
Self-Modifying Dynamical Systems for
Reservoir Computing

Kristian Selvik Ekle
Aleksander Skraastad

Master of Science in Informatics

Supervisor: Gunnar Tufte, IDI

Department of Computer Science

Submission date: June 2017

Norwegian University of Science and Technology

Abstract

Biology has always been an inspiration in the quest for artificial intelligence. By com-
bining a hierarchy of chemistry, cells, and structures, a biological system able to learn,
adapt and perform complex problem solving can emerge. Reservoir Computing (RC) is a
highly efficient bio-inspired technique for working with time dependent data. Reservoir
computing utilises an untrained recurrent dynamical system as a reservoir of dynamics.
A single readout layer can then be trained to correlate the state of the reservoir to some
target value. One aspect of biological systems that are of great interest is their ability to
self-organise. Self-Modifying Cartesian Genetic Programming (SMCGP) is a genetic pro-
gramming algorithm that mimics these traits through self-organising topology. This thesis
investigates the use of SMCGP as a reservoir of dynamics in a reservoir computing system
(SMCGP-RC).

Reservoir Computing is a general framework to design, train and analyse recurrent neu-
ral networks. However, any high dimensional dynamic system that can be stimulated by
input, has the right dynamic properties, and has readable state, can be used as a reservoir.
This sets few constraints on possible implementations. Both digital and physical reser-
voirs have been widely researched, ranging from Random Boolean Networks (RBN) to a
bucket filled with water. SMCGP is a graph-based genetic programming algorithm based
on Cartesian Genetic Programming (CGP). Including the mathematical operators in CGP,
programs produced by SMCGP contain self-modification operators. These operators en-
able bio-inspired qualities such as self-regulating structures, scalability, adaptation, and
self-repair.

The SMCGP-RC implementation presented in this thesis utilises an evolutionary algo-
rithm to search for SMCGP programs where the topology is continuously changing. These
programs are then evaluated against common benchmarking problems. The results show
that the dynamics of SMCGP programs with continuous topological changes can be har-
nessed for computation in an RC environment. The temporal parity experiments presented
show that when output from the previous time step is made available for SMCGP pro-
grams, they can exhibit the necessary dynamic properties to solve non-linear temporal
problems.

i

Sammendrag

Biologien har alltid vært en inspirasjon i jakten på kunstig intelligens. Ved å kombinere et
hierarki av kjemi, celler og strukturer, kan et biologisk system i stand til å lære, tilpasse seg
og utføre komplekse beregninger oppstå. Reservoir Computing (RC) er en svært effektiv
bio-inspirert teknikk for å arbeide med tidsavhengig data. Reservoir Computing utnytter et
utrent rekurrent dynamisk system som et reservoar av dynamikk. Et enkelt avlesningslag
kan da trenes opp til å finne korrelasjoner mellom reservoarets tilstand og en gitt målverdi.
Ett aspekt ved biologiske system som er av stor interesse er deres evne til å selvorganisere.
Self-Modifying Cartesian Genetic Programming (SMCGP) er en genetisk programmer-
ingsalgoritme som hermer etter denne egenskapen gjennom selvorganiserende topologi.
Denne oppgaven undersøker bruken av SMCGP som et reservoar av dynamikk for bruk i
et Reservoir Computing system (SMGCP-RC).

Reservoir Computing er et generelt rammeverk for å designe, trene og analysere rekur-
rente nevrale nettverk. Allikevel kan ethvert dynamisk system som kan stimuleres med
data, har de riktige dynamiske egenskapene, og har en avlesbar tilstand, brukes som et
reservoar. Dette setter få begrensninger for mulige implementasjoner. Både digitale og
fysiske reservoar har blitt undersøkt, og omfatter alt fra Random Boolean Networks til en
bøtte med vann. SMCGP er en grafbasert genetisk programmeringsalgoritme basert på
Cartesian Genetic Programming (CGP). I tillegg til de matematiske operatorene i CGP,
innehar programmer utviklet av SMCGP selfmodifiserende operatorer. Disse operatorene
muliggjør bio-inspirerte kvaliteter som selvregulerende struktur, skalerbarhet, tilpasning
til endrende omgivelser og selvreperasjon.

SMCGP-RC-implementasjonen presentert i denne oppgaven utnytter en evolusjonær al-
goritme for å søke etter SMCGP-programmer der topologien er i stadig endring. Disse
programmene blir deretter evaluert mot kjente referanseproblem. Resultatene viser at
dynamikken i SMCGP-programmer der topologien er i stadig endring, kan utnyttes i et
Reservoir Computing system. Gjennom tidsavhengig paritet-eksperimentene vises det at
når SMCGP-programmer blir presentert med utgangsverdiene fra forrige tidsintervall, kan
de utvise de nødvendige dynamiske egenskapene for å løse ikke-lineære tidsavhengige
problem.

ii

Preface

This thesis was written by Aleksander Skraastad and Kristian Ekle as part of their masters
degree in Artificial Intelligence. The work has been conducted over the semesters, fall
2016 and spring 2017, at the Department of Computer Science (IDI) at the Norwegian
University of Science and Technology (NTNU).

The authors would like to express gratitude to their advisor, Professor Gunnar Tufte, for
his invaluable guidance and feedback during the last year.

iii

iv

Contents

Abstract i

Sammendrag ii

Preface iii

Table of Contents vi

List of Tables vii

List of Figures x

Abbreviations xi

1 Introduction 1

2 Background 5
2.1 NTNU Cyborg . 5
2.2 Dynamical Systems . 7

2.2.1 Attractors . 7
2.2.2 Computation at the Edge of Chaos 7

2.3 Recurrent Neural Networks . 9
2.4 Evolutionary Algorithms . 11
2.5 Reservoir Computing . 13

2.5.1 Previous Work . 14
2.6 SMCGP . 15

2.6.1 Previous Work . 17

3 Methodology 19
3.1 Experimental platform . 19
3.2 An incremental approach . 22

v

3.2.1 Finding Candidate SMCGP Programs 23
3.2.2 Investigating the Viability of the Candidate 30
3.2.3 Exploring the Computational Capability of the Candidate 31
3.2.4 Exploring the Characteristics of Well Performing Programs . . . 31

4 Implementation 33
4.1 Self-Modifying Genetic Cartesian Programming 33

4.1.1 Genotype . 34
4.1.2 Phenotype . 34
4.1.3 Development . 35
4.1.4 Relative Addressing and Reading Output 35
4.1.5 Inputs . 35
4.1.6 Mathematical Functions . 36
4.1.7 Self-modifying Operations . 36
4.1.8 Evolution . 38

4.2 Reservoir Computing System . 39
4.2.1 Metrics Collection . 41

5 Experiments 43
5.1 Candidate Search . 44
5.2 Evaluating Performance with Benchmarks 46

5.2.1 Temporal Parity . 46
5.2.2 Temporal Density . 47
5.2.3 NARMA 10 . 49

6 Discussion 51
6.1 Experiment Results . 51
6.2 Searching for the Edge of Chaos . 52
6.3 Program Characteristics . 54

7 Conclusion and Future Work 57
7.1 Conclusion . 57
7.2 Contributions . 58
7.3 Future Work . 58

Bibliography 59

Appendix 67

A Benchmarking problems 67
A.1 Temporal Parity and Temporal Density 67
A.2 NARMA10 . 68

B Experimental platform configuration options 69
B.1 Available Configuration Options . 69
B.2 Configuration Parameters Common for all Experiments 71

vi

List of Tables

4.1 Input Functions . 35
4.2 Mathematical Functions . 36
4.3 Self-modifying Operations . 37

5.1 Candidate search configuration . 44
5.2 Temporal parity and temporal density readout parameters 44
5.3 SMCGP programs with high accuracy 45
5.4 Temporal parity readout parameters . 46
5.5 Temporal density readout parameters . 47
5.6 NARMA10 readout parameters . 49
5.7 Experiment: NARMA10 . 50

6.1 EA Search Terminations . 53

B.1 Configurable options . 69
B.2 Common EA parameters . 71
B.3 Common SMCGP parameters . 71

vii

viii

List of Figures

2.1 Cell culture on MEA . 6
2.2 Basin of Attraction . 7
2.3 Edge of chaos . 8
2.4 ANN and RNN distiction . 9
2.5 RNN recurrence . 10
2.6 Evolutionary Algorithm Taxonomy . 11
2.7 CGP representation . 12
2.8 Reservoir Computing . 14
2.9 SMCGP Program . 15

3.1 Experimental platform . 20
3.2 Experimental Platform Control Sequence 21
3.3 Topological state attractors . 26
3.4 Harmonics of sine save . 27
3.5 Spectrum analysis . 29
3.6 State history . 29

4.1 Genotype . 34
4.2 Genotype Genome . 34
4.3 SMCGP Program . 34
4.4 SM-node activation . 37
4.5 Genotype Mutation . 38
4.6 Reservoir computing system overview 39
4.7 SMCGP Reservoir Integration . 40
4.8 Standard input concatenation . 41
4.9 Input Concatenation . 41

5.1 Experiment: Temporal parity 3 . 45
5.2 Experiment: Temporal parity 5 and 7 . 46
5.3 Experiment: Temporal density 3, 5 and 7 47

ix

5.4 Experiment: NARMA 10 . 49

6.1 Phase transition search space . 52
6.2 Search Space of ”the edge of chaos” . 52
6.3 Candidate Search Evaluations . 53
6.4 Discussion: Power Spectrum and Sine Waves 54
6.5 Discussion: State history . 55
6.6 State transition diagram for Figure 6.5a 56

A.1 Temporal Parity . 67
A.2 Temporal Density . 68
A.3 NARMA10 Example output . 68

x

Abbreviations

ANN = Artificial Neural Network
CA = Cellular Automata
CGP = Cartesian Genetic Programming
EA = Evolutionary Algorithm
ESN = Echo State Network
GA = Genetic Algorithm
GP = Genetic Programming
IEF = Input Expansion Factor
LSM = Liquid State Machine
MEA = Micro-Electrode Arrays
RBN = Random Boolean Networks
RC = Reservoir Computing
RNN = Recurrent Neural Network
SM = Self Modifying
SMCGP = Self Modifying Cartesian Genetic Programming
SMCGP-RC = SMCGP Reservoir Computing

xi

xii

Chapter 1
Introduction

Man has always looked to nature when faced with new and unseen challenges. Be it on
purpose, studying the wings of birds in the quest for human flight, or by chance, as in the
famed Newtonian apple.

The field of Artificial Intelligence is no exception. Artificial Neural Networks, inspired
by our brain, were originally created to understand information storage and recognition
[1]. Evolutionary Algorithms [2] and its sub-field Genetic Algorithms [3] are inspired by
the process of evolution and the genetic representation of DNA. Swarm Intelligence [4] is
an emergent system where complex behaviour arises from decentralised, self-organising
systems such as ant colonies or flocks of birds. Even though the techniques are inspired
by biology, they do not necessary aim at mimicking nature. Our engineered solutions
are abstractions. Such abstractions can be a product of the possibility to capture only
the necessary processes of biological systems [5] or the abstraction may be a product of
limitation in current technology and our understanding of the biological solutions.

As apposed to mankind’s top-down approaches to engineering, biology solves its problems
by using numerous seemingly autonomous parts, which together emerges as a complex
dynamic system capable of complicated problem solving. Biological systems are driven
by self-organisation and local interactions, which somehow manages to consolidate into a
robust system capable of computation, learning and adaptation.

In an effort to understand how biological systems are able to employ these dynamic struc-
tures for computation. Researchers in the NTNU Cyborg initiative, [6, 7] are trying to use
biological cell cultures, to create a system part digital and part biological, a cyborg.

Reservoir Computing [8] is a framework to design, train and analyse recurrent neural
networks (RNNs)[9]. Reservoir computing today encompasses several techniques, but
originates from the independent work on Echo State Networks [10], Liquid State Machines
[11], Temporal Recurrent Networks [12] and Backpropagation-Decorrelation [13].

1

Chapter 1. Introduction

The core concept of reservoir computing is to transform data into a higher dimensional
space, often by means of an RNN, and then use a separate mechanism for reading the state
of this system. The reservoir is an enclosed dynamic system with some computational
power and fully or partially readable state. The reservoir is left untrained. Instead, a
separate readout layer is trained. This layer is often a simple linear regression on the
readable state of the reservoir xi, and some target y[14].

RC is a practical approach for exploiting the capabilities of RNNs, because it bypasses the
complex task of training them. Instead, a separate readout layer is responsible for decoding
the dynamics into something useful.

Researchers have studied the use of various dynamic systems as reservoirs. Among the
studied, Celluar Automata (CA) [15] and Random Boolean Networks (RBN) [16, 17] have
shown to be compatible as reservoirs, and has been frequently used in RC research. Like
biological systems, both CAs and RBNs are non-linear dynamic systems which rely on
local interactions. However, they do not display the structural plasticity which biological
systems do. CAs and RBNs are sparsely connected networks. In principle, a vast number
of nodes with a limited number of connections. A graph representation can be an abstract
form with sparsely connected network properties.

Self-modifying Cartesian Programming (SMCGP) [18] is such a sparsely connected graph
with the ability to modify its own structure. SMCGP is a specialised form of Cartesian
Genetic Programming (CGP) [19], where programs are allowed to transform employing
self-modification operators. Programs in SMCGP are directed acyclic graphs, where nodes
are either input nodes, mathematical functions or self-modification nodes. The area of
interest for this thesis will be to use SMCGP programs with continuously altering topology
as the reservoir in an RC system.

SMCGP programs are non-linear dynamic systems, which, comparable to biological sys-
tems, have continuously altering topology due to their self-modification operators. Making
them suitable candidates to model biological structures.

The research presented in this thesis, investigates the viability of using the previously unex-
plored combination of SMCGP and reservoir computing (SMCGP-RC). An Evolutionary
Algorithm is used to generate SMCGP programs that exhibit desired dynamic behaviour.
These programs are used in a series of experiments to assess their capability for complex
computation. The main purpose is to investigate whether it is possible to get reliable com-
putation from these complex and potentially chaotic networks, thus being suitable as a
reservoir of dynamics in RC systems. Furthermore, the able programs will be analysed
to see if there is a possible correlation between computational capability and program
characteristics.

2

This thesis assumes that the reader is familiar with traditional feed-forward artificial neural
networks. Other necessary topics, are explained in chapter 2.
This thesis is divided into seven chapters including the introduction:

Chapter 2: Provides a summary of the literature used in this thesis. This includes previous
work for the most central topics.

Chapter 3: Detailed description of how the research was conducted. This chapter in-
troduces three research questions, and the steps taken to investigate these questions.

Chapter 4: Contains the technical aspects of SMCGP and the RC system, the architecture
of the implemented experimental platform as well as what design decisions and assump-
tions were made.

Chapter 5: Presents experiment configuration and results for the temporal parity, tem-
poral density and NARMA10 benchmarking problems.

Chapter 6: Discussion of the experiment results, in relation to theory and by analysing
characteristics of individual SMCGP programs.

Chapter 7: Conclusion and evaluation of the work presented, as well as what contri-
butions it has resulted in. A brief summary of what is considered the most interesting
future work is included.

3

Chapter 1. Introduction

4

Chapter 2
Background

This chapter introduces the topics and previous research used in this thesis.

2.1 NTNU Cyborg

The work presented in this thesis is related to a larger research initiative, NTNU Cyborg.
The Cyborg project aims to get a better understanding of the human brain by creating a
cyborg, a combination of machine and biological tissue. As stated in [6]:

Through The NTNU Cyborg initiative, a cybernetic (bio-robotic) organ-
ism is currently under development. Using neural tissue, cultured on a micro-
electrode array (MEA), the goal is to use in-vitro biological neurons to control
a robotic platform.

The research team of the Cyborg project has recently, successfully grown living cultures of
rat stem cells in-vitro 1 over Micro-Electrode Arrays (MEA) [6]. These living cell cultures
can be stimulated with electrical impulses and the state or potential of the Micro-Electrode
Arrays nodes can be recorded. The Cyborg project aims to incorporate these cell cultures
in a robot.

The goal is to use the cell cultures in an RC system. The setup would feed sensory data
from the robot as electrical signals into the MEA and send the output through a readout net-
work. The final output would then determine what action the robot should perform.

Figure 2.1a and Figure 2.1b depicts rat stem cells grown on top of an MEA. The two
figures show the same cell culture at different times, two days after seeding and eight days
after seeding, respectively. The image showing the culture after two days has little to no

1In-vitro (in a glass), means that biological tissue or cells are grown in a laboratory, outside the organism.
in-vivo refers the opposite. Source: oxforddictionaries.com

5

https://en.oxforddictionaries.com/definition/in_vitro

Chapter 2. Background

(a) Cell culture on MEA, 2 days old (b) Cell culture on MEA, 8 days old

Figure 2.1: Cell culture on MEA

visual structure between the cells, while the image of the culture after eight days shows
that visible structures have formed. Due to their plasticity, the networks formed within the
cell cultures will continue to change over time [20, 21].

The motivation for the Cyborg Project is to acquire insight in the biological brain on a
neuronal level. As stated in [7], achieving the goals set in the Cyborg Project would lead
to significant advances in:

Technology: bio-artificial computers, cyborg technologies, brain-machine inter-
faces

Biology: regenerative neuroscience, understanding development and repair pro-
cesses neurodegenerative disease, nano-medicine

Philosophy: issues around neuronal functions, studying the mechanisms of; mem-
ory, learning, concept formation

6

2.2 Dynamical Systems

2.2 Dynamical Systems

A dynamical system is an abstract mathematical model that allows for analysis of the state
space a system can inhabit. It is a system of equations, which in theory, can predict the
future state, given the past [22]. A dynamic system is a system that evolves over time [23].
Dependant on the behaviour of said system, it might settle into stability, go into periodic
trajectories or sheer chaos [24].

2.2.1 Attractors

An attractor is one or more states that a system tends to converge on as time→ ∞ if the
initial conditions of the system are within the basin of attraction (see Figure 2.2)[22, 24].
What state(s) the system converges on are dependent on the properties of the system, the
initial conditions and how the system is stimulated.

Figure 2.2: Same attractor for different initial conditions

There are three main categories of attractors [22, 24, 25, 26].

Point attractors: Systems that gravitate toward a single state are known as point
attractors.

Limit-Cycle attractors: Systems with limit-cycle attractors periodically revisit two
or more states.

Chaotic attractors: Systems with chaotic attractors have a sensitive dependence to
initial conditions and traverse the state space in aperiodic trajectories.

2.2.2 Computation at the Edge of Chaos

Dynamic systems theory is a field intersecting various disciplines and has been highly
researched. Much of the research available from a computational perspective is con-
cerned with systems displaying dynamic behaviour at the border between stability and
chaos [24].

7

Chapter 2. Background

It was Wolfram [27] who conjectured that cellular automata (CA) with turing complete
capabilities exhibited special dynamic behaviours. In his work he found that all one-
dimentional CA can be divided into four classes based on their dynamic behaviour (classes
displayed in Figure 2.3) and that the fourth class represented the behaviour capable of
complex computation.

In [28], Langton confirms Wolfram’s conjecture, and further identifies that systems with
dynamics in the transition between highly ordered and highly disordered, at the critical
point of the phase transition, have the best capabilities for complex behaviour. Further,
theoretical analysis has indicated that the ”edge of chaos” is the effective region of com-
putationally powerful dynamic systems.

Figure 2.3: Edge of Chaos

Figure 2.3 shows the four classes described by Wolfram. Langton correlated the states
introduced by Wolfram to an order parameter, λ, where λ = 0 corresponds to class 1
(stable), λ = 1 compares to class 3 (chaotic). Further, he found that λ somewhere between
0.45 and 0.5 was the critical point in the phase transition [28].

Stuart Kauffman, in his work with Random Boolean Networks (RBN) concurred with
Wolfram and Langton, that computation lies at the ordered regime of chaos [29]. Ran-
dom Boolean Networks were developed by Kauffman as a way to study genetic regulatory
networks[16]. RBNs (Kauffman-networks) are networks consisting ofN nodes, were each
node is connected to k randomly chosen neighbouring nodes. All nodes have a boolean
state which is either ”one” or ”zero”. Each node in the RBN network performs a ran-
domly selected boolean operation which when initiated, propagates through the network
and updates the state of the nodes. Together the nodes in the network make up a discrete
dynamic system [17]. RBNs are a generalization of Boolean cellular automata, often used
as a model when researching dynamic systems [30].

8

2.3 Recurrent Neural Networks

2.3 Recurrent Neural Networks

Recurrent neural networks are an extension of the traditional feed-forward artificial neu-
ral networks (ANN). A regular ANN is a directed acyclic graph (DAG). RNNs on the
other hand, contain cycles due to recurrent nodes [31]. Figure 2.4 is a simple represen-
tation of the differences between a feed-forward neural network and a recurrent neural
network.

(a) ANN (b) RNN

Figure 2.4: ANN and RNN distiction

The motivation for developing RNNs was rooted in the limitations of traditional ANNs.
ANNs are a very powerful tool for learning the features of a data set, as long as it is
solvable in a static (non-temporal) context. However, ANNs are not well suited for dealing
with temporal problems [14]. Temporal problems are dependent on preceding input to
predict the current output. Solving such problems requires a system that has some memory
or feedback, which feedforward ANNs do not possess.

In addition to all incoming edges a regular ANN has, RNNs also have a recurrent con-
nection pointing back on itself. These recurrent connections provide RNNs with memory
of preceding states, a residual signal. The recurrent connection is usually weighted by
a global decay or growth factor, U. This enables the RNN to find temporal correlations
across time-dependent data [32].

Figure 2.5 shows an RNN node unrolled across multiple time steps. As illustrated, a node
in an RNN is a recursive function. For each time step t, the output ht is dependant on the
current input xt and the previous step t− 1.

Many real world problems require temporal information to solve. Weather prediction,
adaptive filtering, noise reduction, vision and speech processing and much more. These
problems cannot be solved by traditional non-dynamic feed forward systems such as tra-
ditional ANNs[14].

RNN is a powerful tool for these types of problems. But in practice, they are hard to work
with. RNNs have proven to be notoriously challenging and time-consuming to train as the

9

Chapter 2. Background

Figure 2.5: Unfolded recurrence of RNN node

networks grow beyond a couple of layers [14, 33, 34].

The reason for RNNs being so hard to train is due to a phenomenon called vanishing and
exploding gradient (vanishing gradient) [32, 33]. The phenomenon is due to the relation-
ship between parameters and hidden states during RNN training. The result is exponential
growth in either the long term or short term error signals, where one is dominating the
other. The outcome is that the RNN is not able to correlate events close to, or distant
from each other in time [32]. This means that traditional ANN training methods such as
backpropagation with gradient descent are not very practical for deep RNNs.

New, more recent ways to train RNNs have been developed to combat the difficulties
explained. Some examples that frequently appear in the literature are:

• In [35] an approach called Long Short-term Memory, changes the architecture of the
RNN by introducing memory cells using logistical gates to determine when and for
how long information should be stored.

• Hessian Free Optimiser [36] is able to avoid the vanishing gradient problem by
better detecting small gradients and curvatures.

• Echo State Networks [10], later absorbed under the Reservoir Computing umbrella,
avoids altering the RNN at all. Instead, it uses a separate readout layer that is trained
by reading the untrained state of the fixed RNN. [10, 14]. Further explained in
section 2.5.

• Backpropagation-Decorrelation [13], also an RC technique, uses the same princi-
ples. Here, only one backpropagation step is used, and memory is based on the
temporal dynamics of the network by means of decorrelation of activations.

10

2.4 Evolutionary Algorithms

2.4 Evolutionary Algorithms

Evolutionary Algorithms, known as EAs, is a field of artificial intelligence that focuses on
exploring a solution space by mimicing the biological process of evolution[37]. In short,
these types of algorithms start off with a set of randomly generated solutions to a given
problem, stores the best ones, applies some mutation operation and repeats the selection.
These steps are repeated until an acceptable error rate is achieved or the program reaches
a predefined number of iterations, know as epochs [37, 38].

EAs search through a problem space and finds a solution by balancing exploration and
exploitation[39]. Exploration is achieved by introducing randomness, pushing the search
in new unexplored directions, while exploitation refers to retaining good solutions and
making them more precise. The two qualities need to be balanced for the search to be
optimal. In EA, candidate solutions are normally called phenotypes and are encoded by
a set of genes called the genotype. A specific development function is required to create
a phenotype from a genotype. One could say that the genotype is the blueprint or DNA
while the phenotype is the living individual.

Figure 2.6: Taxonomy of a few types of Evolutionary Algorithms

EA is a collective term describing search techniques inspired by biological evolution[40].
Figure 2.6 shows a taxonomy of a few evolutionary algorithm types. They all rely on
evolution, but differ in genetic representation and implementation details [38].

The particular type of EA used in this thesis is called Cartesian Genetic Programming
(CGP). CGP is a sub-field of Genetic Programming (GP)[41]. In GP the genetic represen-
tations are usually data structures like trees or graphs, while in GA and ES they are usually
represented by sequences of binaries, integers or real values[40]. Figure 2.7 shows how
the genotypes and phenotypes in CGP are represented.

Before utilising any form of EA on a problem, one has to figure out how to represent the
solution as genotypes and phenotypes. In the case of CGP and other algorithms which
require graph structures, the genotype must encode how many nodes the graph consists

11

Chapter 2. Background

Figure 2.7: Genotype (top) and Phenotype (bottom) in CGP, from [41]

of, which nodes are connected to each other, and all the necessary information needed to
construct the graph. For example in the travelling salesman problem, the genotype could
be an array of integers where the ordering of the integers represents the order of cities
visited[42].

As depicted in Figure 2.7, in CGP the solutions are represented as directed acyclic graphs
consisting of computational nodes. Each section of the genotype encodes a node in the
graph, while the last sections are translated to outputs[41].

To evaluate how good a solution is, a scoring function is used. This function is called the
fitness function and it is responsible for guiding the search in the right direction. When
all phenotypes have received a fitness score, a parent selection is conducted[38]. There
are numerous strategies on how to select the phenotypes whose offspring will make up
the next generation of solutions. The methods differ in the range from totally random to
always select the solutions with the best fitness. Choosing parents at random will introduce
just exploration in the search. This might lead to never finding an optimal solution in a
reasonable amount of time. This brute-force style search lacks exploitation, preventing it
from investigating similar phenotypes further. On the other hand, always selecting the best
individual might end up in a local maximum by the lack of exploration.

After parent selection, new solutions are created from the parent phenotypes. Usually,
children are a copy of their parents with some slight change (mutation) or a combination
of the parents (crossover). Both techniques can be used in unison and provide enough
randomness to explore new areas in the problem space, while still retaining prior good
solutions. For instance, if the phenotypes are modular in nature, crossover might merge
one or more high-value sections of the parent genotypes to form a superior one.

12

2.5 Reservoir Computing

2.5 Reservoir Computing

Reservoir computing is a framework that facilitates computation through an intrinsic reser-
voir of dynamics, that can be perturbed (stimulated) by input. The reservoir can be seen
as a temporal kernel function, which transforms input into a higher dimensional space. It
aims to combat the limitations of RNNs on non-linear modelling, where RNNs have had
slow progress [43].

Normally, an RC system is created by generating a random, fixed RNN to be used as
a reservoir. Then, a separate readout layer is trained. Normally by means of a linear
regression of the reservoir state and some target value. However, any dynamic system
that has fading memory and can separate input streams should, in theory, be usable as a
reservoir [34]. Some examples are elaborated in subsection 2.5.1.

The two main advantages of RC, are being able to make use of a wide variety of innate
dynamic systems, and that training the readout layer is computationally cheap. This makes
RC a very interesting approach when combined with physical reservoirs that might be
faster or cheaper than their digital counterparts.

As briefly explained in chapter 1, the independent work on ESNs and LSMs formed the
basis for reservoir computing. ESNs were initially proposed as an alternative RNN ap-
proach. They were used with success for control tasks, as waveform recognisers, word-
and pattern recognizers to name a few [10], while LSMs were used as a model for generic
cortical microcircuits [44].

In general, RC aims to overcome the main disadvantages of traditional RNN training
methods, such as slow convergence, learning disruption caused by bifurcations2, diffi-
culty learning long temporal dependencies due to vanishing or exploding gradient, as well
as requiring experience for tuning the many parameters [43].

Both Jaeger [10] and Maas [26] stated that ESNs and LSMs should be scaled to the edge
of stability for optimal performance.

For a dynamic system to be suitable as a reservoir, it has to have what is known as fading
memory and the separation property. To be suitable for computation, the reservoir must
eventually forget past pertubations, while still being able to separate two distinct input
streams [45]. Reacting differently for two distinct input streams is important for short-
term dependencies, and is covered in the separation property, while fading memory is
necessary for long-term dependencies and the system’s ability to generalise [46]. These
two are opposing effects, and Natschläger et al. [45] found that systems with the greatest
difference in separation and fading memory happened to coincide with dynamics at the
edge of chaos (critical dynamics).

Figure 2.8 shows a schematic of a traditional RC system. Input enters from the left, the
dynamics in the middle transform the data and the readout layer on the right decodes
it.

2A bifurcation is when a smooth gradual change to some parameters, called the bifurcation parameters,
causes an abrupt topological or other qualitative change to the system.

13

Chapter 2. Background

Figure 2.8: Reservoir Computing

2.5.1 Previous Work

RC has become a widely researched topic. Much of the literature has been focused on
identifying characteristics of well-performing reservoirs and performance measures. A
tuned reservoir should, after all, perform better than a randomly generated one. Expansions
to the general idea, by exploring different reservoir and readout types have also seen a large
amount of research.

Traditional reservoir computing has done well in digital signal processing (such as speech
recognition and noise modelling), chaotic time series prediction, dynamic pattern classifi-
cation, and autonomous sine generation [14]. The RC approach in many cases consistently
outperforms state-of-the-art RNN training methods [43].

Perhaps one of the most interesting tendencies within RC is using analog structures or
mediums as reservoirs. In [47] the authors successfully implemented a reservoir system
that could distinguish the words ”zero” and ”one” using a bucket filled with water as the
reservoir. A linear readout layer and the waves of the water were used to classify the data.
The research in [48] studies using the visual cortex of cats as a reservoir to get information
of various visual stimuli. Other research show using radiation, electric signals and bacteria
as reservoirs[49].

14

2.6 SMCGP

2.6 SMCGP

Self-modifying Cartesian Genetic Programming is an expansion of the field CGP [41, 50].
CGP and SMCGP are similar, but SMCGP contains special self-modifying nodes which
alter the program during execution. Like CGP, SMCGP is defined as a GP algorithm
and is driven by evolution [18]. As EAs in general, SMCGP generate different solution
candidates within the problem space for a given task, which are iteratively closer to the
optimal solution.

The solutions in CGP and SMCGP, the phenotypes, are directed graphs. Where regular
CGP only consists of nodes with mathematical operators, SMCGP is expanded with self-
modifying operations [18]. The genotype encodes all the nodes in the graph as fixed length
sections of the genotype containing connection information, as well as which function it
represents and other parameters.

(a) SMCGP Graph

(b) SMCGP Schematic

Figure 2.9: SMCGP Program

Figure 2.9 illustrates a simple program produced by SMCGP. The example has two out-
puts, which can be decoded to the following two equations:

inputi + (inputi ∗ inputi)− inputdeletei

inputdeletei

(2.1)

inputi + (inputi ∗ inputi)− inputdeletei (2.2)

When executing an SMCGP program, passing one data sample through the graph is called
an iteration. This involves reading the value of one or more output nodes, which triggers
a recursive read on all the connected nodes in the graph. Recursion is terminated at input
nodes, when attempting to connect beyond the graph (which returns zero), or when reading
from a constant node.

All inputs to an SMCGP graph are passed through input functions[51]. When executing
an SMCGP program, an internal input pointer is stored. Each call to an input function

15

Chapter 2. Background

will return the input value at the current pointer and based on the input function, either
increment, decrement or skip/stride the pointer. This means that each successive input
variable in Equation 2.1 and Equation 2.2 represent different values. For Figure 2.9 two
outputs result in calling an input function 9 times. If the input pointer points out of bounds
it will wrap around, pointing at the first input again[52].

Contrary to CGP, SMCGP graphs are dynamic. Nodes are indirectly connected to each
other through relative addressing[50, 51]. Each node in a graph has internal connec-
tion values dictating how far to the left they should connect. The value has to be larger
than zero to avoid cyclic connections. This means that the graph is not required to self-
assemble after a modification, because all edges are relative to the absolute position of the
node. This simplifies moving or duplicating sub-graphs, and reduces the computational
footprint.

Not all nodes in the graph are active at all times. Due to the connection pointers of
each node, some nodes are skipped and are therefore disconnected from the output node
spanning trees. Which nodes are active in a phenotype may change after each iteration.
Meaning that the same genotype can encode a multitude of different phenotypes[53]. The
disconnected nodes in a phenotype may become active at a later point in time. These
”non-coding” genes may still carry mutations from previous iterations, and give rise to
interesting dynamics when they occasionally become active.

In standard SMCGP, creating a phenotype that is able to solve the problem at hand is
done by an evolutionary process. An incremental fitness evaluation is performed in each
EA epoch, where each successive epoch increases the number of iterations of the pheno-
type. Unwanted phenotypes are often killed off immediately by being given a harsh fitness
penalty. This ensures that the phenotypes in the population have at least managed to give
acceptable output up until the present epoch/iteration.

The main difference between SMCGP and CGP is the DEL node in the middle of the Fig-
ure 2.9. It is denoted inputdeletei , where i represents the current input pointer. The delete

notation indicates that this might trigger a delete operation. If the DEL node is activated
it will alter the phenotype by removing node(s) based on its internal parameters[54]. Self-
modification nodes always return the value of their 2nd incoming connection, which in this
case is an input node. Whether or not they are activated is determined by their incoming
connections. If the return value from connection i < j, then the node is considered to be
active and added to what is called a Todo-list. This list is controlled by a maximum size
parameter, limiting the amount of modification to the phenotype per iteration[51]. The
Todo-list is executed after the value of all output nodes have been determined.

One important thing to note is that the SM alterations are online, meaning that the changes
happen real time and on the phenotype only, while the genotype (which is used to generate
offspring) is unaffected. A consequence of this is that it is possible to evolve SMCGP
solutions which during their lifespan evolves to read varying amount of inputs and outputs.
This means that within the solution space of a given problem, there might exist a solution
which iteratively can expand itself to a general solution. An example of this is the n bit
parity solution reviewed in [18], where the best solutions could solve all parity problems up
to 22 bits. See chapter 4 for the specific SMCGP implementation used in this thesis.

16

2.6 SMCGP

2.6.1 Previous Work

Much of the previous work on SMCGP revolves around showing its potential in evolving
circuits and solving numerical approximation or series generation problems. In [54] the
authors are able to evolve a SMCGP-graph to a general solution for the n bit parity problem
using only boolean and SM operators. [53] shows SMCGP outperforming CGP when
generating Fibonacci sequences, square sequences, sum of inputs, and power function,
evolving general solutions for all of them. In [55] SMCGP is used to find arbitrary amounts
of decimals of both e and π. In [52] SMCGP tackles the French flag problem, where it is
successful in approximating the solution.

A newer version of SMCGP was introduced in [56]. Here the programs are represented by
a 2D grid system, like what is used in CGP. The grid is generated based on two configurable
parameters height and width[57]. In [50] SMCGP2 is shown to be faster on the even parity
and binary addition tasks than standard SMCGP, as well as having a simplified function set.
Based on available material and to reduce complexity in the experimental setup, standard
SMCGP is used in this thesis.

17

Chapter 2. Background

18

Chapter 3
Methodology

This chapter describes a set of research questions as well as experiments conducted in
order to investigate these questions. The goal of this thesis is to evaluate the use of SMCGP
programs as reservoirs in an RC system. An experiment platform was therefore devised to
investigate the following research questions:

1. Is it viable to use SMCGP programs with continuously altering topology as a reser-
voir in a Reservoir Computing system?

2. What, if any, are the characteristics of SMCGP programs that are suitable as reser-
voirs?

3. How does SMCGP programs with continuously altering topology perform on the
temporal parity, temporal density and NARMA10 benchmarking problems?

3.1 Experimental platform

Figure 3.1 shows an overview of the experimental platform. It is built from three principal
components, where A is an evolutionary search module, evolving SMCGP programs as
specified in [18, 41]. B and C represent an RC system (reservoir and readout) based on
the general description in [43]. The SMCGP was implemented from the bottom up, as it
granted full control of all parameters and implementation details, like being able to record
all internal processes. For the readout layer an existing neural network library was chosen,
this allowed the readout layers to be configured with a variety of tried and tested updaters,
loss functions and activation functions. As SMCGP does not possess intrinsic memory or
feedback in the general sense (see detailed explanation in section 4.2), output from time
step t− 1 was made available to the SMCGP programs, providing the necessary memory
for performing time-dependent tasks.

19

Chapter 3. Methodology

Figure 3.1: Experimental platform

When conducting the experiments, the control flow during normal operation is illustrated
in Figure 3.2. There are two main modes of operation, either generate new SMCGP pro-
grams, or evaluate existing programs. In the latter case, only the blue (B) and orange (C)
components are in use, and the process starts at ”Create SMCGPReservoir”.

20

3.1 Experimental platform

Figure 3.2: Experimental Platform Control Sequence

When generating new programs, an initial population of randomly generated SMCGP pro-
grams is created. An evaluation of the fitness of each phenotype is then performed, to
check if anyone meets the criteria explained in detail in section 3.2. If there does not yet
exist a satisfactory phenotype, a parent selection is performed from the population pool.
New offspring are created from these selected parents, before an adult selection process
determines which phenotypes will make up the next generation.

When a satisfactory phenotype has been discovered, it is used to construct an SMCGP-
Reservoir instance. The data sets for the current task are then pre-processed by iterating
the SMCGP program. This involves assembling the input for the current time step, and
reading the value of each output node in the program. After all output nodes have been
evaluated, the output is cached for use as feedback during the next time step. When all data
sets have been processed, the resulting raw outputs from the reservoir and corresponding
target values are split into training, validation and testing data sets.

21

Chapter 3. Methodology

A readout layer is then constructed and training is initiated on the training set. An epoch
is started and the readout layer weights are updated after each predicted sample, based on
the degree of error. When all samples in the training set have been processed, predictions
are made using the validation set. If the measured error is below a set threshold (or if the
maximum number of epochs was reached), a final evaluation is performed using a test data
set.

Finally, the measured error from the test data set, as well as all runtime statistics (described
in subsection 4.2.1) are collected. Together with the program genotype, raw output from
the reservoir, state history and other related information, a complete data object for this
program is serialized to disk. The entire process is repeated until a given number of pro-
grams have been evolved or all existing programs have been evaluated, depending on the
mode of operation.

3.2 An incremental approach

The search space for these experiments is unfathomably large. As an example, consider an
SMCGP program genotype consisting of 3 nodes. Constraints on combinations, function
arity and other specific details are ignored for the sake of simplicity. For starters, each node
can be one of the total number of functions available from the implemented function set.
A reasonable number may be 30, which includes input and SM functions. Before consid-
ering connections, that leaves 27000 possible programs. Each node may connect leftward
anywhere from 1 to out of bounds (leading to Zero Input). Assuming an in-degree of 2, and
since the order of connections is important for the mathematical functions, this increases
the number to 243,000 for the 3 node network. Next, each of the nodes may or may not
be an output node, indicated by the last bit in the genome. This increases the number to
1,701,000. Increasing the number of nodes in the program makes it exponentially more
difficult. Then consider the fact that the genome parameters P0, P1 and P2 (explained in
chapter 4) are real valued, continuous numbers constrained by a configurable lower and
upper bound. An exhaustive search quickly becomes impossible. Even with discretization
of the real valued parameters, all bets are off when the program is iterated, opening up to
self-modification.

In [50], it is noted that the issue of SM activation as it stands is problematic. In most of the
problems studied, only a single input has been given at each iteration, causing activation
to be an effect of the intrinsic dynamics instead of the data. No matter how many times the
input functions are called, the value will always be the same when only a single number is
used. However, when introduced to potential bias and feedback from the reservoir system,
this may lead to a different phenotype for each data instance.

However, it is also stated in [50] that evolution can find a way around this, leading to some
degree of order. To handle this challenge, a strict composite fitness function was used,
where the evolved candidate programs had to pass a minimum of several criteria which
significantly reduced the search space. Determining the parameter configurations that pro-
duce somewhat consistent results was done by performing trial runs on the experimental

22

3.2 An incremental approach

platform. Programs that succeed in the temporal parity 3 task (section A.1) with stable
topology were evolved as a first step to confirm the validity of the platform. The configu-
ration parameters from these trial runs were then used as a basis for further investigation
once the requirement of continuously altering topology was enforced in the evolutionary
search.

3.2.1 Finding Candidate SMCGP Programs

In the evolutionary search (component A in Figure 3.1), an incremental fitness function
comprised of several independent assessments of the candidate is used. Table B.2 in Ap-
pendix B lists the default configuration parameters that are used in the evolutionary search.
The following paragraph describes the most important configurable parameters in the EA
search.

Before evolution is started, an initial population is required. This initial population size is
set to twice the amount of the normal population size to increase the basin of exploration.
Elitism is a term used to describe the mechanism of retaining the best solution(s) from one
epoch to the next. This is enabled in the evolve cycle by transferring the best individual
from a generation to the next without any selection or mutation. The mutation rate controls
the mutation probability of each gene in the genotype. Population size dictates the size
of each generation. Tournament selection is used as parent selection scheme during the
experiments. The tournament selections are configured to randomly pick κ (5) individuals
from the parent pool, and the best of them is selected as a parent for the next generation.
This process is repeated until all the parent pool size slots are filled. Offspring are created
from the parent pool using mutation and crossover operators. Mutation is performed on
a per-node basis, meaning only one node parameter mutation can occur per epoch. After
performing some trial runs, a mutation rate of 0.22 was settled on. This rate is very high
for traditional SMCGP, where around 0.01 is normal [50]. However, this was a balanced
trade-off between search speed and search stability in the setup. Finally, an adult selection
is performed, where which individuals that are going to represent the next generation is
determined. The only adult selection scheme available in the experimental platform is full
generational replacement. In essence, the entire population is replaced with the offspring
created from the parent pool.

To determine what properties of a candidate are interesting or acceptable, one must take
the motive described in chapter 1 into consideration. Programs that solve the task on their
own are not the target programs, as that would render the reservoir obsolete. Neither are
programs that are able to solve the task, but are topologically stable. Although interesting,
the latter does not fit well as a model of plasticity. Neither does it provide much insight
into the computational capability of dynamic, self-organising structures. The following
SMCGP program properties are therefore evaluated in the composite fitness function to
limit the search space.

23

Chapter 3. Methodology

Active input

After each perturbation of a phenotype (program iteration) there has to exist at least one
input function in the set of active nodes. Let Pt be the entire phenotype, and At be a set of
active nodes At ⊆ Pt at time step t. Then ∃it ∈ A(Input(it)). This check immediately
terminates graphs that no longer are input responsive.

Active self-modification

As previously stated, the main property of interest is that a program continuously self-
modifies. Let Pt be the entire phenotype, andAt be a set of active nodesAt ⊆ Pt. For each
time step t, then ∃it ∈ At(SM(it)). If this condition is violated, in other words, that the
program removes its own ability to self-modify, evaluation is immediately aborted.

Numerical convergence

A graph might have input nodes in the set of active nodes, but they might be intercepted
by constant or boolean nodes which nullify the values. Output feedback might also cause
the signal to converge towards a fixed point. Let n be the number of output nodes, τ be a
configurable number of time steps back in time to check, t be the current time step, Oi,j
be the output for output node i at time step j and ε be a convergence threshold.

Different(i, j) =

{
1, if |Oi,j −Oi,j−1| > ε

0, otherwise
(3.1)

Converged(i) =

{
1, if

∑τ−1
j=0 Different(i, t− j) = 0

0, otherwise
(3.2)

Then the following inequality must be upheld by the program to prevent a fitness penalty.

n

3
≥

n∑
i=0

Converged(i) (3.3)

For a program to pass this test, it can have no more than 1
3 of numerically converged

output columns. This check is performed after a complete input data set has been passed
through.

Minimum input node percentage

Another property parameter that the fitness function checks is the minimum input node
percentage. Let µ be the minimum input node factor, PIt be the set of input nodes in a

24

3.2 An incremental approach

phenotype at time step t, T be the length of each input stream, and Pt be the set of all
nodes at t. Then for each input stream, Equation 3.4 must hold true.

0 =

T∑
i=0

f(t), where f(t) =

{
1, if |PIt| < µ|Pt|
0, otherwise

(3.4)

This check ensures that the number of input nodes never drops below the specified thresh-
old.

Topological states

As opposed to Random Boolean Networks, where each node can either be in a state of
0 or 1, the outputs of SMCGP nodes can be continuous real valued numbers. Another
difference is that an SMCGP node does not have a definite value. It may be read several
times during the calculation of a single output node, each time with a different set of
inputs. This can be viewed as the node changing its state several times in the course of one
state inspection. To properly know the state of each node one would have to record every
calculation, which depending on the size of the program, could mean reading upward
of 100 node values multiple times for each iteration. That many read calls would be
very computationally expensive and not practical. Thus the internal values of the nodes
were considered to be a ”black box”. Searching for attractors in the values of nodes is
therefore limited to the output nodes. One could plot the values from each output node and
look for interesting attractors. Feedback from the previous time step is fed back into the
reservoir and can potentially lead to interesting patterns. However, the hope is to achieve
computation in programs that alter their structure. For this purpose the numeric output
of the program is ignored in this context, and instead, the topological state transitions are
assessed.

Let At be the set of active nodes in a phenotype at time step t, H be a hash function, and
S(t) be the state of the active nodes at time step t. The topological state of the program is
then given by:

S(t) = H(At) (3.5)

The total number of unique states seen after the reservoir has been perturbed by all input
streams i ∈ I is then |S|.

A state is a snapshot of the active nodes at a given time step. Any change to node index
(ordering), function type, connections, parameters P0...P2 or output bit will result in a new
hash code. The state at each time step is recorded. As mentioned in chapter 2 a system
is thought to be at its most computationally capable at the ”edge of chaos”. Constantly
altering topology might give rise to highly non-linear, potentially chaotic output, and is
therefore an area of interest in the experiments.

25

Chapter 3. Methodology

Since a multitude of different states are expected, a black and white or grey-scale visual
aid might not suffice. Instead a visualisation using a bounded colour scale was created,
where each new discovered state is assigned the next colour increment. This illustrates
cycles in the state transition diagram well, as it will often appear as a natural gradient.
Transition diagrams with many different trajectories will appear more chaotic. In these
visualisations, each row on the y axis represents its own data set. Time t flows from left to
right on the x axis. Within the same image, identical colours mean an identical state, even
across the different data sets shown in each row. The starting state of the phenotype is
equal for all input streams. Here the notion of initial conditions or initial state with respect
to basins of attraction refers to the pattern of inputs the system is perturbed with.

Figure 3.3a shows the system stabilising on one of two point attractors. The input patterns
in row 2 and 8 belong to separate basins of attraction compared to the remaining rows. In
Figure 3.3b, the system enters one of two cyclic attractors. Again displaying that the input
patterns belong to two separate basins of attraction. Finally, Figure 3.3c shows a system
that due to the input pertubation fails to fall into any distinct pattern within the observed
time steps.

(a) Point attractor

(b) Limit cycle

(c) Chaotic

Figure 3.3: Topological state attractors

All three examples in Figure 3.3’ were perturbed with 8 separate streams of 128 randomly
generated bits, as well as output feedback from the previous time step.

After each input stream is finished, the state history is analysed. If the state history contains
two or less unique states, the phenotype is immediately terminated with a low fitness score.
Due to prior fitness checks, there must be at least one SM function in the set of active nodes
at each iteration. This SM function might not be activated, or be activated but alter nodes
in a disconnected part of the graph. Even though an SM operation has been performed at
each iteration, the result is effectively a no− op.

Furthermore, after all input streams are finished, the set of observed states is assessed, to

26

3.2 An incremental approach

ensure that |S| ≥ σ, where σ is a configurable minimum number of unique states. Let I
be a set of input streams, T be the length of each stream, Si,t be the state of the phenotype
on input stream i at time step t, and τ be a configurable number of time steps to check.
Then Equation 3.7 must hold true.

Different(i, j) =

{
1, if Si,j 6= Si,j−1

0, otherwise
(3.6)

1 ≤
|I|∑
i=0

τ−1∑
t=0

Different(i, T − t) (3.7)

This ensures that there have been at least two distinct states during the last τ time steps,
across all input streams.

Sine wave transformation

A sampled sine wave signal is used to iterate the program, while recording the results from
each output node. Each output node represents its own sink for the signal and is analysed
independently. When transforming the signal into a higher dimensional representation,
the reservoir may add more information from its intrinsic dynamics. The resulting output
signal may be the combination of several sinusoidal wave functions. This can be used as
an indicator that the system might be able to model a multitude of functions, giving rise to
some computational capability. By utilising Fast Fourier Transform, one can inspect the
power spectrum from each output, to see what frequency components the resulting signals
consist of.

Figure 3.4: Harmonics of sine save

The fundamental angular frequencyw0 of a periodic signal is defined as 2π
T for a period T .

A periodic function is said to be harmonic whenever it relates to another periodic function
by an integer n (Figure 3.4). Periodic functions with periods of T are also periodic at
nT for all positive n. Likewise, for functions with T

n periods, they are also periodic at

27

Chapter 3. Methodology

intervals of T . This property is used when looking at the spectrum, as spikes in harmonic
frequencies indicate transformations of the original signal.

According to the Nyquist (Nyquist-Shannon) sampling theorem, to sufficiently represent a
continuous signal f(t) in a computer, it is necessary to sample it at a high enough rate [58].
It states that to represent a signal, the sampling frequency Fs must be greater than or equal
to twice the maximum frequency Fm of the signal. Increasing the sampling frequency
increases the accuracy of the signal.

This fitness check is performed by iterating the phenotype with 128 samples of a periodic
signal f(t) described in Equation 3.8 with frequency F = 1Hz, amplitude a = 1.0 and
phase shift p = 0.0 recorded over 2T (2s, sampling rate Fs = 64Hz).

f(t) = a ∗ sin(2 ∗ π ∗ F ∗ t+ p) (3.8)

LetO be the set of output nodes, n be a configurable minimum number of harmonics, γ be
a minimum power coefficient, f(t) be a periodic signal at time t, and FDo,j be frequency
bin i of the frequency domain of signal f(t) for output node o.

h(o) =

|FD(o)|∑
j=0

{
1, if FDo,j ≥ γ ˜FDo

0, otherwise
(3.9)

|FDo| is the number of frequency bins in the power spectrum of output node o, and ˜FDo

is the median of the power spectrum of output node o.

n ≤
|O|∑
i=0

h(i) (3.10)

In this check, Equation 3.10 must hold true, or else the phenotype is given a fitness penalty.
If the sum of the number of harmonics for all output nodes is less than the configured
number n, the phenotype is penalised. Signal power is considered strong enough if it
surpasses a factor of γ of the median signal power.

28

3.2 An incremental approach

Figure 3.5a is the raw output from an SMCGP program with 3 output nodes. Here, we
see that the sine wave signal has been transformed. Except for some fluctuations when
the output is negative, the orange output node maintains much of the original signal. The
two remaining output nodes have been more transformed, with the blue output node barely
having negative output.

Figure 3.5b shows the corresponding power spectrum. Here we can see that most of the
signal power from the orange output node is at the 1Hz bin, as expected given how much
of the original signal remains. For the other two nodes, we see that the majority of the
signal now consists of a multitude of different frequency components.

0 0.5 1 1.5 2

−1

0

1

Time (s)

O
ut

pu
t

Raw sine wave output

(a) Raw sine wave output

0 5 10 15 20 25 30

0

20

40

60

Frequency (Hz)

Po
w

er

Power spectrum

(b) Power Spectrum

Figure 3.5: Spectrum analysis of SMCGP program with 3 output nodes

Figure 3.6 shows the corresponding state history of the phenotype in question, when iter-
ated with a random bit stream.

Figure 3.6: State history of SMCGP program with 3 outputs

The complete fitness procedure is displayed in Algorithm 1. Functions hasActiveInputAndSM
and isNumericallyConverged return early with the current fitness if they fail to yield max-
imum value.

29

Chapter 3. Methodology

Algorithm 1 Fitness Evaluation
procedure EVALUATEFITNESS(phenotype)

F ← 0
F += hasActiveInputAndSM(phenotype)
F += isNumericalConverged(phenotype)
F += inputPercentage(phenotype)
F += topologicalStates(phenotype)
F += sineWaveHarmonics(phenotype)
return F

end procedure

3.2.2 Investigating the Viability of the Candidate

After a phenotype was evolved, it was used as a reservoir (component B in Figure 3.1)
and pre-processed with data, before training a readout layer (component C in Figure 3.1)
on the temporal parity task with window size n = 3. A multi-layer readout was used,
due to the nonlinear nature of the SMCGP program outputs. The readout was configured
to use a hidden layer with sigmoid activation function, and a Softmax (Equation 3.11)
classification layer as output. The Softmax function squashes the K dimensions of the
incoming vector z, producing a probability distribution summing to 1.0.

σ(z)j =
ezj∑K
k=1 e

zk
(3.11)

Training the readout is done using Stochastic Gradient Descent (SGD). The updater used is
a variant of the standard momentum based updater, called Nesterov’s accelerated gradient
(NAG) [59], and the loss function is Multi-Class Cross Entropy. For regression problems
the loss function is changed to Mean Squared Error (MSE) and output activation function
is the identity function.

Model accuracy is defined as the number of correctly classified samples c divided by the
total number of samples |D| in the data set, c

|D| .

One assumption made about how input is read by the SMCGP program, was that when the
number of output nodes grows large, the relative presence of the input value diminishes.
This is due to output from the previous time step being fed back into the reservoir. For a
given program with 15 outputs and 1 input value, then the input data from the training set
would account for 1

16 of the input array read by the program. To investigate this relation-
ship, a feature called input expansion was added to the platform. This is a configurable
setting that may vary in the experiments. An input expansion factor of 3 will mean that
for a program with 9 output nodes, the input bit will represent 3

12 = 1
4 of the input array

available to the program.

30

3.2 An incremental approach

3.2.3 Exploring the Computational Capability of the Candidate

Programs that had shown good model accuracy, specifically above 90% on the temporal
parity 3 task, were selected for additional tasks. Each program was then ran on the tempo-
ral parity 5 and 7 tasks, as well as temporal density 3, 5 and 7 (Appendix A.1).

Additionally, each of the candidates evolved in subsection 3.2.1 were tested using the
NARMA10 benchmark (Appendix A.2).

3.2.4 Exploring the Characteristics of Well Performing Programs

Finally, characteristics of the best-performing programs were investigated. From the geno-
type and iterated phenotypes, patterns and frequencies of function types were assessed.
The executed SM-operations were studied to see if there were any correlation between
the well-performing programs and self-modification arrangement and type. The topolog-
ical states were analysed, in an effort to look for tendencies in the state trajectories. This
was done by generating state transition diagrams and inspecting the state history using
the aforementioned visualisations. Finally, the sine harmonics from the sine wave trans-
formation were analysed to see whether some harmonics could be correlated with the
well-performing programs.

31

Chapter 3. Methodology

32

Chapter 4
Implementation

This chapter describes the implementation details of the experimental platform. It de-
scribes in detail how SMCGP was implemented and how it is integrated with the RC part
of the platform.

4.1 Self-Modifying Genetic Cartesian Programming

The SMCGP implemented in the system is based on the approach described in Devel-
opments in cartesian genetic programming: Self-Modifying CGP [18] with additional in-
sights from the 2011 version of J. Miller’s book Cartesian Genetic Programming [41]
and considerations from [52, 53, 54, 55]. The implementation was responsible for gener-
ating and evolving SMCGP programs which could be tested as a reservoir in a RC sys-
tem.

33

Chapter 4. Implementation

4.1.1 Genotype

Figure 4.1: Genotype

Figure 4.1 shows how the genotypes in the implementation are represented. The genotypes
are stored as two-dimensional arrays which are responsible for encoding the initial phe-
notypes. The size of the outer array determines the size of the initial phenotype program.
Initial size is controlled by a configuration parameter, startNodes (see Appendix B for all
available configuration options). Figure 4.2 is an example of an inner array. Each of the
inner arrays is a list of numbers encoding one node in the graph. In the system, genotypes
are created in three ways, either randomly generated to create the initial population for the
EA search or it is a crossover/recombination of two parent genotypes, or a copy of a single
parent possibly carrying mutations.

The first number dictates what function type the node represents

The two next numbers tells the node which other nodes it should connect to

The three next numbers are randomly generated real numbers that are used in the various SM operations,
denoted as P0, P1 and P2

The last number indicates if this node is an output node

Figure 4.2: A single node represented in genotype

4.1.2 Phenotype

Figure 4.3: SMCGP Program

The phenotype is an SMCGP program and is created by decoding a genotype. Figure 4.3
is a graphical representation of a phenotype. Each node in Figure 4.3 is developed from
the inner arrays of the genotype (shown in Figure 4.2).

34

4.1 Self-Modifying Genetic Cartesian Programming

4.1.3 Development

Internally the phenotype represents the graph just as the genotype does, using two-dimensional
arrays. When a phenotype is developed from a genotype, it copies the arrays (so the orig-
inal genotype is not altered when the phenotype self-modifies) and identifies the output
nodes. The output nodes are located by iterating over the array of nodes from end to start
until enough nodes with the output flag (the last index in Figure 4.2) enabled are found.
Each time the program self-modifies this process has to be repeated in case that the output
nodes are deleted or have changed position.

4.1.4 Relative Addressing and Reading Output

The input-output mapping is done through recursion from output to input. The readNode
method propagates through the graph until an input node is reached, the node connections
point outside the graph (returning zero) or a constant node is encountered. Reading the
value of a given node Ni at absolute index i, with function Fi and incoming connections
Ai and Bi is defined in Equation 4.1.

f(i) = Fi(f(i−Ai), f(i−Bi)) (4.1)

This is the general case, but some functions in F will only use Ai or only Bi, and the
constant and input functions will use neither. The locations of the incoming connections
are offsets of the absolute position of the current node, i.

4.1.5 Inputs

The only way for an SMCGP program to read input is through nodes with input functions.
Input values are organised as a queue, with a pointer to the next value to be fetched from
the queue. Each of the three input functions returns the value which the pointer is currently
pointed at, but they differ in how they move the pointer for the next time an input function
is called. Table 4.1 shows how the pointer is altered for each function.

Name Description
INP Return the value at the current pointer position and increment the pointer by 1

INPP Return the value at the current pointer position and decrement the pointer by 1

SKIP Return the value at the current pointer position and increment the pointer by P0

Table 4.1: Input Functions

35

Chapter 4. Implementation

4.1.6 Mathematical Functions

The nodes with mathematical functions are ultimately responsible for transforming the in-
put. When a node with a mathematical function is encountered, the operation is loaded
from a hash table containing all available mathematical functions (exhaustive list Ta-
ble 4.2). The two input values (I1 and I2) are collected by reading the neighbouring nodes,
before returning the result of the mathematical operation. Due to their nature, functions
like (Sine, Cosine and Square root), only use the first input connection, where Constant
use neither.

Name Return Value
Add I1 + I2

Subtract I1 − I2
Divide I1

I2

Multiply I1 ∗ I2
Sine Sine of I1 given in radians

Cosine Cosine of I1 given in radians

Tan Tangent of I1 given in radians

Tanh Hyperbolic tangent of I1
Constant P1

Max Highest value of I1 and I2
Min Lowest value of I1 and I2
Mean I1+I2

2

Modulo I1 mod I2

Pow II21
SquareRoot

√
I1

And I1 > 0 ∧ I2 > 0

Or I1 > 0 ∨ I2 > 0

NotAnd 6 (I1 > 0 ∧ I2 > 0)

LargerThan I1 > I2

SmallerThan I1 < I2

Table 4.2: Mathematical Functions, where I1 and I2 are the values read from the connected nodes.

4.1.7 Self-modifying Operations

Like mathematical nodes, SM-nodes load their corresponding SM-function from a hash
table containing all available SM-operations. An SM-operation is added to the list of
pending modifications, the (Todo-list), if it is activated. Depicted in Figure 4.4, the SM-
node is activated if incoming connection I2 > I1.

When the value of all output nodes have been determined, the SM-operations in the Todo-
list are executed. The number of allowed operations per iteration is limited by a config-
urable setting, todo-size. As in [18] the SM-operations are executed left-to-right, meaning
that the Todo-list is sorted based on node position before execution.

36

4.1 Self-Modifying Genetic Cartesian Programming

Figure 4.4: SM-node activation

When it comes to the ToDo-list execution, the implementation differs slightly from what
is described in [18] and [41]. There are guards set in place to avoid that programs either
grow out of control, or shrink so much that it has fewer nodes than the required output
nodes. The growth is controlled by the configurable option, maxGrowthFactor and maxN-
odesMovedOrDuplicated. These limit the amount of nodes that can be operated on at
once, by the move, duplicate and add functions. This was done to allow the platform to be
configured for high speed evaluation.

Name Description
Add Add P1 new random nodes at P0

Delete Delete nodes from P0 to P1

Change Function Update function type of node at position P0 to P1

Change Parameters Update SM-parameter P1mod3 of node at position P0 to P2

Change Connections Update connection P1mod2 of node at position P0 to P2

Shift Connections Increment connections of node at position P0 by P2

Move Move nodes between x + P0 and x + P0 + P1 and insert after x + P0 + P2

Duplicate Copy nodes between x + P0 and x + P0 + P1 and insert after x + P0 + P2

Table 4.3: Self-modifying Operations

Table 4.3 lists all available SM-operations. All operations require parameters from the
activated node in their alterations. The parameters are randomly generated in the genotype
within the boundaries of the system settings, realNumberLower and realNumberUpper.
When these parameters are used for node indexing, they are first transformed by Equa-
tion 4.2 to ensure that the parameters are not out of bounds in programs where the number
of nodes has shrunk. Similarly, wrapping is done for other ranges such as function lists, or
node parameter index.

P ′ = Px mod |N | (4.2)

Were Px is the used parameter (P0, P1 or P2) and |N | is the total size of the SMCGP
program, both active and inactive nodes.

37

Chapter 4. Implementation

4.1.8 Evolution

As stated in chapter 3 the evolutionary process chosen for the implementation was tour-
nament selection with separate parent and population pools. The selection scheme used is
the same as in [18, 41], where the phenotype are ranked by fitness first, then generation.
Meaning that if two phenotypes have the same fitness, the youngest is preferred.

Figure 4.5: Genotype mutation per genome

The key components of the EA cycle is shown in Algorithm 2. Crossover is implemented
as single point crossover, whereas mutation is done on a per-node basis. As depicted
in Figure 4.5, this means that a node might or might not mutate at all, but if a mutation
occurs, another random selection is done to determine what type of mutation is performed.
The types of mutation relate to the different node properties. These mutation types are
function mutation, connection mutations, internal parameter mutations and flipping the
output flag.

Algorithm 2 Evolution Cycle
procedure EVOLVE

P ← initializePopulation()
fitnessEvaluation(P)
C ← getBestIndividual()
while C.fitness 6= target do

S ← parentSelection(P)
O ← createOffspring(S)
A← adultSelection(O)
P ← A
fitnessEvaluation(P)
C ← getBestIndividual()

end while
return C

end procedure

38

4.2 Reservoir Computing System

4.2 Reservoir Computing System

The reservoir system was implemented based on the description of generic RC systems in
[43]. Even though both SMCGP and the reservoir system were developed to be used in
unison, the two components were not tightly integrated, allowing the SMCGP program to
be iterated as a standalone program without feedback.

When constructing a reservoir, an SMCGPReservoir instance is made using the program in
question. The two are then automatically connected and any input passed to the reservoir
will iterate the program.

(a) Generic Reservoir System (b) Implemented Reservoir System

Figure 4.6: Reservoir computing system overview

The reservoir implementation in the experimental platform (Figure 4.6b) only uses a sub-
set of the features provided by the generic reservoir scheme (Figure 4.6a).

Training is performed in an offline fashion. This allows the platform to accumulate raw
output data from the reservoir and construct data sets that can be batched and shuffled.

As briefly mentioned in section 3.1, SMCGP does not possess feedback or intrinsic mem-
ory in the general sense. To allow the SMCGP program to more easily solve time depen-
dent tasks, the system caches reservoir output for an arbitrary amount of time steps. These
are made available as input for the reservoir at the next time step. The number of cached
time steps are controlled by a configurable parameter numCachedT imeSteps, and is set
to 1 as default. Without this feedback, the only intrinsic form of memory in SMCGP would
be either purely by topological changes affecting program behaviour, or by means of Con-
stant nodes in combination with SM-ChangeParameter nodes. The latter would work by
changing the value of the constant nodes, changing the numerical values in the computa-
tion, rather than the functions involved. As ChangeParameter is an SM-node and therefore
input driven, these numerical changes would also be input driven. ChangeParameter alters
parameter P1 mod 3 for node P0 to the value of its own P2. This may result in a change
of parameter P1 of a Constant node, changing its return value. Disregarding the effects of
SM-Add, this form of memory would be limited by the set of distinct P2 values in the orig-
inal genotype. Without SM-Add, no new P2 parameters can be introduced to the program.

39

Chapter 4. Implementation

Competing ChangeParameter functions may alternate between changing the value of one
or more constant nodes. The changing return value of these Constant nodes could repre-
sent some limited memory. Given a set of unique P2 values P with size s = |P | = 3 and a
number of Constant nodes c = 5, a total of 35 = 243 different states could be encoded this
way. Nonetheless, this is an ideal scenario, where the different ChangeParameter functions
are frequently not being activated, changing the contents of the Todo-list. In turn, this al-
lows the remaining ChangeParameter functions to use their P2 values. Neither does it take
into account that this effect could very well change the other two parameters of competing
functions, removing any competition. In the long term it is therefore reasonable to assume
that one single P2 value would in the end dominate, as there are statistically more ways to
destroy the effect than to maintain it. This very specialised form of memory would require
a very select set of circumstances to work properly. Some form of memory encoded purely
in topological changes seems more likely. Regardless, both these examples would require
a tremendous number of evolutionary steps to tune into handling complex temporal tasks.
Hence, from a statistical perspective, providing memory through reservoir feedback was
the most promising approach.

Figure 4.7: SMCGP Reservoir Integration

Figure 4.7 shows how an SMCGP program is integrated in the reservoir system.

An additional feature not found in generic RC systems is implemented in the experimental
platform. This input expansion feature allows single input values to saturate a larger por-
tion of the input data array before being passed into the reservoir. SMCGP input functions
may increment, decrement or skip several inputs depending on its parameters. Very erratic
read patterns may occur. The input expansion factor configuration parameter tells the RC
system how many input array slots the input data should be copied into.

Figure 4.8 shows the input array passed to the reservoir with input expansion factor f = 1,
when the current input it = 1.0 and the outputs from time step t−1 is 0.12, 11.3, -1.0 and
3.14.

Figure 4.9 illustrates how the layout of the input array looks when using an input expansion
factor f = 3.

This allows the effects of relative input versus feedback size to be investigated by exper-
iments. The degree of feedback may affect performance on short-term vs long-term time

40

4.2 Reservoir Computing System

[1.0, 0.12, 11.3,−1.0, 3.14]
Figure 4.8: Standard input concatenation

[1.0, 1.0, 1.0, 0.12, 11.3,−1.0, 3.14]
Figure 4.9: Input concatenation with input expansion factor of 3

dependencies. When increasing the number of outputs, feedback has the effect of increas-
ing the input array size by a factor of the number of cached time steps c. Without using
input expansion, this would quickly make the feedback signal dominate the input data.
The program may also end up not being able to read all the input before all output nodes
have been evaluated, unless the phenotype is sufficiently large and maximum connection
length for the nodes is relatively short.

Data sets are created in batches (several independent input streams), each of a specific
length depending on problem type. The SMCGP program is reset to its original state before
processing each of these input streams. This is done to expose the program to a range of
different starting input patterns, hopefully identifying different basins of attraction.

4.2.1 Metrics Collection

A vital part of the implementation is facilitating the collection of statistics as the SMCGP
programs are evolved and the reservoir is perturbed by input data. Using a collection of
listener interfaces receiving a wide range of events, the platform is able to log several
effects of each program iteration. The platform will gather the following metrics during
operation.

– Frequencies of fitness penalties for each terminated phenotype

– Total number of evaluations and epochs for each successfully evolved phenotype

– Population max/mean/min/std fitness for the evolutionary search

– For each iteration the phenotype size, size of active nodes set, topological state and
potential SM operations will be recorded. This is used to calculate minimum/mean/-
max size of the active nodes during the complete iteration of a program, as well as
generate state transition plots and diagrams.

– Timings for each input processing session are also recorded to assess the computa-
tional footprint of the program.

– Training set and test set readout layer accuracy at a configurable interval.

– Readout layer training speed in epochs per second

41

Chapter 4. Implementation

42

Chapter 5
Experiments

In this chapter, the experiment results from the phases described in chapter 3 are presented.
Formal definitions for the benchmarks used are listed in Appendix A. For the temporal
parity and temporal density experiments, readout layer accuracy is defined as the number
of correctly labelled classes c divided by the total number of samples n in the data set
c
n . For the temporal parity and temporal density tasks, training was stopped if accuracy
reached ≥ 0.98.

A complete list of available configuration parameters is listed in Appendix B, section B.1.
The configuration parameters defined in Table B.2 and Table B.3 were common for all
experiments.

Note: the notation X-Y, is used throughout this chapter and is a shorthand for a configu-
ration, where X is the number of output nodes in a program and Y is the input expansion
factor (IEF).

43

Chapter 5. Experiments

5.1 Candidate Search

This experiment evolves SMCGP programs using an evolutionary search, and tests the
performance of the resulting programs on the temporal parity task with window size n =
3.

Table 5.1 lists the configuration parameters used for the SMCGP programs and fitness
function.

Table 5.2 lists the configuration parameters used for the readout layer.

Setting 5-1 7-1 7-2 10-1 10-3 13-1 16-3 16-5
startNodes 50 100 100 200 200 200 300 300
levelsBack 25 50 50 100 100 100 150 150
feedBack t− 1 t− 1 t− 1 t− 1 t− 1 t− 1 t− 1 t− 1

minStates (σ) 8 8 8 8 8 8 8 8
statesSteps (τ) 16 16 16 16 16 16 16 16

minHarmonics (n) 4 6 6 8 8 12 16 16
spectrum (γ) 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3

convergence (τ) 16 16 16 16 16 16 16 16
convergence (ε) 10−10 10−10 10−10 10−10 10−10 10−10 10−10 10−10

inputNodeFactor (µ) 0.12 0.12 0.12 0.1 0.1 0.1 0.1 0.1

Table 5.1: Configuration parameters used in the evolutionary search

Setting Value
Max epochs 2000
Learning rate 0.03
Hidden layer activation Sigmoid
Output layer activation Softmax
Hidden layer nodes 16
Loss function Multi-Class Cross Entropy
Updater Nesterov’s Accelerated Gradient (NAG)
Momentum µ 0.9

Table 5.2: Temporal parity and temporal density readout parameters

44

5.1 Candidate Search

5-1 7-1 7-2 10-1 10-3 13-1 16-3 16-5

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Figure 5.1: Readout layer accuracy vs program configuration on temporal parity 3

A total of 4240 SMCGP programs were evolved, 530 of each group of output nodes and
input expansion factor.

Figure 5.1 shows the readout layer accuracy for SMCGP programs with different number
of output nodes and IEF on the temporal parity 3 task.

The results were gathered by iterating each program with 24 bit streams of 128 random
bits each, then splitting into a training set of 2048 samples and validation and test sets
of 512 samples respectively. The readout layer was trained for 2000 epochs or until an
accuracy ≥ 0.98 was reached.

Outputs IEF Amount Accuracy ≥ 90%
5 1 530 12 (2,3%)
7 1 530 27 (5,1%)
7 2 530 36 (6,8%)
10 1 530 30 (5,7%)
10 3 530 36 (6,8%)
13 1 530 30 (5,7%)
16 3 530 30 (5,7%)
16 5 530 55 (10,4%)

Table 5.3: SMCGP programs with over 90% readout layer accuracy on temporal parity 3

Table 5.3 lists the number of programs for each configuration that achieved an readout
layer accuracy above 90%. Out of all 4240 evolved programs, 256 managed to get over
90% accuracy.

45

Chapter 5. Experiments

5.2 Evaluating Performance with Benchmarks

5.2.1 Temporal Parity

This experiment tests the performance of the 256 programs that achieved above 90% at
on the temporal parity 3 task. Each program is evaluated using temporal parity 5 and
temporal parity 7 benchmarks. As scoring high on temporal parity 3 was a requirement
for candidacy in these benchmarks, that test was not performed a second time.

Table 5.4 lists the readout layer configuration parameters used for this experiment.

Setting Value
Max epochs 4000
Learning rate 0.03
Hidden layer activation Sigmoid
Output layer activation Softmax
Hidden layer nodes 16
Loss function Multi-Class Cross Entropy
Updater Nesterov’s Accelerated Gradient (NAG)
Momentum µ 0.9

Table 5.4: Temporal parity readout parameters

5-1 7-1 7-2 10-1 10-3 13-1 16-3 16-5

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

(a) Temporal parity 5

5-1 7-1 7-2 10-1 10-3 13-1 16-3 16-5

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

(b) Temporal parity 7

Figure 5.2: Readout layer accuracy vs program configuration on temporal parity 5 and temporal
parity 7

Figure 5.2 shows the readout layer accuracy for SMCGP programs with different number
of output nodes and IEF on the temporal parity 5 and temporal parity 7 tasks.

The results were gathered by iterating each program with 24 bit streams of 128 random
bits each, then splitting into a training set of 2048 samples and validation and test sets
of 512 samples respectively. The readout layer was trained for 4000 epochs or until an
accuracy ≥ 0.98 was reached.

46

5.2 Evaluating Performance with Benchmarks

5.2.2 Temporal Density

This experiment tests the performance of the 256 programs that achieved above 90% at on
the temporal parity 3 task. Each program was evaluated using temporal density 3, 5 and
7.

Table 5.4 lists the configuration parameters used for the readout layer.

Setting Value
Max epochs 4000
Learning rate 0.03
Hidden layer activation Sigmoid
Output layer activation Softmax
Hidden layer nodes 16
Loss function Multi-Class Cross Entropy
Updater Nesterov’s Accelerated Gradient (NAG)
Momentum µ 0.9

Table 5.5: Temporal density readout parameters

5-1 7-1 7-2 10-1 10-3 13-1 16-3 16-5

0.9

0.92

0.94

0.96

0.98

1

A
cc

ur
ac

y

(a) Temporal density 3

5-1 7-1 7-2 10-1 10-3 13-1 16-3 16-5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

(b) Temporal density 5

5-1 7-1 7-2 10-1 10-3 13-1 16-3 16-5

0.7

0.8

0.9

1

A
cc

ur
ac

y

(c) Temporal density 7

Figure 5.3: Readout layer accuracy vs program configuration on temporal density 3, 5 and 7

47

Chapter 5. Experiments

Figure 5.3 shows the readout layer accuracy for SMCGP programs with different number
of output nodes and IEF on the temporal density 3, 5 and 7 tasks.

The results were gathered by iterating each program with 24 bit streams of 128 random
bits each, then splitting into a training set of 2048 samples and validation and test sets
of 512 samples respectively. The readout layer was trained for 4000 epochs or until an
accuracy ≥ 0.98 was reached.

48

5.2 Evaluating Performance with Benchmarks

5.2.3 NARMA 10

This experiment tests the performance of 530 evolved programs from 8 different configu-
rations, a total of 4240, on the NARMA10 benchmark. The programs used were the same
programs evolved in experiment 5.1. This experiment uses a single regression layer as
readout.

Table 5.6 lists the configuration parameters used for the readout layer.

Setting Value
Max epochs 2000
Learning rate 0.035
Hidden layer activation None
Output layer activation Identity
Hidden layer nodes None
Loss function Mean Squared Error
Updater SGD
Momentum µ None

Table 5.6: NARMA10 readout parameters

5-1 7-1 7-2 10-1 10-3 13-1 16-3 16-5
0.005

0.01

0.015

0.02

0.025

0.03

M
ea

n
Sq

ua
re

d
E

rr
or

Figure 5.4: Mean Squared Error (MSE) vs program configuration on NARMA10

Figure 5.4 shows the Mean Squared Error (MSE) with different number of output nodes
and IEF on 10th order NARMA task.

The results were gathered by iterating each program with 16 NARMA10 time series of
length 256. The readout layer was trained 15 times, each for 2000 epochs, and randomly

49

Chapter 5. Experiments

split into a training set of 2048 samples and validation and test sets of 1024 samples re-
spectively. The error values were then averaged over these 15 runs.

Table 5.7 lists the mean and standard deviation for each group of 530 programs in terms of
Mean Squared Error (Equation 5.1), Root Mean Squared Error (Equation 5.2), Normalized
Root Mean Squared Error (Equation 5.3) and Mean Absolute Error (Equation 5.4).

Group MSE RMSE NRMSE MAE
5-1 0.011081±0.001066 0.105108±0.005307 0.136401±0.007155 0.083567±0.004835
7-1 0.010844±0.001277 0.103920±0.006009 0.134718±0.008020 0.082425±0.005202
7-2 0.010945±0.001943 0.104224±0.007150 0.135233±0.009473 0.082528±0.005385

10-1 0.010830±0.003501 0.103315±0.008372 0.133806±0.011022 0.081663±0.005594
10-3 0.010565±0.001535 0.102461±0.006737 0.132822±0.008845 0.080983±0.005633
13-1 0.010542±0.002840 0.102106±0.008360 0.132478±0.010976 0.080786±0.005908
16-3 0.010316±0.001494 0.101215±0.006575 0.131187±0.008705 0.079868±0.005708
16-5 0.009908±0.001264 0.099305±0.006375 0.128826±0.008398 0.078223±0.005755

Table 5.7: Error measure vs program configuration on NARMA10

The four error measures used in Table 5.7 are described in the following equations. y is the
prediction made by the readout layer, ŷ is the target value and n is the number of samples
in the data set.

MSE =
1

n

n∑
t=1

(y − ŷ)2 (5.1)

RMSE =

√√√√ 1

n

n∑
t=1

(y − ŷ)2 (5.2)

NRMSE =

√
1

n

n∑
t=1

(y − ŷ)2)

max(ŷ)−min(ŷ)
(5.3)

MAE =
1

n

n∑
t=1

|(y − ŷ)| (5.4)

50

Chapter 6
Discussion

In this chapter the results from the experiments will be reviewed. The results from the
temporal parity and temporal density experiments are discussed in light of the work of
Langton and Wolfram. Characteristics of the best performing programs are inspected in
terms of spectral analysis, state transition and self-modification operators.

6.1 Experiment Results

The results from chapter 5 show that it is possible to evolve SMCGP programs possessing
enough complexity to solve the temporal parity 7 task. Although most of the programs
only managed to solve the simpler tasks, a few performed better. On average the same
programs fared better in the temporal density problem for all sliding window sizes, as
expected given the highly non-linear nature of the parity problem. Of all the programs,
only a handful were able to achieve an accuracy over 90% in temporal parity n = 5, and
just 3 programs on difficulty n = 7. The average was about 65% for n = 5 and 55% for
n = 7, just above random.

On the 10th-order NARMA benchmark the best programs achieved error measures of
0.0065 and 0.0069 (Mean Squared Error) respectively. Collectively, the different con-
figurations averaged at about 0.012. This shows that none of the 4240 programs evolved
with the configuration in this experiment possessed enough difference in separation and
fading memory to be comparable to other, state-of-the-art reservoirs. However, different
configurations with different dynamics may be evolved that perform better on this prob-
lem.

51

Chapter 6. Discussion

6.2 Searching for the Edge of Chaos

Figure 6.1: Phase transition search space

As stated in chapter 2, the dynamic systems with the highest potential for complex compu-
tation, reside in the phase transition between order and chaos, at the very top of the graph
shown in Figure 6.1. Meaning that in a set of all possible dynamic behaviours, these are
very sparse and the search space very large.

(a) Reduced search space by narrowing paramter, λ (b) Density of solution space (from [60])

Figure 6.2: Search Space of ”the edge of chaos”

In order to reduce the set of possible dynamic behaviour in the experiments, the EA search
was equipped with a strict composite fitness function used to ensure that the SMCGP
programs were as close to the critical point as possible before they were tested. Figure 6.2a
illustrates an example of how the search space was constricted by the EA. The striped area
represent SMCGP programs who got penalised due to undesired dynamic, while the white
area represent the programs who passed the EA search. Figure 6.3 shows the average
number of phenotypes evaluated before a candidate which passed the fitness function was
found, these are the ones caught in the striped area.

Even though the EA search greatly narrowed down the set of possible systems, the white
area in Figure 6.2a still represent a large amount. The level of complexity in a program
was estimated using the aforementioned benchmarks. Thus the EA only provided the
means to search for programs by their order of chaos, not complexity. Further, depicted

52

6.2 Searching for the Edge of Chaos

5-1 7-1 7-2 10-1 10-3 13-1 16-3 16-5

1,500

2,000

2,500

1,476

1,260
1,322

1,425

1,697

2,118

2,485
2,546

A
ve

ra
ge

E
va

lu
at

io
ns

Figure 6.3: Average EA evaluations per evolved program

in Figure 6.2b, the density of dynamic systems with low complexity is far greater than
the ones with high complexity. Meaning that even though the system is able to narrow
down the phase transition, programs with high complexity are still infrequent, and hard to
find.

Considering the above, one might say that it is not surprising that the programs which
managed to solve the more difficult problems were outliers, while the majority of the
programs possessed too little complexity. It seems to fall into what is expected on the
basis of the work of Wolfram and Langton.

Outputs-IEF Evaluated Stable Converged Few states Input SM INP SH T UV
5-1 73799 1758 2579 61863 1429 211 114 2874 3159
7-1 62995 1543 1811 56135 1256 135 100 725 1290
7-2 64763 1182 1601 59761 139 191 181 550 1150

10-1 71236 718 2003 66675 61 246 135 798 600
10-3 86167 526 2282 79610 1200 716 545 465 809
13-1 105859 449 3721 99250 277 295 316 974 577
16-3 124977 234 4943 116680 330 249 290 1918 310
16-6 129420 35 5131 118719 0 303 26 5180 23

Table 6.1: EA Search Terminations

Table 6.1 lists a breakdown of termination reasons for 50 evolved phenotypes. The major-
ity (91.6%) of terminations are due to the program not performing the minimum required
number of self-modifications. The reasons listed are:

Stable: Enough states have been seen, but no changes were made during the last τ
time steps

Converged: More than 1
3 of output nodes had converged within the threshold ε

Few States: Fewer than the minimum configured number of states were seen across
all input streams

Input/SM: The phenotype removed its own input or SM functions

53

Chapter 6. Discussion

INP: The percentage of input nodes in the graph was too low

SH: Less than the required number of harmonic frequencies were detected

T: The phenotype timed out during evaluation (short average connection length or
heavy SM operations)

UV: Too few unique output values were detected after processing all input streams

6.3 Program Characteristics

In this section, 50 programs with the best performance in the temporal parity and density
experiments were selected for further analysis.

0 0.5 1 1.5 2

−1

0

1

2

Time (s)

O
ut

pu
t

Raw sine wave output

(a) Sine Wave 1

0 0.5 1 1.5 2

−8

−6

−4

−2

0

2

Time (s)

O
ut

pu
t

Raw sine wave output

(b) Sine Wave 2

0 0.5 1 1.5 2

−1

0

1

Time (s)

O
ut

pu
t

Raw sine wave output

(c) Sine Wave 3

0 5 10 15 20 25 30

100

101

102

Frequency (Hz)

Po
w

er

Power spectrum

(d) Power Spectrum 1

0 5 10 15 20 25 30

100

101

102

Frequency (Hz)

Po
w

er

Power spectrum

(e) Power Spectrum 2

0 5 10 15 20 25 30

100

101

102

Frequency (Hz)

Po
w

er

Power spectrum

(f) Power Spectrum 3

Figure 6.4: Power spectrum and Sine waves from a sample of the best programs

Based on the 50 programs that were analysed, there was no clear pattern of sine wave
transformation or distribution of harmonic frequencies. Many of the programs did exhibit
alternating patterns of amplitude, like seen in Figure 6.4a. Slight phase shift or changes
purely in amplitude were also common. However, the number of output nodes with these
common traits varied greatly among the programs. The analysis failed to detect any cor-
relation between these occurrences and program performance on temporal parity and tem-

54

6.3 Program Characteristics

poral density. Figure 6.4 shows three examples from the analysis, illustrating the great
differences between the programs, in raw wave output and power spectrum density.

(a) Chaotic with a few repeating states

(b) Chaotic with many repeating states

(c) Aperiodic or very long transient time

(d) Periodic with equal basin of attraction

(e) Chaotic with different basins of attraction

Figure 6.5: Most common patterns of the 50 best performing programs

Figure 6.5 lists five types of topological change patterns that appeared at least 4 times in
the sample set of 50 programs. The different types are listed in order from most frequent,
to least frequent. There were still many other unique patterns in the set, but the ones
presented were similar to at least 3 other programs.

55

Chapter 6. Discussion

Figure 6.6: State transition diagram for Figure 6.5a

Figure 6.5a is by far the most common pattern, and its variants make up just under 30%
of the programs analysed. Figure 6.6 shows the state transition diagram for Figure 6.5a.
Most of the programs with this type of change pattern have small and highly connected
transition diagrams. However, beyond this slight trend, no indicative correlation between
state change patterns and performance could be found. All these programs performed
relatively well, with high performing programs found in most of the pattern types. It
must be said that the sample size here is very low, and these groups may very well be
smeared together in a gradient of differing patterns if the sample size is increased. The
programs also differ by several parameters like output node count and input expansion
factor, complicating the matter further.

When assessing frequency of SM node activation, three types make up the majority of SM
operations. These are SM-Duplicate, SM-Move and SM-ShiftConnections. The remaining
functions have more sporadic appearances in the activation logs. This is most likely due to
the nature of how these functions operate, on ranges of nodes. SM-Move may move a block
of nodes five indexes forward, shifting the graph. Next iteration it moves a separate group
of nodes, while at the third iteration, the nodes from the first move has been shifted back in
place. This type of rotation would pass fitness checks, while often being stable enough to
allow for computation. The same type of behaviour is found in ShiftConnections, where
node connections are shifted in ranges. The effect of Duplicate is a bit more uncertain, as
one also has to consider the growth factor of the program.

In summary, no clear correlation could be found between the characteristics presented and
performance of the analysed programs on the benchmarks. A more thorough investigation
with greatly reduced diversity in program configuration would have fared a better chance
of identifying some correlation.

56

Chapter 7
Conclusion and Future Work

7.1 Conclusion

The research presented in this thesis is centred on the use of SMCGP, networks with self-
organising topology, in a reservoir computing environment.

Dynamic systems, especially the ones with dynamic behaviour in the region known as ”the
edge of chaos”, are thought to have the most computational capability. Finding a way of
identifying, constructing and utilising these systems efficiently can lead to major advances
in artificial intelligence and computing.

The motivation behind this research was that SMCGP programs might be a suitable model
for the plasticity exhibited by biological systems. Should this be the case, further research
into SMCGP-RC could be beneficial for several topics, especially biological-digital hybrid
platforms.

In work on this thesis, the authors have developed an experimental platform (described in
chapter 4) capable of generating SMCGP programs that possess certain dynamic proper-
ties. These programs were then tested by performing different benchmarks to evaluate the
viability of SMCGP-RC.

The results presented in chapter 5 show that SMCGP programs with continuously alter-
ing topology can be used as a reservoir of dynamics and utilised for computation. The
aforementioned is demonstrated for the temporal parity, temporal density and NARMA10
problems with the disclosed parameters.

Although possible, finding the SMCGP programs which solve the benchmarking prob-
lems proved to be hard. As outlined in chapter 3 the combination of all components that
make up a SMCGP program is vast, and the results show that only a small part of that
vastness has high enough complexity to solve the more difficult variants of the benchmark

57

Chapter 7. Conclusion and Future Work

problems.

The authors fail to identify any strong correlation between the programs performing best
on benchmarks and characteristics such as state transition patterns and power spectrum
harmonics. A wide range of different characteristics were found in programs that were
able to solve the temporal parity 5 task. However, the most frequently activated SM-nodes
in the experiments were Move, Duplicate and ShiftConnections.

7.2 Contributions

The results in this thesis have shown that it is possible to accomplish computation by
exploiting the dynamics of continuously altering SMCGP programs in a reservoir con-
text. This was demonstrated by evolving programs that frequently underwent topological
changes, while still being able to exhibit some computational capability.

The programs that managed to solve the temporal parity problems demonstrates that when
presented with output from the previous time step, SMCGP programs can exhibit the nec-
essary dynamic properties to solve non-linear temporal problems.

By implementing feedback, these experiments have also explored the effects of using mul-
tiple, possibly unique input values, in SMCGP programs. As noted in [50], the effect of
multiple inputs on SM-activation is ”problematic”. The experimental results confirm the
assumption that evolution can find solutions with stable activation patterns.

As stated in chapter 1, the authors could find no prior publications that cover the use
of SMCGP in a reservoir computing environment. These results could therefore inspire
others to investigate the possibilities of SMCGP-RC.

The testing platform described in chapter 3 and chapter 4 is open source, and publicly
available1. This can be used by other researchers for future or related work .

7.3 Future Work

From the experiments shown in chapter 5, relatively few graph configurations were used
compared to the other experiments in the literature, where only SMCGP is concerned
[53, 55]. An exploratory search of graph configuration and function set would be highly
beneficial. An additional note is that the maximum connection length for each node was
set to half the size of the graph. This results in an average recursion depth of 4, and was
chosen to reduce the average time needed to evaluate each output node. An investigation
into the effects of lowering this connection length is also an area of much interest.

During the experiments many of the parameters were kept unchanged for the sake of sim-
plicity, some of these parameters might prove to be very influential. An effort to improve
the current configuration with a parameter search could prove beneficial.

1https://github.com/krekle/cerebrum-medulla

58

https://github.com/krekle/cerebrum-medulla

In chapter 3, it is mentioned that SMCGP does not possess inherent memory to solve
the benchmarking problems without a ”helping” hand from the feedback channel of the
reservoir. This provides memory, but can also interfere with reading of input, hence the
inclusion of the input expansion factor. One thought worth investigating is adding a new
type of input node to the SMCGP programs, which is responsible for reading the feedback
signal. That way the traditional input nodes are not be affected, and evolution can find an
appropriate balance on its own. Expanding the SM and mathematical function sets are also
something that should be investigated. Several additional functions are presented in [61]
which could improve the ability for complex behaviour in the SMCGP programs.

The EA search used to evolve SMCGP programs in this thesis is a basic implementation
consisting only of point based mutation and single point crossover. This process could
be made more efficient by introducing more information to the EA, as well as improving
the genotypic representation. The notion of self-repair, growth regulation and mimicing
gene regulatory networks in general could allow the EA to develop its own representation
best suited for the target behaviour. Evolutionary developmental biology (Evo-Devo) is
an EA technique inspired from how biological organisms develop from a single cell to
a developed individual. [60, 62] outlines how EvoDevo systems with evolvable genome
and regulatory processes can be used to develop candidates that stand a high chance of
fulfilling a target goal. Utilising such an approach could greatly improve the SMGCP
evolutionary search.

The chosen SMCGP version implemented was the original, not SMCGP2 [56]. SMCGP2
is said to have advantages such as increased performance on the even parity task, and a
simplified function set. A comparative analysis of the two in an RC environment could
prove beneficial.

59

60

Bibliography

[1] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and
organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386, 1958.

[2] J. H. Holland, “Adaptation in natural and artificial systems. an introductory analy-
sis with application to biology, control, and artificial intelligence,” Ann Arbor, MI:
University of Michigan Press, 1975.

[3] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine learning,” Ma-
chine learning, vol. 3, no. 2, pp. 95–99, 1988.

[4] M. M. Millonas, “Swarms, phase transitions, and collective intelligence,” in SANTA
FE INSTITUTE STUDIES IN THE SCIENCES OF COMPLEXITY-PROCEEDINGS
VOLUME-, vol. 17, pp. 417–417, ADDISON-WESLEY PUBLISHING CO, 1994.

[5] P. J. Bentley, Digital Biology: How Nature Is Transforming Our Technology and Our
Lives. Simon & Schuster Trade, 2002.

[6] S. H. Martinius Knudsen, “Ntnu cyborg: A study into embodying neuronal cultures
through robotic systems,” Norwegian University of Science and Technology, Depart-
ment of Engineering Cybernetics, 2016.

[7] R. V. S. N. I. S. G. T. . M. Knudsen, O. Ramstad, “Towards making a cyborg: A
closed-loop reservoir-neuro system,” Norwegian University of Science and Technol-
ogy, Department of Engineering Cybernetics, 2017 (submitted).

[8] D. Verstraeten, B. Schrauwen, M. d’Haene, and D. Stroobandt, “An experimen-
tal unification of reservoir computing methods,” Neural networks, vol. 20, no. 3,
pp. 391–403, 2007.

[9] C. Goller and A. Kuchler, “Learning task-dependent distributed representations by
backpropagation through structure,” in Neural Networks, 1996., IEEE International
Conference on, vol. 1, pp. 347–352, IEEE, 1996.

61

[10] H. Jaeger, “The “echo state” approach to analysing and training recurrent neural
networks-with an erratum note,” Bonn, Germany: German National Research Center
for Information Technology GMD Technical Report, vol. 148, p. 34, 2001.

[11] W. Maass, T. Natschläger, and H. Markram, “Real-time computing without stable
states: A new framework for neural computation based on perturbations,” Neural
computation, vol. 14, no. 11, pp. 2531–2560, 2002.

[12] P. F. Dominey, “Complex sensory-motor sequence learning based on recurrent state
representation and reinforcement learning,” Biological cybernetics, vol. 73, no. 3,
pp. 265–274, 1995.

[13] J. J. Steil, “Backpropagation-decorrelation: Online recurrent learning with o (n)
complexity,” in Neural Networks, 2004. Proceedings. 2004 IEEE International Joint
Conference on, vol. 2, pp. 843–848, IEEE, 2004.

[14] D. V. Benjamin Schrauwen and J. V. Campenhout, “An overview of reservoir comput-
ing: theory, applications and implementations,” Electronics and Information Systems
Department, Ghent University, Belgium, 2002.

[15] B. Chopard and M. Droz, Cellular automata. Springer, 1998.

[16] S. A. Kauffman, “Metabolic stability and epigenesis in randomly constructed genetic
nets,” Journal of theoretical biology, vol. 22, no. 3, pp. 437–467, 1969.

[17] S. A. Kauffman, The origins of order: Self-organization and selection in evolution.
Oxford University Press, USA, 1993.

[18] S. Harding, J. F. Miller, and W. Banzhaf, “Developments in cartesian genetic pro-
gramming: self-modifying cgp,” Genetic Programming and Evolvable Machines,
vol. 11, no. 3-4, pp. 397–439, 2010.

[19] J. F. Miller and P. Thomson, “Cartesian genetic programming,” in European Confer-
ence on Genetic Programming, pp. 121–132, Springer, 2000.

[20] T. B. D. Steve M. Potter *, “A new approach to neural cell culture for long-term
studies,” 2001.

[21] M. C. Paolo Massobrio, Jacopo Tessadori and M. Ghirardi, “In vitro studies of neu-
ronal networks and synaptic plasticity in invertebrates and in mammals using multi-
electrode arrays,” 2015.

[22] C. Grebogi, E. Ott, and J. A. Yorke, “Chaos, strange attractors, and fractal basin
boundaries in nonlinear dynamics,” Non-Linear Physics for Begginers: Fractals,
Chaos, Pattern Formation, Solutions, Cellular Automata and Complex Systems,
pp. 111–117, 1998.

[23] S. Strogatz, M. Friedman, A. J. Mallinckrodt, S. McKay, et al., “Nonlinear dynam-
ics and chaos: With applications to physics, biology, chemistry, and engineering,”
Computers in Physics, vol. 8, no. 5, pp. 532–532, 1994.

62

[24] R. Legenstein and W. Maass, “What makes a dynamical system computationally
powerful,” New directions in statistical signal processing: From systems to brain,
pp. 127–154, 2007.

[25] S. H. Strogatz, “Exploring complex networks,” Nature, vol. 410, no. 6825, pp. 268–
276, 2001.

[26] R. Legenstein and W. Maass, “Edge of chaos and prediction of computational per-
formance for neural circuit models,” Neural Networks, vol. 20, no. 3, pp. 323–334,
2007.

[27] S. Wolfram et al., “Cellular automata as models of complexity,” Nature, vol. 311,
no. 5985, pp. 419–424, 1984.

[28] C. G. Langton, “Computation at the edge of chaos: phase transitions and emergent
computation,” Physica D: Nonlinear Phenomena, vol. 42, no. 1-3, pp. 12–37, 1990.

[29] S. A. Kauffman, Investigations. Oxford University Press, 2000.

[30] C. Gershenson, “Introduction to random boolean networks,” arXiv preprint
nlin/0408006, 2004.

[31] B. A. Pearlmutter, “Gradient calculations for dynamic recurrent neural networks: A
survey,” IEEE Transactions on Neural networks, vol. 6, no. 5, pp. 1212–1228, 1995.

[32] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural
networks.,” ICML (3), vol. 28, pp. 1310–1318, 2013.

[33] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradi-
ent descent is difficult,” IEEE transactions on neural networks, vol. 5, no. 2, pp. 157–
166, 1994.

[34] M. Lukoševičius, H. Jaeger, and B. Schrauwen, “Reservoir computing trends,” KI -
Kunstliche Intelligenz, no. 4, pp. 365–371, 2012.

[35] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[36] J. Martens and I. Sutskever, “Learning recurrent neural networks with hessian-free
optimization,” in Proceedings of the 28th International Conference on Machine
Learning (ICML-11), pp. 1033–1040, 2011.

[37] T. Back, Evolutionary algorithms in theory and practice: evolution strategies, evo-
lutionary programming, genetic algorithms. Oxford university press, 1996.

[38] D. Whitley, “An overview of evolutionary algorithms: practical issues and common
pitfalls,” Information and software technology, vol. 43, no. 14, pp. 817–831, 2001.

[39] M. Črepinšek, S.-H. Liu, and M. Mernik, “Exploration and exploitation in evolution-
ary algorithms: A survey,” ACM Computing Surveys (CSUR), vol. 45, no. 3, p. 35,
2013.

63

[40] J. R. Koza, Genetic programming: on the programming of computers by means of
natural selection, vol. 1. MIT press, 1992.

[41] J. F. Miller, “Cartesian genetic programming,” in Cartesian Genetic Programming,
pp. 101–123, Springer, 2011.

[42] J. Grefenstette, R. Gopal, B. Rosmaita, and D. Van Gucht, “Genetic algorithms for
the traveling salesman problem,” in Proceedings of the first International Conference
on Genetic Algorithms and their Applications, pp. 160–165, 1985.

[43] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to recurrent neural
network training,” Computer Science Review, vol. 3, no. 3, pp. 127–149, 2009.

[44] W. Maass, T. Natschläger, and H. Markram, “Computational models for generic
cortical microcircuits,” Computational neuroscience: A comprehensive approach,
vol. 18, p. 575, 2004.

[45] T. Natschläger, N. Bertschinger, and R. Legenstein, “At the edge of chaos: Real-time
computations and self-organized criticality in recurrent neural networks,” in Proc. of
NIPS, pp. 145–152, 2004.

[46] D. Snyder, A. Goudarzi, and C. Teuscher, “Computational capabilities of random
automata networks for reservoir computing,” Physical Review E, vol. 87, no. 4,
p. 042808, 2013.

[47] C. Fernando and S. Sojakka, “Pattern recognition in a bucket,” in Advances in artifi-
cial life, pp. 588–597, Springer, 2003.

[48] D. Nikolic, S. Haeusler, W. Singer, and W. Maass, “Temporal dynamics of informa-
tion content carried by neurons in the primary visual cortex,” in NIPS, pp. 1041–
1048, 2006.

[49] T. E. Gibbons, “Reservoir computing: a rich area for undergraduate research,” in
Midwest Instruction and Computing Symposium, pp. 16–17.

[50] S. L. Harding, J. F. Miller, and W. Banzhaf, “Self-modifying cartesian genetic pro-
gramming,” in Cartesian Genetic Programming, pp. 101–124, Springer, 2011.

[51] S. Harding, J. F. Miller, and W. Banzhaf, “Developments in cartesian genetic pro-
gramming: self-modifying cgp,” Genetic Programming and Evolvable Machines,
vol. 11, no. 3, pp. 397–439, 2010.

[52] S. Harding, J. F. Miller, and W. Banzhaf, “A survey of self modifying cartesian ge-
netic programming,” in Genetic Programming Theory and Practice VIII, pp. 91–107,
Springer, 2010.

[53] S. Harding, J. F. Miller, and W. Banzhaf, “Self modifying cartesian genetic program-
ming: Fibonacci, squares, regression and summing,” in European Conference on
Genetic Programming, pp. 133–144, Springer, 2009.

64

[54] S. Harding, J. F. Miller, and W. Banzhaf, “Self modifying cartesian genetic program-
ming: Parity,” 2009.

[55] S. Harding, J. F. Miller, and W. Banzhaf, “Self modifying cartesian genetic pro-
gramming: finding algorithms that calculate pi and e to arbitrary precision,” in Pro-
ceedings of the 12th annual conference on Genetic and evolutionary computation,
pp. 579–586, ACM, 2010.

[56] S. Harding, J. F. Miller, and W. Banzhaf, “Smcgp2: self modifying cartesian genetic
programming in two dimensions,” in Proceedings of the 13th annual conference on
Genetic and evolutionary computation, pp. 1491–1498, ACM, 2011.

[57] S. Harding, J. F. Miller, and W. Banzhaf, “Smcgp2: finding algorithms that approxi-
mate numerical constants using quaternions and complex numbers,” in Proceedings
of the 13th annual conference companion on Genetic and evolutionary computation,
pp. 197–198, ACM, 2011.

[58] H. Nyquist, “Certain topics in telegraph transmission theory,” Transactions of the
American Institute of Electrical Engineers, vol. 47, no. 2, pp. 617–644, 1928.

[59] Y. Nesterov et al., “Gradient methods for minimizing composite objective function,”
2007.

[60] G. Tufte and S. Nichele, “On the correlations between developmental diversity and
genomic composition,” in Proceedings of the 13th annual conference on Genetic and
evolutionary computation, pp. 1507–1514, ACM, 2011.

[61] S. Harding, J. F. Miller, and W. Banzhaf, “Self modifying cartesian genetic program-
ming: Fibonacci, squares, regression and summing,” in European Conference on
Genetic Programming, pp. 133–144, Springer, 2009.

[62] S. Nichele, A. Giskeødegård, and G. Tufte, “Evolutionary growth of genome rep-
resentations on artificial cellular organisms with indirect encodings,” Artificial life,
2016.

[63] P. Whittle, Hypothesis testing in time series analysis, vol. 4. Almqvist & Wiksells,
1951.

65

66

Appendix A
Benchmarking problems

A.1 Temporal Parity and Temporal Density

In [46], two tasks are formulated to determine the ability of a system to separate input
streams and exhibit fading memory. These tasks are known as temporal parity and tempo-
ral density.

The temporal parity task determines if a number of input bits n in a bit stream u have had
an even or odd number of ”1”s. The sliding window n can be delayed by a number of time
steps τ . The formal definition for a bit stream u where |u| = T , a delay τ and a sliding
window n ≥ 1 is

An(t) =

{
u(t− τ), if n = 1

⊕n−1i=0 u(t− τ − i), otherwise
(A.1)

where τ + n ≤ t ≤ T − τ − n.

Figure A.1 illustrates the correct input to output mapping for the temporal parity task with
a sliding window size of 3 and no delay.

Input: 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0
Output: 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1

Figure A.1: Temporal Parity with n = 3, τ = 0

The temporal density task determines if a number of input bits n in a bit stream u have
had a majority of ”1”s. The sliding window n can be delayed by a number of time steps
τ . The formal definition for a bit stream u where |u| = T , a delay τ and a sliding window
n ≥ 1 is

67

Bn(t) =

{
1, if 2

∑n−1
i=0 u(t− τ − i) > n

0, otherwise
(A.2)

where τ + n ≤ t ≤ T − τ − n.

Figure A.2 illustrates the correct input to output mapping for the temporal density task
with a sliding window size of 3 and no delay.

Input: 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0
Output: 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0

Figure A.2: Temporal Density with n = 3, τ = 0

In [46], it is speculated that the separation capability is more important than fading mem-
ory for the temporal parity task. This is due to the fact that the parity operator ⊕ is not
linearly separable, making the task for large window sizes highly non-linear. The tempo-
ral parity task is therefore considered more difficult than the temporal density task, as it
requires more memory.

A.2 NARMA10

The general Auto-Regressive Moving Average (ARMA) is a model used in statistical anal-
ysis of time series, and was introduced in [63]. In this general model, the dependence of
Xt on past values is linear. If the dependence is non-linear, it is specified as Non-linear
Auto-Regressive Moving Average (NARMA). The number associated describes the order
of dependence in time steps. NARMA10 and NARMA30 are frequently used in RC liter-
ature to test the memory capacity and computational power of a reservoir.

The 10-th order NARMA function is defined as:

y(t) = αy(t− 1) + βy(t− 1)

n∑
i=1

y(t− i) + γx(t− n)x(t− 1) + δ (A.3)

where y(t) is the output at time step t, x(t) is the input at time step t, n = 10, α = 0.3,
β = 0.05, γ = 1.5 and δ = 0.1. The input x(t) is sampled from a uniform distribution
[0, 0.5].

Input: 0.400, 0.076, 0.118, 0.322, 0.407, 0.287, 0.368, 0.313, 0.472, 0.109, 0.200, 0.163, 0.129,
0.196, 0.076, 0.169, 0.018, 0.485, 0.468, 0.067

Output: 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.166, 0.174, 0.184,
0.222, 0.295, 0.236, 0.279, 0.214, 0.526, 0.395

Figure A.3: NARMA model of the 10th order for 0 ≤ t < 20

Figure A.3 illustrates an input to output mapping for the NARMA10 task. The first n
values are normally truncated and is considered reservoir warm-up.

68

Appendix B
Experimental platform
configuration options

B.1 Available Configuration Options

Table B.1: Configurable options

Setting Description
task ”generateNew”,”matrix”,”narma”,”rerun”
trainingSamples The total number of samples in the training sets
testSamples The total number of samples in the test sets
minPowerCoefficient Min power spectrum coefficient γ
dataset.type temporalParity, temporalDensity or narma10
dataset.normalize true if data should be scaled to −1.0 ≤ x ≤ 1.0
delay Delay for temporal tasks
windowSize Sliding window size for temporal tasks
functionSM Directory for SM functions
functionMath Directory for math functions
functionMath.whiteList The math function set used
realnumbersLower Lower bound for parameters P0...P2

realnumbersUpper Upper bound for parameters P0...P2

todoSize Size of the ToDo-list
startNodes Number of nodes in the genotype at t = 0
levelsback Max relative connection length
maxNodesMovedOrDuplicated Limits the number nodes per mov/dup
smcgp.outputs Number of output SMCGP nodes
smcgp.timeout Timeout in ms per input
smcgp.maxGrowthFactor Limits the size of the phenotypes
smcgp.useSimpleInputFunction Only uses INP function
smcgp.functionMath Enabled math functions
smcgp.functionSM Enabled self-modifying operators

Continued on next page

69

Table B.1 – Continued from previous page
Setting Description
phenotype.minFitness Lower bound for when to store candidate
minPowerSpectrumStates Min number of distinct harmonics
powerSpectrumRoundingThreshold Rounds values to nearest delta
useNumericalConvergenceCheck true or false
pointAttractorStepsBack Num steps to check backwards
numericalConvergenceStepsBack Num steps to check backwards
numericalConvergenceRoundingThreshold Considers numbers equal within this num
minUniqueValues Minimum number of unique values
minTopographicStates Min number of states seen
maxTopographicStates Max number of states seen
minInputNodePercentage Enforce a minimum of input nodes in genotype
ea.maxEpochs Evolutionary epochs
ea.stopCondition Must currently be 64
ea.mutationRate A number 0 < i ≤ 1.0
ea.initialPopulation Starting population
ea.poolSize Number of candidates per epoch
ea.crossover Use crossover
ea.crossoverRate A number 0 < i ≤ 1.0
ea.elitism true if best candidate is passed on unmutated
ea.parentPool Size of the parent selection pool
ea.parentSelectionScheme ”tournament”,”best”,”4+1”
ea.tournamentSize Size of the tournament rounds
signal.sampleSize Sample size of sine wave
signal.amplitude Amplitude of sine wave
signal.phase Phase shift of sine wave
signal.frequency Frequency of sine wave
signal.overSamplingFactor Multiply number of samples for accuracy
reservoir.epochs Max epochs when training readout
reservoir.evaluateEveryNumEpochs Print epoch stats every n epochs
numCachedTimeSteps Number of time steps t in feedback
useInputExpansion true if using inputexp, false if not
inputExpansionFactor Integer i > 0 to scale input presence
readout.stopCondition Accuracy threshold 0.0 ≤ a ≤ 1.0
readout.batchSize Training mini-batch size
readout.hiddenLayerOneNodeCount Num nodes in hidden layer
readout.learningRate Real number 0.0 < lr < 1.0
readout.momentum Momentum factor in Nesterov’s (NAG)
readout.quarterWayFitnessCutoff Stop if accuracy not over this val at 1/4 epochs
readout.halfWayFitnessCutoff Stop if accuracy not over this val at 1/2 epochs
readout.useFitnessTrainingCutoff true if aborting if fitness is below above parameters
readout.useMultiLayerForRegression true if regression should use multilayer readout

70

B.2 Configuration Parameters Common for all Experi-
ments

The following tables of configuration parameters were fixed and remained unchanged
across all experiments.

Table B.2 shows the EA search parameters that were common for all experiments.

Setting Value
Max epochs 1000
Mutation Rate 0.22
Crossover true
Crossover Rate 0.1
Population Size 20
Initial population size 40
Elitism true
Parent pool size 8
Parent selection scheme tournament selection
Tournament Size (k) 5
Max nodes moved/duplicated (per input) 5

Table B.2: Common evolutionary search parameters

Table B.3 shows the SMCGP parameters that were common for all experiments.

Setting Value
Max growth factor 3.0
Todo-list size 1
SM params lower bound -40.0
SM params upper bound 40.0
Timeout (per input) 500ms
Max nodes moved/duplicated (per input) 20
Enabled Math functions Add, Constant, Cos, Divide, Max,

Mean, Min, Modulo, Multiply, Pow,

Sin, Square, Subtract, Tan, Tanh

Enabled SM operations SMchc, SMchf, SMchp

SMdel, SMdup, SMmov, SMshiftc

Table B.3: Common SMCGP parameters

71

	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	NTNU Cyborg
	Dynamical Systems
	Attractors
	Computation at the Edge of Chaos

	Recurrent Neural Networks
	Evolutionary Algorithms
	Reservoir Computing
	Previous Work

	SMCGP
	Previous Work

	Methodology
	Experimental platform
	An incremental approach
	Finding Candidate SMCGP Programs
	Investigating the Viability of the Candidate
	Exploring the Computational Capability of the Candidate
	Exploring the Characteristics of Well Performing Programs

	Implementation
	Self-Modifying Genetic Cartesian Programming
	Genotype
	Phenotype
	Development
	Relative Addressing and Reading Output
	Inputs
	Mathematical Functions
	Self-modifying Operations
	Evolution

	Reservoir Computing System
	Metrics Collection

	Experiments
	Candidate Search
	Evaluating Performance with Benchmarks
	Temporal Parity
	Temporal Density
	NARMA 10

	Discussion
	Experiment Results
	Searching for the Edge of Chaos
	Program Characteristics

	Conclusion and Future Work
	Conclusion
	Contributions
	Future Work

	Bibliography
	Appendix
	Benchmarking problems
	Temporal Parity and Temporal Density
	NARMA10

	Experimental platform configuration options
	Available Configuration Options
	Configuration Parameters Common for all Experiments

