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Abstract
The Maximum Entropy Theory of Ecology (METE), developed by John Harte, presents

an entirely new method of making inferences in ecology [1]. The method is based on the es-
tablished mathematical procedure of Maximum Information Entropy (MaxEnt), developed
by Edwin T. Jaynes, and is used to derive a range of important relationships in macroecol-
ogy [2]. The Maximum Entropy Production (MEP) principle is a more recent theory. This
principle was used by Paltridge to successfully predict the climate on Earth in 1975 [3]. It
has been suggested that this principle can be used for predicting the evolution of ecosystems
over time in the framework of METE. This idea is at the very frontier of Harte’s theory.
This thesis investigates the hypothesis that the information entropy defined in METE is
described by the MEP principle.

I show that the application of the MEP principle to the information entropy in METE
leads to a range of conceptual and mathematical difficulties. I show that the initial hypoth-
esis alone cannot predict the time rate of change, but that it does predict that the number
of individual organisms and the total metabolic rate of an ecosystem will continue to grow
indefinitely, whereas the number of species will approach one.

I also conduct a thorough review of the MEP literature and discuss the possibility of an
application of the MEP principle to METE based on analogies. I also study a proof of the
MEP principle published by Dewar in 2003 and 2005 in order to investigate the possibility
of an application based on first principles [4, 5]. I conclude that the MEP principle has a
low probability of success if applied directly to the information entropy in METE.

One of the most central relationships derived in METE is the expected number of species
in a plot of area A. I conduct a numerical simulation in order to study the variance of the
actual number of species in a collection of plots. I then suggest two methods to be used for
comparison between predictions and observations in METE.

I also conduct a numerical study of selectied stability properties of Paltridge’s climate
model and conclude that none of these can explain the observed MEP state in nature.
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Preface

This project has been carried out under the supervision of John Harte at UC
Berkeley in Fall 2010 and beginning of Spring 2011. Harte is a professor in the
Energy and Resources group at Berkeley, an interdisciplinary graduate program
performing studies in areas of clean energy, climate science, ecosystems and bio-
diversity, energy systems, international development, technology and society, and
water policy. The group aims at placing specialized knowledge into a larger in-
tegrated perspective guided by the goal of a sustainable environment and a just
society. Harte’s background is from physics and he worked as an assistant profes-
sor in the field of theoretical particle physics for several years before he changed
track and became one of the six core faculty members of the Energy and Resources
Group in Berkeley. Today, Harte pioneers the field of theoretical ecology, work-
ing on the nature and causes of patterns in the distribution and abundance of
species and how ecosystem responses to climate change may result in feedbacks to
climate. Most recently, Harte has developed an entirely new approach to macroe-
cology based on the principle of Maximum Information Entropy (MaxEnt). This
work is being published in the book Maximum Entropy and Ecology: A Theory
of Abundance, Distribution, and Energetics coming out on Oxford Press in June
2011, which I have contributed to through my work.

The Maximum Entropy Theory of Ecology (METE), presented in Harte’s book,
describes a new method for inferring important ecological distributions from sparse
data, based on the MaxEnt principle. More specifically, it derives expressions de-
scribing the distribution of energy among individual organisms and numbers of
individuals within different species in an ecosystem. It also describes spatial dis-
tributions of species and individuals.

MaxEnt leads to predictions at a particular instance in time only. Hence, METE
only makes static predictions. In the last chapter of his book Harte suggests a
potentially powerful, yet unexplored idea: applying the principle of Maximum
Entropy Production (MEP) as an method for arriving at a dynamical theory of
ecology. This is what I was set out to do. My project is thus at the very frontier
of METE.

At the outset of my work Harte provided a set of partial differential equations
(PDE’s) based on an initial understanding of the MEP principle. These equations
were meant to give the time derivatives leading to the MEP state of an ecosystem.
My project consisted of verifying the mathematical derivation of these equations,
solving them and interpreting the results. The first step in the process was there-
fore to learn and understand METE. Second, I spent a significant amount of time
studying PDE’s and possible methods for solutions. It was not until after this I
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discovered that the set of equations I was given could not actually be solved, even
numerically. This puzzled me for a while before I realized that these equations did
not even correspond to the maximum of the entropy production, in other words,
they did not describe the MEP state. Because this was mostly an intuition to be-
gin with, and Harte was convinced of both the solvability of the equations and that
they expressed the correct maximum condition, it took me a while to believe that
my own viewpoint was actually the correct one. At the end, I managed to solidify
my argument and to convince him of my conclusions. At this point, my project
came to a halt. It was apparent that the initial idea that formed the basis of my
project did not hold water. Because my project was at the very frontier of the field
(which in itself is tiny) there were no related alternative routes I could learn from
or switch to and I was left with little to continue my work on. In the mean time,
Harte suggested that I look into the stability issues of one model where the MEP
principle had been successful. I spent some time doing this, but soon concluded
that stability properties could not explain what we were looking for, namely an
explanation of the prevalence of the MEP state. In light of the situation I decided
to get to the bottom of the question regarding whether the MEP principle could
be applied to METE at all, since this has never been rigorously demonstrated.
I therefore studied numerous alternative applications and conducted a thorough
literature review on the topic in search of a useful analogy. The complexity and
the difficulty of these papers required me to study Bayesian statistics in general
and the MaxEnt principle in particular in great depth, as well as non-equilibrium
thermodynamics. I also had to refresh and advance my knowledge in equilibrium
thermodynamics, statistical mechanics and atmospheric physics. After all of this,
I came to the conclusion that none of the previous applications of the principle
could provide a valid analogy to my work. I therefore had to look at the very proof
of the MEP principle itself to investigate a possible application based on first prin-
ciples. In total, the unexpected turn of my project required me to learn a huge
amount of theory, read a large amount of background material, and apply a wide
range of knowledge from statistics, math and physics. Due to the interdisciplinary
nature of the Energy and Resources Group and the uniqueness of my topic, I had
no guidance on the most challenging parts of my thesis.

In the very beginning I also spent some time investigating the statistical certainty
of one of the most central predictions of METE. This involved the calculation of
the variance of a long and difficult expression for a specific probability distribu-
tion. I developed a simulation procedure for this, which is described in this thesis.
This project was only meant to constitute a smaller part of my thesis, and I left it
when it turned out to require a background in statistics beyond my training and
more time than I had available. I did, however, return to this topic after my in
depth investigation of MEP and MaxEnt, and I have included the results of my
simulations as well suggestions for future research on this topic.

vi



Despite the challenges along the way and the frustration of being the only person
working on a very difficult topic, I believe that my work has provided a very im-
portant contribution to the MaxEnt theory of ecology. The in depth analysis that
I provide is necessary to get to the bottom of the MEP principle as applied to
METE, and it is with disappointment that I conclude that the initial idea should
be abandoned. My work on the MEP principle, however, has also shed light on
METE in general and the interpretation of the information entropy as defined in
the theory in particular. My thesis also sheds light on the MEP principle itself and
its prospect for predicting the behavior of information entropy not only as defined
in METE, but in general. Moreover, my work on the variance has provided specific
suggestions for the further development of METE. My thesis is a significant body
of work that provides both important background theory and a critical analysis
and suggestions for future work that can be used by the graduate students working
in Harte’s lab and elsewhere. It has made a significant contribution to Hartes book
Maximum Entropy and Ecology, which I have been given due credit for in the final
textbook.

I would like to thank John Harte for inspiration and ideas and Justin Kitzes for
a valuable discussion on the variance simulations. I would also like to thank my
friend Jessica Goddard who have kindly helped me proofread the thesis.

Berkeley, April 27, 2011
Ida Sognnæs
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1 Introduction

Entropy and its production have been at the core of various ideological discus-
sions concerning grand questions like the evolution of the world and the course of
time. Several notable scientists, including Clausius, Bolztmann, Gibbs and On-
sager dedicated their time to studying the concept [6]. The principle of Maxmum
Entropy (MaxEnt) was originally motivated by statistical physics, which attempts
to relate macroscopic, measurable properties of physical systems to a description
at the atomic or molecular level. Combining information theory with Bayesian
logic in the 1950s, Edwin T. Jaynes showed that the principle can be used as a
general method for statistical inference and can be applied to a wide variety of
problems [2]. Since then, the method has been applied to an increasing variety
of fields. In the book Maximum Entropy and Ecology: A Theory of Abundance,
Distribution, and Energetics coming out in June 2011, John Harte presents an
entirely new application of the principle of MaxEnt to the field of macroecology.
Macroecology is the study of diversity, abundance and distribution of individual
organisms and their energy use in ecosystems across spatial and temporal scales.
There are many existing theories and models that describe one or more ecological
relationships independently of each other. The Maximum Entropy Theory of Ecol-
ogy (METE), on the other hand, derives numerous macroecological relationships
from one principle alone, namely the MaxEnt principle. Several of these relation-
ships are crucial in the study of biodiversity and the evaluation of extinction risks
for threatened species and they provide important tools for studying ecological
responses in a time of considerable human impact on the biosphere.

METE predicts important ecosystem parameters at an instance in time. It does
not, however, say anything about how ecosystems change over time. Unlike static
models in ecology there are very few ecological theories explaining the dynamic
behavior of ecosystems. A principle termed the Maximum Entropy Production
principle (MEP) was shown by Garth W. Paltridge to predict the climate on Earth
with a high degree of accuracy in 1975 [3]. The principle has since been used to
predict and describe the behavior of complex systems in a wide range of fields [6].
The MEP principle enables predictions of macroscopic dynamic behavior without
having to consider the detailed internal behavior of systems. Harte suggested that
it could also be used to predict the dynamical behavior of ecosystems the way
such systems are defined in METE. If this was successful it would be extremely
powerful because it could be used to predict a range of relationships for which
there are currently no alternative models.

As mentioned in the preface, my project ended up following a somewhat unex-
pected route. The thesis is therefore written in the order of natural progression,
along the lines of discovery. It fluctuates between parts containing background the-
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1 INTRODUCTION

ory, applications and discussions and present points and conclusions along the way.

Due to the unique interdisciplinary focus of my thesis and the fact that it is not
written in a well-defined field, I have included a significant amount of the back-
ground theory in order for the reader to be able to follow the applications and the
analysis. I begin with a review of scientific models in general and a discussion of
the difference between physics and ecology, in particular, in Chapter 2. Next, I
describe the principle of Maximum Entropy (MaxEnt), which is at the very core
of both METE and MEP. The derivation is based on Bayesian statistics, which
belongs to a different school of thought than conventional frequentist statistics.
It also uses the notion of information entropy, defined by Claude E. Shannon in
1948 [7]. In Chapter 4 I show the connection between information entropy and
thermodynamic entropy, and how the Boltzmann distribution can be derived using
the MaxEnt formalism. In Chapter 5 I show how METE is derived and include the
results that are important for this thesis. This chapter also defines and explains
the basic entities which will be used for the remainder of the thesis.

Chapter 6 contains the first application. One of the most important predictions of
METE is a relationship expressing the expected number of species in a plot of area
A. The purpose of Chapter 6 is to predict the variation of the number of species
in different plots in order to determine whether the expected value is a good guess
or not. This chapter also discusses general challenges regarding the comparison of
predictions from METE with real observations. It suggest two new methods for
handling these challenges.

At the outset of my Master’s project I was given three partial differential equa-
tions that were based on an initial MEP hypothesis within the context of METE.
My initial project consisted of solving these equations and interpreting the results.
The calculations and the subsequent discussion of these equations (equations (7.4)
- (7.6)) are presented in Chapter 7. I show that these equations do not answer the
original question and that the initial MEP hypothesis is problematic. In order to
better understand the principle itself I conducted a review of the literature on the
subject, which is presented in Chapter 9. In order to understand the alternative
applications of the principle in the literature, it was necessary to look into aspects
of non-equilibrium thermodynamics, which are presented first, in Chapter 8.

One of the most important applications of the MEP principle was the climate
study by Paltridge in 1975. In Chapter 10, I investigate aspects of the stability
in Paltridge’s model. Chapter 11 is dedicated to a discussion regarding the MEP
principle based on the review in Chapter 9 and the model in Chapter 10. I argue
that the initial application of the MEP principle to METE cannot be justified by
an analogy alone. Another option is to base the application on first principles. In
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Chapter 12 I present a proof of the MEP principle published by Dewar in 2003
and 2005 followed by my final discussion regarding the MEP principle and its ap-
plication to information theory [4, 5]. In Chapter 13 I present the conclusion of
my thesis, and in Chapter 14 I presents some possible ideas for the future.

The chapter on the variance, Chapter 6, and the stability in Paltridge in Chapter
10, are based on numerical calculations in MATLAB and provide quantitative re-
sults. A larger part of my thesis, however, is dedicated to the review of the theory
behind MaxEnt and MEP as well as thermodynamics and statistical mechanics,
and the subsequent discussions. Due to the complexity of the topic and the lack of
any related examples in the literature, most of my analyses are highly conceptual,
rather than quantitative.

The same symbols and variable names might be used do denote different quantities
in different parts of the thesis. It should be clear, however, in each case what is
meant by the notation.
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2 MODELS

2 Models

Jaynes wrote that "...the logic of science is universal; the same principle of reason-
ing that work in statistical mechanics will work as well in astronomy, geophysics,
biology, medical diagnosis and economics." [8, page 2]

This thesis deals with the application of a method based on the Maximum Entropy
(MaxEnt) principle to the field of ecology. The method has been successfully used
in physics (statistical mechanics) but the idea of applying it to problems in ecol-
ogy is new [1]. Whenever a method is introduced in a new field, there is a need
to go through some fundamental questions related to similarities and differences
between the present field and the field (physics) that has previously benefited from
the method. This is a natural first step because an analysis at an early stage can
reveal if there are basic differences indicating that the method will have a low
probability of success, in spite of the similarities between the fields. Therefore, I
have in the following included a review of models in general, and a discussion of
the difference between physics and ecology in particular.

Physics, or "nature" in ancient Greek, is one of the oldest academic disciplines.
Maxwell opens his book "Matter and Motion" from 1876 with: "Physical science
is that department of knowledge which relates to the order of nature, or, in other
words, to the regular succession of events" [9, p. 9]. Physics has to do with the po-
sition and movement of matter. According to Young and Freedman physics is first
and foremost an experimental science. The central focus is to observe phenomena
in nature and try to find patterns and principles relating them. When patterns are
found, we call them physical theories or, when they are very well established and
of broad use, physical laws or principles [10]. Physics again is only one subfield of
the wider category of science, defined by The Merriam-Webster online dictionary
as: "knowledge or a system of knowledge covering general truths or the operation
of general laws especially as obtained and tested through scientific method" [11].

Models are of central importance in the practice of science. We use models to
express relationships and phenomena in nature. Significant parts of scientific in-
vestigation are carried out on models rather than on reality itself because by
studying a model we can discover features of and ascertain facts about the system
the model seeks to represent. Models are usually not derived solely from theory,
nor solely from empirical data, but from a combination of the two [12]. One type
of model often used in physics is the idealized model. An idealization is a deliber-
ate simplification of something complicated with the objective of making it more
tractable. Frictionless planes, point masses, infinite velocities and isolated systems,
are all well-know examples from physics [12]. Approximations, even though they
are similar to idealizations, relate instead to the actual mathematical procedure of
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2.1 Biology versus Physics

computing an answer [12].

Another important set of tools in science are analogies. At the most basic level,
two things are analogous if there are certain relevant similarities between them.
It can be similarity in properties or resemblance of relations between parts of two
systems. If two systems are analogous, we might be able to use a model derived
for one as a description of the other. The point is that the similarities have to be
relevant for the case we are investigating [12].

When building a scientific theory it is generally expected that it meets three cri-
teria [1]:

• Falsifiability: Whereas a theory can never be proven, there should be clear
criteria by which it can de disproven.

• Comprehensiveness: The predictions should be applicable across a wide vari-
ety of conditions and phenomena.

• Parsimony. A theory should be lean. It should explain a lot with a little, i.e.
the ratio of distinct testable predictions to assumptions should be large.

A theory can meet these three criteria in very different ways, to different degrees,
and there is no clear cut way to determine when a theory is good, and when it is
bad. One theory might predict more, less accurately, and another one predict less,
more accurately. Which theory is "best" depends on our research question.

2.1 Biology versus Physics

This thesis is concerned with a method for finding patterns and principles that
relate phenomena in macroecology. Instead of dead matter, as in physics, macroe-
cology deals with complex living organisms and communities. If these organisms
are animals they even possess some degree of free will. Such systems cannot be
fully described by looking at forces and energy only. Furthermore, ecosystems
often exhibit strong interactions between both individuals and between species.
Unlike certain physical systems, the behavior of an ecological system cannot be
reduced to a superposition of the behavior of each organism alone.

I will look at some of the most important difference between physics and biology
in this section. To clarify the distinction between the different subfields:

Biology : the science of life and of living organisms, including their structure,
function, growth, origin, evolution, and distribution. It includes ecology as a
subdivision [13].
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2 MODELS

Ecology : the study of living organisms in relation to their environment. Includes
macroecology as a subdivision [13].

Macroecology : the study of diversity, abundance and distribution of organisms
as well as energy use in organisms across spatial and temporal scales [14] [1].

Biologists, in contrast to physicists, tend to focus on the uniqueness of their objects
of study. The special case is often considered more interesting than the general
patterns. The goal is description rather than prediction. Physicists, on the other
hand, tend to look for general principles, and ideal cases. One exceptions to this
generalization is Darwin’s theory of evolution, which says that despite the unique-
ness of every individual organism, and every species, they are all guided by the
same, universal principle: the principle of natural selection. Harte calls for a syn-
thesis of the Newtonian and Darwinian worldview in order to expedite progress in
the field of ecology [15].

A large part of the difference between physics and biology lies in the culture of
the two fields, but there are also factual, fundamental differences. A number of
reasons can be pointed out as to why it is difficult to treat ecosystems in the same
way as we treat a non-living physical system [1]. For example

• No two ecosystems are alike. This greatly limits the possibility of making
controlled experiments. A physicist on the other hand can use similar photons,
or similar electrons, to conduct the same experiment in a controlled manner
repeatedly. A physicist can therefore more easily control for and eliminate
external variables and sources of variability.

• Ecosystems, and species, undergo change both from natural causes and from
human activity and are therefore in a state of constant flux. Molecules have
always been the same. Species can go extinct.

• Accurate ecological measurements, such as a complete census of the organisms
that live in an ecosystem, are impossible to obtain. We never know quite how
accurate our data collection is, and what might have been missed. Hence,
there are no well-defined measures of error in macroecology.

• System boundaries are often ill-defined. An ecosystem is always affected by
its surroundings to a greater or lesser extent.

• Conducting experiments on ecosystems at large spatial scales and over long
time periods is not feasible. Whereas it is possible to obtain information at
smaller scales, and over shorter time periods, information about big patterns
are difficult to obtain.
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2.2 Models in Ecology

All of the above factors complicate the study of ecology, but they do not mean
that we cannot say anything general about ecosystems. Mathematical principles
in biology and ecology are rare, but they do exist, as we will see in the next section.

2.2 Models in Ecology

In a theory of macroecology, we seek to explain or predict the distribution and
abundance of individual organisms and species within an ecosystem in space and
over time. A distinction is often made between mechanistic theories and statistical
theories. A mechanistic theory of ecology can include any of the following major
processes operating in nature: predation, competition, mutualism, commensialism,
birth, death, migration, dispersal, speciation, disease and resistance to disease, a
range of different reproductive strategies, organism behaviors and social dynam-
ics, fluctuations in the environment and so on [1]. We can regard the individuals
within a species as identical, or we can include trait differences into the model.
An example of a simple mechanistic model is the Lotka-Volterra model which
describes species interaction. Darwin’s theory of evolution is also a mechanistic
model. Among statistical models, we have Coleman’s random placement model,
which states that the organisms residing in a specific area are randomly situated.
A negative binomial distribution, a fractal model, and a Poisson clustering model
have also been suggested for this purpose [1]. A more familiar statistical model is
the explanation of the Gaussian variation of height among children.

Yet another family of ecological theories are based on optimization principles.
Extremum principles are well known from physics, where we often minimize the
potential energy, the action integral, or some other quantity. In more complex
systems, like ecosystems, we often want to optimize a set of functions, which tend
to give conflicting results [1].

Harte notes that none of the existing models of macroecology provide a comprehen-
sive framework of macroecology. The models usually depend on ad hoc statistical
assumptions and need to be supplemented with empirical knowledge in order to
answer the conservation questions posed in the beginning of this chapter [1]. The
Maximum Entropy Theory of Ecology avoids these problems. We will see that
this theory is also based on an extremum principle, but that the function that is
maximized is completely different from existing extremal functions in ecology.

3 The Maximum Entropy Principle (MaxEnt)

A dice with 6 faces is tossed 1000 times. Let us assume that we know the average
number of dots in all of these tosses is but that the number of dots in each toss
is unknown. With this knowledge, we want to estimate the frequencies of each of
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3 THE MAXIMUM ENTROPY PRINCIPLE (MAXENT)

the six possible outcomes [2]. To this problem orthodox statistics has no answer.
If the average is 3.5, most people, however, would have a strong intuition for the
uniform distribution. This is usually justified by arguing that there is no reason
to prefer any one outcome over another. If instead the average number of dots in
the 1000 tosses is 4.5, the frequencies cannot be equal. What can we say about
the frequency distribution in this case? This chapter introduces a principle, The
Maximum Entropy Principle (MaxEnt), that allows us to make inferences in cases
like this, where information is incomplete.

3.1 Formulation of the Problem

We have some quantity, x, capable of assuming discrete values xi (i = 1, ..., n).
Each value is associated with some unknown probability pi. All we know is the
expectation value of some function f(x)

〈f(x)〉 =
n∑
i=1

pif(xi) (3.1)

We also assume the normalization condition∑
pi = 1 (3.2)

We now ask: on the basis of the given information, what is the expectation value of
some other function, g(x)? The expectation value, 〈g(x)〉, can be calculated if we
know the pi’s, but the above information does not determine these. To determine
n unknowns, we would need n equations, or (n-2) more equations than what we
have. In the dice example, the two probability distributions {1

2 , 0, 0, 0, 0,
1
2} and

{1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6} both give an average of 3.5. A number of different sets of proba-

bilities, {pi}, can usually give the same 〈f(x)〉. Is there any criterion for picking
one probability distribution over another when both satisfy the given information?

An early attempt at a criterion of choice was Laplace’s "Principle of Insufficient
Reason". In the dice example, this amounts to picking the uniform distribution,
pi = 1

6 for all i, because there is no reason to think otherwise (corresponding to
most people’s intuition). Unfortunately, in more complex cases, LaPlace’s principle
appears quite arbitrary, and can be shown to generate paradoxes [2]. Presently,
this way of formulating problems has been largely abandoned, and probability
theory has developed in two different directions. The "objective" school of thought
regards the probability of an event as an objective property of that event, verified
by observation of actual frequencies [2]. The "subjective" school of thought regards
probabilities as expressions of human ignorance [2]. It interprets the probability of
an event as a formal expression of our expectation that the event will occur based
on the available information. The goal in this school of thought is not to evaluate
some physical probability, but to inform plausible conclusions in cases where there
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3.2 Shannons Information Entropy

is not enough information available to lead to certain conclusions. This is what is
meant by expressing human ignorance. The test of a good subjective probability
distribution is whether it correctly represents our state of knowledge regarding the
value of the variable x. This knowledge is expressed as the probability of each of
the possible xi, pi. The two schools yield identical mathematical formulations, but
the concepts themselves refuse to be united. The subjectivist view stands as the
broader one, since it is always possible to interpret frequency ratios as expressions
of human ignorance [2]. Furthermore, the subjectivist will admit many questions
as legitimate which the objectivist consider meaningless. The dice problem posed
at the beginning of this section is one such example, and one therefore has to adopt
a subjectivist view to even consider it.

3.2 Shannons Information Entropy

Our partial understanding of the processes which determine the value of x can
be represented by assigning probabilities, pi (i = 1, ..., n), corresponding to the
different outcomes, xi. For the case of the dice, when the average is 4.5, we assign
higher probabilities to outcomes with more dots, and lower probabilities to out-
comes with fewer dots. We want to do this in a way that does not assume more
information than what is given by the average value. That is, we want to pick a
distribution that does not imply more certainty about the outcome than we actu-
ally have. A mathematical expression for uncertainty was provided by Shannon
with his development of information theory in 1948 [7]. This uncertainty measure
is presented below.

We seek a quantity H(p1, ..., pn) which measures in a unique way the amount of
uncertainty represented by the probability distribution, {pi}, such that increasing
values of H corresponds to increasing uncertainty. Shannon shows that three con-
ditions of consistency must determine the function H(p1, ..., pn) [16]:

1. H(p1, ..., pn) is a continuous function of the p′is.

2. If all pi are equal (pi = 1
n
), the quantity A(n) = H( 1

n
, ..., 1

n
) is a monotonically

increasing function of n. In other words, more possibilities means that we are
more uncertain than when there are fewer possibilities [16].

3. The composition law. We can group the probabilities (p1, ..., pn) into probabil-
ities of combined events (w1, ..., wr) where r < n, such that w1 = (p1+...+pk),
w2 = (pk+1 + ...+pk+m) and so on. The amount of uncertainty in the compos-
ite event is then H(w1, ..., wr). This will be different from H(p1, ..., pn). The
conditional probabilities of the events, (x1, ..., xk), when the first composite
event, w1, takes place are ( p1

w1
, ..., pk

w1
). We can use the conditional probabilities

to express H(p1, ..., pn) with respect to the composite events as:

9



3 THE MAXIMUM ENTROPY PRINCIPLE (MAXENT)

H(p1, ..., pn) = H(w1, ..., wr)+w1H( p1

w1
, ...,

pk
w1

)+ ...+wrH( p1

wr
, ...,

pk
wr

) (3.3)

First, we encounter the uncertainty, H(w1, ..., wr), related to the probabilities
of the groups of events (w1, ..., wr). Next, we encounter an additional uncer-
tainty with the probability w1 if this is where xi belong, w2 if this is where
xi belong, and so on. The point is that it should not matter how the choices
are broken down. We must obtain the same uncertainty for a distribution
{pi} independently of whether we express this directly or via the conditional
probability of the groups, (w1, ..., wr), and their uncertainty. Equation (3.3)
tells us that the uncertainties are additive [16]. If we go from the wi’s to the
pi’s we increase our uncertainty because we have included more choices [17].

From these conditions Shannon arrives at the unique function

H(p1, ..., pn) = −K
∑
i

pi ln pi (3.4)

where K is a positive constant [7]. The function H is called the entropy or the
information entropy of the distribution {pi} [7]. It is the unique function satis-
fying the imposed conditions (1-3) [16]. It is important to distinguish between
information entropy, which is a property of any probability distribution, and the
experimental entropy of thermodynamics, which is a property of a thermodynamic
state [16]. We will see later, however, that the concepts are closely related and
that thermodynamic entropy is in fact the information entropy of a particular
probability distribution.

By the definition of a probability function, all probabilities have values between 0
and 1, (0 6 pi 6 1). Each term in the sum of expression (3.4) is therefore negative
and consequently, H > 0. The minimum possible value of the information en-
tropy corresponds to complete certainty and has the value zero. This is obtained
when the probability of one event is 1 and the probability of all the others are
0. The maximum entropy corresponds to maximum uncertainty and is obtained
when all probabilities are identical (pi = 1

n
). In the dice example, the distribution

{1
2 , 0, 0, 0, 0,

1
2} has a significantly lower information entropy (H = 0.69K) than

the distribution {1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6} (H = max = 1.79K). Both distributions give rise

to an average of 3.5, but the last distribution expresses a higher uncertainty than
the former.

It can be useful to think of the expression in (3.4) in a slightly different manner. If
we rewrite equation (3.4) as H(p1, ..., pn) = K

∑
i pi ln(1/pi) we see that it repre-

sents a weighted average over ln(1/pi). The quantity (1/pi) can be interpreted as
the amount of "surprise" in an event xi. If the probability of an event is low, the
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surprise is large if that event actually occurs. Consequently, a lot of information
is conveyed by telling you that xi happened. Thus, information entropy is essen-
tially a measure of the "average surprise" or "average uncertainty" of a random
variable [18]. A more flat distribution, for which H is large, has a high "average
uncertainty", whereas a more peaked distribution, with small H, has a small "av-
erage uncertainty". We are more likely to guess the actual outcome in the latter
case than in the first case.

3.3 Solving the problem: MaxEnt as statistical inference

Shannon provided a unique, unambiguous criterion for the "amount of uncertainty"
represented by a probability distribution. The measure, H, increases with more
options and is additive for independent sources of uncertainty. It agrees with
our intuitive notions that a flat distribution represents more uncertainty than a
sharply peaked one. We now have a means of solving the problem stated in section
3.1. To infer a probability distribution from incomplete information we choose the
probability distribution which has maximum information entropy subject to that
information. In other words, the probability distribution with the largest value for
H of the ones that result in the known average value (the information). This is the
most unbiased probability assignment we can make, because it is based solely on
the information given and makes no additional assumptions not supported by that
information [2]. If we chose any distribution with a lower entropy than the maxi-
mum possible, this would mean that we favor some outcomes over others without
this being supported by the information (they all comply with this already).

The mathematical procedure amounts to maximizing (3.4) subject to (3.1) and
(3.2). From now on, K will be set to 1. The maximization is carried out by use
of Lagrange multipliers λi, the details of which are shown by Jaynes [2]. For a
general problem, with m constraints:

〈fr(x)〉 =
∑
i

pifr(xi) = Fr (3.5)

where r = 1, ...,m, the result is

pi = 1
Z

exp(−[λ1f1(xi) + ...+ λmfm(xi)]) (3.6)

where

Z(λ1, ..., λm) =
∑
i

exp(−[λ1f1(xi) + ...+ λmfm(xi)]) (3.7)

The constraints in equation (3.5) do not have to take the form of sample averages.
Fr can be any data whatsoever, including single measurements. Equation (3.5)
simply means that pi must agree with the available data in the sense that the
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measured value of the constraint, Fr, is recoverable from pi as the expectation
value 〈fr〉. The expectation value, 〈fr〉, is then the estimator of fr with minimum
expected square error [5].

The Lagrange multipliers, λr, are constants that can be determined by substituting
(3.6) into the constraint and normalization condition (3.5) and (3.2). This yields
the result

〈fr(x)〉 = − ∂

∂λr
lnZ, (3.8)

The entropy of the probability distribution (3.6), which by definition is the maxi-
mum entropy distribution, is found by substituting (3.6) into (3.4), which yields

Hmax = lnZ + λ1 〈f1(x)〉+ ...+ λm 〈fm(x)〉 (3.9)
The maximum information entropy, Hmax, is uniquely defined by the set of La-
grange multipliers, λr, or equivalently, by the set of constraints, Fr. It is a matter
of convenience whether we choose F = (F1, ..., Fm) or λ = (λ1, ..., λr) to describe
the imposed constraints. Equation (3.9) also gives [19]:

λr = ∂Hmax

∂ 〈fr(x)〉 (3.10)

The Lagrange multipliers have an important meaning. Not only do they define the
probability distribution, pi, and the value of the maximum information entropy,
Hmax, they also show how the value of the information entropy changes in the
neighborhood surrounding F. They measure the importance of the constraints. In
any variational problem, adding a redundant constraint cannot change the solu-
tion. Any redundant constraints we might include in the statement of the MaxEnt
problem will drop out automatically because it will give a Lagrange multiplier
equal to zero [19]. A highly relevant constraint (corresponding to highly relevant
information) will give a large λr.

The MaxEnt procedure can be regarded as a more rigorous extension of the princi-
ple of insufficient reason presented by LaPlace, where the probability distribution
is uniquely determined as the least biased one. It assigns positive probabilities to
every situation that is not excluded by the given information. Proofs and deriva-
tions of the principle can be found in Jaynes’ papers [2, 19, 16].

3.4 Maximum Likelihood

We have established the favored status of the MaxEnt probability distribution as
the least biased distribution consistent with the given information. The question
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remains now to determine in what sense and how strongly distributions of lower
entropy are ruled out.

The rationale of choosing the most uniform distribution was understood already by
Bernoulli and Laplace [19]. They calculated multiplicities, such as the multinomial
coefficient

W = N !
N1!N2!...Nn

(3.11)

which gives the number of ways of distributing N distinguishable elements into n
categories, each with Ni elements, (i = 1, ..., n). The coefficient was used to find
the distributions, {Ni}, that could be realized in the largest number of ways. The
Stirling approximation reads

lim
N→∞

lnW
N

= −
∑
i

(Ni

N
) ln(Ni

N
) (3.12)

The right hand side of equation (3.12) is in the Shannon entropy form. Even
though we have equality only in the limit, N → ∞, this relationship shows the
connection between entropy and multiplicity. Distributions of higher multiplic-
ity have a larger entropy. This means that they can be realized in more ways.
The connection is important for the Maximum Entropy Principle, because it pro-
vides a justification for why MaxEnt probability distributions are more likely to
be observed than other distributions. When N becomes very large the relative
preference, W2/W1 ∼ exp[N(H2 − H1)], becomes so large that exceptions to the
MaxEnt distribution are (practically) never seen [19]. In thermodynamics, N is on
the order of Avogadro’s number (6× 1023), and W2/W1 becomes extremely large.
This is why we call the Second Law of Thermodynamics a law (violations are still
possible, but they are extremely unlikely).

Jaynes also presented the Entropy Concentration Theorem in order to show that
the majority of the distributions allowed by our constraints have entropies near
the maximum value [16]. This means that most possible probability distributions
are arbitrarily close to the MaxEnt distributions. Jaynes therefore notes that
to choose a distribution with an entropy away from the maximum value would
amount to ignoring the vast majority of all the possibilities allowed by the data
and concentrate our attention instead to a small and unrepresentative subclass of
them [16].

3.5 Jaynes’s Philosophy

The MaxEnt probability distribution agrees with everything that we know and
avoids assuming anything that we do not know. It is the best prediction we are
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3 THE MAXIMUM ENTROPY PRINCIPLE (MAXENT)

able to make based on our incomplete information [8]. The main goal of the Max-
Ent procedure is to predict one or more unknown macroscopic quantities 〈g(x)〉
from one or more known macroscopic quantities (given in the form of constraints).
Inferring the pi’s is a step along the way in order to relate known macroscopic quan-
tities with unknown macroscopic quantities. The unknown macroscopic quantities
are calculated as

〈g(x)〉 =
∑
i

pig(xi) (3.13)

This represents the best guess to the value of G = 〈g(x)〉 given the information
that we have. In some cases, however, this is not a very good guess. Obviously, a
flat probability distribution does not tell us much and Jaynes points out that the
theory makes definite predictions only when, and to the extent that, it leads to
sharp distributions [2]. Even then, it is necessary also for g(xi) to be smooth over
the domain of x. The overwhelming majority of the outcomes with considerable
weight (larger values of pi) must in other words give rise to the same macroscopic
behavior. Without this extra condition, statistical mechanics would have no ex-
perimental validity [2].

The MaxEnt distribution depends on the constraints, F. It also depends on the
prior information that determines the set of allowed outcomes and corresponding
function values fr(x) (e.g. quantum mechanics in statistical physics) [5]. Before
the Maximum Entropy Principle can be used, the problem domain needs to be
set up. In cases involving physical systems, this means that the various states in
which the system can exist need to be identified, and the parameters involved in
the constraints known. For instance, in statistical mechanics, the energy, electric
charge, and other quantities associated with each of the quantum states is assumed
known. If the problem is not set up correctly, even a peaked MaxEnt distribution
will not predict experimental results correctly. This, however, is one of the most
useful aspects of the MaxEnt theory. Experimental evidence that a definite pre-
diction is incorrect, does, according to Jaynes, give evidence of the existence of
new laws of nature. The failures of classical statistical mechanics for instance was
solved by quantum theory [2].

The difference between the subjectivist and the objectivist schools of probability
were introduced in section 3.1. The objectivist (or frequentist) viewpoint tells us
that probability is an inherent property of the real world, equal to the sampling
frequency. The subjectivist (or Bayesian) viewpoint states that probability is a
property of our state of knowledge about the real world [20]. Both schools use
probability theory, but where the objectivist school deals with frequencies and
measurements, probabilities in the subjectivist school are interpreted as a form of
extended logic [21]. We know that x will attain one of the values xi and give each
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of the different pi’s a number between 0 and 1, with a higher number representing
a greater belief that this event will happen, and a lower number representing a be-
lief that this event will probably not happen. When the outcome is learned, these
parameters can be adjusted to 0 or 1, resulting in a zero uncertainty (H = 0). We
use probability as a means of coping with our lack of knowledge. We require that
the probabilities obey the fundamental axioms of probability theory and we can
apply all the common rules of probability theory to them [21]. The pi however do
depend on our state of knowledge and are therefore subjective. Since two observers
may have different knowledge (they might have measured different quantities) this
implies that the probabilities and all the quantities derived from them are observer
dependent [21].

Acording to the subjectivist viewpoint, the probability distributions in statistical
mechanics used by Maxwell, Boltzmann and Gibbs are not properties of nature
but descriptions of incomplete human information about Nature. They yield the
best predictions possible, which in this case are extremely good. Probability distri-
butions in this sense are not "right" or "wrong", but some distributions are better
predictions than others because they contain more relevant information. "Random"
in the subjectivist view simply means "unknown" [22]. It is possible to imagine,
for instance, that if we knew the angle, the height and the initial force vector in
the toss of a dice, we could determine the outcome. Because these initial variables
are unknown to us, we say instead that the outcome is random (at least for a fair
dice).

3.6 Applications of MaxEnt

The first use of MaxEnt can be dated back to Laplace, who used the similar
principle of indifference to infer a probability distribution for Saturn’s mass [1].
Information Theory, as introduced by Shannon in the late 1940’s, is used by en-
gineers to design and analyze communication systems and by neuroscientist to
quantify the amount of information conveyed by a neuron or a population of neu-
rons [18]. The MaxEnt algorithm was developed by Jaynes as a general algorithm
for predicting all the results of equilibrium thermodynamics. He also applied it
to a range of other fields including image reconstruction, spectral analysis and
inverse problems. Later, he applied the method to non-equilibrium statistical me-
chanics. Today, MaxEnt is a widely used variational method for the analysis of
both complex equilibrium and non-equilibrium systems. It is being increasingly
employed in a variety of fields such as nuclear magnetic resonance spectroscopy,
x-ray diffraction, electron microscopy, image reconstruction, ecology and even eco-
nomics to infer from incomplete data sets [23] [1].

In the next chapter I provide a review of MaxEnt in equilibrium thermodynamics.
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This chapter shows the important connection between the MaxEnt formalism and
statistical mechanics. In Chapter 5 I will present how MaxEnt can be applied
to macroecology in the form of METE, providing enormously useful predictions
about the state of ecosystems.

4 MaxEnt and Equilibrium Thermodynamics

Harte presents the MaxEnt theory of Ecology in Maximum Entropy and Ecology
as an analogy to thermodynamics. I have mentioned earlier how thermodynamics
can be derived using the MaxEnt principle. In order to say something about how
far we can take this analogy and to better understand the application of Max-
Ent from a physics perspective, I here include a review of the maximum entropy
method in equilibrium thermodynamics. This will clarify the distinction and the
connection between information entropy and thermodynamic entropy, which will
become important in the analysis of the Maximum Entropy Production principle.

4.1 Conventional Equilibrium Thermodynamics and Statistical Me-
chanics

The systematic study of macroscopic behavior started in the 19th century, and the
laws discovered then formed the subject of "thermodynamics". Clausius defined
the thermodynamic, empirical entropy, S, via the identity dS = δQ/T circa 1850.
In the second half of the century, the theory of the atomic constitution of all mat-
ter gained acceptance and macroscopic systems began to be analyzed from a more
microscopic point of view [24]. Around the turn of the century, statistical mechan-
ics was developed [24]. In the 1870s, Boltzmann interpreted Clausius entropy as
the logarithm of the number of microstates, W , in which a given macrostate can
be realized, S = kB lnW , where kB is Boltzmann’s constant. The second law of
thermodynamics could thus be interpreted as stating that the observed macrostate
is the most probable one, i.e. the one consistent with the largest number of mi-
crostates. In 1902 Gibbs managed to get to Boltzmann’s results by minimizing
the quantity ∑r Pr lnPr with respect to the microstate probabilities Pr and sub-
ject to the appropriate constraints on energy and particle number for a closed
thermodynamic system. Gibbs called this quantity, 〈lnPr〉, the "average index of
probability of phase" [20]. In 1948 Shannon introduced the notion of information
entropy as a measure of the amount of uncertainty associated with a probability
distribution [7]. In the 1950’s Jaynes made the connection between Shannon’s in-
formation entropy, Gibbs’s algortihm and Boltzmann’s work. He showed that the
thermodynamic entropy, S, is the information entropy of the distribution Pr. And
from this point on, he realized that the MaxEnt algorithm is a general recipe for
statistical inference that can be applied to any field, not just thermodynamics [20].
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Entropy is closely linked to the reversibility of processes. The second law of ther-
modynamics states that entropy cannot decrease in an isolated thermodynamic
system (no interaction with the surroundings). If an isolated system undergoes a
process during which the entropy remains constant, this process is reversible. In
any other case, the process will lead to an increase in entropy, and the process is
irreversible. If the system on the other hand is open (can exchange both matter
and energy with its surroundings), we can add energy from the outside and use
this to decrease the entropy in the system. In this case, however, the entropy
of the environment has to increase by at least the same amount, such that the
entropy of the total system (the isolated system including both the system and
its surrounding) does not decrease [1]. For any thermally insulated system un-
dergoing a quasi-static process (i.e. an adiabatic process) δQ is zero by definition
and Clausius relationship tells us that dS = 0. Thus, a quasi-static adiabatic
process is reversible. If we slowly decrease the volume of a thermally insulated
gas, the energy of the systems will change by the amount that we use to compress
the gas, but the entropy will remain constant. We can retrieve the energy we
used, by letting the gas expand slowly back to its original volume (for instance
through potential energy of a spring). We will se below how reversibility is related
to the number of states accessible to the system. If a thermally insulated system
instead undergoes a non-quasi-static process, the entropy will in general increase,
making the process irreversible. Mixing is an example of this [24]. In short, for
reversible processes the entropy of the system and the surroundings remain con-
stant, and the two can be restored to their initial states without loss of energy [25].

Thermodynamics is a macroscopic theory of matter. It mainly looks at the en-
ergy conversion between heat and mechanical work. Statistical mechanics on the
other hand, derives the macroscopic properties by looking at the microscopic con-
stituents. It provides a way of dealing with systems involving very large numbers
of particles. The concept is simple. By applying statistical rules to the micro-
scopic mechanics (classical and quantum) of the microscopic constituents, all the
well-known general rules of the macroscopic properties of thermodynamics arise.
Statistical mechanics demonstrates the statistical nature of all the macroscopic
parameters of classical thermodynamics. Because we are applying statistics to
numbers on the order of Avogadro’s number (1023) the predictions are extremely
accurate [24].

Essential to the analysis of statistical mechanics are the following components [24]:

1. Specification of the states of the system. It is necessary to enumerate the
possible microstates, or equivalently the degrees of freedom, f , of the system
under the given constraints. Clasically, the microstate of the system is speci-
fied by identifying the momentum, p, and the coordinate, q, of each and every
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particle in the system. For N particles, a microstate is usually represented as
a point in 6N -dimensional space, called state space or phase space and corre-
sponding to 6N degrees of freedom. Quantum mechanically, the specification
of the state is equivalent to determining all the quantum numbers of the wave
function. These specifications are complete because, in the classical case, the
laws of classical mechanics are such that knowledge of q and p at any given
time permits prediction of q and p at any later time. In the quantum case,
knowledge of the wave function allows for calculation of all physical quantities
as well as prediction of the state at all later times [24].

2. Statistical ensemble. Instead of focusing on single experiments and single
outcomes, we analyze an ensemble of many identical systems. In a statisti-
cal description the representative ensemble contains all microstates that are
consistent with the specified available knowledge about the system, i.e. the
constraints (e.g. total energy). We can then calculate the probability of a
particular outcome from this ensemble [24].

3. The basic postulate about a priori probabilities. This postulate says that
an isolated system in equilibrium is equally likely to be in any of its accessi-
ble microstates. The validity of the postulate can be determined by making
theoretical predictions based on the postulate and checking that these pre-
dictions are confirmed by experiments. A system will in the course of time
make transitions between all its various accessible states as a result of small
interactions between constituent particles (ergodic hypothesis) [24].

4. Probability calculations. Probability theory lets us calculate the probability
of the outcome of an experiment as the fraction of all microstates with this
outcome over all accessible states as well as expectation values [24].

A microstate refers to a complete determination of all the degrees of freedom of a
system. A macrostate on the other hand is some kind of function of all the par-
ticles. An example is the total kinetic energy, which is the sum of each particles
kinetic energy. If we swap the kinetic energy between two of the particles, the
total energy is unchanged, resulting in the same macrostate for two different mi-
crostates. One macrostate usually corresponds to a large number of microstates.
Boltzmann’s expression, S = kB lnW , state that more likely macrostates have
higher entropy, because they are compatible with more microstates, W . In statis-
tical mechanics all the macroscopic properties are derived as statistical averages
over the relevant ensemble. When macroscopic variables change it means that the
respective ensembles change [24].

A probability distribution of fundamental importance in statistical mechanics is
the Boltzmann distribution, or the canonical distribution. The canonical ensemble
is an ensemble consisting of closed (can exhange heat, but not matter) systems
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in contact with a heat reservoir. All the systems are taken to be in equilibrium
with the heat reservoir. This means that each system has the same temperature.
The total energy shared between the system and the reservoir is conserved and
the average energy of all the systems is Ē = 〈E〉, where the brackets indicate
the average over the ensemble. We want to know the probability, Pr, of finding
the system in any one microstate of energy Er. Note that, in general, several
Er correspond to the same energy, E, such that the probability of finding the
system in any one energy state is Pr times the number of states with this energy.
By using the conservation of the total energy shared between the system and the
heat reservoir, and some mathematical approximations, it can be shown that the
probability of state r is [24]:

Pr = 1
Z
e−βEr (4.1)

where β = 1/(kT ), where T is the temperature, and

Z =
M∑
r=1

e−βEr (4.2)

such that the distribution is normalized. This is the canonical distribution and it
tells us the probability that a closed system at temperature T is in one particular
microstate, r [24]. The probability decreases rapidly with the energy of the system,
Er, because this corresponds to a lower energy for the heat reservoir, and thus fewer
available states for the heat reservoir. β is a very large positive number, on the
order of 1020. The probability of finding the system in any one energy state is

P (E) = 1
Z

Ω(E)e−βE (4.3)

where Ω(E) is the number of states in the system that has energy in the small
range between E and E + δE. Because Ω(E) is a rapidly increasing function of E
(more rapidly the larger the closed system), P (E) is a highly peaked distribution.
The larger the system is, the sharper the maximum of P (E) is. Average values
over the canonical ensemble can be found by either summing the variable over Pr
over all the states (where more states correspond to higher energies), or P (E) over
all the energies [24]. The sharpness of the distribution assures that the variable
we are averaging over will also be peaked.

The thermodynamic entropy can be expressed using the Clausius relationship and
an expression for thermodynamic work in terms of Pr as [24]

S ≡ kB(lnZ + βĒ) (4.4)
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4.2 Connection to Information Entropy

Looking closely at the expression for the thermodynamic entropy, (4.4), we no-
tice that it looks very similar to the expression for maximum information entropy,
(3.9), presented in section 3.3. In fact, if we set λ1 = β and 〈f1〉 = Ē and we
use K = kB instead of K = 1 in equation (3.4), the two expressions are equiv-
alent. Jaynes worked out the connection between thermodynamic entropy and
information entropy when he showed what the Gibbs algorithm meant by ap-
plying Shannon’s work to Boltzmann’s insight [20]. Jaynes proposed MaxEnt as
a universal method for constructing the microscopic probability distributions of
statistical mechanics, and demonstrated how all the results of both equilibrium
and non-equilibrium statistical mechanics are derivable consequences of this prin-
ciple [19].

An alternative derivation of the canonical distribution, clearly illustrating the rela-
tionship to Jaynes’ maximum entropy method, is as follows. We have an ensemble
of N systems, of which nr are in state r. The constraint∑r nr = N must then hold.
The probability, Pr, that a system in the ensemble is in state r is then Pr = nr/N .
Using this, the previous constraint reduces to the normalizaton condition on Pr.
We then impose one extra constraint on the ensemble, that the average energy is
Ē, which means that ∑r PrEr = 〈E〉 = Ē, where Er is the energy of a system in
state r. The number of ways of putting a distinct ensemble in the different states,
nr, is given by the multiplicity of N , W{nr} = N !/(n1!n2!...nM !) for M states.
From the Stirling approximation we know that maximizing W{nr} is equivalent to
maximizing ∑r Pr lnPr and the result of the maximization thus yields the MaxEnt
distribution Pr = 1/Ze−βEr , which depends on the constraint, Ē. As we see, this
is equivalent to the canonical distribution (4.1) [24]. The identification of temper-
ature, free energy, etc. can then be derived from this distribution. Among the
results are β = 1/kBT and S = −kB

∑
r Pr lnPr, where K = kB is the Boltzmann

constant and T is the temperature [2]. The thermodynamic entropy is therefore
identical to the information entropy of the canonical distribution, which is the
MaxEnt distribution of a particular system for which the average energy is given.

The connection between the entropy, S = k(lnZ + βĒ), and the information
theoretical expression for entropy can also be shown directly
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S = k
(
lnZ + βĒ

)
= k(lnZ + β

∑
r

PrEr)

= k(lnZ −
∑
r

Pr ln (ZPr))

= k(lnZ − lnZ
∑
r

Pr −
∑
r

Pr lnPr)

= −k
∑
r

Pr lnPr

where we have used that ZPr = e−βEr and ∑r Pr = 1 [24].

The sharpness of the Boltzmann distribution with respect to E (not with respect
to Er) assures that any one system under the given constraints is most likely to
have the energy Ē. No ergodicity or a priori equal probabilities are assumed in this
derivation. It is simply shown using the MaxEnt algorithm that the overwhelming
majority of all states will have this energy. It is only our best guess, but in this
case that is an extremely good guess.

The relationship between S = k(lnZ + βĒ) and the expression S = −kB lnW
proposed by Boltzmann can be derived as follows. We have that Z = ∑

r e
−βEr =∑

E Ω(E)e−βEr . W is the number of microstates with a certain macroscopic value
for some macroscopic variable, in this case energy. Thus, W (E) = Ω(E). Since
the summand is extremely peaked around the average value of the energy, Ē, only
the values in a narrow range ∆Ē make a significant contribution to the sum. We
can therefore write Z = Ω(Ē)e−βĒ(∆Ē/δE), where the fraction is the number
of intervals δE contained in ∆Ē. If we take the logarithm of the last expres-
sion, simplify it and combine it with the expression for S above, we arrive at
S = −kB ln Ω(Ē) = −kB lnW [24].

The macroscopic state of a system is defined by specifying the external parameters
of the system and any other conditions to which the system is subject [24]. The
external parameters are those macroscopically measurable independent parame-
ters (e.g. volume, strain tensor, gravitational potential) that are known to affect
the value of the different energy levels of the system (Er = Er(α1, α2, ...) where
αi are the external parameters) [2]. Several connections can be made between the
thermodynamic behavior and the canonical probability distribution via the infor-
mation theoretical expression for the entropy. Since the entropy remains constant
in a (quasi-static) adiabatic process, the Pr’s must also remain constant. A change
in external parameters will change the total energy, because it changes the energy
of each particle, but not the entropy, as long as the process is adiabatic and quasi-

21



4 MAXENT AND EQUILIBRIUM THERMODYNAMICS

static. Changes of this sort are reversible, and are referred to as work. If instead,
heat is allowed to flow over the system boundary, the probability distribution itself
can change. Heat is therefore represented by change in the Pr’s. The energy of each
state is unchanged in this situation, and the change in total energy comes from
the change in the average due to the change in the probability distribution. It is
worth noting that reversible processes can also involve heat and therefore changes
in entropy for the system, but only in the case where the combined entropy of the
system and its environment remains constant. Change in energy for a system, in
general, is due to a combination of work and heat (dE = δQ − δW ), where work
is the amount of change in the mean energy of the system due to changes in the
Er’s and heat is the change in energy due to changes in the Pr’s [24].

Statistical mechanics before Jaynes’s time was (and usually still is) constructed
based on the equations of motion, supplemented by additional hypotheses of er-
godicity, metric transitivity, or equal a priori probabilities (see the 4-point list in
the previous section). The mathematical expressions concerning maximization of
entropy in Gibbs’s work are given status as side remarks not essential to the theory
and the identification of entropy is usually made only at the end, by comparing the
resulting equations with the laws of phenomenological thermodynamics. Jaynes,
however, showed that the logic can be turned around and that it is possible to take
entropy as the starting concept. The fact that the canonical probability distribu-
tion is the one giving the maximum of the entropy subject to the constraints is the
essential fact justifying the use of this distribution for inference. The fundamental
statistical postulate about a priori equal probabilities of each state in an isolated
system leads to the same results as Jaynes’s MaxEnt derivation, but the inter-
pretation is different. In Jaynes’s case the uniform probabilities are the MaxEnt
distribution when no other information is given. Equal probabilities are simply
our least biased guess. It is not a postulate about nature, but a consequence of
our lack of knowledge [24]. The MaxEnt derivation of the canonical distribution
and the results then show that the rules of statistical mechanics can be justified
independently of any physical argument. In fact, Jaynes interpreted statistical
mechanics as a form of statistical inference, rather than a physical theory. His
method leads to a conceptual and mathematical simplification of the results and
frees the theory from physical hypotheses. The principles and mathematical meth-
ods thus become available for treatment of many new physical problems [2].

The only place where "subjective" statistical mechanics (the MaxEnt method)
makes contact with the laws of physics is in the enumeration of the different pos-
sible states in which the system might be. This lack of "physics" in the derivation
makes it apparent how little content the argument really has. The reason why we
are still able to make very accurate predictions based on statistical mechanics is
the large number of degrees of freedom, caused by the large number of particles.
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This leads to the sharpness of the canonical distribution, which again causes the
probability distributions of the usual macroscopic quantities to possess a single ex-
tremely sharp peak (which is also why it doesn’t matter whether we consider the
median, the average, or the most probable estimate when calculating macroscopic
variables: they all coincide).

Martyushev et al. points out that Jaynes’s approach is viewed as the simplest and
most convenient method for construction of equilibrium statistical (classical and
quantum) thermodynamics. By using Jaynes’ formalism it is possible to take the
information principle as initial (instead of physical properties) and derive statistical
physics from it [6]. In the next chapter, we will see how the same method, that has
been used to successfully derived all the known results of thermodynamics, can be
used in ecology.

5 The Maximum Entropy Theory of Ecology (METE)

Macroecology is highly relevant for conservation biology, which is aimed at preserv-
ing biological diversity in a world where ecosystems are affected both by natural
events and human activity [26]. Some of the most fundamental questions conser-
vation biologists seek the answers to are: a) how we can estimate species diversity
at large scales from small-scale census data, b) how we can infer abundance from
sparse presence/abscense data, c) how we can estimate the number of species that
will be lost under habitat loss and d) how to determine the most likely associations
of habitat characteristics with species presence [1].

I will here describe the Maximum Entropy Theory of Ecology (METE) presented
by John Harte in his book Maximum Entropy and Ecology: A theory of Abundance,
Distribution, and Energetics coming out on Oxford University Press in June 2011.
As a part of my work, I reviewed the draft of this book and provided conceptual and
mathematical feedback that helped shape the final result. METE provides both
the background for my work on the variance in Chapter 6, and the starting point
for my work on the Maximum Entropy Production Principle (MEP) in ecology. I
here explain what METE is and show how it provides answers to the questions in
conservation biology presented above.

5.1 Basics of METE

METE is a simple theory. The point is not to give detailed predictions, but to
predict the most central tendencies, similar to the way the equations of free fall
give a good first prediction for the trajectory of a ball. The deviation of the actual
trajectory from the prediction tells us how important other factors are, and if we
want more accurate predictions, we can include friction. Just like the failure of the
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5 THE MAXIMUM ENTROPY THEORY OF ECOLOGY (METE)

ideal gas law lead to the understanding of dipole-dipole forces between molecules,
failures of METE can be used to understand mechanisms in ecosystems better.
Failure also drives science forward. METE in in a sense similar to a null hypoth-
esis in statistcis.

Analogous to thermodynamics, METE is defined by its state variables. State
variables are properties of the system that need to be specified to implement
the theory, but whose determination lies outside of the theory itself. The state
variables in METE are:

A0 : the area occupied by our ecosystem

S0 : the number of species within this area

N0 : the total number of individuals in all the species in this area

E0 : the total metabolic rate for all the individuals.

Area, A0, is chosen as the first state variable because it is the obvious measure
of the physical scale of the system (analogous to volume in thermodynamics). S0
is chosen because of the central role that species richness plays in ecology and in
macroecological metrics. Species here is not restricted to species in the usual sense
(taxonomic species), but can mean any defined set of groups of individuals, like a
family or a trait group. The number of species will vary greatly depending on the
type of habitat. For instance, a rainforest has a lot more species than a desert, but
we do not necessarily include all the species that exist in A0 into S0. Sometimes
we might only be interested in plants. Total abundance, N0, and total metabolic
energy rate, E0, are chosen as the remaining two state variables because they scale
additively and increase linearly with area. The individual organism and its energy
requirement are also of fundamental importance in biology. The last two state
variables share a close analogy to the number of molecules and the total internal
energy in thermodynamic systems [27]. Individuals are used in the usual sense of
the word, but it could perfectly well mean a cluster or another grouping of indi-
viduals. The number of species and the number of individuals are dimensionless,
and the total metabolic rate has the dimension of power (energy over time). An
ecosystem, in this thesis, is taken to mean a set of state variables, S0, N0, E0 and
A0.

With the definition of the state variables at hand, we can start looking at the
important metrics of macroecology.

5.2 Metrics in Macroecology

A macroecologist aquires data about real ecosystems through censusing. The data
is then analyzed in order to answer research questions. Observed data can be
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used to produce graphs and obtain metrics. Metrics simply refer to the functions
used to express relationships between data. Censusing requires a certain amount
of resources, depending on the scale of the data collection. We are not able to
collect data for instance, for the entire Amazon. It is therefore in our interest to
be able to say as much as possible from as little data as possible. If the metrics
obtained from smaller scales are believed to hold generally they can be used to say
something about ecosystems at larger scales, for which we have no data.

I will present a subset of the metrics presented by Harte: the ones relevant to my
work. In the next chapter, I show how these metrics are derived theoretically in
the framework of METE.

The metrics are divided into two categories: species-level metrics and community-
level metrics. Species-level metrics describe properties within one species, whereas
community-level metrics describe properties of a collection of species. The ecosys-
tem can be of any size, from a pond, to the entire Amazon. Each metric takes
the form f(X|Y ), where X denotes the usual independent variable, and Y de-
notes the quantities that the value of f for each X is conditional on (which can
also be treated as the independent variable). When f is a probability distribution
we recognize this notation as the conventional notation for conditional probabilites.

The Spatial-Abundance Distribution, Π(n|A,n0, A0)
This is a species-level metric denoted by Π(n|A, n0, A0). For a species that has
abundance n0 in area A0 this metric tells us the probability that we will find n
individuals of this species in the area A where A 6 A0. The shape of a real spa-
tial abundance distribution compared to the theoretical Π(n|A, n0, A0) can reveal
whether individuals within a species are randomly placed, spread out, or clustered.

The Species-Abundance Distribution (SAD), Φ(n|S0, N0)
In most ecosystems some species are rare, whereas others are abundant. For in-
stance, you will usually find a lot more mice than bears in a forest. The distribution
of common versus rare species is one of the most widely studied metrics in macroe-
cology. The Species-Abundance Distribution (SAD) is a community-level metric.
It is a probability distribution, denoted by Φ(n|S0, N0), telling us the probability
that a species has abundance n. This is a community-level metric because it deals
with the collection of a number of species. The probability distribution depends
on the number of individuals, N0, the number of species, S0, and the area they
inhabit, A0. Note the different meaning of n here (total abundance of a species
in A0), and in the previous metric (number of individuals in A). The expected
abundance must be N0/S0 such that
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〈n〉 =
N0−S0+1∑
n=1

Φ(n)n = N0

S0
(5.1)

The Species-Area Relationship (SAR), S̄(A|S0, N0, A0)
The Species-Area Relationship is a community-level metric denoted by S̄(A|S0, N0, A0).
Unlike the previous two metrics, this is not a probability distribution. The SAR
tells us how many species we expect to find in an area A and the bar is used
to denote average value. Typically, A0 is divided into half-plots such that (A =
A0, A0/2, A0/4, A0/8, ...). All the smaller plots are therefore contained within the
larger plots, and S̄(A) is a monotonically increasing function of A. When comput-
ing empirical values for this relationship we count the number of species in each
plot of a certain size (for example in the 8 plots of size A = A0/8) and compute
the average. We then repeat this for each plot size. Different mechanisms (e.g.
environmental conditions, competition, dispersal) can be used to explain the spe-
cific shape of the SAR when we compare actual distributions to theory.

The probability that a species with abundance n0 is present in an area A is equal
to 1 minus the probability of absence. Using the Spatial-Abundance Distribution
defined above this is: [1− Π(0|A, n0, A0)]. The average number of species in A is
then

S̄(A) =
∑

species

[1− Π(0|A, n0, A0)] (5.2)

i.e. the sum of the probabilities of presence for each species. This sum can only
be taken if we know the abundances of all the species, {n0}. More commonly we
do not know the abundances and use instead

S̄(A) = S0

N0−S0+1∑
n0=1

[1− Π(0|A, n0, A0)]Φ(n0) (5.3)

where Φ(n0) is the Species-Abundance Relationship defined above. S0Φ(n0) is
the expected number of species with abundance n0. This is multiplied by the
probability of presence for a species with abundance n0 to find the total probability
of presence for a species with this abundance. The sum is then taken over all the
abundances to get the expected number of species in A.

5.3 Deriving METE

The Maximum Entropy Theory of Ecology (METE) represents an entirely new
method of arriving at different ecological metrics, some of which are presented
above. As the name reveals, the method is based on applying the principle of
Maximum Entropy to ecology. This gives METE the advantages of saying a lot
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using few variables, namely the state variables defined in section 5.1. As shown
in section 3.5, we need to define the fundamental entities (e.g. gas molecules in
thermodynamics) and events (microstates in thermodynamics) before we can ap-
ply the MaxEnt algorithm. The state variables, S0, N0, E0 and A0, will act as
our constraints. The only criteria for choosing the fundamental entities in a Max-
Ent application is that they are unambiguously defined in a manner that allows
specification of the numerical values of the constraints. There is no a priori way
of justifying the choice of state variables or the fundamental entities, and the suc-
cess of the choice is ultimately determined by comparison of the predictions with
empirical data.

Central to METE are two different probability distributions derived from two sep-
arate MaxEnt applications. The first probability distribution, R(n, ε), yields all
the metrics describing the distribution of energy and abundances. The second dis-
tribution is the Spatial-Abundance Distribution, Π(n), introduced in the previous
section.

The Ecosystem Structure Function, R(n, ε)
R(n, ε) is a joint probability function defined over the species and the individu-
als in A0. R(n, ε) is discrete over the abundances, n, and continuous over the
metabolic rates of individuals, ε. Note that n in this setting refers to total abun-
dance of a species, not number of individuals. The Ecosystem Structure Function
describes how abundances are distributed among species, and how metabolic rates
are distributed among individuals. More specifically:

R · dε is defined as the probability that if a species is picked at random,
it has abundance n, and, that if an individual is picked at random from
that species (with abundance n), it has metabolic rate in the interval
(ε, ε+ dε).

The minimum metabolic rate is defined to be εmin = 1. The normalization condi-
tion on R(n, ε) reads

N0−S0+1∑
n=1

∫ E0−N0+1

ε=1
dε ·R(n, ε) = 1 (5.4)

The upper limits in the sum and the integral are simply the maximum possible
energy available to an individual, and the maximum number of individuals avail-
able to a species. The upper limit on n is N0 − S0 + 1 because each species that
is present has to have at least one individual (or else it is obviously not present).
In most applications however, N0 >> S0, and setting the limit to N0 yields a
good approximation. The upper limit on the integral is E0 −N0 + 1 because the
minimum metabolic rate per individual is one, and hence the maximum energy
available to one individual is the total minus the minimum needed by the other
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individuals. In most cases, E0 >> N0, and we can set the last limit to E0. I will
use these approximate limits in all of the following expressions.

The state variables, S0, N0 and E0 determine the constraints in the form of averages
in our first maximum entropy application. The three state variables define two
constraints, the average abundance per species N0/S0, and the average over species
of the total metabolic rate E0/S0:

N0∑
n=1

∫ E0

ε=1
dε · n ·R(n, ε) = N0

S0
(5.5)

N0∑
n=1

∫ E0

ε=1
dε · n · ε ·R(n, ε) = E0

S0
(5.6)

We assume nothing about how the individuals are distributed over the species (if
the species tend to have similar abundances, or if some tend to have a very low
abundance, and others a very high abundance) or how the energy is distributed
among the individuals. The only information we have are the state variables, S0,
N0 and E0. From this incomplete information (in the sense that it is not enough to
determine the actual distribution of energy or abundances among species), we seek
to infer the shape of R(n, ε). In order to do this we apply the MaxEnt algorithm
and maximize the continuous form of the information entropy

IR = −
N0∑
n=1

∫ E0

ε=1
dε ·R(n, ε) · ln(R(n, ε)) (5.7)

subject to the constraints, (5.5) and (5.6), and the normalization condition (5.4).

The goal of METE is not simply to determine the distribution for R(n, ε) it-
self. Rather, R(n, ε) is used to derive several other distributions. The Species-
Abundance distribution has more direct use than R(n, ε) and is found as

Φ(n) =
∫ E0

ε=1
dε ·R(n, ε) (5.8)

The Species-Level Spatial Distribution Π(n)
The Species-Level Spatial Distribution, Π(n|A, n0, A0), is derived from a separate
application of the MaxEnt algorithm. Here, n denotes number of individuals in a
species, not the abundances (as in Φ(n)). The normalization condition is

n0∑
n

Π(n) = 1 (5.9)
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where I have left out the conditional variables in the expression, A, A0 and n0. Only
one of the state variables, A0, are used in the derivation of this distribution, but
we need to know the abundance of the species. The average number of individuals
in area A must be proportional to the area, n0A/A0, which gives us the constraint
equation

n0∑
n

n · Π(n) = n0
A

A0
(5.10)

In order to obtain the distribution, Π(n), we maximize the information entropy

IΠ = −
n0∑
n

Π(n) ln(Π(n)) (5.11)

subject to (5.9) and (5.10).

5.4 Resulting metrics

Using the notation presented in section 3.3 in the derivation of R(n, ε) we have
f1 = n, f2 = nε, 〈f1〉 = N0/S0 and 〈f2〉 = E0/S0. Substitution directly into
equation (3.6) and (5.13) gives the results

R(n, ε) = 1
Z(λ1, λ2)e

−λ1ne−λ2nε (5.12)

and,

Z(λ1, λ2) =
N0∑
n=1

∫ E0

ε=1
dε · e−λ1ne−λ2nε (5.13)

The Lagrange multipliers are expressed in their exact form by plugging (5.12) into
the constraint equations (5.5) and (5.6). These expressions, however, are lengthy
and cannot be solved for analytically. For most combinations of the state variables,
and as long as S0 > 4, the following expressions yield good approximations to the
Lagrange multipliers [1]. The larger S0 is, the better the approximations are.

λ2 ≈
S0

E0 −N0
(5.14)

S0

N0
≈ β ln

(
1
β

)
(5.15)

Z ≈
ln
(

1
β

)
λ2

(5.16)
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where β = λ1 + λ2. From the above results and approximations Harte derives the
resulting Species-Abundace distribution [1]

Φ(n) ≈ 1
ln
(

1
β

) · e−βn
n

(5.17)

For the Species-Level Spatial Abundance Distribution, with f1 = n, and 〈f1〉 =
n0A/A0 we get [1]:

Π(n) = 1
ZΠ

e−λΠn (5.18)

where
ZΠ =

n0∑
n=0

e−λΠn = 1− e−λΠ(n0+1)

1− e−λΠ
(5.19)

In order to get the Lagrange multiplier, λΠ, we insert (5.18) back into the con-
straint, (5.10). The Lagrange multiplier depends on n0, A and A0, which gives the
aforementioned dependence of Π(n) on these variables. In the special case where
A = A0/2 we obtain Π(n) = 1/(1 + n0), telling us that any distribution of the
individuals into half plots is equally likely [1].

5.5 Evaluation of the model

The goal of METE is to derive numerous macroecological metrics from one funda-
mental principle, the MaxEnt principle [27]. The MaxEnt algorithm is an appli-
cation of logic. It is a rigorously proven mathematical procedure for inferring the
most likely probability distribution when our knowledge about that distribution
can be incorporated as a set of constraints on the distribution. Physical or bio-
logical processes are incorporated into METE only in the form of the constraint
equations, which themselves make no assumptions about any mechanisms. Fur-
themore, there are no adjustable fitting parameters. The method itself is therefore
absent of any known relationships in ecology. Yet, METE provides a theoreti-
cal framework predicting all the central tendencies for the entire range of metrics
at once. Each metric alone might still be better predicted by alternative models,
but the purpose of METE is to provide a unified, theoretical model of ecology [27].

The Spatial-Abundance Distribution Π(n) can be found for any species as long as
we know its abundance n0 in A0. This distribution is separate from the distribu-
tions derived from S0, N0 and E0 via R(n, ε) (including Φ(n)). The purpose of
METE, however, is to be able to derive all the metrics from the state variables, S0,
N0, E0 and A0, alone, without knowledge of the abundances {n0}. We can do this
by using Φ(n0) to predict the abundances and then apply the Spatial-Abundance
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Distribution, Π(n), to these abundances, as in equation (5.3). The Species-Area
Relationship, S̄(A), is then completely determined by the measured value of S0,
N0 and E0 only. This is a unique feature of METE compared to other models in
macroecology. For the predictions to be valid, both Φ(n0) and Π(n), have to be
valid [27]. Only when we are testing the predictions of Π(n) is it useful to know
the actual abundances [27].

Of fundamental importance to the theory is the ability to make predictions at
spatial scales for which we do not have data. Φ(n0) can be found at any spatial
scale A finer than A0 by using NA = N0(A/A0) and SA = S̄(A) as constraints.
However, we are usually not interested in predictions at finer scales because we
usually have the data for this if we have the data at the larger scale. This is only
really used to test the predictions. What we are really interested in is to predict
the state variables and the distributions at larger scales. This enables us to make
predictions based on smaller censusing plots regarding the total surrounding area.
An upscaling of the predictions based on Bayes’ rule is possible for all our distri-
butions. The specific technique is described in Harte’s book [1].

The different ecological metrics are important because they help answer the central
questions in conservation biology, a) - d) stated at the beginning of this chapter.
The Species-Area Relationship can be used to scale up values from a smaller plot
where we are capable of conducting a complete census, to a larger plot, thereby
providing answers to question a), how to estimate species diversity at different
scales. Diversity however, does not only regard presence or absence of species, but
also their relative abundances. This can be obtained from the Spatial Abundance
Distribution, which can also provide good answers to b), estimating abundances
from sparse data. If a species has a very low abundance it is generally at a higher
risk of extinction and if we combine the SAR and the SAD we can say something
about how many species are at risk of extinction in a certain area, answering c).
Whether a species is unique to the area of question is also important in order to
measure the risk of extinction, and this is another metric that can be obtained
from METE (not included here). The shape of the graphs of the different metrics,
that is, how they deviate from predictions, can give us hints about d), the habitat
characteristics.

In 2008, Harte et al. compared the various macroecological metrics derived from
METE with observed data from a variety of spatially explicit vegetation data
sets [27]. A vast amount of data is also compared to theory in the book, Maximum
Entropy and Ecology [1]. It is shown that the equal-allocation prediction for half-
plots match several data sets well and that the Species-Abundance Distributions
show a good fit with all data [1]. Considering that no parameters are available to
adjust the predicted SAR’s, Harte et al. state that these predictions also fit quite
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reasonably with data [27].

Since the MaxEnt procedure gives us only the best guess based on the information
we have, the predictions obtained from it are only as good as the information itself.
The power of the principle however, is that the logic can be turned around, and we
can test the predictions against empirical data in order to let systematic discrep-
ancies between predictions and data lead us onto unknown processes (this assumes
of course, that the already included constraints are measured correctly). METE
is a null theory because it makes falsifiable predictions assuming no explicit mech-
anisms and its value derives in part from the nature of its failures. Harte points
out that failure in the predictions are expected for systems in rapid change, i.e.
systems where the state variables change over relatively short time intervals. Also,
the SAR’s are likely to fail if the theory is used to scale up from a homogenous
habitat, to a heterogenous habitat, because there will be more species if our area
consist of several different habitats [1]. Harte et al. therefore suggest a large-scale
heterogeneity as an additional constraint in METE [27].

Lastly, it is worth commenting on the choice of the Ecosystem Structure Function,
R(n, ε). The choice of state variables have their arguments in section 5.1 but the
exact definition of R(n, ε) might seem somewhat arbitrary. The truth is that it
is. Harte tested a range of different versions before arriving at this function, and
found that this gave the best predictions. In other words, it is chosen because it
works.

The next chapter is devoted to my investigation of the distribution of number of
species.

6 A study of variance

The sharpness of the probability distributions arising in statistical mechanics is
one of the reasons why it works as a description of nature. It is entirely possible
that all the molecules in a room are found on one side of the room, but this is ex-
tremely unlikely - so unlikely that we call it impossible in our day to day language.
The entropy concentration theorem states that the vast majority of possible distri-
butions have entropies near the maximum value, hence, most distributions allowed
by the constraints are very close to the MaxEnt distribution [28]. Consequently,
it is extremely unlikely that we will find a system in a distribution very different
from the MaxEnt distribution, which in the case of the gas molecules and the
room, would be the even distribution of molecules over the entire room.

Under what conditions do we get such sharp distributions? In statistical mechan-
ics, the extremely large number of particles, which is on the order of Avogadro’s

32



number (∼ 1023) assures this. In our case we are dealing with a number of species,
S0, on the order of 102-104 and the number of individuals, N0, is on the order
of 103 - 105. These numbers are large, but certainly not as large as Avogadro’s
number.

In order to answer the question of how well METE works as a description of na-
ture, we have to look more closely at the probability distributions predicted by the
theory. One of the most important metrics obtained from METE is the Species-
Area Relationship, S̄(A), which tells us the expected number of species in an area
A. When A < A0 this metric is obtained from equation (5.2) if we know the abun-
dances, {n0}, and from equation (5.3) if we do not know the abundances. The
metric can also be used to predict the number of species in a larger area for which
we have no information by using the upscaling technique presented by Harte [1].

The Species-Area Relationship tells us the expected number of species in A, but it
does not tell us the probabilities of finding a specific number of species in A. If we
want to know whether the expectation value is a good prediction or not, we need
to know what the probability distribution for finding s number of species in A,
PA(s), looks like. This probability distribution is unknown, but can be expressed
implicitly as

S̄(A) = 〈s〉 =
∑
s

sPA(s) (6.1)

where s ∈ (0, S0) when A < A0. We can find none or all the species in A, or
any number in between. If PA(s) is a flat distribution, the expected number of
species is not a good prediction in the sense that we will often find a different
number of species in A (but the expectation value will still give the lowest square
error in a series of guesses). If PA(s) is a peaked distribution on the other hand,
the expectation value is a good guess because it is uncommon to find a different
number of species than the expected value. A good measure for the certainty of
finding the expected number of species is the variance of PA(s)

σ2
S =

∑
s

(s− 〈s〉)2PA(s) =
〈
s2
〉
− 〈s〉2 (6.2)

In order to compute the variance we need to know the expression for PA(s). I
will illustrate how this can be found with a simple example. Say we have two
different species, 1 and 2, with abundances n0,1 = 1 and n0,2 = 4, in A0. We
want to know the probability of finding s species in a quarter plot, A = A0/4,
that is, PA0/4(s), where s ∈ (0, 2). The probability of finding n individuals of
species 1 in A is given by Π1(n|A, n0,1, A0) = Π(n|1/4, 1, 1) and of species 2 in
A by Π2(n|A, n0,2, A0) = Π(n|1/4, 4, 1). The distribution of the two species are
independent of each other, that is, Π1(n) is independent of Π2(n).
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6 A STUDY OF VARIANCE

We start out with the case where both species are absent, s = 0. The probability
of absence for species 1 is Π1(0) and for species 2 it is Π2(0). Since the two are
independent of each other, the probability that both species are absent is simply:

P (s = 0) = Π1(0)Π2(0) (6.3)

The situation where s = 1 can be satisfied in more than one way. Either species
1 is present, or species 2 is present. The probability that s = 1 is therefore the
sum of the probability that species 1 is present and 2 is absent, and that species
1 is absent and 2 is present. Whereas species 1 only has one way of being present
(having its one individual in A), species 2 has four ways of being present (it can
have one, two, three or four individuals in A). We get:

P (s = 1) = Π1(1)Π2(0) + Π1(0)[Π2(1) + Π2(2) + Π2(3) + Π2(4)] (6.4)
= Π1(1)Π2(0) + Π1(0)[1− Π2(0)] (6.5)

where we have used that the probability of presence for any species is [1− Π(0)].
When s = 2 both species have to be present. We have again one way for species 1
of being present, combined with 4 ways of species 2 being present. The result is:

P (s = 2) = Π1(1)[1− Π2(0)] (6.6)

The range of s and the number of combinations for each value increases with the
number of species, S0, but the logic is the same. It is just a matter of multi-
plying and adding probabilities of presence and absence for every species. As S0
increases however, the number of combinations of presence and absence in the
range 1 ≤ s ≤ S0 − 1 becomes very large very fast. For instance, if S0 = 100 and
we want to know PA(s = 50), the number of different ways 50 out of 100 species
can be present is given by the binomial coefficient, 100!/50!50! ≈ 1029. If, in ad-
dition, {n0} is unknown, we have to take into account every possible distribution
of abundances. In the example above, where S0 = 2 and N0 = 5, the only two
possible abundance distributions are {1, 4} and {2, 2}, but the number of combi-
nations becomes increasingly larger with more species and more individuals. If we
didn’t know the actual abundances we would have to multiply all the probabilities
obtained above, with the probability of observing the distribution {1, 4}. This can
be found using the Species-Abundance Distribution, Φ(n). We would then have
to repeat the procedure for the distribution {2, 2}. We see how this gets very
complicated, very fast, for large numbers of S0 and N0.

In order to compare theory with data, I look at the case where the distribution
of abundances, {n0}, is known. Π(n) can be expressed in a simple form when
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A = A0/2, but even in this case, deriving a compact expression for PA(s) is either
very difficult, or impossible. In order to study the probability distribution, PA(s),
for all A < A0, I chose instead a numerical procedure. The method is inspired by
a discussion with Justin Kitzes, a graduate student at UC Berkeley, who has been
working on similar calculations for other metrics in METE.

The method is based on random draws from the different Πi(n)’s where i denote
the species number. If we draw a sufficient amount of times, the frequency distri-
bution of the different n’s will approach the theoretical distribution (by the central
limit theorem). I looked at the case where A = A0/256 in order to compare with
two available data sets, but the method can be applied for any A < A0. The
simulation procedure is as follows:

1. For species, i, draw randomly from Πi(n) = Π(n|1/256, n0,i, 1).
2. Decide whether species i is present (assign 1) or absent (assign 0).
3. Repeat for all species, i = (1, ..., S0), present in A0.
4. Count the total number of species present in A by summing the assigned values.
5. Repeat steps 1. - 4. a sufficient number of times, T (explained below).
6. Compute 〈s〉 and σ2

s from the simulated values.
7. Plot the frequencies at which s species are found.

The simulations were done in MATLAB and the code can be found in APPENDIX
A. The computations in step 6. are done by using equations (6.1) and (6.2) with
PA(s) = f(s)/T , where f(s) is the number of times we get s species in T repeti-
tions.

The abundances used in the simulations correspond to the actual abundances
observed in Little Blue Ridge, a californian serpentine grassland, in 1998 and
2005 [29]. The data sets describe the spatial distribution of over 37 000 plants cov-
ering a 8m× 8m plot. The number of individuals from each species was recorded
for each of the 256 subplots of area A = 0.25m2.

Π(n) gives us the expected fraction of cells with n indivduals. If we multiply
this with A0/A we get the expected number of cells with n individuals. The
sum ∑ (A0/A)Π(n)n then gives the total number of individuals, n0 (as it should,
from the constraint equation (5.10)). I have plotted six theoretical distributions,
(A0/A)Π(n|1, n0, 256), for the abundances {10792, 6990, 1418, 112, 50, 1}, to-
gether with the actual values found in the real data for these species in Figure 1
and 2 below. The vertical axis tells us the predicted and observed number of cells
with n individuals, which is given on the horizontal axis. We see that the central
trend of the predictions (an exponential decrease) are also found in the real data.
However, there are a few obstacles to directly comparing (A0/A)Π(n) with the
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6 A STUDY OF VARIANCE

(a) n0 = 10792, predicted (b) n0 = 10792, observed

(c) n0 = 6990, predicted (d) n0 = 6990, observed

(e) n0 = 1418, predicted (f) n0 = 1418, observed

Figure 1: Predicted number of cells with n individuals, Π(n)A0/A, on the left and observed
number of cells with n individiuals on the right. Data from Little Blue Ridge, 1998 [29].
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(a) n0 = 112, predicted (b) n0 = 112, observed

(c) n0 = 50, predicted (d) n0 = 50, observed

(e) n0 = 1, predicted (f) n0 = 1, observed

Figure 2: Predicted number of cells with n individuals, Π(n)A0/A, on the left and observed
number of cells with n individiuals on the right. Data from Little Blue Ridge, 1998 [29].

37



6 A STUDY OF VARIANCE

observed data. In the real data sets we have a discrete number of cells for each n.
Π(n) however, is a continuous function and when we multiply it with the number
of cells of area A, (A0/A), we do not (in general) get a discrete number of cells
for each value of n. This can be seen in Figure 1(a), where most of the predicted
number of cells lie between the discrete numbers on the vertical axis. Obviously,
we will not find 4.5 cells with 10 individuals, which is what is predicted. The
real data will therefore never look exactly like the theoretical predictions. If we
instead of 4.5 cells have 4 cells with 10 individuals, we must increase one of the
other rectangles to account for the 5 "missing" individuals, for instance by increas-
ing the value of the number of cells with 5 individuals by one. Whereas we expect
the actual number of cells in this case to be either 4 or 5, finding the expected
number of cells where the predictions are far below one becomes increasingly more
difficult. I will discuss this issue further below.

For now we can state that the theory predicts the general trends found in the
real data. I have included a representative collection of distributions for a range
of abundances. One thing to notice is that the actual number of cells with zero
individuals is generally larger than what is predicted by the theory. The number of
cells with zero individuals given by theory and the number found in the real plots
is shown in Figure 3 for all the S0 species in the real data set. Only in two cases
are the actual values below the predicted values. This is a sign that individuals
within species tend to cluster. Clustering will give more individuals in some cells,
and fewer in others. This mechanism is not included into the MaxEnt procedure
(which is free of mechanisms).

The discrepancy between predictions and real data is especially apparent for the
species with 1418 individuals, shown in Figures 1(e) and 1(f). Whereas theory
predicts the number of zero cells to be 39, a total of 188 zero cells are observed
for this species. Consequently, there are more cells with many individuals than
what is predicted by the theoretical distribution. For the species with low abun-
dances, the real distributions are close to the predictions. For the species with 112
individuals, the predicted number of cells with n > 4 lies between 0 and 1, so we
expect only a few of these to be 1 and a few to be zero. We notice the somewhat
arbitrary looking tail in the real data shown in Figure 2(b). A possible method
for predicting the actual tail is presented below. For n0 = 1 real data has to be
equal to the prediction. For the species with only 1 individual, the only possible
distribution is one cell with that 1 individual, and the rest of the cells, (A0/A−1),
with zero individuals.

The purpose of the simulations is to find the distribution of number of species in a
cell of area A = A0/256. We do this by drawing randomly once from each species
and calculating the number of species T times. As stated above, the frequency
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Figure 3: Number of cells with zero individuals for species with n0 individuals in A0. Blue dots
show the predictions from Π(0)A0/A and green dots show the actual values. Data includes all
the species in Little Blue Ridge, 1998 [29].

distribution for the number of individuals from the species with abundance n0 will
approach the theoretical distribution, Π(n|A, n0, A0), as T → ∞. If we choose
T = 256K, we can look at the simulation procedure as K simulations of the entire
A0 plot, which consists of 256 smaller plots of area A = A0/256. Each of the
K simulations will give a different distribution of individuals from all the species
over A0. In one of the K simulations, a cell with 5 individuals of the species
with n0 = 112 might coincide with the cell where the one individual from the
species with n0 = 1 is found, whereas in most cases it will not. The frequency of
any given s in the K simulations (T trials) is then taken to give the probability,
PA(s) = f(s)/T . There is a subtle problem with this simulation procedure. For
each K, that is, for each time we draw 256 times, these draws are independent
of each other. This means that in 256 trials, there is no guarantee that the total
number of individuals drawn from each species will equal the observed abundaces.
The actual abundance of each species is only the expected abundance after 256
random draws. For species with few individuals, the relative difference will be
larger (for instance, there’s a fair chance that instead of 1 individual we will end
up with 0 or 2 individuals for a species that has abundance 1 in 256 draws). This
problem, however, can be avoided by choosing a large number for K. The chance
of getting a larger than observed abundance in some cases is then weighted out
by the chance of getting a lower than observed abundance in other cases. Instead
of presenting a formal proof for why this is true, I argue that this must hold true
because the same results are reproduced every time a simulation with K = 4000,
or T = 256K = 1, 024, 000 trials are performed. This is what is meant by a
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6 A STUDY OF VARIANCE

sufficient number of trials in step 5. in the description of the simulation procedure.

Figure 4 shows my simulations of PA0/256(s) together with the real data for the
abundances found among the 24 species in 1998 and in the 28 species found in
2005 in Little Blue Ridge. In 1998 the average number of species in the real data
was 7.56 with a standard deviation of 2.96 (variance 8.78). The simulations give
an average of 11.06 and a standard deviation of 1.19 (variance 1.41). In 2005 the
average number of species in the real data was 8.73 with a standard deviation of
2.95 (variance 8.73). The simulations give a mean of 11.55 and a standard devi-
ation of 1.33 (variance 1.77). The predicted averages are higher than observed,
and the predicted variances are considerably lower. We therefore predict a sharper
distribution than what is observed in nature. According to the predictions, we can
make more certain guesses than we can in reality. The lowest number of species
observed in any cell in the 1998 data was 1, whereas the predicted minimum for a
cell in this case is 9. The largest number observed the same year was 15, and the
largest number predicted was 18. In 2005, the lowest observed number of species
was also 1, and the prediction is 8. The largest number of species observed was
again 15, whereas the prediction is 19. Note that also in this case there is a prob-
lem with the discretization. The number of cells predicted to have more than 15
species are in both cases less than zero.

How can we interpret the discrepancy between predictions and actual data? What
does Π(n) tell us, and what does PA(s) tell us? Π(n) is the continuous MaxEnt
distribution of individuals over (A0/A) cells. It tells us the probability of finding
n individuals in an area A < A0 for a species with abundance n0 in A0. If we are
looking at a second subplot in the same A0, however, the probability of finding n
individuals in this case is different if we have gained knowledge about how many
individuals were in the first subplot. This information can be taken into account
by saying that the species we are looking at has abundance (n0 − n(1)), where
n(1) is the number of individuals found in the first subplot, in the new total area
(A0 − A) and using this to calculate the new Π(n). The probability of a specific
ordered distribution of individuals over (A0/A) cells numbered from 1 to (A0/A),
where n(i) denotes the number of individuals found in cell i is

P (n(1), n(2), ..., n(A0/A)) = Π1(n(1)) · Π2(n(2)) · ... · ΠA0/A(n(A0/A)) (6.7)

where each distribution Πi(n(i)) is conditional on n(i) in all the previous ones. Note
that all of the Πi(n(i))′s, hear described the same species. Π1(n(1)) is equal to the
original, Π(n(1)|A, n0, A0), but Π2(n(2)) = Π(n(2)|A, (n0 − (n(1))), (A0 − A)). In
general
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(a) Number of cells with s species, simulated, 1998 (b) Number of cells with s species, observed, 1998

(c) Number of cells with s species, simulated, 2005 (d) Number of cells with s species, observed, 2005

Figure 4: Number of cells with s number of species, from simulation on the left and observed
on the right. A/A0 = 1/256. Data from Little Blue Ridge, 1998 (S0 = 24 and N0 = 37182) and
2005 (S0 = 28 and N0 = 60346) [29].
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6 A STUDY OF VARIANCE

Πi(n(i)) = Π(n(i)|A, (n0 −
i−1∑
i=1

(n(i))), (A0 − (i− 1)A)) (6.8)

In our case, however, we are not interested in the order of the sequence. We want
to know the probability of finding a certain number of plots with n(1), n(2) and so
on. The probability, P (n(1), n(2), ..., n(A0/A)) however depends on the order and is
in general not equal to the probability of P (n(A0/A), ..., n(2), n(1)). The probability
of a certain outcome {n(A0/A), ..., n(2), n(1)} is therefore found by summing over
the probability for all permutations. In this way we can calculate the probability
of all the different distributions from our theory. This avoids the problem of the
discretization of Π(n) and uses instead the theoretical predictions in order to eval-
uate the probability of all possible actual outcomes. This provides a quantitative
measure of the likelihood of a real distribution, based on our theory, in the form of
a probability distribution of distributions. This can then be compared to several
real distributions (preferably more than two), in order to evaluate the predictive
power of our theory. If the theory is correct, and we have enough observations,
the relative frequencies of the actual distributions should approach the predicted
probabilities of the different distributions.

I also suggest a second way to compute the likelihood of different actual distri-
butions. Our predicted distribution, Π(n), has a certain information entropy, IΠ,
associated with it. By definition, this is the maximum possible entropy, compatible
with our constraints. We (usually) need to change (A0/A)Π(n) in order to arrive
at an actual distribution with a discrete number of cells for each n. We can calcu-
late the information entropy of any discretized distribution (by dividing by A0/A
again to attain a normalized probability distribution). The information entropy is
a measure of how certain or uncertain we are when guessing how many individuals
a random cell will contain, based on that distribution. This value will necessarily
be less than the value for the continuous version of the theoretical distribution. I
suggest that among the possible discrete versions of the theoretical distribution,
we should pick the one with the highest entropy as the prediction for the actual
data. Furthermore, the information entropy can be calculate for all the observed
distributions. This value can then be compared with the discrete prediction as a
measure of how likely the observed distribution is, given that the theoretical pre-
dictions are true. The lower the value of the entropy of the observed distribution
is, the less likely this observation is. If all of the observed distributions have a
significantly lower information entropy than the predicted distribution, this is a
sign that there are unknown constraints acting on the distribution.
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6.1 Discussion

6.1 Discussion

The Π(n) distribution acts as a null-distribution: we assume that nothing matters
for the spatial distribution of the individuals within a species. The derivation of
Π(n) assumes only the average value of n. The discrepancies between real data
and predictions can then be used to point out which factors do matter. If the
pattern, on the other hand, is found to be very close to the predicted pattern, this
tells us that, yes, indeed, as long as the average number of species is satisfied, the
rest is random. Many factors can affect the spatial distribution of species. Some
species will cluster, and some species will disperse. Two competing plant types
will be found in different locations whereas two mutualist plant types will be found
together. In our case the real distributions have more plots with zero individuals
and more plots with many individuals than the theoretical distributions. This
tells us that some sort of clustering mechanism is at play. In accordance with the
MaxEnt philosophy, comparison of data with predictions is used either to verify
the validity of the theoretical model, or to point towards new mechanisms. In
order to do this however, we need a defined procedure of comparison.

We want to determine the certainty of the predictions derived in METE. In statisti-
cal mechanics, the Boltzmann distribution gives an extremely peaked distribution
for the energy of the canonical ensemble. The energy of a system in contact with a
heat reservoir (and in equilibrium), is most certainly equal to the expected value.
Any other macroscopic value we might be interested in will also be very peaked,
and therefore very certain. If we wanted to predict the velocity of a particle in an
ideal gas, however, this is less certain. The distribution of velocities is given by
the Maxwell-Boltzmann velocity distribution, which is much less peaked than the
distribution for the systems total energy (and becomes increasingly more spread
at higher temperatures). If we are really talking about an ideal gas (minimal
interaction between molecules), we would expect the molecules to be distributed
according to this distribution and the more molecules we have, the closer the real
distribution should be to the prediction. Still, we can always use the theory to
calculate the probability for observing any other distribution. Neither Π(n) nor
R(n, ε) are peaked distributions. S̄(A) is more so, but still not on the level of
statistical mechanics.

We want our predictions from METE to be as certain as possible, but the questions
is what it is that we want to be peaked in METE? Statistical mechanics is used to
predict unknown macroscopic quantities from known macroscopic quantities and
the Boltzmann distribution is used only as a step along the way. The purpose
of METE, however, is qualitatively different. Instead of predicting macroscopic
variables from macroscopic constraints, we predict microscopic variables from the
macroscopic constraints. We are much more interested in the distributions telling
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us about individual behavior in METE than we usually are in statistical mechan-
ics. It does not make sense for the Species-Area Relatonship to be extremely
peaked, because we will always expect a natural variation in the number of species
over different plots. Since we are not really using our derived MaxEnt distribution
to predict any macroscopic quantities of the sort that measure the entire system
(S̄(A) still measures cells within the system) we are more interested in how well we
can predict the Species-Area distributions, S̄(A), the Spatial-Abundance distribu-
tion, Π(n), and the Species-Abundance distribution, Φ(n). However, we do not
have large enough numbers of individuals or cells to expect the observed n to be
identical to Π(n), even if the theory is correct. With smaller numbers the chances
of observing something different than what is expected is larger. The same holds
for a small thermodynamic system: its molecules are less likely to be distributed
according to the Maxwell-Boltzmann distribution. Theory predicts a non-zero
probability for all of the observed distributions in this Chapter. The likelihood of
observing any distribution can be determined using the methods that I suggest at
the end of the previous section. If we know the likelihood of each outcome, this
can tell us when there is sufficient reason to suspect that the theory is incorrect,
and that there are unknown mechanisms.

The two simulated distributions for PA(s) differ quite a lot from the observed dis-
tributions. According to the predictions, we should expect zero plots with less
than 8 or 9 species, whereas we find plots with as little as one species in the real
data. The simulations were only compared with two data sets, which is of course
very little, but such a clear discrepancy is not likely to be random. It is a sign
that the theoretical MaxEnt predictions do not contain all the relevant constraints
in order to fully describe the ecosystems. This is also not expected form such a
crude theory. Furthermore, the censusing itself will always introduce errors. For
instance, the numbers could be more correct when there are few individuals in a
plot than when there are many, because it is easier to spot all of them. And lastly,
it could be a sign that something is wrong with the simulations themselves.

The discrepancy between the predicted PA(s) and the observed frequencies, given
that the simulations are correct and that the errors in the data are insignificant,
can come from two different sources. It can come from the fact that the individuals
within the species are not correctly predicted by the theoretical distributions, or it
can be due to interaction between different species (which the theory assumes to
be zero). It would be interesting to do a simulation using the real distributions of
individuals from each species instead of the theoretical distributions. This could
be done by randomly combining actual abundances from the observed plots for
each species and count the number of species present. By repeating this we will
arrive at a distribution for the amount of times the different number of species
show up in a cell. If this distribution is very different from the observed distribu-
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tion, then this tells us that the species might not be independent of each other,
which is one of the assumptions in METE and in the simulations. In any case, this
distribution should be closer to the observed distribution than the ones obtained
from the simulations in the previous section because we have removed the error
due to the fact that the individuals within each species are not predicted fully by
the theoretical distributions.

When it comes to the entropy method presented at the end of the previous sec-
tion, it is necessary to find out what the range of entropy values mean, and how
to compare them. Even though I suggested the method in order to compare Π(n)
with observations, it should be applicable also to PA(s).

This chapter works as a starting point for defining a clear procedure for compar-
ing predictions with data. Time limitations prevented me from developing any
of the suggested methods further myself, but I suggest both of them as possible
approaches in the future work on METE. When a more rigorous procedure for
comparison is established, more data sets should be used to test the predictions of
METE.

7 A Maximum Entropy Production Theory of Ecology?

Harte opened up a completely new approach to macroecology with his application
of the Maximum Entropy principle to ecosystems. METE provides a new way of
inferring important ecosystem parameters from incomplete census data taken at
an instant in time. What the theory does not do, however, is say anything about
change in the parameters over time. Ecosystems are never really in equilibrium.
The number of species and individuals constantly changes. Harte suggests that
some of the failures of the MaxEnt predictions are due to fast changing state vari-
ables in some of the ecosystems for which we have empirical data. In analogy
to the local equilibrium hypothesis in thermodynamics, METE should hold when
the distributions of individuals within species (Φ(n)) and over area (Π(n)) adjust
themselves faster than the time rate of change of the state variables. If the state
variables change slowly enough they should be able to "drag" the distribution pat-
terns along, such that the distributions are always true for a given set of state
variables.

Harte has proposed the Maximum Entropy Production (MEP) principle as a way
to obtain values for the time rate of change of the state variables in an ecosystem.
The investigation of this hypothesis is the main topic of this thesis. Harte presented
the basic principle of Maximum Entropy Production, and some of what it implies
for the expressions in METE in Chapter 11.3 in Maximum Entropy and Ecology.
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7 A MAXIMUM ENTROPY PRODUCTION THEORY OF ECOLOGY?

This work provided the basis for my application of the principle, and the statement
of the initial problem.

7.1 Initial Problem Formulation

Harte uses Paltridge’s climate studies (1975) and Dewar’s proof (2005) to present
the idea of the Maximum Entropy Production in Maximum Entropy and Ecol-
ogy. In Harte’s words: "MEP states that a physical system far from equilibrium,
undergoing an irreversible transition from one macroscopic state to another, will
most likely choose a path in phase space that maximizes the rate of production of
entropy" [1, Ch. 11.3]. Harte also writes about Dewar’s proof that: "His approach
was to derive from MaxEnt a probability distribution for the number of paths in
phase space leading from an initial state to each possible future state. He then
shows that the distribution achieves its maximum when the final state is the one
in which the maximum possible amount of entropy is produced in the transition
from initial to final state" [1, Ch. 6.3.5]. Even though Dewar’s proof is not only
complicated but also not regarded as rigorous, it can be assumed that his proof
will be completed, and that MEP will be accepted as a general law of far-from
equilibrium thermodynamics. According to Harte - at the outset of my work -
Dewar’s proof also suggested that MEP should apply not only to the production
of thermodynamic entropy, for which the principle has been shown to be successful
by Paltridge, but also to the production of information entropy.

This initial understanding of the MEP principle in general and Dewar’s proof in
particular motivated Harte to suggest a specific application of the principle to
METE. This application was based on the hypothesis that the MEP principle
also applies to the information entropies in METE. In order to investigate this
hypothesis I was asked to study the implications of assuming that the information
entropy of the Ecosystem Structure Function, IR, defined by equation (5.7), and
restated here

IR = −
N0∑
n=1

∫ E0

ε=1
dε ·R(n, ε) · ln(R(n, ε))

is being produced at the maximum possible rate. R(n, ε) was given by (5.12) as

R(n, ε) = 1
Z(λ1, λ2)e

−λ1ne−λ2nε

That is, we want to know the consequences of the assumption that dIR/dt =max.
Harte decided to denote the information entropy, IR, instead by SI , in order to
stay closer to thermodynamics convention. I have therefore used SI throughout my
application and analysis. From now on, I will also use S, N and E without the zero
subscript, to express that we are talking about state variables that are functions
of time (the state variable A is not involved in the information entropy, SI). We

46
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still assume that S > 4 in order to use the approximate results for the Lagrange
multipliers, equation (5.14) - (5.16). By assuming E >> N we can simplify even
more by taking λ2 ≈ S/E. For convenience, we also define the variable

ω ≡ ln
(

1
β

)
(7.1)

where β = λ1 + λ2.

In the draft of the book, Harte presented the value of the entropy as

SI = 1 + ln
(
E

N

)
+ ω + ω−1 (7.2)

where ω depends on S and N through β, and the time derivative of the entropy
as

dSI
dt

= ω−1 1
N

dN

dt
+ 1
E

dE

dt
− (1 + ω−1) 1

S

dS

dt
(7.3)

The principle of Maximum Entropy Production was taken to mean that expression
(7.3) would be maximized with respect to the state variables, S, N and E. I started
out with an even more specific problem, and the initial problem statement of my
project was:

1. To verify the expression for the entropy (7.2) and the time rate of change of
entropy (7.3).

2. To work out the consequences of MEP by setting ∂(dSI/dt)/∂S = 0, ∂(dSI/dt)/∂N =
0 and ∂(dSI/dt)/∂E = 0, and solve for the time derivatives. The partial dif-
ferential equations we get from doing this, equations (7.4) - (7.6), were also
already derived by Harte.

From this point I began my investigation.

7.2 Solution to the Initial Problem

The entropy, (7.2), can be derived by plugging R(n, ε), as defined by (5.12), di-
rectly into the expression for the information entropy, IR given in (5.7). A second,
and faster method, is to directly substitute the constraints and the Lagrange mul-
tipliers into the expression for Hmax given in (3.9). In both cases we use the
assumption that e−S0 << 1 in order to use the approximate results for the La-
grange multipliers presented in section 5.4.

From Hmax in (3.9) we obtain
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SI = lnZ + λ1 〈f1(x)〉+ λ2 〈f2(x)〉

= lnZ + λ1
N

S
+ λ2

E

S

From eqaution (5.14) we have

λ2 ≈
S

E −N
Combining this with (5.15) and using β = λ1 + λ2 we can write

λ1 = β − λ2 ≈
S

N

1
ln 1

β

− S

E −N

From equation (5.16) and (5.15) we get

Z ≈
ln
(

1
β

)
λ2

≈
S
N

1
β
S
E

≈ E

N

1
β

lnZ ≈ ln E

N
+ ln 1

β

Combining the above equations we obtain

SI ≈ ln E

N
+ ln 1

β
+
 S
N

1
ln 1

β

− S

E −N

 N

S
+
(

S

E −N

)
E

S

= ln E

N
+ ln 1

β
+ 1

ln 1
β

− N

E −N
+ E

E −N

= ln E

N
+ ln 1

β
+ 1

ln 1
β

+ E −N
E −N

= 1 + ln E

N
+ ω + ω−1

where we have used (7.1). This finishes the derivation of (7.2), which was the first
part of point 1. in the project statement. I also verified equation (7.3) by com-
puting the partial derivatives of equation (7.2). The calculations are somewhat
lenghty because ω is only an implicit function of the state variables S and N , but
other than that they are fairly straight forward. The derivations are included in
Appendix A.
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Setting the partial derivatives of the entropy production, dSI/dt, equal to zero as
prescribed in point 2. of the project statement results in three coupled differential
equations

(1 + ω)∂Ṡ
∂S

= 1
(ω − 1)

Ṅ

N
+ ω

S

E

∂Ė

∂S
+ S

N

∂Ṅ

∂S
+ (ω2 − 2)

(ω − 1)
Ṡ

S
(7.4)

(ω2 − 1)
ω

N

S

∂Ṡ

∂N
+ Ṅ

N
= (ω − 1)N

E

∂Ė

∂N
+ (ω − 1)

ω

∂Ṅ

∂N
+ ω−1 Ṡ

S
(7.5)

(1 + ω)E
S

∂Ṡ

∂E
+ ω

Ė

E
= ω

∂Ė

∂E
+ E

N

∂Ṅ

∂E
(7.6)

where the dots denote time derivatives, (e.g. Ṡ = dS/dt). These equations were
also provided in the draft of Harte’s book. I also verified these equations, and
again the calculations are lengthy, but straight forward. The technique is similar
to the derivation of (7.3), which is shown in Appendix A. Since the derivations
are not of any particular interest to my thesis I have not included them. For
compactness I will from now on adopt the notation ∂Ṡ/∂S = ṠS for the partial
derivatives. According to Harte - at the beginning of my work in August 2010 - the
solution to these equations describes the behavior of the state variables, S, N and
E in time. That is, they define the time derivatives of the state variables yielding
the Maximum Entropy Production state of the ecosystem. The goal of my work
was therefore to predict the evolution from knowledge of the initial state variables
S0, N0 and E0, based on these equations. We see that the equations contain the
time derivatives, Ṡ, Ṅ and Ė, all their partial derivatives, ṠS, ṠN , ṠE, ṄS, ṄN ,
ṄE, ĖS, ĖN and ĖE as well as the state variables, S, N and E, themselves. The
complicated structure of the equations combined with the fact that ω is an im-
plicit function of S and N suggests that an analytical solution is, if not impossible,
very difficult to obtain. There is no general theory for the solvability of partial
differential equations (PDE’s), and none of the classical PDE’s that have known
solutions (e.g. the wave equation) are close enough to tell us anything about the
solution of (7.4) - (7.6). The choice therefore fell on a numerical approach.

By closer inspection of the above equations it is clear that in order to obtain
numerical solutions one has to know not only the initial value of the state variables,
but the initial values also of the time derivatives, Ṡ0, Ṅ0 and Ė0. We can then find
the values at the next time step, S1 and Ṡ1, from the linear Taylor expansions

S1 = S0 + Ṡ0dt (known from initial conditions)
Ṡ1 = Ṡ0 + ṠSdS + ṠNdN + ṠEdE

where the partial derivatives are taken for the initial conditions. Because dS =
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S1 − S0 = Ṡ0dt (and similarly for N and E) we can rewrite the above equation to
get

Ṡ1 = Ṡ0 + ṠSṠ0dt+ ṠNṄ0dt+ ṠEĖ0dt

which again gives

S2 = S1 + Ṡ1dt

= (S0 + Ṡ0dt) + (Ṡ0 + ṠSṠ0dt+ ṠNṄ0dt+ ṠEĖ0dt)dt
= (S0 + 2Ṡ0dt) + (ṠSṠ0 + ṠNṄ0 + ṠEĖ0)dt2

Hence, S2 depends on the six initial conditions (for the state variables and their
time derivatives) and the three partial derivatives of Ṡ. Similar expressions apply
to N2 and E2. The time step, dt, has to be chosen sufficiently small in order for
the linear approximation to be a good one. We then have St = S(ṠS, ṠN , ṠE),
Nt = N(ṄS, ṄN , ṄE) and Et = E(ĖS, ĖN , ĖE) where the partial derivatives are
taken at the previous time step for which the state variables and their time deriva-
tives are defined. This procedure will then give the time evolution of the state
variables, given their initial values and their initial time derivatives.

The partial derivatives of the time derivatives are found by equations (7.4) - (7.6).
However, we have nine unknowns (three partial derivatives for each of the three
time derivatives of the state variables), and only three equations. We are therefore
not able to calculate the partial time derivatives needed for the numerical proce-
dure from these equations alone. This realization came as a surprise in the project.
In order to find a solution we would have to decrease the number of unknowns, or
increase the number of equations. Additional equations regarding the relationships
between the different time derivatives could be expected to hold, e.g. an increase
in total metabolic rate would probably correlate with an increase in the number
of individuals. Incorporating relationships like these into the framework, however,
would be counter productive to the initial goal of creating a simple theory that
does not require additional hypotheses. I therefore chose not to look further into
this. The other alternative is to only look at the case where some of the state
variables are constant in time. In order to reduce the number of unknowns down
to three we can set two of the three state variables to constants, and look at the
variations of the third one only. The result of doing this leads to ordinary differen-
tial equations that can be easily solved for in each of the three cases (where only
one state variable is allowed to change). I have not included the results of doing
this, due to the argument in the following section.

The partial differential equations, (7.4) - (7.6), were at the outset of the project
though to be solvable and the analysis of the solution was meant to constitute the
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main part of my thesis. A lot of time was therefore taken to study the theory
behind PDE’s and techniques for analyzing and solving these types of equations
in general. When I later found out that there is not enough information to solve
this set of equations, the inability to derive more interesting results inspired me
to look more closely at the maximization of the rate of the entropy production,
dSI/dt, itself, and what this really means.

7.3 Meaning of zero partial derivatives

The Maximum Entropy Principle suggests that dSI/dt is maximized. In the ini-
tial problem statement this maximum was meant to be found by setting all the
partial derivatives of dSI/dt with respect to the three state variables equal to
zero, and solve for the time derivatives. I will now argue that this procedure does
not actually give the correct maximum condition for the state variables and their
derivatives.

Say we have a function of three variables, f = f(x, y, z). In order to find the maxi-
mum of f , we set all the partial derivatives to zero, ∂f/∂x = ∂f/∂y = ∂f/∂z = 0,
and look for the value(s) of (x, y, z) that satisfy this condition. At points where all
the partial derivatives disappear we have either a local or global maxima or min-
ima. This is the conventional and straight forward maximization problem. Ours,
however, is different. Instead of a function of three variables, we have a function
of six variables, f = f(x, y, z, ẋ, ẏ, ż), where the dots denote time derivatives. We
postulate that the time derivatives are functions of (x, y, z), that is, ẋ = ẋ(x, y, z)
and similarly for ẏ and ż. Hence, we can again write f = f(x, y, z) and take the
partial derivatives of f with respect to the three variables. Since the function f still
contains the time derivatives (their functional expressions are unknown), the par-
tial derivatives have to be found using the chain rule (∂f/∂x)y,z = (∂f/∂x)y,z,ẋ,ẏ,ż+
(∂f/∂ẋ)x,y,z,ẏ,ż(∂ẋ/∂x)y,z + (∂f/∂ẏ)x,y,z,ẋ,ż(∂ẏ/∂x)y,z + (∂f/∂ż)x,y,z,ẋ,ẏ(∂ż/∂x)y,z
where the subscripts denote the variables that are held constant under the par-
tial derivation. Equivalent expressions apply for y and z. Again, we require
(∂f/∂x)y,z = (∂f/∂y)z,x = (∂f/∂z)x,y = 0. As opposed to the previous case, we
now have a dynamical system with non-zero time derivatives, meaning that even if
we find a point (x∗, y∗, z∗) where all the partial derivatives disappear, the system
will not stay here because it in the next time step will evolve according to the
time derivatives at this point. If, however, the zero conditions on the time deriva-
tives are not used to find the point(s) (x∗, y∗, z∗), but rather to find a set of time
derivatives (ẋ∗, ẏ∗, ż∗) as functions of (x, y, z), the situation is different. (ẋ∗, ẏ∗, ż∗)
will then define the set of time derivatives that are such that the partial deriva-
tives of f will be zero for all (x, y, z). In other words, the time derivatives will be
functions of (x, y, z) with the property that when substituted into the expression
f = f(x, y, z, ẋ, ẏ, ż) to arrive at the expression f = f(x, y, z), all the variables,
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(x, y, z) will actually disappear from the expression. This is because, in order
for the partial derivatives with respect to x, y and z to be zero everywhere, the
function f cannot depend on them. In general, for any function g, we have that
dg/dx = 0 (everywhere) =⇒ g 6= g(x).

This is the exact case that we had in the previous section, where instead of f(x, y, z)
we had SI(S,N,E). The zero conditions for the partial derivatives are expressed
in equation (7.4) - (7.6). I therefore conclude that the original procedure does not
actually give the maximum rate of entropy production, dSI/dt, but instead the
condition where dSI/dt = constant. This realization prompted me to investigate
what the actual condition for finding the maximum rate of entropy production
should be.

7.4 Maximum rate of entropy production, dSI/dt

The statement "find the maximum of dSI/dt" requires further clarification. Max-
imum with respect to what? What is known? What is free to vary? Do we have
to make any other assumptions, and in case we do, what are they?

We cannot be maximizing with respect to S, N and E because these are given as
initial conditions and are not supposed to be found from the maximum condition.
What we want to know are the time derivatives, Ṡ, Ṅ and Ė and hence they must
be what is "free to vary" and what we should be maximizing with respect to.

If we look at the expression for dSI/dt in (7.3) from a strictly mathematical view-
point the state variables and their time derivatives are independent of each other.
Furthermore S, N and E all denote positive quantities. Harte also shows that
β < 1 and thus ω = ln(1/β) > 0 [1] . This means that the terms in front of Ṅ
and Ė in equation (7.3) are positive, and that the term in front of Ṡ is negative.
If the time derivatives of the state variables are regarded as independent of the
state variables themselves, and the time derivatives are free to take on any value
that will give a maximum for ṠI , the maximization problem is unbounded. For
any value of S, N and E, the maximum of ṠI will correspond to Ṅ →∞, Ė →∞
and Ṡ → −∞. In reality, the maximum rate of change of the state variables will
obviously be limited by physical processes. If one has information about what
these limits are, say MṄ , MĖ and MĖ, the maximization problem stated this way
only tells us that the time derivatives will always take on the maximum (for N
and E) and minimum (for S) values.

This result is neither very interesting, nor does it make much sense that the time
derivatives will always attain their maximum values completely independently of
the values of the state variables. We therefore postulate that: the time derivatives
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of the state variables must be functions of the state variables themselves, that is,
Ṡ = Ṡ(S,N,E) (and similarly for the other two state variables). This postulate is
based on the following arguments.

i) S, N and E are the three defining variables. They tell us everything we can
know about the system and there is nothing else the time derivatives can
depend on.

ii) It makes physical sense. For instance the rate of speciation, Ṡ, is likely to
depend on the number of species or individuals. Very low S and N should
correspond to a lower chance of speciation than for very high S and N .

iii) If we do not assume a relationship between the time derivatives and the state
variables, the above maximization gives unphysical results. To an extent, it
is a trial and error procedure.

Thus, we should not be maximizing with respect to the time derivatives as in-
dependent variables. We are not trying to find a point (where point refers to
a numerical value of the time derivatices) where dSI/dt is maximum, but a set
of functions that make dSI/dt a maximum for any (S,N,E). What would these
functions look like? And how do we find them?

If we look at the variation of E only and Ṡ = Ṅ = 0, we have dSI/dt = (1/E)Ė.
According to the initial procedure we should take the derivative with respect to
E and set this expression equal to zero. This gives the solution Ė = CE, where
E is a constant of integration. In this case, dSI/dt = C. It is the constant en-
tropy production solution. We can compare this to another expression for the time
derivative, Ė = E2. The entropy production in this case is dSI/dt = E. Since
E is positive Ė is positive and dSI/dt = E is an increasing function both of E
and of time. If E0 < C we have a situation where the constant solution gives the
highest entropy production to begin with, but is overtaken by the other function
when E = C. After this point this function will give a larger and larger entropy
production.

It is tempting to write the new maximum condition as

∂ṠI

∂Ṡ
= ∂ṠI

∂Ṅ
= ∂ṠI

∂Ė
= 0 (7.7)

where all the time derivatives are regarded as functions of S, N and E. Due to the
linear nature of (7.2) however, the time derivatives themselves fall out in this pro-
cedure and we obtain results like ∂ṠI/∂Ė = 1/E = 0, where the time derivatives
disappear (and give meaningless results). Again, the maximum time rate of change
of the entropy is found at the maximum and minimum time rate of change for the
state variables. From the expression for dSI/dt given in (7.3) we see that Ė = E2

53



7 A MAXIMUM ENTROPY PRODUCTION THEORY OF ECOLOGY?

gives a higher rate of entropy production than Ė = E (as long as E > 1, which
it always is). The exponent can be increased more to give an even higher rate of
entropy production. Even though the time derivative is expressed as a function
of a state variable, the maximization problem remains unbounded. The problem
statement is similar to asking what dimensions of a box will maximize the volume,
without specifying an equation constraining the surface area. The maximization
of dSI/dt as formulated by the MEP principle here gives only trivial solutions.
More equations are required if we want to arrive at an interesting solution.

The discussion regarding the maximum condition, however, has another compo-
nent to it as well. If the time rate of change of the metabolic rate is large in the
first step, the ratio 1/E will be much smaller in the next step. This gives rise to
a significantly smaller entropy production in the next step. There is a trade-off
between large derivatives, and large terms in front of the derivatives if we take
time into account. This again raises the question of what a maximum entropy
production fundamentally means. I have found three different interpretations:

i) Maximum at time t

ii) Asymptotic maximum

iii) Integrated maximum

Version i) is the one discussed above. At every instance in time, we seek the time
derivatives resulting in the largest entropy production. Version ii) can also be
exemplified using the different functions for Ė presented above. Whereas Ė = CE
leads to a constant entropy production, Ė = E2 leads to an entropy production
that increases as E increases. Whereas the constant entropy production can be
larger to begin with, the entropy production that is proportional to E will be
greater asymptotically. The asymptotic version of the maximum entropy produc-
tion principle implies that the second time derivative function is the MEP function.
Version iii) however, yields a somewhat different concept. In this version we look at
the entropy produced at each step in time, and maximize the sum. In the discrete
case, each step yields the entropy production ∆SI,i/∆ti. The sum,∑i ∆SI,i/∆ti, is
then maximized as the system evolves from the initial S(0)

I to the final (S(0)
I +∆SI)

during the time interval ∆t. In this case, a collection of few but large ∆SI,i over
short ∆ti followed by small ∆SI,i over the rest of the ∆ti’s will give a larger sum
than a collection where all ∆SI,i/∆ti are equal. An interesting result of this ver-
sion is that the procedure automatically connects the time derivatives to the state
variables. This is analogous to the way position and velocity are automatically
linked when we minimize the action integral in analytical mechanics. If we use
this maximization procedure, we do not need to postulate that the time derivatives
are functions of the state variables themselves. This is an automatic result of the
maximization procedure itself.
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Both ii) and iii) involve the future state of the system. There are different ways in
which the result of such principles could be computed, for instance by using some
of the techniques from analytical mechanics. However both of these principles have
a teleological character. Why would the system choose a lower entropy production
now, in order to arrive at a higher entropy production in the future, or in sum?
The last two principles seem too speculative and I therefore leave the discussion
of these on this note. From the conclusion that the maximum condition on (7.3)
alone does not provide sufficient information to determine the time derivatives of
the state variables I decided instead to look more closely at what the entropy, SI ,
really means. What conclusions, if any, can we draw from the principle that the
production of this quantity should be maximized?

7.5 Entropy, SI
So far, we have been looking at the local properties of the entropy production. An
important question is, if the entropy keeps increasing, where will the system end
up? Is there a maximum in the entropy SI?

For any point in phase space (where phase space is defined by S, N and E) the
entropy has a specific value, given by equation (7.2). Several combinations of the
state variables will give the same entropy. In fact, if we look back at the MaxEnt
theory, it tells us that the value of the information entropy is always a function of
the constraints. This means that only the two ratios N/S and E/S can matter.
Different combinations of the ratios can also give the same entropy. Equation (7.2)
defines the surfaces of constant entropy. The requirement that the state variables
be positive, and the required relationships between them for the approximations
to be good, puts limits on the allowed part of phase space.

Figure 5 shows the change of entropy with respect to one out of the state variables
at a time, with the other two held constant. I did the calculations in MATLAB,
using the approximations presented in Chapter 5. The range of values are chosen
such that these approximations are good (S >> 1). We see that the entropy in-
creases with the number of individuals and the total metabolic rate, but decreases
with the number of species. This corresponds to the conclusions from the last sec-
tion. The general shapes of the graphs did not change when I changed the values
of the two constant state variables. There is no maximum in the entropy, and as-
suming that the principle of maximum entropy production holds for SI our system
will approach S = 1 (since this is the minimum number of species), N → ∞ and
E →∞ (where we require N < E always because εmin = 1).

Instead of writing the time rate of change, we can write instead the infinitesimal
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(a) Entropy, SI , as a function of S (b) Entropy, SI , as a function of N

(c) Entropy, SI , as a function of E

Figure 5: Entropy as a function of S, N and E.

rate of change

dSI = SI,SdS + SI,NdN + SI,EdE (7.8)
where the SI,S denotes ∂SI/∂S. Whereas (7.3) is an exact equation, (7.8) expresses
the first order Taylor approximation to the actual change in entropy, ∆SI , when
moving from (S0, N0, E0) to (S1, N1, E1). The smaller the differences, dS, dN and
dE are, the better the approximation is. We can find the trajectory of a system
evolving in the direction of maximum entropy production, but from the discussions
in the previous sections we do not have enough information to say anything about
the actual time this will take. MEP only states that the system will evolve along
this path in the shortest possible amount of time.

The direction of maximum increase is given by the gradient of SI . The magnitude
of the gradient gives the rate of change of the entropy in this direction. The
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gradient of a general scalar function f(x, y, z) in three variables is ∇f = fxx̂ +
fyŷ+ fz ẑ, where subscript denote partial derivatives and the hat denotes the unit
vector in the respective dimension. The gradient is easily found from equation
(7.3) to be

∇SI = SI,NN̂ + SI,EÊ + SI,SŜ (7.9)

= ω−1 1
N
N̂ + 1

E
Ê − (1 + ω−1) 1

S
Ŝ (7.10)

The terms in front of each of the unit vectors are the linear approximations de-
scribing how much the entropy changes when each state variable changes by one.
Since β is a decreasing function of N and an increasing function in S, it follows
from (7.1) that ω−1 is too. SI,N is therefore a decreasing function with respect
to N and an increasing function with respect to S. SI,E is obviously a decreasing
function of E and SI,S is a decreasing function of N , but ambiguous when it comes
to S, since ω−1 is an increasing function of S but 1/S is a decreasing function of
S. From my calculations in MATLAB it turns out that SI,S is an increasing func-
tion of S as well. Since all the terms have the same direction of dependency the
magnitude of the gradient is a decreasing function of N and E and an increasing
function in S. This can also be seen directly in the graphs of the entropy versus
the state variables in Figure 5, where the terms in the gradient are seen as the
derivatives. As the system evolve along the gradient (in a direction of increasing
N and E and decreasing S), the rate of change of entropy per unit change in
phase space, becomes less and less. If the time derivatives are constants, the rate
of change of entropy will therefore decrease.

When we take the gradient of the conventional metric space, all the distances are
well defined. We can measure distances not only along each dimension x, y and
z separately, but the distance, d, of vectors with non-zero values in each of these
dimensions can be found from d =

√
(∆x)2 + (∆y)2 + (∆z)2. If we follow the

gradient in such a space, it corresponds to the shortest distance, for the largest
increase in the scalar function (for instance temperature). In our case no such
distance is defined. The sum of (∆S)2 = 22 and (∆N)2 = 102 for instance has no
combined measure. The only distances we can measure, are separate distances in
each dimension, i.e. a certain change in the number of species, a certain change in
the number of individuals and a certain change in the total metabolic rate. It is
therefore questionable if the concept of following the gradient makes any sense. If
S decreases with one, N increases with 10 and E increases with 50, they only do
so separately.

Values of the entropy for different ecosystems are given in Table 1 below. Again,
I calculated the values in MATLAB by using the approximations stated in the
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derivation of (7.2). Table 1 shows that different state variables will give the same
value for the entropy, if they give the same ratios, F1 and F2. A system evolving
according to a rule of constant entropy could evolve from system No. 1 to system
No. 2 by increasing all the state variables. If we increase only the number of
individuals however, as in system No. 4, the first constraint will increase and we
will get a higher entropy. Similarly, if we increase the total metabolic rate only,
as in system No. 5, the second constraint will increase, and again, the entropy in-
creases. This is again consistent with the graphs showing the entropy dependence
on the different state variables. If we increase both the number of individuals and
the total metabolic rate, the increase in entropy is equal to the increase in entropy
due to the two effects individually.

Table 1: Values of the entropy, SI , for selected ecosystems

No. S N E F1 = N
S F2 = E

S SI

1 100 1000 10000 10 100 7.16
2 101 1010 10100 10 100 7.16
3 500 5000 50000 10 100 7.16
4 100 5000 10000 50 100 7.51
5 100 1000 50000 10 500 8.77
6 100 5000 50000 10 500 9.12
7 600 6000 60000 10 100 7.16
8 500 6000 60000 12 120 7.39
9 100 2000 8400 20 84 7.16

In thermodynamics it is common to look at the effect of mixing two systems.
System No. 7 corresponds to a sum of system No. 1 and system No. 3, if, and
only if, none of the two ecosystems contain the same species. The entropy of the
combined system is not twice the entropy of each system alone, in fact, the entropy
of the combined system is exactly the same as the two systems separately. System
No. 8 corresponds to a sum of system No. 1 and No. 3 when all the species in
system No. 1 is already contained in system No. 3. We see that the entropy of
this system is slightly higher than the two systems alone, but far lower than the
sum of the two. This can be explained by the increase in both of the constraints.
No. 9 has the same entropy as No. 1, 2, 3 and 7 but different constraints. F1 is
higher whereas F2 is lower.
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7.6 Discussion

SI is the maximum entropy found by maximizing IR with respect to the probabil-
ity distribution, R(n, ε). This maximization is done subject to the state variables,
S, N and E, which define our constraints. This procedure creates a least biased
guess, i.e. the most flat distribution consistent with the constraints. From this we
infer how individuals are distributed within species, and how energy is distributed
over individuals. Entropy in the MaxEnt procedure is not a function of the state
variables, but a function of the possible sets {R(n, ε)} of probability distributions
satisfying the constraints. Of course, the numerical value of SI ends up being
dependent on the state variables, but these are imposed by our data. In the appli-
cation of the MEP principle above, however, we are not maximizing the entropy
with respect to the probability distribution, but maximizing the already maxi-
mized entropy with respect to the state variables. What does this really mean?

We can imagine two different ideal gases, in two different containers, under differ-
ent conditions, and with different entropies. If both gases are closed systems in
contact with a heat reservoir the entropy in each case can be found by maximizing
the information entropy of the canonical distribution. The maximum entropy will
depend on the state variables for the gas, but we do not maximize the entropy
with respect to these, because these are not free to vary, but imposed externally.
It would not make any sense to say that a gas would change its state variables
in order to increase its entropy. For instance, it could not just change its number
of particles. Based on this logic, it makes little sense to say that an ecosystem
will change its state variables in order to increase its entropy. It seems illogical
that one system will evolve "into another" system, described by a different set of
constraints. Can we really compare the entropy of two systems with different sets
of state variables in this way? It seem like the entropy must in some way be a
relative measure, subject to the constraints of any one system.

Of course, the analogy between thermodynamic entropy and the entropy measure
in METE has its limits, and a thorough analysis of the extent to which it holds is
beyond the scope of this thesis. But it seems intuitive, at least, that the extensive
parameters of the system should remain constant under the entropy maximization.
In our case, N and E are extensive, but S is neither extensive nor intensive. If
we hold N and E constant, the MEP principle predicts a decrease in the number
of species. It is possible to imagine a situation also, where the energy is constant,
but the distribution of metabolic rates over the individuals changes such that N
can change in a way that does not alter the total metabolic rate of the system. In
this case, the principle predicts an increase in N and a decrease in S. That is, for
a limited amount of resources (defined as the total metabolic rate), the energy will
be utilized by a few species with many individuals. The system will be limited by
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7 A MAXIMUM ENTROPY PRODUCTION THEORY OF ECOLOGY?

the fact that N < E and S > 0, and be predicted to stop at N = E and S = 1
(the approximations used to derive the entropy dependence on the state variables,
however, are only really valid for S > 4).

The entropy, SI , depends on the two ratios of the state variables only. Even though
we have three state variables, we only have two constraints. On the other hand, N
and E define the upper limits of the sums and the integrals presented in Chapter
5. The values of these therefore result in different distributions. Distributions with
identical ratios but different values of the state variables will thus differ by scale,
but not by shape or by entropy value.

There is another way to look at the question of what a maximization of entropy
with respect to the state variables means, which is based on information entropy.
Shannon’s second condition tells us that the information entropy for a flat distri-
bution is a monotonically increasing function in the number of possibilities (see
section 3.2). If we change the state variables in METE in such a way that the
number of possibilities increases, then this should also increase the value of the
entropy, because there are more "possible states". This is also consistent with
the interpretation of the value of the entropy as the number of states with non-
negligible probability (section 4.2). Since N and E are the upper limits of the sum
and the integral, increasing these variables will increase the number of abundances
and energy levels we have to include. In fact, dεR(n, ε) measures the probability of
picking a species with abundance n and that an individual within this species has
metabolic rate in the interval (ε, ε+ dε). If we increase the number of individuals,
there will be more possible abundances, and therefore more possible abundances
for the species that we pick. And a larger total metabolic rate increases the number
of possible intervals for the metabolic rate that one species can have. In light of
Shannon’s theory it becomes clear that a maximization of the entropy with respect
to the state variables amounts to increasing the number of possible states.

The application of the MEP principle to the information entropy in METE, based
on the initial hypothesis, implies that the number of individuals and the total
metabolic rate should increase, whereas the number of species should decrease.
However, there is not enough information in the problem statement for us to be
able to either express the state variables as functions of time, or for us to pre-
dict the time rate of change of the entropy. The only place where we might be
able to obtain some kind of information involving time is from the metabolic rate.
It is possible to imagine that this quantity, since it already involves time, could
be used as some kind of characteristic time of the system. However, there are
other reasons for why I did not pursue this. The most recent discussion questions
whether it makes logical sense for our system to change its state variables in order
to increase its value of the entropy. We could get around this argument, however,
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by saying that the MEP principle is not a causal statement. It does not say that
a system develops such as to maximize its entropy production because it "wants
to". The MEP principle could simply state an effect of a yet to be discovered,
underlying logic. This is the case with MaxEnt. Systems do not maximize their
entropy, because they "want to", but we happen to find them in the MaxEnt state
because this is the most likely state. In the same way, MEP could just be the
effect that we observe. Even so, the predictions from this chapter do not seem
correct. If they were true, why have we seen an increase in the number of species
on the planet through evolution, and why are there so many species present in
most ecosystems? In order to get any further at this point, I decided to look more
closely at the MEP principle itself. What does it actually mean, and in what cases
has it been successful?

In order to understand the literature on the subject, it was necessary first to obtain
a background in non-equilibrium thermodynamics.

8 Non-Equilibrium Thermodynamics

The field of non-equilibrium thermodynamics provides us with a general framework
for the macroscopic description of irreversible processes, in many ways similar to
other branches of macroscopic physics like fluid dynamics of electromagnetic theory
[30]. Equilibrium for an isolated system usually means that the probability of
finding the system in any one state is independent of time. In other words, the
representative ensemble is constant in time, meaning that the Pr’s are constant and
all the macroscopic parameters describing the system are time-independent [24].
Non-equilibrium systems on the other hand are characterized by the presence of
unbalanced potentials, or driving forces, causing fluxes and non-uniform distribu-
tions of state variables. In an equilibrium state all fluxes and forces within the
system vanish.

Stationary states are characterized by state variables that are independent of time.
The concept therefore includes both equilibrium and non-equilibrium states, de-
pending on the boundary conditions imposed on the system [30]. In the case
where fluxes are present, but the incoming fluxes are equal in magnitude to the
ones going out, the properties of the system will (after sufficient time) not change
in time, and the system is said to be in a non-equilibrium stationary state [31].
The local equilibrium hypothesis is essential in the treatment of a vast amount of
non-equilibrium systems. If the system is divided into sufficiently small cells, this
hypothesis states that all the laws from equilibrium thermodynamics should hold
for each of these cells. This assures that the state variables, including the entropy,
are well-defined [31].
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8 NON-EQUILIBRIUM THERMODYNAMICS

In non-equilibrium thermodynamics the balance equation for the entropy plays a
central role. The change in entropy of a system can be written as the sum of two
terms: the entropy supplied to the system by the surroundings (through flows of
heat or matter over the boundary), deS/dt, and the entropy produced within the
system, diS/dt. For a system with entropy S at time t:

dS

dt
= deS

dt
+ diS

dt
(8.1)

We use the convention that entropy is positive if supplied to the system and nega-
tive if transferred from the system to the surroundings [31]. T (diS/dt) is sometimes
called the rate of dissipation [31]. For isolated systems the second law of thermo-
dynamics tells us that the entropy can never decrease, dS/dt ≥ 0 [31]. For system
that exchange energy and/or matter with the surroundings the second law takes
the more general form [31]

diS

dt
≥ 0 (8.2)

where equality refers to reversible processes (or an equilibrium condition), and in-
equality to irreversible processes. For closed and open systems, there is nothing in
the way for the total entropy of the system to increase, dS/dt < 0, because deS/dt
can take on any value [31]. Non-equilibrium stationary systems degrades the en-
ergy they receive in order to maintain steady state [31]. The entropy of a station-
ary system does not change in time, but in the non-equilibrium case the internal
entropy production must then be positive. The entropy transport must therefore
be equal in magnitude to the entropy production, but negative, deS/dt = −diS/dt.

The three terms in (8.1) can be written as

deS

dt
= −

∫
Ω

Js · n dΩ, (8.3)
diS

dt
=
∫
V
σsdV (8.4)

dS

dt
=
∫ V

ρ
ds

dt
dV (8.5)

where Js denotes the entropy flux: the amount of entropy crossing the boundary,
Ω, per unit area and per unit time [31]. n is the unit normal pointing out of the
system [31]. σs denotes the entropy produced per unit volume and per unit time
inside the system, s is the entropy per unit mass and ρ is the mass density [30].
Combining (8.3)-(8.5) with the balance equation (8.1) one can derive the local
balance relation [31]
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ρ
ds

dt
= −∇ · Js + σs (8.6)

where, in accordance with the second law, since the entropy production cannot be
negative, σs ≥ 0 [31].

The entropy source strength, σs, can serve as a basis for the systematic descrip-
tion of the irreversible processes in a system. It is often expressed as a sum of
products of a flux, and a thermodynamic force, σs = ∑

i JiXi. The flux, Ji, is
characteristic of an irreversible process, and the thermodynamic force, Xi, is re-
lated to the non-uniformity of variables in the system (e.g. the gradient of the
temperature). These expressions are usually supplemented with phenomenologi-
cal equations expressing the relationships between the causes (the forces) and the
effects (fluxes) [31]. These are often linear functions of the form Ji = ∑

k LikXk,
where Lik denote the phenomenological coefficients. The entropy production can
then be written as σs = ∑

i JiXi = ∑
i,k LikXiXk [30]. Under equilibrium condi-

tions, σs = 0, and all thermodynamic forces, and fluxes are zero.

9 Maximum Entropy Production

We saw in section 4.2 that no physical relationships are necessary in order to
derive statistical mechanics and all of its results. For predicting the course of
time-dependent phenomena however, Jaynes states that knowledge of the equa-
tions of motion is needed [2]. An application of the MEP principle to METE was
presented in Chapter 7. As an answer to the question regarding the validity of
the initial hypothesis I provide a thorough review of the MEP principles content
and meaning, including the most well known and successful application to climate
studies, which was performed by Paltridge.

Attempts to find some universal function, whose extremum determines the devel-
opment of a system, have been made in the field of physics for all time. Extremum
principles often have the advantage of greatly simplifying calculations. Variational
or extremum principles in physical systems can be applied to find the state of the
system and its stability properties, to describe fluctuations, to derive equations of
motion and to find constraints on the direction of processes and evolutions [32].
Examples of successful principles include Fermat’s principle in optics and Hamil-
ton’s principle of least action in mechanics. In equilibrium thermodynamics, max-
imization of entropy for isolated systems or minimization of Gibbs’s free energy
for systems at constant temperature and pressure are important examples of suc-
cessful variational principles. In non-equilibrium thermodynamics, however, such
principles are limited [31]. Prigogine introduced the principle of minimum en-
tropy production in 1947 to describe the evolution of non-equilibrium dissipative
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9 MAXIMUM ENTROPY PRODUCTION

Figure 6: Variation of entropy s with time t for two possible trajectories of the development
(from Martyushev et al., 2006 [6, p. 7])

structures. The Maximum Entropy Production principle (MEP) is known much
less than Prigogine’s principle, but has been used by several scientists throughout
the 20th century to deal with both general theoretical issues in thermodynamics
and statistical physics and to solve specific problems [6]. In short, The Maximum
Entropy Production (MEP) principle states that [6]:

a non-equilibrium system develops so as to maximize its entropy produc-
tion under preset constraints.

The second law of thermodynamics tells us the direction of evolution. The MEP
principle on the other hand not only states that an isolated system tends to the
state with maximum entropy, but that it does so in the shortest amount of time,
or equivalently, along the shortest possible path [6]. This is illustrated in Figure
6, where the principle states that path 2 is preferred to path 1 because it yields a
larger entropy production between t0 and t1. The principle therefore adds to the
second law by including not only the direction of evolution, but also the rate of
evolution [6].

In a way similar to MaxEnt, the MEP principle has great potential in systems
where there is little information available to characterize the system’s state [33].
Unlike the theory of MaxEnt, which is a well-established and widely used method
for statistical inference, the MEP principle is neither a well-known nor a well-
established theory [5]. Paltridge himself was not able to explain why the principle
works as a description of the earth’s climate system and due to a lack of a theo-
retical justification for most of the time since Paltridge’s studies, MEP has been
regarded as nothing more than a curiosity by many. Dewar, however, recently
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9.1 Paltridge’s climate model

published a proof of the principle which, even though it is not regarded as rigor-
ous, again has motivated an expansion of the principles into other fields. In search
of the correct way to apply the principle in the framework that METE provides,
I have reviewed the literature on the principle from Paltridge’s work in the 1970s
through later applications to other problems and up to the recent proof published
by Dewar along with the subsequent responses. Paltridge’s work is central not
only in the development of the MEP principle itself, but because it is presented
as an analogy to the application of the MEP principle in METE in Harte’s book,
Maximum Entropy and Ecology [1].

I will present Paltridge’s studies in more detail in the coming section, but first I
will comment on the difference between MEP and the minimum entropy princi-
ple, developed by Prigogine. This is the best known extremum principle in non-
equilibrium thermodynamics. From the name alone, this principle might sound
contradictory to the MEP principle. However, it applies to a different situation.
Prigogine’s minimum entropy principle holds only in the linear case, in which case
the system’s state is already determined. In this case there is only one steady
state solution, and the minimum entropy production principle simply states that
this state is the one with minimum entropy production compared to any non-
steady condition the system might be pushed to [34, 3]. What this means will
become more clear after reading the coming chapter on Paltridge’s model. The
point is that Prigogine’s principle does not add anything when it comes to solving
for the steady state. The principle is merely a reformulation of the conservation
laws [31]. The principle of maximum entropy production on the other hand applies
to problems where the boundary conditions are not fixed, and where a multitude
of steady-states are possible [34]. The MEP principle therefore works as a selection
principle that complement the conservation laws and make it possible to determine
the steady state realized by the system [35].

9.1 Paltridge’s climate model

The MEP principle first gained popularity after a particularly successful appli-
cation by Paltridge in 1975 in the prediction of Earth’s climate. His model is
powerful because it allows one to make accurate predictions without the need for
detailed consideration of the complex internal dynamics of the climate system [34].
Paltridge treats the earth as a classically closed thermodynamic system in steady
state. The system is not in equilibrium and as a consequences work has to be
performed in order to maintain the steady state. This is done by a range of earth
system processes, the most important one being the atmospheric and oceanic circu-
lation, which degrades the energy from the sun. The global circulation transports
heat from warmer (equatorial) to colder (polar) regions and in doing so produces
thermodynamic entropy [33].

65



9 MAXIMUM ENTROPY PRODUCTION

The central constituents in Paltridge’s treatment are the net incoming shortwave
radiation from the sun, the heat flux from warmer to colder regions, and the net
outgoing longwave radiation. The incoming radiation is taken as an external con-
straint imposed by the sun, whereas the outgoing radiation is dependent on the
temperature via the Stefan-Boltzmann black-body relationship, σT 4. In Patridge’s
model from 1975 both the incoming and outgoing radiation is also affected by the
albedo (more specifically, cloud cover), but I will not discuss this dependence here.
Because the solar input per area is larger at the equator than at the poles, the
temperature at the equator is larger than at the poles. If there was no heat flux
between the equator and the poles, the temperature of each region would be deter-
mined by the steady-state requirement for that region alone. A positive heat flux
from the equator to the poles, however, increases the temperatures near the poles,
and reduces the temperatures near equator, such that the temperature difference
becomes smaller. The maximal heat flux corresponds to the value at which the
temperature difference between equator and pole is zero. At this point, no more
heat will flow. The temperature difference is therefore a decreasing function of the
heat flux, where every combination yields a possible steady state for the system.
The observed value of the heat fluxes and the temperatures found on Earth lies
somewhere in between the limits. Paltridge’s goal was to predict this, and the
albedo, at the different latitudes. In order to choose one pair of values among all
the possible pairs, Paltridge applied the principle of Maximum Entropy Produc-
tion to the earth system. According to this principle the preferred steady state of
the system should be the state that maximizes entropy production [3]. At the time
this had been shown to hold true for certain small-scale convective heat transfer
processes. By applying the MEP principle to Earth, Paltridge was able to predict
meridional profiles of surface temperature, cloud cover, atmospheric and oceanic
energy fluxes, and atmospheric and oceanic dissipation in very good agreement
with observation [3].

More specifically Paltridge created a simple two-dimensional model where the en-
tire atmosphere is divided into 10 boxes, each one characterized by uniform values
of the temperature, and each one subject to the steady state assumption. The
energy balance for each box is shown in Figure 7. As mentioned above the main-
tenance of the non-equilibrium steady state requires a positive internal entropy
production from irreversible processes, Ṡi > 0, where we have introduced the dot
to denote time derivatives. In order for the total entropy of the system to be
constant, as it should for a steady state, the export of entropy over the system
boundary must equal the total rate of internal entropy production, Ṡi = −Ṡe.
That is, the entropy production due to the global circulation, which delivers heat
from warmer to colder regions, must be exported to the universe. According to
Paltridge, the MEP principle states that the internal entropy production, Ṡi, is
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9.1 Paltridge’s climate model

Figure 7: Energy balance of a box in Paltridges model. X is the meridional heat flux, T is the
temperature and dQ is the net radiative input (from Paltridge, 1978 [3, p. 928]).

maximized, which in a stationary case is identical to a minimum in the entropy
exchange, Ṡe [34].

In each box (Figure 7) we get a net flowrate of entropy [3]:

dṠe = X

T
− (X + dT )

(T + dT ) + dQ

T
(9.1)

Using the energy balance, dQ = dX, and the entropy balance, dṠi = −dṠe,
Paltridge rewrites the above equations as [3]:

Ṡi = −
∫ Tp

TEq

dṠe = −
∫ Tp

TEq

X

T 2 (9.2)

The total rate of dissipation is found by multiplying this expression by T and the
MEP principle is equivalent to a maximum dissipation principle [3] .

In the linear case, the flux would be proportional to the temperature gradient,
X = k(dT/dx), where k is some constant transfer coefficient. This is the case
of linear phenomenological relationships between the flux and the thermodynamic
force as presented in section 8. This case is related to Prigogine’s minimum en-
tropy principle, which was discussed at the end of the previous section. Paltridge
instead assumes that there are sufficient degrees of freedom in the dynamics and
thermodynamics of the system to allow any steady state satisfying energy balance
and boundary conditions [3]. He therefore considers what he claims is a more real-
istic non-linear situation, where k is unconstrained. Each steady state corresponds
to a different value of the entropy production, Ṡi, where zero value occurs only in
the limiting cases of zero flux and zero temperature difference.

For a classic closed steady state system we can also express the internal entropy
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production through the entropy exchange as

Ṡi = −Ṡe = −
∫ dQ

Ta
dA (9.3)

where dQ is the net rate of radiant energy input to the area element dA of bound-
ary surface. Ta is the temperature at the boundary, i.e. at the top of the atmo-
sphere [3]. The net incoming radiation in each box is non-zero because some of the
incoming energy is transported from warmer to colder regions. Negative values of
dQ at mid-latitudes give rise to positive values at higher latitudes, such that the
net radiant energy into the total system is zero. The largest positive values of dQ
are found at the equator and the largest negative values are found at the poles.

Paltridge calculates the total entropy production in his 10-box model using the
discrete version of (9.3):

Ṡi = −Ṡe = −
10∑
i=1

(FS − FL)i
Tai

(9.4)

where FL and FS denote the longwave and shortwave flows of radiant energy into
the top of each box and Tai is the temperature at the top of the atmosphere [3].
Due to energy balance, the net incoming radiant energy in any one box equals
the net outgoing heat flux from that box to the neighboring boxes. From this,
Paltridge finds the unique set of fluxes and temperatures leading to a maximum
in Ṡi [3]. In addition to the simple, two-dimensional 10-box model Paltridge also
included a three-dimensional 400-box model. Broad agreement with observation
was found both with the 10-box model, and the 400-box model [3]. In 2007 Pal-
tridge et al. used the MEP principle to investigate the effect of cloud cover on
feedbacks to climate change [36]. They then found that cloud feedback will reduce
the temperature response to doubled CO2 slightly at high altitudes and slightly
amplify it at low altitudes, but they point out that the study only can provide
qualitative results with high uncertainty [36].

There are subtleties in Paltridge’s method that I have chosen not to include (e.g.
in the assignment of average temperature, and assumptions about fluxes between
the ocean and atmosphere), but none of these factors should affect the general
results in any significant way. The more interesting critique of Paltridge’s work is
directed towards the choice of the entropy production that is maximized. Ozawa
et al. show that only a small part of the total entropy production on earth is
included in Paltridge’s analysis [35]. The entropy production associated with the
direct absorption of solar radiation at the surface, in the atmosphere, and from
the surface to the atmosphere is not taken into account. This has been a central
objection to Paltridge’s studies.
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Ozawa et al. studies the earth as a heat engine operating between thermal reser-
voirs at two different temperatures, the temperature at the equator and at the
poles. Earth receives radiant energy from the sun at a very hot temperature
(5800K), transports heat from warmer to colder regions via the atmosphere and
the oceans, and reemits radiant energy to outer space at a very low temperature
(4K) [35]. The amount of radiation entropy can be found as the flux of radiant
energy divided by the brightness temperature, dSrad = δQrad/Tbr. The brightness
temperature of the radiation from the sun is that of the sun, Tbr = Tsun. The
total entropy produced by earth is then Ṡtot =

∫
A (FL/Ta − FS/Tsun) dA, which

due to the high temperature of the sun is much larger than the entropy produc-
tion calculated by Paltridge [35]. Paltridge’s expression for entropy production
corresponds to the rate of entropy production due to turbulent dissipation only.
In reality, the turbulent part of the entropy production contributes to only about
5% of the total rate. However, Ozawa et al. conclude that it is nonetheless this
term that tends to be maximized in the climate system [35]. They argue that this
is because the absorption only depends on the material under consideration and
cannot be altered by changing fluxes. Radiation can therefore be viewed just as
an energy source for the climate system, that is, as a constraint. Ozawa et al.
therefore conclude that the entropy production due to direct absorption of solar
radiation is irrelevant to the maximized entropy associated with the turbulent flux
from equator to poles [35].

9.2 Other applications

The application of the MEP principle in the framework of METE was motivated
by successful applications of the principle in a variety of fields. Paltridge’s climate
studies provides the most important example of a successful MEP application and
the original hypothesis presented in Chapter 7 was based on transferring the prin-
ciple from thermodynamic entropy production in the Earth system to production
of the information entropy defined in METE. The analogy between our ecosystem
and the climate system, however, has its limitations, which will be discussed in
greater detail in Chapter 11. The lack of both a recognized theoretical foundation
and an established MEP procedure increases the need of a valid analogy to base
our approach on. In order to get an impression of the general applicability of the
principle and to look for an application that is closer to what we have in METE,
I conducted an extensive literature review on the subject. I present the most rel-
evant alternative applications here.

Paltridge’s predictions of Earth’s climate using the MEP principle was initially
dismissed as a coincidence by some [33]. This, however, has become harder to
claim, after it was shown by Lorenz et al. in 2001 that also Mars and Titan
operate in MEP states [35, 33]. Related to the case for the global climate are
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Suzuki and Sawada, and Chen and Wangs studies of Bernard-type convection cells
in the 1980s [6]. They obtained multiple steady states under the same boundary
conditions but they found that these states were not equally stable against pertur-
bations. In fact, the steady states tended to shift towards states of higher entropy
production following a perturbation, thereby suggesting that the MEP state is in
some way a preferred state [35].

Since Paltridge’s time, promising results have also been obtained for non-equilibrium
systems in a range of other studies, including crystal growth morphology, kinetic
features of solids and bacterial metabolism and photosynthesis [20, 6]. Martyu-
shev et al. also show how the principle can be used to deduce the Kirchoff law
for an electric circuit, to characterize the behavior of a body in a radiation field,
to describe the evolution of structures in a plasma, to describe the behavior of a
periodic array of Josephson Junctions and to determine what chemical reactions
will take place among a set of possible alternatives [6]. The list of successful appli-
cations is long and serves as a strong motivation for an expansion of the principle
into other fields of research. Martyushev et al. also state that the principle shows
the greatest promise in astrophysics and biology, in particular ecology [6].

Paltridge’s studies suggests that the Earth system maximizes entropy production.
The relevant entropy production in his case comes from the turbulent atmospheric
and oceanic flows. Organisms and ecosystems however, also make a contribution
to the entropy production on Earth and an interesting questions is whether these
systems are also guided by the MEP principle. Several energy-based principles
have been suggested in order to explain how ecosystems organize themselves. One
of these, first presented by Lotka in 1922, is a principle that says that ecosystems
evolve to maximize the energy flux through the system under the given constraints.
He also stated that species which utilize the available energy most efficiently (all
other things being equal) will increase their population and as a consequence the
total flux of energy through the system. Lotka’s principle was further developed
as the maximum power principle by Odum and Pinkerton in the 1950s which says
that the available energy degrades at the maximum possible rate [33]. Schneider
and Kay suggested that ecosystems attain states of maximum dissipation in the
1980s. This is really equivalent to a maximum entropy production principle, but
they avoided this term as the entropy is not rigorously defined far from equilib-
rium [37]. All of the above principles are only slightly different versions of the same
concept, and concerns rates of entropy production when the boundary conditions
are not fixed [33].

MaxEnt has been used successfully as a completely statistical method to infer
from incomplete data in economics in a way that is separate from all thermody-
namic principles. I therefore looked to economics again for applications of the
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MEP principle in Kleidon and Lorenz’ Non-equilibrium Thermodynamics and the
Production of Entropy where I found that Ruth applies concepts from both equi-
librium and non-equilibrium thermodynamics in order to describe and understand
economic activity [38]. The MEP principle in economics is thus strongly related
to thermodynamic entropy.

10 A study of stability in Paltridge’s models

Paltridge’s model predicted the empirical values of temperature, heat fluxes and
cloud cover very well. In an attempt to justify the MEP state he looked at fluc-
tuations in the heat fluxes and claimed that these will push the system towards
the point of maximum entropy production over time. Martyushev et al. however
point out that his argument depends on new assumptions that are not themselves
justified [6]. Could it be that the reason why the system is found in the MEP state,
is that this state is in some way more stable than other steady states? Following
a suggestion by Harte, I here present a brief investigation of this question. The
aim is not to obtain any accurate values, but to look at the qualitative behavior
of the model in the different steady states.

10.1 Theory of Stability

An equilibrium is defined to be stable if all sufficiently small perturbations around
this point damp out in time [39]. By linearizing about the fixed points, we can
say something about the rate of decay or growth of perturbations. We consider
the system

ẋ = f(x, y) (10.1)
ẏ = g(x, y) (10.2)

where (x∗, y∗) is a fixed point such that

f(x∗, y∗) = 0 (10.3)
g(x∗, y∗) = 0 (10.4)

(10.5)

We then let u = x−x∗ and v = y−y∗ denote small perturbations around the fixed
point. We want to know whether these perturbations grow (unstable equilibrium)
or decay (stable equilibrium) over time. In other words, we want to know the value
of u̇ and v̇ at the fixed point. This is given by
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(
u̇

v̇

)
=
(∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
(x∗,y∗)

(
u

v

)
+O(u2, v2, uv) (10.6)

where O(u2, v2, uv) denote the quadratic terms. These are small and in most
cases safe to neglect [39]. The matrix with the partial derivatives is called the
Jacobian, and it is to be evaluated at the equilibrium point. For the equilibrium
to be asymptotically stable, all the eigenvalues of the Jacobian matrix must have
negative real parts [40].

10.2 Stability in Paltridge’s model

Instead of a detailed 10-box model including variables for cloud cover, we use a
simple three-box model with one box for the equator, and two for the poles, as
shown in Figure 8. The two poles are treated as identical. It is assumed that the
number of boxes will not alter the results qualitatively. Average temperatures are
Te for the equator and Tp for the two poles. When the system is not in a steady
state, the total energy of the boxes will increase or decrease by an amount equal
to energy in minus energy out. It is assumed that all of this energy is stored as
heat. The rate of change of the temperature in each box can then be written as
dQe/dt = cedTe/dt at the equator and dQp = cpdTp/dt at the poles, where dQ/dt
is the rate of energy into the system minus the rate of energy out of the system. ce
and cp denote the heat capacities which, for convenience, are set equal to 1. The
energy balance equations for equator and pole, in units of Watts per meter are
then

dTe/dt = Ωe − 2Q− σT 4
e (10.7)

dTp/dt = Ωp +Q− σTp4 (10.8)

where σ is Stefan-Boltzmann’s constant, Q is the energy flux from the equator to
the poles, and Ωe and Ωp represent the net incoming solar radiation at the equator
and the poles respectively. In the stationary state, the temperatures do not change
and the left hand sides of equation (10.7) and (10.8) are zero. Combining them in
this case gives

∆T = 1
σ1/4 [(Ωe − 2Q)1/4 − (Ωp +Q)1/4] (10.9)

where ∆T = Te − Tp. Equation (10.9) defines the curve of stationary states in
variables of the thermodynamic force, ∆T , and the flux, Q [6]. The entropy
production in each of the stationary states is different. The MEP principle as
used by Paltridge implies that the steady state chosen by the system should be
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10.2 Stability in Paltridge’s model

Figure 8: Energy input and output in the 3-box model. Ωe,p denote the incoming solar radiation,
Te,p denote the temperature of the region and σTe,p denote the outgoing black-body radiation.
Q is the heat flux from equator to poles.

the one maximizing the entropy production. We find the entropy production, σs,
as a function of the heat flux and the temperatures by using a 3-box version of
equation (9.4), with (FS − FL) = Ω− σT 4 for the equator and the poles resulting
in

σs = 2Q
Tp
− Q

Te
− Q

Te
= 2Q ∆T

TpTe
(10.10)

In order to solve for the maximum of σs one can use the steady state versions of
(10.7) and (10.8) to substitute for the temperatures and solve with respect to Q.
The MEP temperatures, T ∗e and T ∗p are then found by plugging the MEP flux, Q∗,
back into the steady state equations.

For any given Q, the dynamical behavior of the temperatures is described by equa-
tion (10.7) and (10.8). If Q is a given constant, the steady state values of Te and
Tp will be uniquely defined, and the dynamical behavior of each one is decoupled.
It is easy to see that this equilibrium must be stable, because a small perturbation
in any of the temperatures will give a time derivative of the temperature in the
opposite direction, leading the system back to the equilibrium. This however, is
not the case we are interested in. More often, a linear relationship between fluxes
and forces is assumed,

Q = k(Te − Tp) (10.11)
where k is a proportionality constant. In many systems k is found as a phe-
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10 A STUDY OF STABILITY IN PALTRIDGE’S MODELS

nomenological parameter that describes the underlying relationship between the
fluxes and the gradients in the system. If we know k we can substitute this expres-
sion for Q in (10.7) and (10.8). This gives a set of coupled equations which can be
solved for the temperature in the steady state. Therefore, a known k will define
the entire system. We will instead look at the case where the value of k is given
by the criterion that this is the value resulting in the MEP state of the system.
Then this k will define the relationship between heat flux and temperature differ-
ence by equation (10.11). In fact, the set of variables, k, Q, Te, Tp and ∆T are all
determined when one of them is given and define a unique set of equilibrium values.

I used MATLAB to compute the temperatures along with the values of Q and
k for all the possible steady states between Qmin = 0 and Qmax = (Ωe − Ωp)/3
(found by setting Te = Tp). I then computed the eigenvalues of the Jacobian in all
of these states, and plotted the values as functions of k and Q. I also plotted the
value of the entropy production as a function of Q, in order to study whether the
maximum entropy state had any particular features compared to the other steady
states.

The values of the incoming radiation are chosen to get values in a range that is
reasonable for a simple model of Earth’s climate, but have no physical significance
beyond this. I used Ωe = 600 W/m2 and Ωp = 200 W/m2. σ = 6×10−8 W/(m2K4)
was used as Stefan-Boltzmann’s constant. All the plots were tested with varying
parameters, and no qualitative changes were observed.

In the steady state the temperatures are given by

Te = [(Ωe +Q)/σ]1/4 = [(Ωe + k(Te − Tp))/σ]1/4 (10.12)
Tp = [(Ωp − 2Q)/σ]1/4 = [(Ωp − 2k(Te − Tp))/σ]1/4 (10.13)

The temperatures and k are plotted as functions of Q in Figure 9. We see that for
Q = 0 the temperature difference is at maximum. Te is maximum (316 K) and Tp
is minimum (240 K). As Q increases, the temperature difference decreases. Equa-
tor and poles reach the same temperature (273 K) when Q = Qmax (133 W/m2).
k increases faster and faster as Q increases (because the temperature difference
decreases). As the temperature difference goes to zero, k = Q/(Te − Tp) goes to
infinity.

The stability of the system at the different equilibrium points is found by looking
at the eigenvalues of the Jacobian. If we call dTp/dt = f and dTe/dt = g we can
write the Jacobian as
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10.2 Stability in Paltridge’s model

(a) Te and Tp as functions of Q (b) Te, Tp and k as functions of Q

Figure 9: Te, Tp in Kelvin, K, and k in W/K plotted against Q = k(Te − Tp) for0 < Q <
0.95Qmax.

J =
( ∂f
∂Tp

∂f
∂Te

∂g
∂Tp

∂g
∂Te

)
(10.14)

The eigenvalues are then given by the equation

( ∂f
∂Tp
− λ)( ∂g

∂Te
− λ)− ∂f

∂Te

∂g

∂Tp
= 0 (10.15)

The two eigenvalues were computed in MATLAB and are plotted as functions of
Q and k in Figure 10. We see that the eigenvalues are real and negative for all
the possible steady states (between Q = 0 and Te = Tp). λ1 is roughly constant
for all steady states, whereas λ2 decreases with Q (and k). The more negative the
eigenvalues, the faster the return to equilibrium after a perturbation. The states
at larger values of Q (and k) are in this sense more stable. It can also be shown
directly from the expression of the eigenvalues that they are real and negative for
any values of the temperatures.

The entropy production is plotted versus Q in Figure 11. The maximum value of
the entropy production, (ds/dt)∗ = 0.07 W/(m2K) is found at Q∗ = 68 W/m2.
This corresponds to T ∗e = 297K and T ∗p = 259K and k∗ = 1.8.
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10 A STUDY OF STABILITY IN PALTRIDGE’S MODELS

(a) λ1 and λ2 as functions of Q (b) λ1 and λ2 as functions of k

Figure 10: Eigenvalues, λ1 and λ2, shown as functions of Q and k.

Figure 11: Entropy production, ds/dt, as a function of Q.
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10.3 Discussion

10.3 Discussion

The above results show that the MEP state is not qualitatively different from the
other states when it comes to the stability of the system. The match between
Paltridge’s predictions and the empirical values can therefore not be explained on
the grounds of stability. Even though I have only discussed perturbations in the
temperature these perturbations also involve perturbations in Q, because the heat
flux is linked to the temperature difference through k. If k itself could increase
(corresponding to a larger flux per temperature difference), this will simply lead
the system to a new steady state, with a higher Tp and a smaller Te. Our equations
only give direct information about the dynamical behavior of the temperatures.
It is possible to imagine perturbations in the net incoming solar radiation also. In
reality this depends on the albedo, the reflection coefficient of the surface. A high
albedo means that a large portion of the solar radiation is reflected back into space
and s low albedo means that a larger fraction will be absorbed by Earth. In order
to study this effect, we could rewrite the radiation terms as Ω = Ω0(1 − a(T ))
where the albedo, a(T ), depend on the temperature of the box. Typically, a
higher temperature at the poles will lead to ice melt, which will reduce the albedo.
This again will increase the net incoming radiation, which again will increase the
temperature. Including the albedo into the equations might therefore render the
system unstable (for all possible steady states) because it adds a positive feedback
mechanism. The albedo is also linked to cloud cover, a variable that is responsible
for one of the larger sources of uncertainty in climate modeling. More cloud cover
not only reduces the incoming radiation due to a higher reflection coefficient, it
also reduces the outgoing radiation by reflecting the longwave radiation from the
surface of Earth back down to the surface.

I looked briefly at the albedo and found no evidence that the MEP state became
any more different from the other states when this was included. From the above
stability analysis, there seems to be no sign of a qualitative difference between
the MEP state and the other states, rendering the MEP state unique in any way.
Even if we change the model a little, it doesn’t seem plausible that a qualitative
difference in regard to stability would present itself. This statement requires more
investigation in order to be established as true. I ended my investigation of the
stability with the above results.

11 Discussion of MEP analogies to METE

The implications of assuming that the rate of production of the information en-
tropy, SI , is maximized were investigated in Chapter 7. This investigation was
based on an early interpretation of the MEP principle as a principle stating that
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11 DISCUSSION OF MEP ANALOGIES TO METE

a system will evolve according to the path of maximum entropy production. The
review of the MEP principle in Chapter 9 provides us with a better background
necessary for a discussion of the applicability of the MEP principle to METE in
more detail.

The applications mentioned in Chapter 9 include planetary climates, convection
cells, maximum power in ecosystems and studies of the economy among other ex-
amples. All of these applications are, however, related to thermodynamic entropy.
For now, therefore, we can still only assume that the principle will hold also for
information theory, without proving this.

The definition of the MEP principle stated by Martyushev et al. and given in
the beginning of Chapter 9 states that: a non-equilibrium system develops so as
to maximize its entropy production under preset constraints. This definition and
Figure 6 indicates that the principle refers to the evolution of a non-equilibrium
system as it approaches equilibrium, where the equilibrium corresponds to the
state where the entropy of the system attains its maximum possible value. This
brings up the question of how to look at the equilibrium concept in the framework
of METE. An equilibrium state is characterized by state variables that are con-
stant in time. By this definition, our system is not in equilibrium (if it was, the
application of MEP would become meaningless, because the goal is to say some-
thing about the dynamical behavior). The MEP principle then tells us that the
system should approach its equilibrium at the fastest possible rate. The analysis in
Chapter 7 and the graphs in Figure 5, however, show that the entropy in our case
is unbounded. The system does not have an equilibrium in this respect. Another
way to look at equilibrium is in analogy to a quasi-static thermodynamic process.
Here, the state variables are changing, but the change is slow enough for us to say
that the system is still in equilibrium at every step in the process. This means that
the entropy is maximized at every set of the state variables, and that the system
is in equilibrium because it can be described by the MaxEnt distribution. It seems
more plausible to say that something like this is the case for our system. The
system is then always in equilibrium in the sense that the information entropy,
IR, takes on the maximum value and that R(n, ε) is described by the MaxEnt
distribution for every set of S, N and E. The value of the maximum entropy then
changes according to the state variables. A third way to look at equilibrium is to
look at whether there are fluxes present. We do indeed have a flux of energy going
through the system in the form of the metabolic rate. The question, however, is
whether this flux really describes a flux in our representation of the system. Even
though the metabolic rate represents a flux from a thermodynamic perspective,
there is nothing in the theory of METE that separates the state variable E from
S and N . That is, E is simply not defined as a flow (it has no spatial component
and no direction). We conclude that there are no fluxes in METE. According to
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this view, our system is also in equilibrium.

Paltridge’s work was intended as the main analogy for the application of MEP to
METE. We can now evaluate the strength of this analogy. The climate system is
in the non-equilibrium steady state for which the thermodynamic entropy is max-
imized. The difference between thermodynamic entropy and information entropy
is set aside for now. For stationary states, the state variables are independent
of time, and we have already stated that this is not the case for our ecosystems.
We have also established that it makes little sense to regard our system as a non-
equilibrium system. On these grounds, the analogy is starting to look weak.

The presence of fluxes is central to the entropy production in Paltridge’s case,
where the entropy depends on the product of the temperature difference and the
flux as shown in equation (10.10) for the simple 3-box model. This also corresponds
with Chapter 8 where I showed that thermodynamic entropy can be expressed in
terms of products of fluxes and forces. If either the heat flux is small or the tem-
perature difference is small, the entropy production is small in Paltridge’s case.
The maximum is found somewhere in the middle, as shown in Figure 11. Fluxes
are central also to the other applications mentioned in section 9.2. These fluxes
need not be heat but can be electrons or chemical components, but the entropy
production is always expressed as a product of fluxes and forces. In all the appli-
cations, it is the thermodynamic entropy that is maximized. All of the examples
describe non-equilibrium systems, and most describe stationary processes, even
though some describe the evolution of systems.

There is another difference between Paltridge’s application and ours. Because
the Earth is in a steady state, its entropy is by definition constant. Paltridge is
only maximizing the internal entropy production of the system. This entropy is
exported to the universe, such that the total entropy of the system remains con-
stant. In our case, we are simply maximizing the one entropy measure that we
have, SI . Is this the correct part of the entropy to maximize? Why would this
entropy increase at all, if the entropy of the climate system does, in fact, not?
Moreover, even the part of the internal entropy that is maximized by Paltridge is
not straight forward, and has been questioned by several authors [35]. Ozawa et
al. concluded that it is the irreversible part of the entropy production that should
be maximized, and that this is equivalent to the turbulent part not including the
direct absorption. Can we determine a part of the entropy in our system that
is analogous to an irreversible entropy production? If SI then represents the to-
tal entropy and is set to a constant this does, however, not imply constant state
variables, because the same value for the entropy can be obtained from several
combinations of the constraints. At this point the comparison gets confusing.
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11 DISCUSSION OF MEP ANALOGIES TO METE

Any non-equilibrium system has a defined equilibrium state. For Earth, this would
be the state where it is in equilibrium with the surrounding universe. And if we
look closely, the Earth is not really in a stationary state. For any system that
uses energy from the surroundings, this energy will at some point run out. The
temperature of the sun will ultimately decrease, whereas the temperature of space
will increase (yet in this case by no significant amount, because the energy of the
sun is small in comparison to the rest of the universe), until there is no longer a
difference, and no longer a potential for work. Without an external energy source
Earth cannot be kept out of equilibrium, and will in the end equilibriate with its
surroundings. All the entropy produced by Earth is exported to the universe, and
increases the entropy there. According to Ozawa et al. the contribution to the
entropy production from direct absorption is determined by the boundary con-
ditions and therefore only acts as a constraint [35]. Thus, the maximum in the
turbulent entropy production seems to coincide with the maximum in the total
entropy production for the isolated system: Earth and universe combined. Viewed
in this way it seems like we are back where we started: for an isolated system, the
entropy will increase at the fastest possible rate. Can we apply this to our system?

Our system, however, is not isolated. It is constantly interacting with its sur-
roundings, where it gets its energy from, and where it gets new individuals from.
It might therefore only be regarded as a subsystem, equivalent to Earth, for which
the entropy is actually constant. Because the possible stationary states for the
climate system are restricted by the physical constraints of the incoming solar ra-
diation and the maximum heat flow, the total rate of entropy production in the
combined universe and Earth system is bounded. This is important. If it was
not for this we would not be able to determine a maximum entropy production
state. As stated earlier, we have not imposed any bounds on SI . Of course, any
ecosystem cannot use more energy than what is delivered from the sun, but set-
ting this as the upper limit would only lead to the conclusion that any ecosystem
will eventually use all the available energy, a conclusion that does not make much
sense. A principle for the total or partial entropy production of a system is only
interesting given that we have identified constraints that limit the available states
of the system.

In a case where the total thermodynamic system approaches equilibrium, the ther-
modynamic entropy reaches its maximum subject to the constraints on the total
system. The representative ensemble in the equilibrium state will be described
by the MaxEnt distribution. In the case of a closed system in thermal contact
with a heat reservoir this is the canonical distribution. But an isolated system can
be approximated by the canonical distribution to a good degree. The relaxation
of the total system to equilibrium corresponds to the probability distribution ap-
proaching the MaxEnt distribution. It is the distribution, not the constraints on
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the total system, that changes during this relaxation process. In the application
in Chapter 7 the state variables defining the constraints themselves were changed
in order to change the entropy, a method that was questioned in the discussion.
In the case for Paltridge, however, the temperature difference and the heat flux
are chosen so as to maximize the internal entropy production. These quantities
are in many ways similar to a form of constraints, but in this case, the problem is
bounded, and we can actually find a solution.

My analysis in Chapter 7 and review in Chapter 9 gives little hope for an ap-
plication of the MEP principle to SI based solely on an analogy with Paltridge’s
work or any of the other applications. Even if we ignore the difference between
thermodynamic entropy and information entropy, the logic from Paltridge is not
easily transferred to our problem. And in the end, we cannot escape the obvious
difference between thermodynamic entropy on one hand, and information entropy
on the other. The analysis up till now has showed the complexity of the method
but left us with few conclusions when it comes to the application of the MEP
principle to information theory.

12 Dewar’s proof

There exists no established algorithm for how to apply the Maximum Entropy Pro-
duction principle to a given system. My work was initially guided by the analogy
with Paltridge’s studies, but it is shown that this analogy is limited. In order to
extend the principle and apply it in a way that is valid in the framework of METE,
a deeper understanding of the principle is needed. To see what the principle ac-
tually says, in which cases it holds, what the underlying assumptions are and how
it should be applied, I went through the most fundamental work on the principle.
This was published in three papers by Dewar in 2003 and 2005, in which he de-
rives the MEP principle, as well as a the Fluctuation Theorem and the principle
of Self-Organized Critically, all based on the MaxEnt formalism [4, 5, 20]. His
derivation lead to renewed interest in the MEP principle, but is still not generally
accepted as a rigorous proof. The derivations are difficult to follow in detail and
have been met with criticism [41, 35, 42]. I have not included this critique because
it is outside the scope of my thesis, but I have included my own critical remarks
at the end. One of the problems, also noted by Ozawa, is that Dewar does not
provide any examples [35]. An example would have made it easier to both believe
the derivations, understand the principle, and see how it can be applied in gen-
eral. An improved proof is underway from Dewar, and the current one should be
regarded only as incomplete. I present the parts that I believe are most related to
my work with METE. I have included both a conceptual explanation and a more
detailed mathematical derivation.
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12 DEWAR’S PROOF

Dewar’s derivation of the Maximum Entropy Production principle is really an
abstraction of Jaynes’s MaxEnt algorithm where the notion of microstate (the
state i that we associate the probability pi with) is switched with the notion of a
microscopic phase space path, Γ. These paths are determined by the microscopic
equations of motion, and will be explained in more detail below. Just as in the
usual MaxEnt case, pΓ will denote the probability of microscopic path, Γ. The
path information entropy is then defined as [20]

SΓ = −
∑
Γ
pΓ ln pΓ (12.1)

The more specific derivation is described as follows. Even though it is in terms
of physics, the concepts can be transferred to non-physical situations, as we will
see later. We have an open thermodynamic system with volume, V and boundary,
Ω. The system consists of several constituents (i = 1, ...,m) undergoing mutual
transformations. In this system u(x, t) denote the internal energy density and
ρi(x, t) the mass density of constituent i at position x and at time t. fu(x, t)
denotes the internal energy flux density and fi(x, t) denotes the mass flux density.
These definitions enables us to apply local conservation laws for energy and mass
in the differential form at each point (x, t). The macroscopic state vectors are
defined as d = (u, {ρi}) and F = (fu, {fi}). The normal components of F on the
boundary Ω are denoted by Fn [4]. For any quantity, X, the time average over the
time interval τ is given by

X = 1
τ

∫ τ

0
X(t)dt (12.2)

and the expectation value over the path probability distribution pΓ is given by

〈X〉 =
∑
Γ
pΓXΓ (12.3)

where XΓ is the value of X for the path Γ. Dewar’s procedure amounts to max-
imizing the path information entropy, SΓ given in (12.1), subject to the external
constraints. The external constraints are typically surface flux inputs, externally
imposed gradients, energy and mass balance in the stationary case, and any other
a priori information, like local energy and mass conservation [4]. The complete
maximization procedure, however, differs slightly from the usual MaxEnt algo-
rithm, and is done in two steps. In the first step, SΓ is maximized in the usual
way with respect to pΓ subject to
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∑
Γ
pΓ = 1 (12.4)∑

Γ
pΓdΓ(x, 0) = 〈d(x, 0)〉 (x ε V ) (12.5)

∑
Γ
pΓFn

Γ(x) =
〈
Fn(x)

〉
(x ε Ω) (12.6)

The first constraint is just the normalization condition. The second constraint de-
notes fixed initial configurations of internal energy and mass density within volume
V at time t = 0. The third constraint denotes fixed time-averaged configurations
of internal energy and mass flux densities on the boundary Ω over the time inter-
val from t = 0 to t = τ . If the system is in a steady state 〈d(x, 0)〉 and

〈
Fn(x)

〉
are sufficient to describe the macroscopic state of the system and its interactions
with the surroundings throughout the interval τ . The real significance of these
two constraints appear first in the next step. Maximization of SΓ in the first step
yields

pΓ = 1
Z

expAΓ (12.7)

where the path action, AΓ, is a functional of the Lagrange multipliers, λ(x). As
described in the MaxEnt theory in section 3 the Lagrange multipliers are uniquely
defined by the constraints, in this case 〈d(x, 0)〉 and

〈
Fn(x)

〉
. The Lagrange

multipliers and the constraints give two equivalent sets that alone define everything
else. By using the local conservation laws for mass and energy, followed by some
mathematical calculations, Dewar arrives at an expression for the path action as
a function of the time averaged thermodynamic entropy production, σΓ

AΓ = −1
2

∫
V

HΓ(0) +HΓ(τ)

kBT
+ τσΓ

2kB
(12.8)

whereHΓ(0) andHΓ(τ) are the end point contributions of the non-equilibrium gener-
alization of the Hamiltonian, T is the temperature and kB is Boltzmann’s constant.
By substituting equation (12.8) into (12.7) we see that the entropy production, σΓ,
is a key determinant of pΓ(λ). The probability of a path increases exponentially
with the entropy production, σΓ, of that path. This entropy production, σΓ, is
important to distinguish from the information entropy, SΓ. Even though both of
them are ultimately shown to be maximized by Dewar, σΓ refers to the internal
entropy production due to irreversible processes, whereas SΓ is the information
entropy of the path probability distribution defined by equation (12.1). Dewar
also shows that σΓ is expressed as products of forces and fluxes. If we reverse the
path, the first term in (12.8) remains the same (it is the sum of the end-point
contributions), whereas the second term changes sign, because σΓ changes sign.
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12 DEWAR’S PROOF

The ratio of pΓ over the probability of the reversed path, pΓ− , is thus e−τσΓ/kB

which becomes exponentially small as the time iterval, τ , increases or as the sys-
tem size increases (larger σΓ). According to Dewar this shows how probabilities of
violations of the second law become exponentially small, and he presents this as a
derivation of the fluctuation theorem [4].

By combining the normalization condition (12.4) with the expression for pΓ in
(12.7) Dewar shows that [4]

SΓ,max(λ) = −
∑
Γ
pΓ(λ) ln pΓ(λ) = lnZ(λ)− 〈A(λ)〉 (12.9)

The above results conclude the first step. Step two then goes as follows. Both the
constraints, 〈d(x, 0)〉 and

〈
Fn(x)

〉
, are really unknown averages that were only

artificially fixed during step one. In the second step, SΓ,max(λ) is maximized with
respect to λ(x) (which is related to the constraints) subject to the remaining con-
straints. The remaining constraints are the external constraints of the system as
a whole, like steady state constraints. The climate system in Paltridge’s study
for instance, is constrained by the steady state requirement, the incoming solar
radiation and the minimum temperature difference between the equator and poles.
Otherwise, the boundary conditions are free to vary such that the entropy produc-
tion of the system can be maximized. It corresponds to a case where the variables,
F, which are the heat fluxes between the atmospheric boxes, are free variables. As
mentioned above, when 〈d(x, 0)〉 and

〈
Fn(x)

〉
are already known, the steady state

is already determined. This is the case of fixed boundary conditions, or a given
linear flux-force relationship, where Prigogine’s minimum principle instead should
hold. The Maximum Entropy Production principle is equivalent to the second step
in Dewar’s derivation. He also shows Self-Organized Criticality to be a special case
of MEP [4]. The MEP principle is powerful because only the external constraints
end up mattering. We do not have to know anything about what’s going on in-
ternally. All macroscopic quantities reproduced under the external constraints
can then be calculated as expectation values over pΓ(λ∗), where λ∗ denotes the
MEP solution for the Lagrange multipliers [4]. This gives the macroscopic entropy
production, σ, as the expectation value

σ = 〈σΓ〉 ≡
∑
Γ
pΓ(λ∗)σΓ (12.10)

It is not clear in Dewar’s derivations what exactly is meant by a path. A more
explicit example of Dewar’s paths was provided by Bruers in 2007 [42]. He looks
at a system consisting of l sites, all with a real variable ni(t) (i = 1, 2, ..., l) that
depend on the discrete time t = 0, 1, ..., τ . At every time step there is a random
flux between the sites. The flux, fij = −fji, from i to j depends on a real constant
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parameter cij = cji such that fij = ±cij where the sign is stochastic. A microscopic
path Γ is then a specific set of values cij or −cji for every time step and every i and
j. One path therefore constitutes a description of all microscopic fluxes between
all the sites, at all time steps, over a specified time interval. The pathspace is the
set of all possible paths, which we now see defines a finite, discrete set, which can
therefore be counted. The total flux into i at a specific time can be clearly defined
as

ni,Γ(t+ 1)− ni,Γ(t) = −
∑
j

fij,Γ(t). (12.11)

which is just a way of expressing conservation [42]. By writing d(x, t) instead of
ni(t) and F(x, t) instead of fij we arrive at Dewar’s case. According to Bruer’s
then, a path simply means the exact description of F(x, t) and d(x, t) over time
and space, where we can discretizise all dimensions in order to make the pathspace
countable. In order to make it finite, we need some kind of limit on the maximum
value of the fluxes and the densities.

To summarize the two steps and provide a more conceptual description: let A
denote the macroscopic values that we have real knowledge about, acting as the
external constraints in the problem. Let the macroscopic quantities predicted as
expectation values over the path distribution be collectively denoted by B. In
Dewar’s case, 〈d(x, 0)〉 and

〈
Fn(x)

〉
belong to B. The MaxEnt algorithm is then

applied in two steps. In the first step B acts as a temporary constraint used to
maximize SΓ = SΓ(B) with respect to the path probabilities. Local conservation
laws are built into this step. This step results in the flattest probability distri-
bution for the paths, subject to B and A. The entropy is then a measure of the
number of paths with non-negligible probability, when B and A are true. In the
second step the path entropy, SΓ(B), is maximized with respect to B subject to
the rest of the constraints which are given by A. After this step we therefore
find the B that yields the largest number of paths with non-negligible probability
subject to A only. Analogous to the MaxEnt logic, the system is most likely to
be in the macrostate that corresponds to the largest number of paths. A does not
include any microscopic knowledge or any fixed boundary conditions. The logic
is that if A is sufficient to reproduce B, then the algorithm will correctly predict
the observed B [20]. In other words, it has to do with reproducibility. If we could
conduct an experiment to investigate the MEP principle, the microscopic paths
would differ each time we set up the experiment, because this would be outside of
our control. We are not interested in the microscopic details however, we are only
concerned with the prediction of macroscopic behavior. If the macroscopic behav-
ior is reproducible under the given constraints, A, this means that this behavior is
characteristic of each of the vast number of microscopic paths compatible with the
constraints in A. Again, we recognize the idea from the MaxEnt theory. Maxi-
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mizing SΓ subject to these constraints will discard all the microscopic information
which by this logic is irrelevant to the reproducible behavior [4]. The expecta-
tion values calculated from the path distributions are "only" statistical inferences.
They are not the result of the system somehow sampling different paths. Obvi-
ously, the system can only follow one path, and an ergodic interpretation would
make no sense in this case [20]. The success of the predictions are both dependent
on having correctly identified the constraints, A, and on the importance of these
constraints. But just like with MaxEnt, failure of the predictions can inform us of
new constraints[5].

As mentioned at the beginning, Dewar’s method is analogous to the counting of
microstates. The link between the MaxEnt algorithm in statistical mechanics and
the Maximum Entropy Production principle is shown more formally by Dewar in
2005, where he shows that pΓ correspond to the Gibbs grand-canonical distribution
in the equilibrium limit, F n(x) = 0 [5]. It is the presence of non-zero macroscopic
fluxes in the non-equilibrium state makes paths rather than microstates the central
object of interest [20].

The MEP principle is based on the notion that a system will be in the macrostate
corresponding to the largest number of paths. Paltridge, however, maximizes the
thermodynanic entropy production, not the path information entropy. A crucial
part of Dewar’s proof is the part where he shows that the maximization of path
entropy is equivalent to the maximization of thermodynamic entropy. This has to
do with reversibility. The path action, AΓ, consists of a reversible part and an irre-
versible part. Dewar considers the number of paths Γ that contribute to the mean
behavior, and which therefore have reversible action 〈Arev(λ)〉 and irreversible ac-
tion 〈Airr(λ)〉. There are equally many paths with reversible action 〈Arev(λ)〉 and
irreversible action −〈Airr(λ)〉. The number of paths contributing to the mean be-
havior is then the number of paths with irreversible action equal to 〈Airr(λ)〉, that
is, W (〈Airr(λ)〉). Dewar ignores fluctuations about the mean behavior to arrive at
Z(λ) = ∑

Γ exp(AΓ(λ)) ≈ W (〈Airr(λ)〉) exp 〈A(λ)〉 [4]. Combining this result with
equation (12.9) yields

SΓ,max(λ) ≈ lnW (
〈
Airr(λ)

〉
) (12.12)

Dewar uses this with the assumption that W (〈Airr(λ)〉) is an increasing function
of Airr, to show that the second step in his procedure is equivalent to maximiz-
ing the mean entropy production rate 〈σΓ(λ)〉 with respect to λ(x) subject to the
remaining constraints. He notes that it is the irreversible, material entropy pro-
duction that should be maximized and therefore that Paltridge’s application of
entropy maximization only to the heat fluxes (not the rest of the radiation, which
is reversible) is consistent with his results.
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We saw in section 8 that thermodynamic entropy can be expressed as a series of
products of fluxes and forces. The macroscopic fluxes,

〈
Fn(x)

〉
, are some of the

central predictions of the MEP principle. Dewar states that MEP applies to the
entropy production of those macroscopic fluxes that are free to vary under the im-
posed constraints, and corresponds to selection of the most probable macroscopic
flux configuration [5]. The quantities used to define the constraints, or any of
the other relevant information in the derivation, need not be physical quantities
however. Dewar presents his results without any reference to physics, and without
any physical interpretation in order to show that they are generic properties of
MaxEnt which apply to a certain class of problems involving statistical inference.
The general character of Jaynes’ procedure, which is what is used, might make the
principle applicable also to dynamical systems such as economies and biological
populations [5]. Dewar states that if the reproducible states of any system can be
described by quantities 〈d(x, 0)〉 obeying local balance equations, and by fluxes,
F(x) (and possibly sources), then it will be possible to use the general result for
pΓ to arrive at a generalized entropy production. This entropy production will
then be a function of generalized fluxes and forces. Dewar points out that all the
corrolaries of his results (the Fluctuation Theorem, and Self-Organized Criticality
in addition to MEP) may then be expected as generic features of such systems. [4].
He calls for extended applications of the principle, in order to let the results speak
for themselves [20].

As mentioned in the beginning, Dewar’s derivation of the MEP principle has been
criticized in a few papers. I will not present this in detail, but include a sum-
mary of some of it, for reference. Bruers’ points out that a mixing of different
MEP principles in the literature has lead to confusion. He claims that Paltridge’s
MEP hypothesis is a different principle, with different assumptions and different
applications than the principle derived by Dewar [32]. In 2007 Bruers claimed to
find at least six different principles related to MEP: the least dissipation, the near-
equilibrium (linear) minimum entropy production principle, the near-equilibrium
(linear) MEP principle, the far-from-equilibrium (non-linear) non-variational MEP
principle, the far-from equilibrium variational MEP principle and the optimization
minimum entropy production principle. These principles are subject to different
assumptions, regions of validity, constraints and applications [32]. Bruers claim
that Dewars derivation in 2003 can be used to derive the minimum entropy prin-
ciple rather than the maximum entropy principle [42]. Bruers also state that the
MEP principle used by Paltridge remains an unproven hypothesis with a lot of
controversy and unsolved questions about the necessary conditions, requirements
and ranges of application [42]. He points to the need of a theoretical non-trivial
example where far-from equilibrium variational MEP applies because this could
help to understand more deeply the functioning of atmospherical, hydrological,
biological, ecological or other systems [32].
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Martyushev et al. point out that attempts to derive the MEP principle, including
Dewar’s, so far have been uncinvincing because they require introduction of addi-
tional hypotheses, which themselves are less evident than the proved statement [6].
They claim that the MEP principle cannot be proved, and that its success will
ultimately depend on experimental and empirical results [43]. Grinstein et al. on
the other hand, claim that some of the steps in Dewar’s derivation are flawed [41].

Even though Dewar’s work has been critiqued by some, it has generally been met
with interest and again brought attention to the MEP principle. We have yet to
see whether Dewar will reply to the critique with a more rigorous proof, or whether
his argument has some fundamental problems. I will use the presentation in this
section to analyze the potential of the MEP principle in the Maximum Entropy
Theory of Ecology.

12.1 Discussion

My application of the MEP principle in Chapter 7 was based on a specific inter-
pretation of Dewar’s proof. His proof was understood as regarding the number of
paths leading from an initial state to a final state and stating that this is maximum
when the final state is the one that results in the maximum entropy production
during the transition. Dewar’s proof was also taken to suggest that MEP holds
for the production of information entropy as well as thermodynamic entropy. In
the previous section I presented Dewar’s proof in more detail. I will now discuss
whether the proof and its implications can be transferred to the entropy in METE.

Dewar shows that the maximization of the path entropy, SΓ, which is the infor-
mation entropy of the path distribution in (12.1), is equivalent to maximization
of the irreversible thermodynamic entropy, σ. This argument reveals the connec-
tion between path information entropy and thermodynamic entropy. The initial
interpretation of Dewar’s proof was related to paths in state space (e.g. (p, V ,
N) for an ideal gas or (S, N , E) in METE). The meaning of paths, however, is
shown to be something more specific than this in Dewar’s case. A path refers to
a defined microscopic evolution of the system and is described in terms of fluxes
of conserved quantities in space and over time. Exactly what these are has to be
determined in the particular case. In any case, a steady state is described by many
possible paths. A steady state, however, remains at the same point in state space.
This is an important distinction. It is true that Dewar’s proof connects thermody-
namic entropy with information entropy, but I have shown that this is not just any
information entropy. It is the information entropy of the probabilities of the paths.

Under closer inspection it becomes clear that the derivation of the MEP princi-
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ple is really only a different application of the MaxEnt principle. Instead of a
regular, state space we operate within a path space. There are usually several
microscopic paths corresponding to one macroscopic behavior. The principle then
simply states that the macroscopic behavior of a system, which is now dynamic
in nature, is most likely in accordance with the overwhelming majority of all the
possible microscopic paths. In the case for the climate there must be more paths
resulting in a medium temperature difference and a medium flow, than a maximal
gradient and zero flow, or zero gradient an maximal flow. Analogous to MaxEnt
the enumeration of the possible phase space paths is an essential part of the appli-
cation and will determine whether the method will give accurate predictions. Just
like the different states in the usual MaxEnt application have to be finite, so do
the paths in the MEP application. If the path space is infinite we cannot assign
non-zero probabilities to all of the possibilities (or else the total probability will
be infinite). The method then amounts to finding the most likely macroscopic flux
configuration. As long as the paths are well defined, the same logic that holds for
a steady state (flux in equals flux out) should apply for a system that evolves from
one state to another via different possible microscopic paths. The principle should
therefore be able to predict the evolution of a system from an initial state to a final
state, where the final state is the one with the most paths leading to it. This is close
to our initial interpretation of the proof, but the meaning of it is now much clearer.

I earlier pointed to the difference between maximizing the entropy with respect
to the probability distribution and with respect to the constraints and questioned
the validity of the last procedure. In Dewar’s proof we see that both types of
maximizations are done. In the first step the entropy is maximized with respect to
the path probabilities and in the second step it is maximized with respect to the
constraints, F(x, t) and d(x, t). However, it still holds for any maximization pro-
cedure that the problem needs to be bounded if we want to obtain physical results.

It became clear already from the study of the different applications of the MEP
principle that these are all closely related to the presence of fluxes. In Paltridge’s
studies we see clearly how the entropy production is a product of the heat flux and
the temperature difference. Dewar’s proof shows this connection in greater detail.
The fluxes are here multiplied with forces in order to give the entropy, σΓ, either
in the usual thermodynamic form or in a more generic form.

Our entropy, SI , is far from a path entropy the way it is defined by Dewar or
Bruers. It is quite obvious that R(n, ε) does not define the probability of paths.
It simply defines the probability of picking a certain species, and a certain indi-
vidual from this species. Moreover, it is only the path information entropy that is
maximized in Dewar, not the production of it. The question is whether a similar
connection that is made between thermodynamic entropy and path entropy by

89



12 DEWAR’S PROOF

Dewar can be made between a path entropy and our information entropy. Then,
we could say that dSI/dt should be maximized. There is nothing in Dewar’s proof
suggesting this. Our information entropy is not some kind of generic form of a
thermodynamic entropy, defined as a product between forces and fluxes. There is
therefore nothing in Dewar’s proof that suggests that the evolution with the largest
number of microscopic paths is equivalent to the evolution of the state variables
resulting in the maximum production of SI . Even though thermodynamic entropy
can be interpreted as information entropy (of the canonical distribution), this does
not alone seem to imply that MEP holds for all information entropies. There must
be something special about the form of the thermodynamic information entropy
and its connection to nature, fluxes and forces. It must be this connection that is
unique, not the term entropy.

An essential step in Dewar’s derivation, stated but not shown explicitly in the
previous section, is the application of local conservation laws. These are used to
relate the fluxes, F(x, t), with the the quantities, d(x, t), and to derive the re-
lationship between thermodynamic entropy and path entropy. Even though the
application of the principle removes the microscopic details of the problem, micro-
scopic laws are still crucial in the derivation. The constraints in Dewar’s proof are
of a specific type. One of them denotes a conserved quantity and the other one the
corresponding flux. The derivation seem to be valid only if the system is described
by conserved quantities. The constraints that define IR (or SI), number of indi-
viduals per species, N/S, and total energy per species, E/S, are not conserved. If
our defining quantities were conserved between one step in time and the next and
we had some known expression for sources and sinks, one instance in time could
be related to another. We can see how this could lead to dynamical relationships.
But we do not have any microscopic "laws" expressed in our description of the
system. If we did, we could use this to infer macroscopic behavior.

MaxEnt is a theory that gives a lot from a little. We want MEP to be the same.
Paltridge was able to predict very accurate values of temperature and cloud cover
from very few variables. It seems intuitive, however, that with no dynamical re-
lationships in the underlying description of the problem (in the form of paths, or
more specifically some kind of fluxes or other time dependent phenomena) no time
can be extracted from a theory. We can get a lot from a little, but we cannot get
something from nothing.

Lastly, there is one aspect of Dewar’s proof which is unclear, that I want to point
out. It has to do with the interpretation of the constraints. It is stated that
〈d(x, 0)〉 and

〈
Fn(x)

〉
represent the observed initial configuration of mass and

energy, and time-averaged fluxes on the boundary respectively. These are the
unknowns that we seek to know in a MEP problem and these are found in the
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second step of the procedure (for instance the net fluxes into the different boxes
in Paltridge’s case). The entropy production, σ, is also found as the path aver-
age. What is puzzling me is the connection between the path averages and the
observed quantities. Clearly, a system only ever follows one path in the evolution
over time. If the path probability distribution is extremely peaked, or the resulting
macroscopic behavior is peaked, then the average over the paths will correspond
to the overwhelming majority of the paths. In this case, most of the paths do have
the macroscopic behavior we are looking for, and the prediction that the observed
behavior will equal the path average is accurate. However, if the path distribu-
tion is not peaked, the average behavior is not a good prediction. In this case,
many real paths will result in a different behavior. I cannot see how sharpness
is automatically satisfied and even though Dewar explicitly states that he ignores
fluctuations about the mean behavior in his derivation, there is no discussion of
this aspect in his proof. In classical mechanics we can get around this with the
ergodic hypothesis. During a measurement a system will fluctuate between several
states. The system is then expected to visit different states according to the rep-
resentative ensemble, such that the ensemble average is a good prediction for the
measured value. In the case where we instead have paths, the ergodic hypothesis
makes no sense, since there is no fluctuation between paths during the evolution
of a system. The requirement that all the paths have the average behavior must
therefore be stricter in this case, if we want the predictions to have any validity.
The average always provides the best guess in the sense that it gives the least
square error in a series of guesses, but this is not satisfactory if we want to use the
theory to describe nature. Again, it is problematic that Dewar provides no actual
examples. He states that we are only looking for reproducible behavior, but he
does not discuss when this is what will be predicted by the averages.

If the theory works, it should predict reproducible behavior. Every time we set
up an experiment, we should then observe the same macroscopic behavior (with
an overwhelming certainty). Even if this logic can be transferred to a theory of
ecology, a dynamical theory of ecology will be much more difficult to test than
a similar physical theory. We cannot reproduce evolutions of ecosystems over
time. We can compare the evolution of two similar systems, but this will always
introduce external variability.

13 Conclusions

The starting point of this thesis was the hypothesis that the Maximum Entropy
Production principle applies to the information entropy SI . The originally purpose
was to investigate a possible solution of the partial differential equations, (7.4) -
(7.6) and express the results mathematically and graphically. The goal was to
give clear predictions that could later be tested with real data in order to verify
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or falsify the hypothesis.

My project ended up taking a quite different route. In Chapter 7, I showed that
the set of PDE’s are not actually solvable. Then, I showed that these PDE’s do
not actually describe the maximum entropy behavior. Instead, equations (7.4) -
(7.6) impose a constant entropy condition on the time derivatives of the state vari-
ables Ṡ, Ṅ and Ė. I showed that the maximization question itself is more complex
than initially assumed. The maximization condition on ṠI does not itself imply
that the time derivatives are functions of the state variables themselves. This has
to be added as an additional postulate. In any case, the problem is unbounded
and a maximization of ṠI results in infinite time derivatives. I discussed different
types of maximum conditions and argued that the system cannot behave in a way
that makes it possible to predict the future. Only a maximization at each point
in time therefore makes sense. The initial MEP hypothesis alone is not sufficient
to say anything about the time rate of change of the entropy, SI . The gradient
gives the direction of largest increase, but I show that the meaning of following
the gradient in our case is questionable. In any case, the initial MEP hypothesis
predicts that the number of individuals, N , and the total metabolic rate, E, will
increase as fast as possible and that the number of species, S, will decrease as fast
as possible. The principle therefore predicts that all ecosystems eventually will
end up in a state where N and E are growing towards infinity and S approaches
one. This result does not comply with reality and serves as a strong indication
that the initial hypothesis is wrong. I also questioned the maximization of the
entropy with respect to the state variables, when these act as constraints imposed
on the system. In light of Shannon’s axioms this amounts to increasing the en-
tropy by including more possibilities. In total, the initial MEP hypothesis lacks
the predictive power we wanted it to have and leads to questionable results in cases
where they can be obtained. My application and discussion in Chapter 7 showed
that the initial hypothesis is not fruitful. These conclusions lead Harte to remove
this hypothesis and the subsequent equations from his book. My analysis of the
initial hypothesis, however, still sheds light on the meaning of the entropy SI (or
IR) which is of central importance to METE.

I conducted a thorough review of the MEP principle in order to determine whether
there is sufficient reason to expect a MEP behavior in METE based on analogies.
This review uncovered the complexity inherent in the principle itself and in the
literature surrounding it, particularly in regards to what part of the entropy is
maximized. I showed that the other applications in the literature are related to
thermodynamic entropy. Furthermore, most of them are also related to station-
ary non-equilibrium systems, whereas I argue that METE is better viewed as a
non-stationary system close to equilibrium, undergoing quasi-static change. Other
applications are characterized by the presence of fluxes and I argue that the cur-
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rent description of METE does not contain any fluxes. Based on Chapters 9 and
11, I conclude that the existing applications are only weak analogies to METE.
The MEP hypothesis in METE cannot be justified based on success in these ap-
plications.

As a side project, suggested by Harte, I conducted an analysis of stability in Pal-
tridge’s model. I used MATLAB to calculate the possible steady states in a simple
3-box model of Earth’s climate, and looked at the stability properties of these
states. I showed that the MEP state is no different from the other steady states in
regards to stability with respect to perturbations in the temperatures or the heat
flux. The prevalence of the MEP state can therefore not be explained on these
grounds.

In lack of a valid analogy I investigated instead whether an application of the
MEP principle to METE could be justified based on first principles. In Chapter
12 I show how Dewar’s proof states that the maximization of the thermodynamic
entropy production is equivalent to the maximization of the path entropy. I ar-
gue that our information entropy bears no resemblance to the path entropy. And
even if it did, it is not the production of information entropy that is maximized
in Dewars proof, but the static information entropy. The derivation of the MEP
principle really amounts to a particular application of the MaxEnt principle. De-
war notes that the entropy need not be thermodynamic, but can be any generic
entropy defined as a product of fluxes and forces. I argue that our entropy, SI ,
cannot be regarded as any such generic entropy. I conclude that there is no reason
to believe that the production of our information entropy will be maximized, based
on Dewar’s proof.

Based on the initial application, the review of other applications and Dewar’s proof
I conclude that the MEP principle as initially suggested in METE should be aban-
doned. There are no examples of successful applications of the principle to any
cases similar to our. Dewar’s proof is not fully complete so strictly speaking we
cannot make a final conclusion regarding the applicability of the MEP principle
to the information entropy in METE, but my investigation leaves little room for
hope. If MEP were to hold for information entropies in general, this would require
a completely different proof.

I also conducted a study of the variance of the number of species in subplots. I used
MATLAB in order to compare two real data sets with theoretical predictions ob-
tained from the Spatial-Abundance Distribution, Π(n). I showed that the general
patterns in the predictions, Π(n), match the real data, but that the non-discrete
nature of the predictions complicate the comparison. I developed a simulation
procedure in order to compare the theoretical distribution of species in different
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subplots with the observed values. Whether these predictions are said to be close
or far from the real data will depend on the ecological research question. I point
out however, that if MaxEnt is to work as a null theory in ecology we need a rigor-
ous way of testing the closeness between predictions and observations. I therefore
stress the need for a defined method for 1) discretizing the theoretical prediction
in order to compare with real data, and 2) comparing the discretized theoretical
distribution to the real distributions. I suggest two methods for doing this, where
the first one is to calculate the probability of different distributions from the the-
ory directly to obtain the relative probabilities of different distribution, and the
second one is to look at the entropy of the discretized predicted distribution versus
the entropy of the observed distributions.

A theory can be established by empirical evidence even in the absence of a rigor-
ous proof. One approach to new principles is therefore to apply them and let the
results speak for themselves. But there is usually something justifying such an ap-
proach and often this is a successful application to a similar case. The application
of the MEP principle to SI does not give promising results and the cases where it
has been successful cannot be said to be very similar to ours.

My Thesis has investigated one approach to a dynamical form of METE and
showed why it does not work. This has shed light on the interpretation of the in-
formation entropies in METE in general. Moreover, I have also reviewed the MEP
principle, and discussed its wider application to generalized information entropies.
I have also done work on the variance of one of the most important metrics in
METE, the Species-Abundance distribution, S̄(A). I have showed the need for a
defined method of testing the theory, and made two suggestions for this. My the-
sis provides a solid background for the grad students in the Energy and Resrouces
Group at Berkeley interested in these topics. My work has contributed to the
book, Maximum Entropy and Ecology, coming out on Oxford University press in
June 2011 and I hope that someone can use the insight I have provided in order
to find a more suitable procedure to arrive at a dynamical theory of macroecology
in the tradition of MaxEnt.

14 Suggestions for future work

The MEP principle, at first hand quite simple-looking, turned out to be much
more complex and multi-faceted when investigated more closely. The confusion
surrounding the principle is apparent in the literature on the subject. In trying
to deconstruct the meaning of the initial hypothesis and looking for alternative
applications I got closer and closer to the very fundamentals, both of MEP and
of METE itself. It was not until the very end that I had a good enough under-
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standing of the theory to be able to propose alternative applications of the MEP
principle in macroecology. It is finally clear what the MEP principle can do and
what it cannot do. I here present some ideas for the future of both METE and
MEP.

The most concrete suggestion is to develop in detail either of the two methods
I suggested for comparison between predictions and observations in METE, in
Chapter 6. These methods can provide valuable criterions when testing the theory.

The next two suggestions are motivated by statistical mechanics. In thermody-
namics work is related to a change in the external parameters and does not lead
to a change in the probabilities of the different states. The entropy is therefore
unaffected and quasi-static processes involving only work are reversible. Heat, on
the other hand, is related to a change in the probabilities, and is therefore accom-
panied by a change in the entropy of the system (which does no necessarily imply
irreversibility, if the system is not isolated). It would be interesting to look for an
analogy in the entropy measures in METE. Can we define a form of change that
has to do with changing probabilities, and another one that has to do with the
change in the external parameters? Is it possible to derive any relationships from
this, informing us about ecological "forces"?

Temperature appears as the inverse of the Lagrange multiplier in the MaxEnt
derivation of the Boltzmann energy distribution. It would be interesting to look
at whether the inverse of the Lagrange multipliers in METE can be associated
with a generalized ecological "temperature".

Finally, the last two suggestions are related to the MEP principle. Dewar’s proof
indicates that a system with sufficient degrees of freedom (not fixed boundary con-
ditions) will be characterized by fluxes that maximize the thermodynamic entropy
production. A completely different approach could therefore be to apply the MEP
principle to the thermodynamic entropy production of a collection of organisms.
This, however, would be a very different project giving very different results from
what was intended by the original MEP hypothesis and it is a step away from the
framework of METE. Nontheless does it stand out as a more viable approach, if
one wants to use the MEP principle on ecosystems.

The other alternative is to define some form of path entropy for our system. In
order to do this we would have to specify and enumerate the possible configura-
tions for the fluxes through the ecosystem. This could be heat flux, which would
give a thermodynamic entropy, but it could also be any other flux that we wish
to use. The maximization of the path entropy could then be conducted according
to Dewar’s two-step process. If Dewar’s proof is correct, however, we can skip
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this procedure and maximize instead the production of the generic entropy of the
system, defined as a series of products of the fluxes and the forces determining the
system.

METE is a brand-new theory with a great potential for making significant con-
tributions to the field of ecology. I hope some of my suggestions above will be of
value when it comes to further development within this field.
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A APPENDIX

Using equation (5.15)

S

N
≈ β ln

(
1
β

)

we compute

∂

∂N

(
β ln 1

β

)
= ∂

∂N

(
S

N

)
∂

∂β

∂β

∂N

(
β ln 1

β

)
= ∂

∂N

(
S

N

)
∂β

∂N

(
ln 1
β
− 1

)
=
(
− S

N2

)

and

∂

∂S

(
β ln 1

β

)
= ∂

∂S

(
S

N

)
∂

∂β

∂β

∂S

(
β ln 1

β

)
= ∂

∂S

(
S

N

)
∂β

∂S

(
ln 1
β
− 1

)
=
( 1
N

)

Using ω = ln 1
β
(equation (7.1)) we get

∂ω

∂S
= − 1

β

∂β

∂S

= − 1
β

( 1
N

)(
ln 1
β
− 1

)−1

= − 1
β

( 1
N

)
(ω − 1)−1

and
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∂N
= − 1

β

∂β

∂N

= − 1
β

(
− S

N2

)(
ln 1
β
− 1

)−1

= − 1
β

(
− S

N2

)
(ω − 1)−1

Using equation (7.2) for SI we obtain

∂SI
∂E

= 1
E

∂SI
∂N

= − 1
N

+ ∂SI
∂ω

∂ω

∂N

= − 1
N

+
(

1− 1
ω2

)
∂ω

∂N

= − 1
N

+
(

1− 1
ω2

)(
− 1
β

(
− S

N2

)
(ω − 1)−1

)

= − 1
N

+ 1
ω2

(
ω2 − 1

) ( ω
N

(ω − 1)−1
)

= − 1
N

+ 1
ω2

(
ω2 − 1

) ( ω
N

(ω − 1)−1
)

= − 1
N

+ 1
ω

(ω + 1) 1
N

= 1
N

(
−1 + 1

ω
(ω + 1)

)
= 1
N

1
ω

where we again have used (5.15), and
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∂SI
∂S

= ∂SI
∂ω

∂ω

∂S

=
(

1− 1
ω

2) ∂ω
∂S

= 1
ω2

(
ω2 − 1

)(
− 1
β

( 1
N

)
(ω − 1)−1

)

= 1
ω2 (ω + 1)

(
− 1
β

( 1
N

))

= 1
ω2 (ω + 1)

(
−ω
S

)
=
(

1 + 1
ω

)(
− 1
S

)

Taking the time derivative of equation (7.3) yields

dSI
dt

= ∂SI
∂N

dN

dt
+ ∂SI
∂E

dE

dt
+ ∂SI
∂S

dS

dt

which, combined with the above results for the partial derivatives of SI give equa-
tion (7.3), which we seeked to derive.
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