

combinations giving high efficiency are also found for EG,Top values above 2.80 eV, but higher 

values for EG,Top are not used in these calculations. 

Discussion 

The highest increase in maximum efficiency compared to the single IBSC is 6.5%, and is for 

the 1 sun concentration. Compared to the tandem cell with an IB top cell and single-junction 

bottom cell, the maximum efficiency is lower for 1 sun concentration, but higher for the 

concentration levels of 100 and 1000 suns. This can be an effect of the different distributions 

of the AM1.5D and AM1.5G spectra, the AM1.5G spectrum slightly favouring the IBSC as 

the top cell and AM1.5D slightly favouring the IBSC as the bottom cell. Because of the low 

band gap resolution and that the maximum efficiency values are in close vicinity of each other, 

it is only a guess.  

Sub-band gap energies, bottom cell 

Figures 7.39, 7.40 and 7.41 show the optimum lowest sub-band gap energies for the bottom 

IBSC, for 1, 100 and 1000 suns. 
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Figure 7.39: The optimum lowest sub-band gap energies for the bottom 

cell (EL,Bot). Concentration level is 1 sun. 
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Figure 7.40: The optimum lowest sub-band gap energies for the bottom 

cell (EL,Bot). Concentration level is 100 suns. 
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Figure 7.41: The optimum lowest sub-band gap energies for the bottom 
cell (EL,Bot). Concentration level is 1000 suns. 

The optimum values for EL,Bot of the bottom IBSC range from 0.3 eV, which is the lowest 

used in the simulation, to 1.1 eV. EL,Bot increases with the main band gap of the bottom IBSC, 

but have some deviations where EL,Bot is lower for high values of EG,Top. 
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Discussion 

In the tandem IBSC only photons with an energy lower than EL,Top reaches the bottom IBSC. 

For the tandem cell with a single-junction top cell however, this energy limit is EG,Top, which is 

the main band gap of the single-junction top cell. This allows the main band gap of the bottom 

IBSC to have larger values, up to 2.75 eV, and the optimum values for EL,Bot will 

consequently increase to higher values. The optimum sub-band gaps for the bottom IBSC in 

figures 7.39, 7.40, and 7.41 are comparable with the values for the tandem IBSC found in 

figures 7.13, 7.14, and 7.15, for the same values of EG,Bot. The decrease in the lowest sub-

band gap, when the EG,Top value increases for a set value of EL,Bot, has been discussed earlier in 

section 7.2.1. 

7.3.3 Two terminal IB top cell and single-junction bottom cell 

The results from simulating the two terminal tandem cell, with an IB top cell and single-

junction bottom cell, are presented in this section.  

Efficiencies for 1, 100 and 1000 suns 

The maximum efficiencies for the series connected IB top cell and single-junction bottom cell 

are seen in figure 7.42 for 1 sun, figure 7.43 for 100 suns and figure 7.44 for 1000 suns. 
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Figure 7.42: Efficiency of the tandem cell under 1 sun, area function of the 
main band gap energies of the IB top cell and single-junction bottom cell. 

Maximum efficiency is 52.51% at the band gap values EG,Top = 2.95 eV, EG,Bot = 0.70 eV,  and 

EL,Top = 1.20 eV for the 1 sun cell. The same band gaps also provide the tandem cell with the 

maximum efficiency of 59.19%, for 100 suns concentration. 
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Figure 7.43: Efficiency of the tandem cell under 100 suns, area function of 

the main band gap energies of the IB top cell and single-junction bottom 
cell. 
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Figure 7.44: Efficiency of the tandem cell under 1000 suns, area function 

of the main band gap energies of the IB top cell and single-junction bottom 

cell. 

For the tandem cell with concentration level of 1000 suns the maximum efficiency is 63.11% 

with the band gap values EG,Top = 2.75 eV, EG,Bot = 0.50 eV,  and EL,Top = 1.10 eV. 
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Efficiencies over 47.26% for 1 sun are found in the band gap range from 2.70 eV to 3.60 eV 

for EG,Top and from 0.30 eV to 1.15 eV for EG,Bot. For 100 suns, high efficiencies over 53.27% 

are given at band gap combinations in the EG,Top range from 2.60 eV to 3.40 eV and EG,Bot 

range from 0.30 eV to 1.05 eV. In the EG,Top range from 2.55 eV to 3.30 eV and EG,Bot range 

from 0.30 eV to 1 eV, efficiencies over 56.80% are achieved for 1000 suns. 

Discussion 

The band gaps for the maximum efficiency are lower for the concentration level of 1000 suns 

than the cell with 100 suns concentration. There is a local peak in efficiency (62.76%) for the 

cell with 1000 suns concentration, at the same band gap energies for the maximum efficiency 

of the cell with 100 suns concentration. This shows some kind of stability for the efficiency of 

the cell when the concentration increases. 

Similar to the tandem IBSC, the series connected tandem cell has a slightly lower maximum 

efficiency compared to the four terminal cell, but a much narrower range of main band gaps 

with high efficiency.   

Sub-band gap energies, top cell 

The optimum values for EL,Top, as for the other tandem cell configurations, providing the top 

IBSC with the maximum efficiency are presented in the three following figures.   
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Figure 7.45: The optimum lowest sub-band gap energies for the top cell 
(EL,Top). Concentration level is 1 sun. 
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Figure 7.46: The optimum lowest sub-band gap energies for the top cell 
(EL,Top). Concentration level is 100 and 1000  suns. 

The values of EL,Top are very similar to the four terminal case. But for low band gap energies 

of the main band gap of the top cell, larger values for EL,Top are found to be optimum. For a 

specific EG,Top the values of EL,Top also starts to increase for lower values of EG,Bot. 

Discussion 

The two terminal tandem cell has a generally higher value for EL,Top, compared to the 

optimum values for EL,Top in the four terminal cell. As the EL,Top increases, so does the photon 

flux transmitted through the top cell, thus increasing the absorbed photon flux in the bottom 

single-junction cell. The top IBSC has a higher current than the single-junction bottom cell. 

By increasing the photon flux in the bottom cell, and thereby the current in the bottom cell, 

the current available in the series connected tandem cell is increased and so is the efficiency. 

7.3.4 Two terminal single-junction top cell and IB bottom cell 

The results for the two terminal tandem cell, with a single-junction top cell and an IB bottom 

cell, are treated in this section. 

Efficiencies for 1, 100 and 1000 suns 

The maximum efficiencies for the two terminal tandem cell with a single-junction top cell and 

an IB bottom are shown in figure 7.47 (1 sun), 7.48 (100 suns) and 7.49 (1000 suns). 
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Figure 7.47: Efficiency of the tandem cell under 1 sun, area function of the 
main band gap energies of the single-junction top cell and IB bottom cell. 
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Figure 7.48: Efficiency of the tandem cell under 100 suns, area function of 

the main band gap energies of the single-junction top cell and IB bottom 

cell. 
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Figure 7.49: Efficiency of the tandem cell under 1000 suns, area function 
of the main band gap energies of the single-junction top cell and IB bottom 

cell. 

The maximum efficiency for the tandem cell is 50.32%, 57.65% and 61.71% for 

concentration levels of 1 sun, 100 suns and 1000 suns respectively. Band gap combinations 

for the lowest concentration level are EG,Top = 1.75 eV, EG,Bot = 1.70 eV  and EL,Bot = 0.55 eV. 

For the 100 and 1000 suns concentration the maximum efficiency is found when EG,Top is 1.65 

eV, EG,Bot is 1.50 eV,  and EL,Bot is 0.50 eV. 

For 1 sun the high efficiencies (over 45.29%) are given at band gap combinations in the EG,Top 

range from 1.55 eV to 1.90 eV and EG,Bot range from 1.10 eV to 1.85 eV. The band gap 

ranges for the 100 suns giving efficiencies over 51.88% are from 1.45 eV to 1.85 eV for 

EG,Top and from 0.9 eV to 1.8 eV for EG,Bot. Efficiencies over 55.54% are given for 1000 suns 

in the EG,Top range from 1.45 eV to 1.80 eV and EG,Bot range from 0.90 eV to 1.75 eV. 

Discussion 

The maximum efficiencies are increased with less than 2.23% when compared with the single 

IBSC. The main band gap of the bottom IBSC is set very close to the main band gap of the 

top single-junction cell, and the maximum efficiency is very close to that of the single IBSC. 

For the cell under 1 sun, the main band gap of the bottom cell is as close to the top cell main 

band gap the simulation allows, hence displaying a clear limitation of the model used in the 

simulations. At higher levels of concentration, the maximum efficiency is found with a larger 

difference between the main band gap energies of the two cells.  

Sub-band gap energies, bottom cell 

In figures 7.50, 7.51 and 7.52 the optimum lowest sub-band gap energies for the bottom 

IBSC are presented for 1, 100 and 1000 suns respectively. 
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Figure 7.50: The optimum lowest sub-band gap energies for the bottom 

cell (EL,Bot). Concentration level is 1 sun. 
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Figure 7.51: The optimum lowest sub-band gap energies for the bottom 

cell (EL,Bot). Concentration level is 100 suns. 
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Figure 7.52: The optimum lowest sub-band gap energies for the bottom 

cell (EL,Bot). Concentration level is 1000 suns. 

For most of the main band gaps of both cells, the minimal value for EL,Bot (0.30 eV) is chosen 

for the optimum efficiency values. There is little difference between the EL,Bot values for 

concentration levels of 1 sun and 100 suns, but there is an increase in EL,Bot for some main 

band gap values for the 1000 suns concentration level.  

Discussion 

Similar to the tandem IBSC in section 7.2.2, the values for EL,Bot are very different from the 

four terminal case. For most main band gap values, the smallest values for the EL,Bot are 

chosen as optimum for high efficiency. The reason for the low values of EL,Bot is discussed in 

section 7.2.2.  

For the tandem IBSC, the values for EL,Bot are also low for the highest values of EG,Bot at a 

certain top cell main band gap energy. As this is a result of the EL,Top values getting close to 

the other sub-band gap of the top cell, the tandem cell with a single-junction top cell does not 

have the same result. It is clearly seen by comparing figure 7.50 with figure 7.26, as the 

values for EL,Bot are high at these band gap combinations in figure 7.50 and low in figure 7.26. 
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7.3.5 Two and four terminal tandem cell 

The efficiencies found for the two and four terminal tandem cells that combine an IBSC and a 

single-junction cell, are compared in this section with each other and the conventional four 

single-junction tandem cell in [14]. Table 7.4 shows the maximum efficiencies and 

corresponding band gap energies for the tandem IB and single-junction cell. 

Table 7.4: Band gap energies and maximum efficiencies for the tandem IB 

and single-junction cell. 

Concentration 

level 
EG,Top (eV) EG,Bot (eV) EL,Top (eV) EL,Bot (eV) 

Maximum 

Efficiency (%) 

4 terminal IB/single tandem cell 

1 sun 2.85 0.7 1.15  53.18 

100 suns 2.45 0.5 0.95  60.23 

1000 suns 2.45 0.5 0.95  64.48 

4 terminal single/IB tandem cell 

1 sun 2.3 1.95  0.7 52.62 

100 suns 2.1 1.65  0.55 60.31 

1000 suns 2.05 1.5  0.5 64.81 

2 terminal IB/single tandem cell 

1 sun 2.95 0.7 1.2  52.51 

100 suns 2.95 0.7 1.2  59.19 

1000 suns 2.75 0.5 1.1  63.11 

2 terminal single/IB tandem cell 

1 sun 1.75 1.7  0.55 50.32 

100 suns 1.65 1.5  0.5 57.65 

1000 suns 1.65 1.5  0.5 61.71 

 

In Brown’s paper [14] the maximum efficiencies for the four junction tandem cells calculated 

with the 1 sun AM1.5G radiation are 55.6% for the unconstrained cell and 54.9% for the 

series connected tandem cell. This shows a decrease in maximum efficiency of 1.26%, which 

is larger than for the six junction cell, considered in section 7.2.3.  

The two terminal tandem cell with the IB bottom cell has the largest decreases in efficiencies 

when compared to the four terminal cell. All of the maximum efficiencies are decreased by at 

least 4.37%. The maximum efficiency decreases from the four to the two terminal tandem cell 

with the IB top cell with 1.26%, 1.73%, and 2.12% for the concentration of 1 sun, 100 suns 

and 1000 suns respectively. In this thesis the tandem cell with an IB top cell and a single-

junction bottom cell has the smallest decrease in maximum efficiency when series connected. 

The decrease in maximum efficiency for 1 sun concentration is equal to that of the four 

junction tandem cell in [14]. There is still an inaccuracy in these results because of the large 

steps between the band gap energies in the calculations. From the results in table 7.1 the 

tandem cell with an IB top cell is seen to have a lower decrease in maximum efficiency when 
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series connected than the tandem cell with an IB bottom cell. The decrease in maximum 

efficiency for the tandem cell with an IB top cell is 0.88% and for the tandem cell with an IB 

bottom cell the decrease is 5.83%, for a tandem cell under full concentrated black-body 

radiation (6000K). Series connecting the tandem cell with a single-junction top cell and an IB 

bottom cell is thus concluded to have the largest decrease in maximum efficiency from the 

four terminal case to the two terminal case. 

7.4 Discussion of the energy resolution 

The results in this thesis are calculated with an energy resolution of 0.05 eV, which reduces 

the resolution in the plots and the accuracy of the band gap combination for the maximum 

efficiency. This energy resolution is, as stated earlier, low because of the time the calculations 

need to run for each combination of band gaps. It is the calculations of the bottom cell that 

make a higher energy resolution impractical. In this section calculations for the IB top cell 

and single-junction bottom cell will be repeated with an energy step of 0.01 eV, to discuss 

how the energy resolution affects the results. The results presented in this section will only be 

discussed in this section and not be included later in the thesis.  

The main band gap ranges used in these calculations are EG,Top between 2 eV and 4 eV and 

EG,Bot between 0.50 eV and 2 eV. The efficiencies for the two different energy steps are both 

plotted with these main band gap ranges, for an easier comparison of the difference in 

efficiencies. 

Efficiencies for the IB top cell and single-junction bottom cell, 1 sun 

The first plot (figure 7.53) shows the efficiency for the calculations with an energy step of 

0.05 eV, and the second (figure 7.54) with an energy step of 0.01 eV. Table 7.5 shows the 

band gap combinations for the maximum efficiency in the two cases. 

Table 7.5: Band gap combinations for the maximum efficiency. 

Energy step 

(eV) 
EG,Top (eV) EG,Bot (eV) EL,Top (eV) EL,Bot (eV) 

Maximum 

Efficiency (%) 

0.05 2.85 0.7 1.15  53.18 

0.01 2.81 0.7 1.13  53.25 

 

The band gap difference is 0.04 eV for EG,Top and 0.02 eV for EG,Bot when comparing the band 

gap energies for the maximum efficiency. The maximum efficiency is increased by 0.13%. 
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Figure 7.53: Efficiency of the tandem cell under 1 sun, axes show the main 

band gap energies of the IB top cell and single-junction bottom cell. 
Energy step set to 0.05 eV. 
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Figure 7.54: Efficiency of the tandem cell under 1 sun, axes show the main 

band gap energies of the IB top cell and single-junction bottom cell. 

Energy step set to 0.01 eV. 
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The resolution and smoothness of the plots are greatly increased with a decrease in the band 

gap energy step, seen from comparing figure 7.53 and 7.54. There is also an increase in 

efficiency overall seen in the plot with the highest resolution. The black line showing the band 

gap area with high efficiency is very similar for the two plots, considering the poor resolution 

in figure 7.53. For the calculations with a smaller energy step the area with high efficiency is a 

little larger overall, especially close to the band gap ranges from 3.40 eV to 3.90 eV for EG,Top 

and 0.50 eV to 0.80 eV for EG,Bot. 

Discussion 

The increase in maximum efficiency when using a lower energy step is small in this case, but 

can be larger for the other tandem cells, especially the tandem IBSC, as this cell has more 

band gaps. When comparing figures 7.53 and 7.54, the band gap area with high efficiency is 

also similar for both cases, but the plot with smaller energy steps is smoother and a little 

larger. As the sub-band gap is also affected by having a smaller energy step, a higher 

maximum efficiency and change in the main band gap energy value is very likely. Note that 

the value for EG,Top (2.81 eV) for the maximum efficiency of the calculations with a higher 

energy resolution is closer to 2.80 eV than 2.85 eV. The band gap values with maximum 

efficiency are thus close to the ones found in the calculations with low resolution, but not 

necessarily closest to the band gap step where the maximum efficiency is given for the low 

resolution results. 

The sub-band gaps for the top cell follow a similar pattern as for the results with an 0.05 eV 

energy step. 

The plotted efficiencies in figure 7.54 have much smoother contours and show results 

expected from the simulations, thus resolution and irregularities in the plots are mostly a 

result of the low energy resolution. 

7.5 Effects of variations in band gap energies 

For some of the tandem cells, the increase in efficiency compared with the single IBSC is low. 

Thus it is interesting to discuss other benefits of using the IBSC in tandem cells. As stated 

earlier, the tandem cell increases the potential for use of other semi-conductor materials with 

other band gaps that are not useful for single IBSCs or single-junction cells. Tables 7.2, 7.3 

and 7.4 show that the band gap combinations with maximum efficiencies for the IBSC used in 

a tandem cell and in a single cell device differ greatly. These specific band gap combinations 

can not always be achieved, as they are material dependent. In this section the band gap 

ranges providing the tandem cell with high efficiency will be closer examined and discussed. 

High efficiency is still assigned to efficiencies above 90% of the maximum efficiency for the 

cell under the same conditions. In section 7.5.1 the range of the main band gaps giving high 

efficiencies are calculated and discussed. The lowest sub-band gap ranges giving high 

efficiencies are treated in section 7.5.2.  

Similar to the results presented earlier in this chapter, the band gap steps are set at 0.05 eV if 

not specifically stated otherwise. S+IB indicates a tandem cell with a single-junction top cell 

and an IB bottom cell, while IB+S indicates the opposite configuration. The tandem IBSC is 

signified by 2 x IBSC. 
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7.5.1 Variations in the main band gaps 

For practical applications, it is interesting to see which range of main band gaps gives high 

efficiencies for the solar cell. If one of the main band gaps for the maximum efficiency is 

found in a material, it can be valuable information to know which range of main band gap 

energies is needed for the other cell, to provide the complete tandem cell with a high 

efficiency. In this section one of the main band gaps is varied, while the other main band gap 

is held at the value for maximum efficiency for the total cell. The sub-band gaps will also be 

varied to obtain the highest efficiency for each combination of main band gap values, but the 

optimum sub-band gaps are not indicated. The combinations of band gaps at 90% of the 

maximum efficiency are plotted in the efficiency plots previously in this chapter, marked with 

a black line. 

Main band gap ranges resulting in high efficiencies 

The following figures display some of the main band gap combinations for each cell that are 

within the high efficiencies of the cell. The main band gap range for the top cell, while 

keeping the bottom main band gap fixed, is shown in figure 7.55. In figure 7.56 the upper cell 

main band gap is fixed, while the lower is varied. The main band gap ranges for the single-

junction cell and the single IBSC are also shown to compare with the tandem cells. The 

energy resolution for both of the single cells is 0.01 eV. Note that the main band gap ranges 

are restricted by the highest band gaps used in the simulations (4.80 eV) and that the main 

band gap of the top cell in the simulations have to be larger than the main band gaps of the 

bottom cell. 
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Single junction 1 sun

Single IBSC 1 sun

2 x IBSC 1 sun, 4 terminal

2 x IBSC 100 sun, 4 terminal

2 x IBSC 1000 sun, 4 terminal

2 x IBSC 1 sun, 2 terminal

2 x IBSC 100 sun, 2 terminal

2 x IBSC 1000 sun 2, terminal

IB+S 1 sun, 4 terminal

IB+S 100 sun, 4 terminal

IB+S 1000 sun, 4 terminal

IB+S 1 sun, 2 terminal

IB+S 100 sun, 2 terminal

IB+S 1000, sun 2 terminal

S+IB 1 sun, 4 terminal

S+IB 100 sun, 4 terminal

S+IB 1000 sun, 4 terminal

S+IB 1 sun, 2 terminal

S+IB 100 sun, 2 terminal

S+IB 1000, sun 2 terminal

  1  2  3  4  5

Band gap energy (eV)  

Figure 7.55: Main band gap (EG,Top) range (blue lines) for the upper cells 

that provide the complete tandem cell with high efficiencies. The red 
crosses represent the main band gap energies providing the maximum 

efficiency. 

As seen from figure 7.55, the single IBSC has a large range of main band gap values giving 

high efficiency, and the range is higher than for any of the top cells of the tandem solar cells. 

Even the single-junction cell has a wider range of main band gaps giving high efficiency, when 

compared to the series connected tandem cells. 

The series connected tandem cells have, as expected, a much smaller range for the top main 

band gap energies than the four terminal tandem cells. The smallest range is only 0.1 eV 

(S+IB 1 sun, 2 terminal), and the highest range is 1.75 eV (IB+S 1 sun, 4 terminal). 

Another noticeable trait with the tandem cell with a single-junction top cell and IB bottom 

cell configuration (S+IB), is that the main band gaps are much closer in energy than for the 
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other tandem cells at high efficiency.  The range of EG,Top gets very close to the main band gap 

of the bottom cell, and the lowest value EG,Top can have in this model is 0.05 eV above EG,Bot. 

Figure 7.56 shows the main band gap ranges for the bottom cell, with fixed main band gap for 

the top cell. 

Single junction 1 sun

Single IBSC 1 sun

2 x IBSC 1 sun, 4 terminal

2 x IBSC 100 sun, 4 terminal

2 x IBSC 1000 sun, 4 terminal

2 x IBSC 1 sun, 2 terminal

2 x IBSC 100 sun, 2 terminal

2 x IBSC 1000 sun 2, terminal

IB+S 1 sun, 4 terminal

IB+S 100 sun, 4 terminal

IB+S 1000 sun, 4 terminal

IB+S 1 sun, 2 terminal

IB+S 100 sun, 2 terminal

IB+S 1000, sun 2 terminal

S+IB 1 sun, 4 terminal

S+IB 100 sun, 4 terminal

S+IB 1000 sun, 4 terminal

S+IB 1 sun, 2 terminal

S+IB 100 sun, 2 terminal

S+IB 1000, sun 2 terminal

  1  2  3  4  5

Band gap energy (eV)  

Figure 7.56: Main band gap (EG,Bot) ranges (blue lines) for the lower cells, 

providing the complete tandem cell with high efficiencies. The red crosses 

represent the main band gap energies providing the maximum efficiency. 

The largest range for the main band gaps of the bottom cell is 0.95 eV (IBSC and S+IB, 1000 

suns and four terminal) and the lowest range is 0.35 eV (IB+S and S+IB , 1 sun and two 

terminal). 

The difference in energy range between the two and four terminal tandem cells is not as 

significant for EG,Bot as for the EG,Top ranges. 
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The main band gap range for the bottom S+IB tandem cell goes (, as for the ranges of the top 

cell,) as close to the main band gap of the other cell in the configuration as possible in these 

simulations.  

Discussion 

The main band gap ranges for the top cell (EG,Top) of the tandem IBSC go as high as 4.80 eV, 

which is the highest band gap used in these calculations. These band gap ranges are likely to 

reach higher band gap energies, and thus be larger than found in this thesis work.   

Some of the ranges for the S+IB tandem cells are restricted by the other main band gap, and 

therefore could have a wider range if the other main band gap was allowed to have other 

values. If the main band gap values of the S+IB tandem cell get very close to each other, the 

top single-junction cell will contribute little to the efficiency of the tandem cell. The tandem 

cell will then achieve an efficiency similar to a single IBSC with the band gap values equal to 

that of the bottom IBSC in the S+IB tandem cell.  

The ranges for the top cell clearly show the restriction of series connecting the cells, as the 

band gap ranges are reduced strongly for the two terminal tandem cells. This is also seen from 

the numerous efficiency plots for each of the tandem cells in the previous sections. Ranges for 

the band gaps of the bottom cell are not affected in the same degree by series connecting the 

cells. Thus the bottom cell is less affected by the constraint in having equal current.  

The band gap energy range does not seem to be affected in any specific way by the 

concentration level. As the maximum efficiency is also increased with a higher concentration 

level, this is expected.  

 

Efficiencies at the main band gap range edges 

Fabrication of a solar cell with a specific main band gap energy can be difficult in practice, 

hence the effect on the efficiency by small variations in the main band gap is interesting. 

Tables 7.6 and 7.7 show the efficiency at the edges of the main band gap ranges (found in 

figures 7.55 and 7.56), where the main band gap for the other cell is varied with 0.10 eV. The 

efficiencies for some of these band gap combinations are not available because of restrictions 

in the model used in this thesis and these cells in the tables are left blank. 

Discussion 

For some of the tandem cells, varying the main band gap to either a larger or smaller value 

will increase the efficiency, and altering it oppositely will decrease the efficiency. The increase 

in efficiency is merely a consequence of the new band gap combinations giving a higher 

efficiency, and is obvious when looking at the figures showing the maximum efficiencies for 

the various tandem cells found in sections 7.2 and 7.3. Variations in EG,Bot at the edges of 

EG,Top have the largest decrease in efficiency, close to 40%. Variations in EG,Top only cause a 

decrease of maximum 14%. Both of the largest decreases are for the two terminal tandem 

IBSC with 1 sun concentration.  
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Table 7.6: Efficiency for EG,Top range edges when varying EG,Bot. 

Efficiency (%) values of EG,Bot (eV) Concentration 

level 
EG,Top (eV) EG,Bot (eV) 

-0.10 eV 0 +0.10 eV 

4 terminal tandem IBSC (2xIBSC) 

1 sun 3.8 1.65 53.83 51.23 38.29 

1 sun 4.8 1.65 51.79 52.76 52.39 

100 suns 3.5 1.5 61.00 58.14 43.41 

100 suns 4.8 1.5 57.89 59.42 59.40 

1000 suns 3.5 1.5 65.02 62.03 46.66 

1000 suns 4.8 1.5 62.89 64.28 63.97 

2 terminal tandem IBSC (2xIBSC) 

1 sun 3.25 1.35 52.73 50.52 30.52 

1 sun 3.6 1.35 47.75 48.83 49.84 

100 suns 3.05 1.25 59.13 55.89 37.10 

100 suns 3.4 1.25 55.31 56.53 57.58 

1000 suns 2.85 0.95 55.19 60.19 59.44 

1000 suns 3.3 0.95 57.57 59.07 60.41 

4 terminal IB/single tandem cell (IB+S) 

1 sun 2.05 0.7 48.83 48.71 36.97 

1 sun 3.8 0.7 45.52 48.20 48.38 

100 suns 1.85 0.5 54.29 54.77 53.48 

100 suns 3.3 0.5 52.52 55.43 56.40 

1000 suns 1.85 0.5 58.91 59.39 57.83 

1000 suns 3.4 0.5 54.93 58.04 58.94 

4 terminal single/IB tandem cell (S+IB) 

1 sun 2 1.95 51.48 51.65  

1 sun 2.8 1.95 49.59 50.83 50.83 

100 suns 1.7 1.65 57.77 57.61  

100 suns 2.8 1.65 55.98 57.27 57.11 

1000 suns 1.55 1.5 60.41 60.48  

1000 suns 2.8 1.5 59.04 61.03 61.34 

2 terminal IB/single tandem cell (IB+S) 

1 sun 2.9 0.7 49.24 50.59 42.25 

1 sun 3.4 0.7 45.90 47.29 48.51 

100 suns 2.75 0.7 54.55 53.88 43.83 

100 suns 3.2 0.7 53.63 55.15 56.30 

1000 suns 2.55 0.5 55.21 57.03 50.04 

1000 suns 3.05 0.5 55.74 57.40 58.86 

2 terminal single/IB tandem cell (S+IB) 

1 sun 1.75 1.7 49.47 50.32  

1 sun 1.85 1.7 45.52 46.94 48.18 

100 suns 1.6 1.5 56.90 56.35  

100 suns 1.75 1.5 51.81 53.38 54.95 

1000 suns 1.6 1.5 61.18 60.48  

1000 suns 1.75 1.5 55.19 56.83 58.43 
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Table 7.7: Efficiency for EG,Bot range edges when varying EG,Top. 

Efficiency (%) values of EG,Top (eV) Concentration 

level 
EG,Top (eV) EG,Bot (eV) 

-0.10 eV 0 +0.10 eV 

4 terminal tandem IBSC (2xIBSC) 

1 sun 4.05 1.1 50.01 49.55 48.83 

1 sun 4.05 1.75 48.32 53.75 53.75 

100 suns 3.75 0.9 57.49 57.40 56.54 

100 suns 3.75 1.6 55.39 61.57 61.66 

1000 suns 4.3 0.95 61.11 60.53 59.66 

1000 suns 4.3 1.9 58.33 64.01 64.09 

2 terminal tandem IBSC (2xIBSC) 

1 sun 3.3 0.9 49.39 48.81 47.28 

1 sun 3.3 1.35 46.33 53.88 52.75 

100 suns 3.2 0.8 54.75 55.38 53.37 

100 suns 3.2 1.3 53.09 60.78 59.77 

1000 suns 2.95 0.65 62.04 61.65 59.33 

1000 suns 2.95 1.15 52.29 59.65 63.32 

4 terminal IB/single tandem cell (IB+S) 

1 sun 2.85 0.3 48.30 48.03 47.00 

1 sun 2.85 1.05 47.86 48.60 49.02 

100 suns 2.45 0.3 57.50 57.94 57.02 

100 suns 2.45 0.9 50.68 55.81 56.25 

1000 suns 2.45 0.3 61.91 62.26 61.28 

1000 suns 2.45 0.9 53.82 59.17 59.57 

4 terminal single/IB tandem cell (S+IB) 

1 sun 2.3 1.4 48.41 47.72 46.89 

1 sun 2.3 2.25  50.38 50.67 

100 suns 2.1 1.15 55.56 54.86 54.00 

100 suns 2.1 2.05  57.65 58.23 

1000 suns 2.05 1.05 59.83 59.09 58.23 

1000 suns 2.05 2  60.58 61.39 

2 terminal IB/single tandem cell (IB+S) 

1 sun 2.95 0.35 48.72 47.79 46.36 

1 sun 2.95 0.7 47.16 52.51 51.92 

100 suns 2.95 0.35 55.24 53.66 51.67 

100 suns 2.95 0.75 53.58 56.19 57.65 

1000 suns 2.75 0.3 59.91 59.70 58.22 

1000 suns 2.75 0.7 51.12 57.31 59.31 

2 terminal single/IB tandem cell (S+IB) 

1 sun 1.75 1.35 48.50 45.65 41.86 

1 sun 1.75 1.7  50.32 46.94 

100 suns 1.65 1.15 55.35 52.10 47.67 

100 suns 1.65 1.6  55.89 54.95 

1000 suns 1.65 1.15 59.89 55.90 50.90 

1000 suns 1.65 1.6  59.76 58.43 
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7.5.2 Variation in the sub-band gaps 

Variations in the sub-band gap are treated in this section. As it is easier to find a 

semiconductor material with the appropriate main band gap than to implement a specific 

position for the intermediate band in the material, the variations in the sub-band gaps that still 

provide the cell with a high efficiency are important to study. 

Sub-band gap ranges with high efficiencies 

The results for the lowest sub-band gap ranges are presented in figures 7.57 and 7.58, starting 

with the ranges for the top cell. All other band gaps are kept at the value they have at the 

maximum efficiency for the cell, including the intermediate band for the other cell. Confer 

with tables 7.3 and 7.4 for these values. The energy steps for the single IBSC is more 

accurate, with an energy resolution of 0.01 eV. 

Single IBSC 1 sun

2 x IBSC 1 sun, 4 terminal

2 x IBSC 100 sun, 4 terminal

2 x IBSC 1000 sun, 4 terminal

2 x IBSC 1 sun, 2 terminal

2 x IBSC 100 sun, 2 terminal

2 x IBSC 1000 sun 2, terminal

IB+S 1 sun, 4 terminal

IB+S 100 sun, 4 terminal

IB+S 1000 sun, 4 terminal

IB+S 1 sun, 2 terminal

IB+S 100 sun, 2 terminal

IB+S 1000, sun 2 terminal

0.8 1 1.2 1.4 1.6 1.8 2

Band gap energy (eV)
 

Figure 7.57: Lowest sub-band gap (EL,Top) range (blue lines) for the upper 

cells that provide the complete tandem cell with high efficiencies. The red 

crosses represent the sub-band gap energies providing the maximum 

efficiency. 

The EL,Top ranges are at most 0.10 eV for the upper cells. Compared with the single IBSC 

with a range of 0.14 eV, the range is not much smaller considering that the single IBSC has 

been calculated with a smaller energy step. It is expected that for these small energy ranges, 

the length of the band gap step has a strong effect on the results. For the connected tandem 

cells, the smallest range of zero is found, thus only the specific intermediate energy band will 

give the cell a high efficiency. The two terminal IB+S has a generally larger range than the 

two terminal tandem IBSC. 
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The following plot shows the EL,Bot ranges of the bottom cell in various tandem cell 

configurations. 

Single IBSC 1 sun

2 x IBSC 1 sun, 4 terminal

2 x IBSC 100 sun, 4 terminal

2 x IBSC 1000 sun, 4 terminal

2 x IBSC 1 sun, 2 terminal

2 x IBSC 100 sun, 2 terminal

2 x IBSC 1000 sun 2, terminal

S+IB 1 sun, 4 terminal

S+IB 100 sun, 4 terminal

S+IB 1000 sun, 4 terminal

S+IB 1 sun, 2 terminal

S+IB 100 sun, 2 terminal

S+IB 1000, sun 2 terminal

0 0.2 0.4 0.6 0.8 1 1.2

Band gap energy (eV)
 

Figure 7.58: Lowest sub-band gap (EL,Bot) range (blue lines) for the lower 

cells that provide the complete tandem cell with high efficiencies. The red 

crosses represent the sub-band gap energies providing the maximum 
efficiency. 

Compared to the top cell, the lowest sub-band gap ranges of the bottom cell are much larger, 

with a 0.20 eV at most. Most of the ranges are between 0.10 eV and 0.20 eV, with the 

exception of the connected tandem IBSC under 1000 suns concentration with a range of 0.5 

eV.  

Discussion 

The ranges for the sub-band gaps of the top cell are very restricted compared to the sub-

bands in the bottom cell. Changes in EL,Top will both change the photon flux absorbed within 

the top cell and the bottom cell, as the photons with a smaller energy than EL,Top will be 

transmitted through the top cell and absorbed in the bottom cell. EL,Top also restricts the 

radiative recombination in the bottom cell, because of filters between the cell reflecting the 

emitted flux from the bottom cell. The smaller range in the values of EL,Top is a consequence 

of all the physical processes affected by EL,Top. 

The tandem cell is thus very dependent on the value of EL,Top, and the intermediate band 

energy will need high precision during fabrication, which can complicate the production of 

tandem IBSC. 
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8 Conclusion 

In this thesis Matlab has been used to simulate the detailed balance principle on various types 

of tandem cells. The tandem cells consist of either two IBSCs, or one IBSC and one single-

junction cell. The standard AM1.5 spectra have been used and the cells have been simulated 

for concentration levels of 1 sun, 100 suns and 1000 suns. Because of a long runtime for the 

Matlab code, results for only a limited amount of band gap combinations spread over a larger 

range, are calculated.  

The largest efficiencies found are for the four terminal tandem IBSC with maximum 

efficiencies of 54.91% for 1 sun, 62.74% for 100 suns concentration, and 67.23% for 1000 

suns. This is an increase of about 11% from the maximum efficiency of a single IBSC, for all 

concentration levels. 

The two terminal tandem cells show a decrease in efficiency compared to the four terminal 

tandem cell, as for conventional multi-junction tandem cells. For the tandem IBSC, the 

decrease in maximum efficiency is larger than for the conventional six-junction tandem cell, 

but for the tandem cell with IB top cell and single-junction bottom cell the decrease in 

maximum efficiency is very close to that of the conventional four-junction tandem cell. Series 

connecting the tandem cell with a single-junction top cell and IB bottom cell shows the 

largest decrease in maximum efficiency compared to the four terminal tandem cell. This 

configuration of the IBSC and the single-junction cell is thus less viable for a two terminal 

tandem cell.  

The tandem IBSC has, similar to the case for a single IBSC, large ranges of band gaps with a 

reasonably high efficiency, especially for the four terminal tandem cells. For the two terminal 

tandem cells, the ranges of band gaps with high efficiencies for the two separate cells are 

found to be smaller than for the single IBSC. The maximum efficiencies for the tandem IBSCs 

are mostly at band gap energies far from the band gaps with the maximum efficiency of the 

IBSC. A larger group of semiconductor materials can then be effectively used in solar cell 

devices. 

The optimum lowest sub-band gap is found at a width above 35% to 40% of the main band 

gap for the top IBSC in both a two terminal and a four terminal tandem cell, and the ratio 

increases with the main band gap values. For the bottom IBSC in two terminal tandem cell, 

the ratio between the optimum sub-band gap and the main band gap of the bottom cell is very 

low for many of the band gap configurations. In the four terminal tandem cell the optimum 

lowest sub-band gap has a larger value compared to the main band gap for the bottom IBSC, 

and ranges from about 23.5% to 35% of the bottom cell main band gap. The ratio for both 

the top and bottom IBSC seems to be close to that of the single IBSC for the main band gaps 

compared in this thesis (from 1.5 eV to 2.5 eV). 

The efficiency of the tandem IBSC is very sensitive to variations in the positioning of the 

intermediate band in the top IBSC, especially for the two terminal tandem IBSC. The 

efficiency is less affected by variation in the sub-band gaps in the bottom IBSC. 
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9 Further work 

In section 7.4 the low resolution in band gaps used in the simulations is discussed. Using a 

smaller step between each band gap value in the simulations will increase the maximum 

efficiency for the tandem cells. A faster script and more computer power can be used to run 

simulations for more band gap energies and produce more accurate results. 

In this thesis the standard reference spectra for the AM1.5 has been used as the incident 

radiation. The tandem IBSC uses a larger part of the spectra, and will probably be more 

sensitive to changes in the spectra. Running simulations with various radiation distributions 

from measurements at different locations would perhaps show another interesting feature of 

the tandem IBSC. 

As the detailed balance principle has been used to model the tandem IBSC in this thesis, a real 

cell would have lower efficiencies. A drift/diffusion model for the tandem IBSC could be 

made to get more realistic results, and used to further study the tandem IBSC device. 
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Appendix A 

In this appendix the code for some of the scripts from Matlab are shown.  

The first function is used to import the data for the AM1.5 spectra, do some adjustments 

them so that they are easier used later, and saved in matrixes. 

The colorbars in the efficiency plots have been made by the function cbarf, downloaded 

09.03.2011 from the mathworks web page:  

http://www.mathworks.com/matlabcentral/fileexchange/14290. 

 

function ret=EnergyfromSuncalc() 
%This function uses the spectrum datapoints from NREL found at  
%(http://rredc.nrel.gov/solar/spectra/am1.5/).The datapoints are placed in 
%different matrixes, some interpolation is done to add some datapoints at 
%the lower photon energies, and the energyscale is set to eV for some of 
%the values. Photon flux is also calculated and placed in matrixes for 
%later use. 
  
%loading the datapoints 
EnergyfromSun=xlsread('D:\Skole\Mastermappen\DIV\ASTMG173numbers.xls'); 
%colomns : energy scale in nm , ETR(extraterrestrial) W/m^2/nm , 
%Global tilt W/m^2/nm,Direct + circumsolar W/m^2/nm. 
%The last colomn will be ignored further on. 
  
%Interpolating a 1nm scale 
length=(EnergyfromSun(end,1)-EnergyfromSun(1,1)+1); 
EnergyfromSun1nmscale=zeros(length,4); 
EnergyfromSun1nmscale(:,1)=EnergyfromSun(1,1):1:EnergyfromSun(end,1); 
EnergyfromSun1nmscale(:,2)=interp1(EnergyfromSun(:,1),... 
    EnergyfromSun(:,2),EnergyfromSun1nmscale(:,1),'spline'); 
EnergyfromSun1nmscale(:,3)=interp1(EnergyfromSun(:,1),... 
    EnergyfromSun(:,3),EnergyfromSun1nmscale(:,1),'spline'); 
EnergyfromSun1nmscale(:,4)=interp1(EnergyfromSun(:,1),... 
    EnergyfromSun(:,4),EnergyfromSun1nmscale(:,1),'spline'); 
  
%removing the negative values in EnergyfromSun1nmscale 
for x=(1:1:length) 
   if(EnergyfromSun1nmscale(x,2)<0) 
       EnergyfromSun1nmscale(x,2)=0; 
   end 
   if(EnergyfromSun1nmscale(x,3)<0) 
       EnergyfromSun1nmscale(x,3)=0; 
   end 
   if(EnergyfromSun1nmscale(x,4)<0) 
       EnergyfromSun1nmscale(x,4)=0; 
   end 
end 
  
  
% Need to manipulate to get the photonflux at a eV scale so I do this here 
% to make it easier later on. 
  
%Variables 
h = 4.13566733*10^-15;      % eV s 
c = 299792458;              % m s^-1 
jtoeV = 6.24150974*10^18;   % 1 joule equals 6.24150974*10^18 eV 
fromnmtom = 10^-9;          % as 1m equals 10^9nm 
  
hcnm=h*c/fromnmtom; 
  
%pflux_1nmscale_AM0 : wavelength, photonenergy, photonflux*s^-1*m^-2*nm^-1 
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pflux_1nmscale_AM0=zeros(length,3); 
pflux_1nmscale_AM0(:,1)=EnergyfromSun1nmscale(:,1); 
pflux_1nmscale_AM0(:,2)=hcnm./EnergyfromSun1nmscale(:,1); 
pflux_1nmscale_AM0(:,3)=... 
    jtoeV*(EnergyfromSun1nmscale(:,2)./pflux_1nmscale_AM0(:,2)); 
  
%pflux_1nmscale_AM15 global:wavelength,photonenergy,photonflux*s^-1*m^-2*nm^-1 
pflux_1nmscale_AM15=pflux_1nmscale_AM0; 
pflux_1nmscale_AM15(:,3)=... 
    jtoeV*(EnergyfromSun1nmscale(:,3)./pflux_1nmscale_AM15(:,2)); 
  
%pflux_1nmscale_AM15 global:wavelength,photonenergy,photonflux*s^-1*m^-2*nm^-1 
pflux_1nmscale_AM15D=pflux_1nmscale_AM0; 
pflux_1nmscale_AM15D(:,3)=... 
    jtoeV*(EnergyfromSun1nmscale(:,4)./pflux_1nmscale_AM15(:,2)); 
  
%Powerfromsun_1nmscale : wavelength, photonenergy, eV*s^-1*m^-2*nm^-1 
Powerfromsun_1nmscale_AM0=pflux_1nmscale_AM0; 
Powerfromsun_1nmscale_AM0(:,3)=jtoeV*EnergyfromSun1nmscale(:,2); 
  
Powerfromsun_1nmscale_AM15=pflux_1nmscale_AM0; 
Powerfromsun_1nmscale_AM15(:,3)=jtoeV*EnergyfromSun1nmscale(:,3); 
  
Powerfromsun_1nmscale_AM15D=pflux_1nmscale_AM0; 
Powerfromsun_1nmscale_AM15D(:,3)=jtoeV*EnergyfromSun1nmscale(:,4); 
  
%removing unwanted variables and saving the rest 
clear x h c jtoeV fromnmtom length hcnm; 
  
save 'EnergyfromSun.mat'  
ret = 1; 

 

 

The next functions calculate the power from the sun, and the photon flux from the sun and from the cells when called 

upon. 

 

function ret=powerAM15(concentration) 
%This function returns the total power from the sun, with a certain 
%concentration level. 
  
%Import the sun energy data 
load('EnergyfromSun.mat') 
  
%pflux_1nmscale_AM15 : wavelength, photonenergy, photonflux*m^-2*nm^-1 
A=Powerfromsun_1nmscale_AM15;  
  
ret=concentration*sum(A(:,3)); 
  
  
 
function ret=photonflux(Emin,Emax,T,u,X) 
%This function calculates the photon flux of a blackbody with temperature 
%T,chemical potential u and a concentration level X. The energy interval %in eV 
is from Emin to Emax. 
  
%Variables 
h = 4.13566733*10^-15;      % eV s^-1 
c = 299792458;              % m s^-1 
k = 8.617343*10^-5;     % eV K^-1 
  
%running the calculation 
f=@(E) (E.^2)./(exp((E-u)./(k*T))-1); 
integral=quadgk(f,Emin,Emax); 

ret=(2*pi*X*integral)/(46050*h.^3*c.^2); 
function ret=photonfluxAM15(Emin,Emax,X,FluxData) 
%This function finds the photonflux from the Am15 datapoints, with a 
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%concentration level set at X, between the energyinterval (in eV) Emin and 
%Emax. The datapoints are from the input data FluxData. 
  
%Concentration level 
concentration=X; 
  
%If the top value of the energy that the photons can have is less than the 
%lowest value for the data from the spectrum the photonflux is returned as 
%zero. As there is no more datapoints below this energylevel. 
if(Emax<FluxData(end,2)) 
    ret=0; 
    return 
end 
  
%Finding the Minindex of FluxData, where the photonenergy is just below %Emax, if 
possible.The photonenergy is strictly decreasing, so this check %counts down. 
Minindex = 0; 
for x=size(FluxData,1):-1:1 
    if(FluxData(x,2)>Emax) 
        break; 
    end 
    Minindex=x; 
end 
  
%Finding the Maxindex of FluxData, where the photonenergy is barely higher %than 
the Emin value. This needs to count up as the photonenergy is %strictly 
increasing 
Maxindex = 0; 
for x=1:1:size(FluxData,1) 
    if(FluxData(x,2)<Emin) 
        break; 
    end 
    Maxindex=x; 
end 
  
%Calculating the photonflux with the bounderies Emin and Emax, with 
%concentration. 
ret=concentration*sum(FluxData(Minindex:Maxindex,3)); 
  
 

The following functions calculate the efficiency for one cell. IBSC and single-junction have different scripts. 

 

function ret=SCsingleAM15_more(Eg,Emax,Tc,X,vector,FluxData,Psun) 
%This function finds the efficiency/voltage for numerous voltage values for 
%a single junction cell. 
% 
%Input values are :  
%   (The lowest Band gap El, the main band gap Eg, the highest photon energy  
%   that reaches this cell Emax, temperature of the cell Tc, 
%   Concentration (number of suns) X, the photon flux data Fluxdata and  
%   total power from the sun) Psun. 
% 
%The function returns the following matrix: 
%    
%   MAT(i,1)=V(i);                  voltage 
%   MAT(i,2)=TotElflow(i)/Psun;     efficiency/voltage 
  
%The cell radiates out in all directions from its surface.(max 
%concentration) 
Fc=46050; 
  
%Absorbtion of photons from the sun 
absEcv = photonfluxAM15(Eg,Emax,X,FluxData); 
  
%Finding a good starting position for the lowest voltage 
El = 0; 
error = 10^-6;                          %acceptable errorrange 
vectorlength=vector/10; 
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Vt =  El:((Eg-El)/vectorlength):(Eg-((Eg-El)/vectorlength)); 
Startvolt=0; 
  
Tempcurrent = -1; 
Volttemp = El; 
for vt = Vt 
    %Total flow of electrons from the valence band to the conduction band, with 
    %the use of detailed balance. 
    Elflowcvt= absEcv - photonflux(Eg,Emax,Tc,vt,Fc); 
     
    %To initialize the Tempcurrent factor the first run 
    if (Tempcurrent == -1) 
        Tempcurrent = Elflowcvt; 
    end 
  
    %Here the total flow of electrons is summerized and checked if it 
    %changed from the first run. 
    TotElflow = Elflowcvt; 
     
    Err = abs((Tempcurrent-TotElflow)/(TotElflow+Tempcurrent)); 
     
    if (Err > error) 
        Startvolt = Volttemp; 
        break; 
    end 
     
    Volttemp=vt; 
end 
  
% Found a better starting voltage and now for electroncurrentdensity for 
% different voltages 
  
returnMat=zeros(vector,2); 
V =  Startvolt:((Eg-Startvolt)/(vector)):(Eg-((Eg-Startvolt)/(vector))); 
  
%creating the return matrix 
index=1; 
for v = V 
    %the current divided by Power from the sun at a given voltage. 
    returnMat(index,2) = (absEcv - photonflux(Eg,Emax,Tc,v,Fc))/Psun; 
    returnMat(index,1) = v; 
    index=index+1;    
end 
  
ret=returnMat; 

 

function ret=IBSC_AM15_more(El,Eg,Emax,Tc,X,FluxData,Psun) 
%This function runs calculations to find the efficiency/voltage, for 
%different voltages of a IBSC cell. 
% 
%The function returns the following matrix: 
%    
%   MAT(i,1)=V(i);                  voltage 
%   MAT(i,2)=TotElflow(i)/Psun;     efficiency/voltage 
%   MAT(i,3)=Error(i);              an errorvector, explained later      
%    
%Input values are :  
%   (The lowest Band gap El,the main band gap Eg,the highest photon energy  
%   that reaches this cell Emax, temperature of the cell Tc, 
%   Concentration (number of suns) X, the photon flux data Fluxdata and  
%   total power from the sun) Psun. 
%There is added a failsafe to stop the iterations as the lowest ulow 
%gets close to the lowest energyband. If these gets equal the integral 
%will get a singularity. 
  
%input 
vectorlength = 500; 
ret=zeros(vectorlength,3); 
  
%some band gap calculations 
Ehigh = Eg-El; 
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Elow = El; 
  
%The cell radiates out in all directions from its surface.(max %concentration) 
Fc=46050; 
  
%photonflux absorbed from the sun for each band 
absEhigh = photonfluxAM15(Ehigh,Eg,X,FluxData); 
absElow  = photonfluxAM15(Elow,Ehigh,X,FluxData); 
absEcv = photonfluxAM15(Eg,Emax,X,FluxData); 
  
%calculating for each voltage where qV = ucv = uci + uiv using that no  
%current is extracted from the intermediate band then the photonflux from  
%the v-band to the i-band equals the flux from the i-band to the c-band. 
  
%Finding a better starting point 
errorvolt = 10^-5; 
vectorl = vectorlength/10; 
Lowvolt = IBSC_AM15_voltfinder... 
    (El,Eg,Emax,Tc,vectorl,errorvolt,absEhigh,absElow,absEcv); 
  
%setting up the matrixes before I start 
Effect    = zeros(vectorlength,1); 
Error     = zeros(vectorlength,1); 
TotElflow = zeros(vectorlength,1); 
Elflowcv  = zeros(vectorlength,1); 
V         = Lowvolt:((Eg-Lowvolt)/vectorlength):(Eg-((Eg-Lowvolt)/vectorlength)); 
  
%starting the calculations for the currents 
indexcounter = 0; 
for v = Lowvolt:((Eg-Lowvolt)/vectorlength):(Eg-((Eg-Lowvolt)/vectorlength)) 
    indexcounter = indexcounter + 1; 
     
    %Total flow of electrons from the valence band to the conduction band, 
    %with the use of detailed balance. 
    Elflowcv(indexcounter)= absEcv - photonflux(Eg,Emax,Tc,v,Fc); 
     
    %Finding the uvi and uci (uhigh/ulow) by use of the equations in IBSC 
    %section in the thesis,using Ehigh and Elow 
    utop = min(v,Ehigh); 
    ubottom = v-Elow; 
    uhigh = (utop+ubottom)/2; 
    ulow = v-uhigh; 
     
    Ehighphotonflux = absEhigh -  photonflux(Ehigh,Eg,Tc,uhigh,Fc); 
    Elowphotonflux = absElow - photonflux(Elow,Ehigh,Tc,ulow,Fc); 
    temperror = ... 
  abs(Ehighphotonflux-Elowphotonflux)/abs(Ehighphotonflux+Elowphotonflux); 
     
     
    temper=1; 
    temp=0; 
     
    %here I vary utop and ubottom to reduce the value of temperror and find 
    %the solution to the equation equallizing the current through the IB. 
    while (temperror > 10^-5 && temper > 0) 
        temp = temperror; 
        if (Ehighphotonflux < Elowphotonflux) 
           utop = uhigh; 
        else 
            ubottom = uhigh; 
        end 
         
        uhigh = (utop+ubottom)/2; 
        ulow = v-uhigh; 
         
        Ehighphotonflux = absEhigh -  photonflux(Ehigh,Eg,Tc,uhigh,Fc); 
        Elowphotonflux = absElow - photonflux(Elow,Ehigh,Tc,ulow,Fc); 
        temperror = abs(Ehighphotonflux-Elowphotonflux)/... 
            abs(Ehighphotonflux+Elowphotonflux); 
        if(abs(temp - temperror)<10^-6) 
            temper=-1; 
        end 
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        if(abs(ulow-Elow)<10^-6) 
            temper=-1; 
        end 
    end 
     
    %Saving the error 
    Error(indexcounter)= temperror; 
     
    %Here the total flow of electrons is summerized 
    TotElflow(indexcounter) = ... 
        min(Ehighphotonflux , Elowphotonflux) + Elflowcv(indexcounter); 
  
    %The effect for each value of the voltage in eV 
    Effect(indexcounter) = v * TotElflow(indexcounter);   
end 
  
%Efficiency for each voltage 
ret(:,1)=V(:); 
ret(:,2)=TotElflow(:)/Psun; 
ret(:,3)=Error(:); 
 

 

function ret=IBSC_AM15_voltfinder(El,Eg,Emax,Tc,vectorl,error,absEhigh 
,absElow,absEcv) 
  
%                           Comments 
%This function uses the same methods as IBSC but is used to find a 
%suitable starting point, in the border of where the current starts to 
%change depended on the voltage. The only difference is that this function 
%uses 10 times lesser voltagepoints than the IBSC_AM15_more function. 
%    
%I have left a error analysis in if there is need for it would be easy 
%to return as part of the function. 
% 
%For better comments see IBSC_AM15_more 
  
  
%Some constants and initiations 
vectorlength = vectorl; 
Tester=-1; 
  
%The cell radiates out in all directions from its surface.(max %concentration) 
Fc=46050; 
  
% some calculations 
Ehigh = Eg-El; 
Elow = El; 
Startvolt=El; 
  
%calculating the current from the different voltages and breaking when the 
%current starts to change. 
  
Tempcurrent = -1; 
Volttemp = Startvolt; 
  
for v=Startvolt:((Eg-Startvolt)/(vectorlength)):... 
        (Eg-((Eg-Startvolt)/(vectorlength))) 
     
    %Total flow of electrons from the valence band to the conduction band,  
    %with the use of detailed balance. 
    Elflowcv = absEcv - photonflux(Eg,Emax,Tc,v,Fc); 
     
    %Finding the uvi and uci (uhigh/ulow) 
    utop = min(v,Ehigh); 
    ubottom = v-Elow; 
    uhigh = (utop+ubottom)/2; 
    ulow = v-uhigh; 
     
    Ehighphotonflux = absEhigh -  photonflux(Ehigh,Eg,Tc,uhigh,Fc); 
    Elowphotonflux = absElow - photonflux(Elow,Ehigh,Tc,ulow,Fc); 
    temperror = abs(Ehighphotonflux-Elowphotonflux)/... 
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        abs(Ehighphotonflux+Elowphotonflux); 
     
     
    temper=1; 
    temp=0; 
    while (temperror > 10^-5 && temper > 0) 
        temp = temperror; 
        if (Ehighphotonflux < Elowphotonflux) 
           utop = uhigh; 
        else 
            ubottom = uhigh; 
        end 
         
        uhigh = (utop+ubottom)/2; 
        ulow = v-uhigh; 
         
        Ehighphotonflux = absEhigh -  photonflux(Ehigh,Eg,Tc,uhigh,Fc); 
        Elowphotonflux = absElow - photonflux(Elow,Ehigh,Tc,ulow,Fc); 
        temperror = abs(Ehighphotonflux-Elowphotonflux)/... 
            abs(Ehighphotonflux+Elowphotonflux); 
        if(temp == temperror) 
            temper=-1; 
        end 
    end 
     
    %To initialize the Tempcurrent factor the first run 
    if (Tempcurrent == -1) 
        Tempcurrent = Ehighphotonflux + Elflowcv; 
    end 
  
     
    %Here the total flow of electrons is summerized and checked if it 
    %changed from the first run. 
    TotElflow = Ehighphotonflux + Elflowcv; 
     
    Err = abs(Tempcurrent-TotElflow)/(TotElflow+Tempcurrent); 
     
    if (Err > error) 
        Tester=Volttemp; 
        break; 
    end 
     
    Volttemp=v; 
     
end 
  
%returning the new Startvoltage for IBSC_AM15_more, or the first one if 
%there has been some sort of error 
if(Tester==-1) 
    ret=Startvolt; 
else 
    ret=Tester; 
end 
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The following scripts calculate the efficiency for a cell in tandem configuration for various main band gap energy values. 

The top cell and bottom cell have different scripts, as well as different scripts for the single-junction cell and the IBSCs. 

All data is saved in a matrix. 

 

%This script calculates numerous IBSCs, and is used for the bottom cell of  
%the tandem cell. All values are saved in one matrix, where each cell is  
%identified by the Main band gap (Eg) and the intermediate band (El) on %the 
first row and the maximum photon energy (E) on the second row.  
%The other rows have the voltage and the efficiency/voltage, in two %columns for 
each cell. 
  
%Setting up some of the starting values 
Tc=300;                         %Cell temperature 
X=1;                            %Concentration level 
vector=500;                     %Number of voltage points 
steplength=0.05;                %Difference between each band gap energy 
Elmin = 0.1;                    %Minimum intermediate band energy 
Egmin = 0.3;                    %Minimum main band gap energy 
Emax  = 2.8;                    %Maximum photon energy absorbed 
Emin  = 0.5;                    %Minimum photon energy absorbed 
  
  
%Name for the savefile 
savefile='test.mat'; 
  
%Import the sun energy data 
load('EnergyfromSun.mat') 
A=Powerfromsun_1nmscale_AM15;  
Psun=X*sum(A(:,3)); 
FluxData=pflux_1nmscale_AM15; 
  
%counting how many times this will run 
count=0; 
for E=Emin:steplength:Emax 
    Egmax=E-steplength/10; 
    for j=Egmin:steplength:Egmax 
        Elmax=j/2-steplength/10; 
        for x=Elmin:steplength:Elmax 
            count=count+1;  
        end 
    end 
end 
 
%creating the matrix, each cell has two columns with the following 
%configuration:  first row           Eg      , El 
%                second row          0       , Emax 
%                rest of the rows    voltage , efficiency/voltage 
RangeMat=zeros(vector+2,count*2); 
  
clear j x count  
%Calculating for all the maximum energy photon energies 
counter=0; 
for E=Emin:steplength:Emax 
    %finding the highest main band gap value 
    Egmax=E-steplength/10; 
    %Calculating for all Eg 
    for Eg=Egmin:steplength:Egmax 
        %finding the highest intermediate band value 
        Elmax=(Eg/2)-steplength/10; 
        %Calculating for all El 
        for El=Elmin:steplength:Elmax 
            %Finding the data for one cell 
            a=IBSC_AM15_more(El,Eg,E,Tc,X,FluxData,Psun);   
            %Saving data in the return matrix 
            RangeMat(1,(2*counter)+1)=Eg; 
            RangeMat(1,(2*counter)+2)=El; 
            RangeMat(2,(2*counter)+2)=E; 
            RangeMat(3:end,(2*counter)+1)=a(:,1); 
            RangeMat(3:end,(2*counter)+2)=a(:,2); 
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            counter=counter+1; 
        end 
    end 
end 
%saving the retun matrix 
save(savefile,'RangeMat'); 
 

 

%This script calculates numerous IBSCs, and is used for the top cell of  
%the tandem cell. All values are saved in one matrix, where each cell is  
%identified by the Main band gap (Eg) and the intermediate band (El) on %the 
first row. The other rows have the voltage and the %efficiency/voltage, in two 
columns for each cell. 
  
%Setting up some of the starting values 
Emax=Inf;                       %Highest photon energy 
Tc=300;                         %Cell temperature 
X=1;                            %Concentration level 
vector=500;                     %Number of voltage points 
steplength=0.05;                %Difference between each band gap energy 
Elmin=0.7;                      %Minimum intermediate band energy 
Egmin=2.64;                     %Minimum main band gap energy 
Egmax=3;                        %Maximum main band gap energy 
  
%Name for the savefile 
savefile='IBSCtopeg2.64-with0.01int.mat'; 
  
%Import the sun energy data and setting the used data to specific variable 
%names 
load('EnergyfromSun.mat') 
A=Powerfromsun_1nmscale_AM15;  
Psun=X*sum(A(:,3)); 
FluxData=pflux_1nmscale_AM15; 
  
%counting how many times this will run 
count=0; 
for j=Egmin:steplength:Egmax 
    Elmax=j/2-steplength/10; 
    for x=Elmin:steplength:Elmax 
        count=count+1;  
    end 
end 
  
%creating the matrix, each cell has two coloums with the following 
%configuration:  first row           Eg      , El 
%                rest of the rows    voltage , efficiency/voltage 
RangeMat=zeros(vector+1,count*2); 
  
clear j x count 
%Calculating for all Eg 
counter=0; 
for Eg=Egmin:steplength:Egmax 
    %Finding the maximum value of the intermediate band 
    Elmax=Eg/2-steplength/10; 
    %Calculating for all values of the intermediate band (El) 
    for El=Elmin:steplength:Elmax 
        %Finding the data for one cell 
        a=IBSC_AM15_more(El,Eg,Emax,Tc,X,FluxData,Psun); 
        %Saving data in the return matrix 
        RangeMat(1,(2*counter)+1)=Eg; 
        RangeMat(1,(2*counter)+2)=El; 
        RangeMat(2:end,(2*counter)+1)=a(:,1); 
        RangeMat(2:end,(2*counter)+2)=a(:,2); 
        counter=counter+1; 
    end 
end 
%saving the retun matrix 
save(savefile,'RangeMat'); 

 

%This script calculates numerous single junction cells, and is used for the 
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%bottom cell of the tandem cell. All values are saved in one matrix, where 
%each cell is identified by the Main band gap (Eg) and the maximum photon  
%energy (E) in the first row. The other rows have the voltage and the  
%efficiency/voltage, in two columns for each cell. 
  
  
%Setting up some of the starting values 
Emax=2;                         %Maximum photon energy absorbed 
Emin=0.7;                       %Minimum photon energy absorbed 
Tc=300;                         %Cell temperature 
X=1;                            %Concentration level 
vector=500;                     %Number of voltage points 
steplength=0.05;                %Difference between each band gap energy (eV) 
Egmin=0.5;                      %Minimum main band gap 
  
%Name of the file the matrix is saved as 
savefile='single_AM15_0.01step_conc1.mat'; 
  
%Adding the data for the irradiance hitting the cell 
  
%Import the sun energy data and setting the used data to specific variable 
%names 
load('EnergyfromSun.mat') 
A=Powerfromsun_1nmscale_AM15;  
Psun=X*sum(A(:,3)); 
FluxData=pflux_1nmscale_AM15; 
  
%counting how many times this will run 
count=0; 
for j=Emin:steplength:Emax 
    Egmax=j-steplength/10; 
    for x=Egmin:steplength:Egmax 
        count=count+1;  
    end 
end 
  
%Lagrer på første rad: Eg, Emax 
%Neste radene lagres :  v, strøm/power_in 
RangeMat=zeros(vector+1,count*2); 
  
clear j x count 
%Calculating for all Eg 
counter=0; 
%Calculating for all the photon energies absorbed 
for E=Emin:steplength:Emax 
    %Setting the highest main band gap energy for the cell 
    Egmax=E-steplength/10;    
    %Calculating for each value of Eg 
    for Eg=Egmin:steplength:Egmax 
        %Finding the data for one cell 
        a=SCsingleAM15_more(Eg,E,Tc,X,vector,FluxData,Psun);  
        %Saving data in the return matrix 
        RangeMat(1,(2*counter)+1)=Eg; 
        RangeMat(1,(2*counter)+2)=E; 
        RangeMat(2:end,(2*counter)+1)=a(:,1); 
        RangeMat(2:end,(2*counter)+2)=a(:,2); 
        counter=counter+1; 
    end 
end 
%saving the return matrix 

save(savefile,'RangeMat'); 
%This script calculates numerous single junction cells, and is used for %the top 
cell of the tandem cell. All values are saved in one matrix, %where each cell is 
identified by the Main band gap (Eg) in the first row. %The other rows have the 
voltage and the efficiency/voltage, in two %columns for each cell. 
  
  
%The starting values 
Emax=Inf;                       %Highest photon energy 
Tc=300;                         %Cell temperature 
X=1;                            %Concentration level 
vector=500;                     %Number of voltage points 
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steplength=0.05;                %Difference between each band gap energy (eV) 
Egmin=0.5;                      %Minimum main band gap 
Egmax=4.5;                      %Maximum main band gap 
  
%Name of the file the matrix is saved as 
savefile='newstep005_singletop_AM15_Emax0.5,4.5_conc1.mat'; 
  
%Import the sun energy data and setting the used data to specific variable 
%names 
load('EnergyfromSun.mat') 
A=Powerfromsun_1nmscale_AM15;  
Psun=X*sum(A(:,3)); 
FluxData=pflux_1nmscale_AM15; 
  
%counting how many times it will run 
count=0; 
for x=Egmin:steplength:Egmax 
    count=count+1;  
end 
  
%creating the matrix, each cell has two coloums with the following 
%configuration:  first row           Eg      , 0 
%                rest of the rows    voltage , efficiency/voltage 
RangeMat=zeros(vector+1,count*2); 
  
clear j x count 
  
%Calculating for all Eg 
counter=0; 
for Eg=Egmin:steplength:Egmax 
    %Finding the data for one cell 
    a=SCsingleAM15_more(Eg,Emax,Tc,X,vector,FluxData,Psun); 
    %Saving data in the return matrix 
    RangeMat(1,(2*counter)+1)=Eg; 
    RangeMat(1,(2*counter)+2)=0; 
    RangeMat(2:end,(2*counter)+1)=a(:,1); 
    RangeMat(2:end,(2*counter)+2)=a(:,2); 
    counter=counter+1; 
end 
%saving the retun matrix 
save(savefile,'RangeMat'); 
 

 

The following scripts process the data from the previous scripts, finding the configurations with the highest efficiency. 

Two and four terminal tandem cells have different scripts. 

 

%This script prosesses some of the calculated data for the unconnected 
%tandem cells. The maximum efficiency is found for the each of the two cells, 
%top and bottom, seperately. 
  
%Filename that this script saves to 
filename='MaxeffIBSCunconnectedAM15conc1'; 
  
%Loading the data for the top cell 
load 'newstep005_IBSCtop_AM15_inf_conc1_Eg1.1to4.8.mat' 
IBSCtopMat=RangeMat; 
  
%Loading the data for the bottom cell 
load 'newstep005_IBSCbot_AM15_Emax0.5,2.8_conc1.mat' 
IBSCbotMat=RangeMat; 
  
%Top cell highest efficiency for all band gap values 
%Want rows: Eg : Elow : efficiency 
IBSCtopeff=zeros(size(IBSCtopMat,2)/2,3); 
for i=1:1:(size(IBSCtopMat,2)/2) 
    IBSCtopeff(i,1)=IBSCtopMat(1,2*i-1); 
    IBSCtopeff(i,2)=IBSCtopMat(1,2*i); 
    IBSCtopeff(i,3)=max(IBSCtopMat(2:end,2*i-1).*IBSCtopMat(2:end,2*i));   
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end 
  
%Bottom cell highest efficiency for all band gap values and highest photon 
%energy absorbed. 
%Want rows: Eg : Elow : Emax :efficiency 
IBSCboteff=zeros(size(IBSCbotMat,2)/2,4); 
for i=1:1:(size(IBSCbotMat,2)/2) 
    IBSCboteff(i,1)=IBSCbotMat(1,2*i-1); 
    IBSCboteff(i,2)=IBSCbotMat(1,2*i); 
    IBSCboteff(i,3)=IBSCbotMat(2,2*i); 
    IBSCboteff(i,4)=max(IBSCbotMat(3:end,2*i-1).*IBSCbotMat(3:end,2*i));   
end 
  
  
%%Finding the highest efficiency for all the different values of the 
%%intermediate band in the top cell. 
  
%Finding the energy step for the band gap energies. 
for i=2:1:size(IBSCtopeff,1) 
    if (abs(IBSCtopeff(i,1)-IBSCtopeff(1,1))>10^-5) 
        step=IBSCtopeff(i,1)-IBSCtopeff(1,1); 
        break; 
    end 
end 
  
%Setting some values used later 
Elowmin=IBSCtopeff(1,2); 
Elowmax=IBSCtopeff(end,2); 
Counter=0; 
Tempeff=0; 
TempEg=0; 
  
%Finding the highest efficiency for the IBSC top cell 
%           Elow : Egtop : efficiency 
IBSCtopElow=zeros(round((Elowmax-Elowmin)/step),3); 
  
%Running for each Elow 
for Elow=Elowmin:step:Elowmax 
    Tempeff=0; 
    TempEg=0; 
    Counter=Counter + 1; 
    IBSCtopElow(Counter,1)=Elow; 
     
    %Checking through each Elow to find the highest efficiency 
    for i=1:1:(size(IBSCtopeff,1)) 
        if((abs(IBSCtopeff(i,2)-Elow)<(step/10)) && IBSCtopeff(i,3)>Tempeff) 
            Tempeff=IBSCtopeff(i,3); 
            TempEg=IBSCtopeff(i,1); 
        end 
    end 
    IBSCtopElow(Counter,2)=TempEg; 
    IBSCtopElow(Counter,3)=Tempeff; 
end 
  
  
%%Finding the highest efficiency for all the different values of the 
%%highest photon energy absorbed in the bottom cell. This energy is the 
%%same as the lowest intermediate band in the top cell, and connects the 
%%two separate cells together. 
  
%Finding the highest efficiency for the IBSCbot 
%           Emax : Egbot : Elow : efficiency 
IBSCbotElow=zeros(round((Elowmax-Elowmin)/step),4); 
  
Counter=0; 
%Running for each Emax 
for Emax=Elowmin:step:Elowmax 
    Tempeff=0; 
    TempEg=0; 
    TempElow=0; 
    Counter=Counter + 1; 
    IBSCbotElow(Counter,1)=Emax; 
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    %Checking through each Emax to find the highest efficiency 
    for i=1:1:(size(IBSCboteff,1)) 
        if((abs((IBSCboteff(i,3)-Emax))<(step/10)) ... 

&& IBSCboteff(i,4)>Tempeff) 
            Tempeff=IBSCboteff(i,4); 
            TempEg=IBSCboteff(i,1); 
            TempElow=IBSCboteff(i,2); 
        end 
    end 
    IBSCbotElow(Counter,2)=TempEg; 
    IBSCbotElow(Counter,3)=TempElow; 
    IBSCbotElow(Counter,4)=Tempeff; 
end 
  
  
%Setting up a return matrix that will have the following row setup: 
%           Elowtop/Emax : Egtop : Egbot : Elow bot: efficiency 
RetMat=zeros(round((Elowmax-Elowmin)/step),5); 
  
Counter=0; 
for Elow=Elowmin:step:Elowmax 
    Counter=Counter + 1; 
    RetMat(Counter,1)=Elow; 
    RetMat(Counter,2)=IBSCtopElow(Counter,2); 
    RetMat(Counter,3)=IBSCbotElow(Counter,2); 
    RetMat(Counter,4)=IBSCbotElow(Counter,3); 
    RetMat(Counter,5)=IBSCbotElow(Counter,4)+IBSCtopElow(Counter,3);    
end 
  
%saving the data 
save(filename,'IBSCtopElow','IBSCtopeff','IBSCboteff','IBSCbotElow',... 
'RetMat'); 

 

%This script creates a surface of the maximum efficiencies for different  
%main band gap energies of the two IBSCs connected in a four terminal tandem 
%cell. The intermediate bands at those efficiencies are also stored in a  
%matrix. These surface matrixes are later used for plotting. 
  
  
%importing the data matrix 
load 'MaxeffIBSCunconnectedAM15conc1000.mat' 
%Name of the savefile 
savename='IBSCUnconnectedconc1000.mat'; 
  
%IBSCtandem 
%top : Egtop : elow : eff 
%bot : Egtop : elow : emax : eff 
  
%Finding the lowest Emax for Bottomcell to give the startingpoint for the 
%Topcell 
  
Emaxmin=IBSCboteff(1,3); 
DatatopMat=IBSCtopeff(IBSCtopeff(:,2)>(Emaxmin-0.0001),:); 
DatabotMat=IBSCboteff; 
clear x i Emaxmin 
  
%Finding the energy step interval 
step=DatatopMat(end,2)-DatatopMat(end-1,2); 
  
%Creating main band gap vectors 
Egtop=(DatatopMat(1,1):step:DatatopMat(end,1)+step/10)'; 
Egbot=(DatabotMat(1,1):step:DatabotMat(end,1)+step/10)'; 
  
%Creating the blank surfaces 
Surface=zeros(size(Egtop,1),size(Egbot,1)); 
Surfacebot=Surface; 
Surfacetop=Surface; 
Elowtop=Surface; 
Elowbot=Surface; 
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%Manipulation of the DatabotMat, only saving the highest values for each %Eg and 
Emax. 
indexcounter=1; 
tempeg=DatabotMat(1,1); 
tempeffmax=-10; 
topeff=1; 
for i=1:1:size(DatabotMat,1) 
    if(tempeg~=DatabotMat(i,1) || i==size(DatabotMat,1) || (i==1 && 
abs(DatabotMat(1,1)-DatabotMat(2,1))<0.00001)) 
        tempeg=DatabotMat(i,1); 
        Index(indexcounter)=topeff; 
        indexcounter=indexcounter+1; 
        tempeffmax=-10; 
    end 
    if(tempeffmax<DatabotMat(i,4)) 
        topeff=i; 
        tempeffmax=DatabotMat(i,4); 
    end 
end 
  
DatabotMat=DatabotMat(Index,:); 
  
%Now I want the surface to show the efficiency at the appropriate places. 
for top=1:1:size(DatatopMat,1) 
    for bot=1:1:size(DatabotMat,1) 
        if(abs(DatatopMat(top,2)-DatabotMat(bot,3))<10^-4) 
            x=round((DatatopMat(top,1)-DatatopMat(1,1))/step)+1; 
            y=round((DatabotMat(bot,1)-DatabotMat(1,1))/step)+1; 
            if(Surface(x,y)==0) 
                Surface(x,y)=DatatopMat(top,3)+DatabotMat(bot,4); 
                Surfacetop(x,y)=DatatopMat(top,3); 
                Surfacebot(x,y)=DatabotMat(bot,4); 
                Elowtop(x,y)=DatatopMat(top,2); 
                Elowbot(x,y)=DatabotMat(bot,2); 
            elseif(Surface(x,y)<DatatopMat(top,3)+DatabotMat(bot,4)) 
                Surface(x,y)=DatatopMat(top,3)+DatabotMat(bot,4); 
                Surfacetop(x,y)=DatatopMat(top,3); 
                Surfacebot(x,y)=DatabotMat(bot,4); 
                Elowtop(x,y)=DatatopMat(top,2); 
                Elowbot(x,y)=DatabotMat(bot,2); 
            end 
        end 
    end 
end 
  
%just changing the vector row/coloums 
Egbot=Egbot'; 
Egtop=Egtop'; 
  
%saving the data 
save(savename,'Surface','Surfacetop','Surfacebot','Elowtop','Elowbot',... 
'Egtop','Egbot'); 
 

 

%This script creates a surface of the maximum efficiencies for different  
%main band gap energies of the two IBSCs series connected in a two %terminal 
tandem cell. The intermediate bands at those efficiencies are %also stored in a 
matrix. These surface matrixes are later used for %plotting. 
 
%Name of the savefile 
filename='IBSCConnected1000.mat'; 
  
%importing the datapoints for the top cell 
load 'newstep005_IBSCtop_AM15_inf_conc1000_Eg1.1to4.8.mat' 
IBSCMat=RangeMat; 
  
%importing the datapoints for the bottom cell 
load 'newstep005_IBSCbot_AM15_Emax0.5,2.8_conc1000.mat' 
IBSCbotMat=RangeMat; 
clear RangeMat 
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%will set it up following: for each Eg of the topcell it will run through 
%each of the Eg of the botcell that are available for each of the Elow %from the 
top cell. The maximum will remain and be set at the surface. 
  
%This is for the IBSC top and single bot 
% 
%IBSC: 1.row: Eg , Elow 
%      2.row: voltage, current 
% 
%IBSCbot: 1.row: Eg , Elow 
%        2.row: 0  , Emax 
%        3.row: voltage, current    
  
%Finding the energy step for the band gap energies 
step=IBSCMat(1,end)-IBSCMat(1,end-2); 
%Containing the main band gap energies of the two IBSCs 
Egtop=IBSCMat(1,1):step:IBSCMat(1,end-1)+step/10; 
Egbot=IBSCbotMat(1,1):step:IBSCbotMat(1,end-1)+step/10; 
%Setting up the blank surfaces 
Surface=zeros(size(Egtop,2),size(Egbot,2)); 
errorsurface=Surface; 
Elowtop=Surface; 
Elowbot=Surface; 
  
%Going through each of the "datapoints" in the top 
for i=1:2:size(IBSCMat,2) 
    %Going through each of the bottom "datapoints" that have a Emax that 
    %corresponds (equals) the Elow possible for this "datapoint" in the 
    %top 
    for j=1:2:size(IBSCbotMat,2) 
        if(abs(IBSCMat(1,i+1)-IBSCbotMat(2,j+1))<(step/100)) 
            x=round((IBSCMat(1,i)-IBSCMat(1,1))/step)+1; 
            y=round((IBSCbotMat(1,j)-IBSCbotMat(1,1))/step)+1; 
            %Here I will find the highest efficiency and add it to the  
            %surface and so on. 
            if((IBSCMat(2,i+1))<IBSCbotMat(3,j+1)) 
                a=IBSCbotMat(3:end,j:j+1); 
                b=IBSCMat(2:end,i:i+1); 
            else 
                b=IBSCbotMat(3:end,j:j+1); 
                a=IBSCMat(2:end,i:i+1); 
            end 
             
            %If the current is negative it is no point in using the data 
            if(b(1,2)>0) 
                %the a matrix has the highest current and b the lowest 
                %Finding the voltages of a at currents equal to b as b                                
                %can't have higher current than its maximum value. 

          %(currents are decreasing down the matrix). 
                 
                %Need to remove duplicates in a and b currents for 
                %inpolation operations 
                indexb=zeros(size(b,1),1); 
                counterb=1; 
                temp=1; 
                for r=1:1:size(b,1)-1 
                    temp=1; 
                    for r2=r+1:1:size(b,1) 
                        if(b(r,2)==b(r2,2)) 
                            temp=0; 
                            break; 
                        end 
                    end 
                    if(temp==1) 
                        indexb(counterb)=r; 
                        counterb=counterb+1; 
                    end 
                end 
                indexb(counterb)=r+1; 
                indexb=indexb(indexb>0); 
                if(size(indexb,1)<size(b,1)) 
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                   b=b(indexb,:);  
                end 
                 
                indexa=zeros(size(a,1),1); 
                countera=1; 
                for r=1:1:size(a,1)-1 
                    temp=1; 
                    for r2=r+1:1:size(a,1)     
                        if(a(r,2)==a(r2,2)) 
                            temp=0; 
                            break; 
                        end 
                    end 
                    if(temp==1) 
                        indexa(countera)=r; 
                        countera=countera+1; 
                    end 
                end 
                indexa(countera)=r+1; 
                indexa=indexa(indexa>0); 
                if(size(indexa,1)<size(a,1)) 
                    a=a(indexa,:); 
                end 
                 
                %Now I have removed dublicates, and continue to find the 
                %maximum efficiency. 
                a_voltage_at_b_current =... 
interp1(a(:,2),a(:,1),b(:,2),'linear'); 
                Eff=max(abs(a_voltage_at_b_current(:)+b(:,1)).*b(:,2)); 
                %This checks if the efficiency at the specific main band 
                %gap energies allready has a higher efficiency found. If 
                %not it replaces this spot with the new efficiency,   

    %and the corresponding intermediate band energies. 
                if Eff>Surface(x,y) 
                    Surface(x,y)=Eff; 
                    Elowtop(x,y)=IBSCMat(1,i+1); 
                    Elowbot(x,y)=IBSCbotMat(1,j+1); 
                end 
            end 
        end 
    end 
end 
  
%saving the data 
save(filename,'Surface','Elowtop','Elowbot','Egtop','Egbot') 
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