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Problem description

The nature of dark matter (DM) is one of the largest unresolved problems in physics
today. According to cosmological studies, more than 80% of the matter content of the
Universe is of an invisible, unknown substance, and hypothetical Weakly Interacting
Massive Particles (WIMPs) are pointed out as possible dark matter candidates. In
this project, the cosmic ray antideuteron flux from annihilations of such particles will
be examined.

The so-called coalescence model is commonly used to describe the production
mechanism of antideuterons. This model can be implemented directly within a Monte
Carlo simulation, or approximations can be made, allowing the coalescence model to
be applied to the produced nucleon energy spectra after the simulations are done. The
latter option is the one commonly used today, and was used in a previous calculation
of antideuteron spectra from DM annihilations in an article by Bräuninger et. al. The
results from this article show a peak in the antideuteron spectrum from annihilations
into quarks that is orders of magnitude higher than the peak from annihilations into
gauge bosons. There is no obvious reason for this large difference, and the primary
goal of this project is to investigate if this difference is related to the approximations
which were made in the energy spectrum application of the coalescence model.

The antideuteron spectra from different annihilation channels will in this project
be calculated and compared between the two implementations of the coalescence
model. The propagation of antideuterons in the Galaxy will then be examined, in
order to find the corresponding antideuteron fluxes near Earth.
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Abstract

In this thesis, we examine the antideuteron spectra from annihilations of dark matter in
the form of Weakly Interacting Massive Particles (WIMPs). The so-called coalescence
model is commonly used to describe the production of antideuterons. This model can
be applied directly within a Monte Carlo simulation, but traditionally, approximations
have been made that allow the model to be applied to the produced nucleon energy
spectra after the simulation is done. The traditional approach is based on the
assumption that the nucleons produced have isotropically distributed momenta, and
is still commonly used today.

We find that the assumption of isotropy does not hold; the final state particles
from WIMP annihilations are confined in jets, something which increases the an-
tideuteron yield. This effect is missed by the traditional approach, and using the direct
implementation of the coalescence model leads to an order of magnitude enhancement
of the antideuteron yield. Furthermore, we find that incorrect treatment of input
gauge bosons as on-shell particles in Monte Carlo generators lead to underestimates
of the antideuteron flux from WIMP annihilations into gauge bosons. This effect
is particularly important when using the traditional application of the coalescence
model.

We also consider the contributions to the antideuteron spectrum from higher order
annihilation processes, and find that for the lightest MSSM neutralino as WIMP
candidate, these contributions are likely to become important for neutralino masses
in the TeV range.
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Introduction

In this thesis, we examine the antideuteron spectrum from annihilations of hypothetical
Weakly Interacting Massive Particles (WIMPs) within our galaxy.

The main goal of this thesis is to investigate the large difference in magnitude
between the antideuteron spectra from WIMP annihilations into quarks and gauge
bosons found by Bräuninger et. al in [14]. The so-called coalescence model is
commonly used to handle the production of antideuterons, and we will investigate
if the difference in magnitude is related to a commonly used approximation of this
model which assumes isotropically distributed nucleon momenta.

The thesis is divided into three chapters. In the first chapter, we present some
of the evidence for the existence of dark matter, as well as some of the proposed
dark matter candidates. We then discuss some of the means of detecting WIMP dark
matter, as well as the current status of the field. In the second chapter, we discuss
the practical and theoretical details related to the work behind the thesis. We then
present and discuss the results from our calculations. The third chapter is dedicated
to summary and conclusions. We also include an appendix, in which we list and
describe some equations from special relativity which are needed in this thesis.

We note that we will be using natural units,

c = ~ = kB = 1,

and these constants will generally be left out from our equations.
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Chapter I

General introduction to dark
matter

1 Dark matter in galaxies

1.1 Rotation curves

One of the most important pieces of evidence for dark matter is found by studying
the so-called rotation curves of (spiral) galaxies. The rotation curve can either be
defined as the orbital speed v(r) at a distance r from the galactic center, or as the
corresponding angular speed Ω(r) = v(r)/r. Knowing the rotation curve of a galaxy,
we can calculate the corresponding mass distribution M(r), and compare it to the
distribution of observed matter.

From observations, we know that the visible matter in spiral galaxies follow roughly
circular orbits. We will use this in deriving the relation between the rotation curve
and the mass distribution of a galaxy. For an object at distance r from the galactic
center, the radial acceleration, ar, is given by Newton’s law of gravity,

ar(r) =
GM(r)

r2
. (1.1)

M(r) is here the mass of the matter contained within the sphere of radius r, and G is
the gravitational constant. For circular orbits, the relation between orbital speed and
radial acceleration is given by

ar(r) =
v2(r)

r
. (1.2)

Combining these equations and solving for M(r), we obtain the galactic mass distri-
bution,

M(r) =
v2(r)r

G
, (1.3)

2



CHAPTER I. GENERAL INTRODUCTION TO DARK MATTER

or solving for the rotation curve:

v(r) =

√
GM(r)

r
. (1.4)

We can make an estimate for expected rotation curve of a galaxy by considering
typical galactic luminosity distributions. For a spiral galaxy, the luminosity generally
falls off exponentially with the distance from the galactic center [36]:

L(r) = L(0)e−r/D, (1.5)

where L(0) and D are parameters which need to be fitted to the individual galaxies.
Typically, D ∼ 5 kpc. Let us now assume that the mass distribution of the galaxies
roughly follow the luminosity, i.e. M(r) ∝

∫ r
0
L(r′)dr′. Since L(r) decreases exponen-

tially with increasing r, we would correspondingly expect M(r) to become roughly
constant for large r. Inserting this in (1.4), this gives us an expected rotation curve

v(r) ∝ 1√
r

(1.6)

for large r.
The actual rotation curves can be found by studying the Doppler shift of spectral

lines from gas and stars at various distances from the center of the subject galaxy.
Studies have been conducted on a large number of spiral galaxies, and the general
result does not agree with the above expectation. Instead of falling off as r−1/2, the
orbital speeds in the outer regions are typically roughly constant with increasing r.
The galaxy NGC6503 is a perfect example of this behaviour, as can be seen in figure
1.1.

Keeping in mind equation (1.4) and (1.5), it appears that the total mass distribution
in spiral galaxies must be falling off much more slowly than the distribution of gas
and luminous matter. In other words: There must be a significant amount of unseen
matter - dark matter. As a numerical example, consider the galaxy NGC3198. From
the rotation curve, the mass-to-light ratio, Υ ≡ M/L, of this galaxy is found to be
Υ > 30hΥ�, where h ≈ 0.7, and Υ� is the mass-to-light ratio of the Sun [31]. Using
the mass-to-light ratio of the Solar neighbourhood, Υ ≈ 5Υ�, as an estimate for the
mass-to-light ratio of the luminous matter, we see that more than roughly 80% of the
mass of NGC3198 appears to be contributed by dark matter.

3



1. Dark matter in galaxies

Figure 1.1: Rotation curve of the spiral galaxy NGC6503. The data points show the
observed rotation curve, while the dashed and dotted lines show the contributions
from the disk and intragalactic gas, respectively. The dot-dashed line shows the
contribution from some other source (dark matter halo) required for the total orbital
speed (solid line) to fit the observational data. Figure borrowed from [31].

1.2 Density profiles

The main focus of this thesis is to study cosmic rays from dark matter annihilations
in our galaxy. In order to perform simulations on this, it is essential to have a model
of how the dark matter is distributed in the Galaxy. Theoretical models show that
having all the dark matter located in the disk would make it unstable, and that the
disk would eventually be gathered into a bar [36]. It is therefore more likely that
the dark matter has a more stable spherically symmetric distribution. A wide range
of proposed dark matter density profiles exist, and we will examine some of them.
We will first make a simple model from the observed galaxy rotation curves, and
afterwards discuss a couple of the commonly used profiles.

1.2.1 A simple model

Using the observed constant orbital speeds, and assuming a spherically symmetric
mass density ρ(r, θ, φ) = ρ(r), we can derive a simple model that describes the dark
matter density in the outer regions of the Galaxy. The mass enclosed by a sphere of
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CHAPTER I. GENERAL INTRODUCTION TO DARK MATTER

radius R is given by

M(r) =

∫ r

0

dr′
∫ π

0

dθ

∫ 2π

0

dφ ρ(r′) r′2 sin(θ) = 4π

∫ r

0

drρ(r′)r′2. (1.7)

Inserting the relation between the mass distribution and the rotation curve, as given
by equation (1.3), and using a constant orbital speed, v, we obtain

v2r

G
= 4π

∫ r

0

dr′ρ(r′)r′2. (1.8)

Taking the derivative with respect to r on both sides gives

v2

G
= 4πρ(r)r2. (1.9)

Solving with respect to ρ(r), we then obtain our simple density profile,

ρ(r) =
v2

4πGr2
. (1.10)

As we can see, the mass density has to fall off as ∝ r−2 in order to describe the
observed Galactic rotation curves in the outer regions. This is far slower than the
exponential falloff we assumed for the luminous matter.

Equation (1.10) is actually just a special case of the so-called singular isothermal
sphere (SIS) profile,

ρ(r) =
σ2
v

2πGr2
, (1.11)

which can be derived from a self-gravitating isothermal sphere in hydrostatic equi-
librium. σv is here the velocity dispersion, which is related to the orbital speed in
circular orbits by σv = v/

√
2 [49].

This profile is only suitable for describing the region of constant orbital speed.
It produces a constant orbital speed for all r, something which requires a very high
density for low r, and a singularity at r = 0. The annihilation rate of dark matter
is proportional to the density squared1, and the extreme behaviour for low r in this
profile could therefore be problematic. Moreover, the observed drop in orbital speeds
with decreasing r (like that seen in figure 1.1) also suggests that the true density will
not be this extreme at small r. Due to these considerations, profiles with less extreme
behaviours for small r are generally preferred.

1Annihilation requires two dark matter particles. If we interpret the density as the probability of
finding a particle within a unit volume, the (uncorrelated) probability of finding two particles within
this volume will be proportional to the density squared.
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1. Dark matter in galaxies

1.2.2 The isothermal profile

The SIS profile can be mended by introducing a finite core radius a, such that
ρ = const. for r � a, while the behaviour remains unchanged for large r:

ρ iso(r) =
ρ0

a2 + r2
. (1.12)

This profile is generally referred to as the isothermal profile. We see that we can
obtain the SIS profile by setting a = 0. Since a = 0 is not a favoured case, it is
common to re-define ρ0, and express the profile as

ρ iso(r) =
ρ0

1 + (r/a)2
. (1.13)

This profile can be fitted to the Milky Way, yielding the parameters ρ0 = 1.16 GeV/cm3,
a = 5 kpc (using the definition of ρ0 from eq. (1.13)).

1.2.3 The NFW profile

The perhaps best known and widely used density profile is the Navarro-Frenk-White
(NFW) profile [42]. This profile was made to fit the data from numerical simulations
of the dark matter halo formation on several size and mass scales; from dwarf galaxies
to rich galaxy clusters. The density distribution in this profile given by

ρNFW(r) =
ρ0

(r/a)(1 + r/a)2
, (1.14)

where ρ0 and a are free parameters which are used to fit the observational data from
individual systems to the profile.

As this profile was found through simulations at several scales, it is a universal
profile, which can be applied to a range of different systems. We note that this
profile does not fall off as r−2, but rather as r−1 for small r, and as r−3 for large r.
Nevertheless, it has been found to be compatible with the Milky Way density profile
[34]. The best fit parameters for the Milky Way are ρ0 = 0.26 GeV/cm3, a = 20 kpc.

1.2.4 Other profiles

All of the above profiles can be expressed as parameterizations of a more general
density profile,

ρ(r) =
ρ0

(r/a)γ [1 + (r/a)α]
(β−γ)/α

, (1.15)

where α, β, and γ are free parameters. We obtain the NFW profile for α = 1, β = 3,
γ = 1, and the isothermal profile for α = 2, β = 2, γ = 0. It is common to fit the
results from N -body simulations to this profile, and a range of possible profiles exist.

6



CHAPTER I. GENERAL INTRODUCTION TO DARK MATTER

We will, however, not consider any other parameterizations than those mentioned so
far.

We will, on the other hand, consider a profile which is not a parametrization of eq.
(1.15), namely the Einasto profile,

ρEinasto = ρ0 exp

[
− 2

α

((r
a

)α
− 1
)]

, α = 0.17. (1.16)

This profile is often considered when looking for signals from annihilations of dark
matter within our galaxy, and the parameters for the Milky Way are in this profile
ρ0 = 0.06 GeV/cm3, a = 20 kpc.

2 Dark matter in clusters of galaxies

Indications of dark matter exist on several different size scales, and are not restricted
to the internal dynamics of galaxies. What is considered to be the first real evidence
of dark matter was found by Fritz Zwicky in 1933 by applying the virial theorem to
the Coma galaxy cluster. This procedure will be discussed in some detail below, and
we will have a look at the result from applying it to the Coma cluster. In section 2.3,
we will also have a look at the special evidence for dark matter found in the Bullet
cluster.

2.1 The virial theorem

The virial theorem is a relation between the potential energy and the dynamics
of an N -body system. In astrophysics, this usually refers to the relation between
the potential energy and the kinetic energy in a gravitationally bound, dynamically
relaxed system. In the following discussion, the term ‘virial theorem’ will refer to this
astrophysical relation. By dynamically relaxed, we mean that the dynamics (e.g. the
velocity distributions) of the system change little over time. The virial theorem is
a general relation, and can be applied to a wide range of different systems, as long
as the constituent objects are gravitationally bound and dynamically relaxed. A full
derivation of the virial theorem will not be given here; we will only go through what
is needed to estimate the mass of a galaxy cluster.

As stated above, we assume that we are dealing with an N -body system of
gravitationally bound objects. The kinetic energy of object i is

Ti =
1

2
miv

2
i , (2.1)

where mi is the mass of the object, and vi is its speed. The total kinetic energy of the

7



2. Dark matter in clusters of galaxies

system is correspondingly

T =
1

2

∑
i

miv
2
i =

1

2
M
〈
v2
〉
, (2.2)

where M ≡
∑

imi and 〈v2〉 = 1
M

∑
imiv

2
i .

The gravitational potential energy, U , of the system is given by Newton’s law of
gravity,

U =
1

2

∑
i

∑
j
i 6=j

G
mimj

|~rj − ~ri|
, (2.3)

where the factor 1/2 prevents double counting. This energy will, of course, depend on
the spatial distribution of the objects; i.e. the mass distribution of the system. Since
the astrophysical systems we want to study consist of a large number of objects, we
can describe the mass distribution by a density profile. For the case of a sphere of
uniform density and a radius R, one finds that the gravitational potential energy is
given by

U = −3

5

GM2

R
, (2.4)

where M is the total mass of the system. The expression for a system with a more
general shape and density profile can according to [47] be described by

U = −αGM
2

rh
, (2.5)

where rh is the half-mass radius (the radius of a sphere centered in the system’s center
of mass that would enclose half of the total mass of the system), and α is a constant
of order unity that characterizes the density profile. For galaxy clusters, α ≈ 0.4
provides a good fit to observations [47].

The mass distribution of a system is not needed in order to derive the virial
theorem, but it is needed when it comes to making calculations on a system. The
theorem itself can be derived from (2.2) and (2.3) (see for example [47], [17] or [36]
for a full derivation), and is given by

2 〈T 〉+ 〈U〉 = 0, (2.6)

where the brackets indicate time averages, and are often dropped.
Inserting (2.2) and (2.5) in the virial theorem gives us a relation between the total

mass of the system and observable quantities:

M =
〈v2〉 rh
αG

. (2.7)

This mass, inferred by the virial theorem, is often referred to as the virial mass of the
system.

8



CHAPTER I. GENERAL INTRODUCTION TO DARK MATTER

2.2 The Coma cluster

Figure 2.1: Composite image of the Coma galaxy cluster. Blue indicates optical light,
and shows an image by the Palomar Sky Survey. The optical image shows mainly the
galaxies within the cluster. Red shows X-ray emissions, mainly from hot intracluster
gas, and was measured by the Einstein satellite. Image borrowed from the NASA
home page.

As a concrete example, we consider the Coma cluster; the same as Zwicky studied
in the 30’s. The observational data presented below is taken from [47]. For the virial
theorem, we can extract the following data:

• Measurements of the redshift of galaxies in the cluster give us the velocity
dispersion along the line of sight. If the velocity dispersion in the cluster is
assumed to be isotropic, these measurements yield 〈v2〉 = 2.32× 1012 m2s−2.

• If the mass-to-light ratio is assumed to be constant (the mass distribution
roughly follows the luminosity distribution), and the cluster is assumed to be
spherical, the half-mass radius can be estimated to be rh ≈ 1.5 Mpc.

Inserting this along with α ≈ 0.4 in (2.7), we obtain

M virial ≈ 4× 1045 kg ≈ 2× 1015M�, (2.8)

where M� is the Solar mass (the mass of our sun). By comparison, the mass of the
stars in the cluster is only estimated to be

M stars ≈ 3× 1013M�, (2.9)

9



3. Cosmology

which is only roughly 2% of the virial mass. As seen in figure 2.1, the cluster also
contains a large amount of hot intracluster gas. The mass of this gas is estimated to
be

M gas ≈ 2× 1014M�, (2.10)

which is roughly 10% of the virial mass. Even with the large amount of intracluster
gas taken into account, almost 90% of the predicted mass of the cluster is unaccounted
for. This mass is presumably contributed by a substantial amount of dark matter.

In order to make sure that the predicted mass is not due to incorrect assumptions
or unforeseen phenomena, the mass of the cluster can also be estimated in other ways.
One way is to calculate the mass that is required for containing the hot intracluster gas.
Another is measuring the gravitational lensing effect of the cluster. Mass estimates
using these methods are found to be consistent with the estimate from the virial
theorem [47][35].

2.3 The Bullet cluster

A different, more unique evidence for dark matter can be found in the Bullet cluster.
The Bullet cluster is a special case of two clusters of galaxies that have “recently”
collided. In this collision, the majority of the galaxies in both the clusters have just
passed through the other cluster without colliding with anything. The intracluster
gas of the two clusters, on the other hand, has collided and slowed down, and thus
been “left behind” as the galaxies moved on. Due to this, there is a significant spatial
separation between the galaxies and the intracluster gas.

As in the case of the Coma cluster, the mass of the gas in the cluster is found
to be be higher than the mass of the galaxies. Gravitational lensing measurements,
however, show that the mass distribution of the cluster follows the galaxies in the
cluster, rather than the gas. This is shown in figure 2.2, and is considered strong
evidence for the presence of cold dark matter (see section 3.6 for definition). Cold dark
matter interacts very little with both itself and ordinary matter. The dark matter
distributions of the two colliding clusters would therefore be expected to go through
each other without much interaction. The dark matter distributions should, in other
words, follow the movement of the galaxies, something which gives rise to an offset
between the mass and gas distributions like that which is currently being observed.

3 Cosmology

The study of dark matter takes place on several different scales, even the biggest. The
presence and properties of dark matter has a profound impact on the properties of
the Universe at large, and cosmological studies can impose constraints on the possible
dark matter candidates. A brief discussion of cosmology is therefore in place.
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CHAPTER I. GENERAL INTRODUCTION TO DARK MATTER

Figure 2.2: Composite image of the Bullet cluster. The red area shows X-ray emissions
from hot intracluster gas. The blue color shows the mass distribution of the cluster,
as calculated from gravitational lensing effects. Image borrowed from the NASA home
page.

3.1 Fundamental principles

One of the most central concepts when it comes to making theoretical models in
cosmology is the so-called cosmological principle. The cosmological principle is the
assumption that the Universe is homogeneous and isotropic on the largest scales; in
other words that at any given time, general properties such as density and content
should be the same anywhere, and from a given point, the Universe should appear the
same in all directions. This, of course does not hold on small scales, but observations
of the cosmic microwave background (CMB) show that this holds remarkably well at
large scales. The CMB will be discussed in more detail in section 3.5.2.

One may be tempted to expand this principle to include time as well, implying
that the Universe should remain the same at all times. Theories that incorporate
this assumption are known as steady-state theories. While these theories may be
philosophically compelling (an unchanging universe with no beginning and no end),
they are not supported by observational evidence. Steady-state theories for example
have difficulties explaining the relative abundances of hydrogen and helium in the
Universe, something which is very well explained by the nucleosynthesis mechanisms
of evolving theories.

3.2 The expanding Universe

The dominant view today is that the Universe has a finite age, and was created in an
event we call the Big Bang. The question of finiteness in size depends, as we shall

11
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see, on cosmological parameters. The idea that the Universe has a finite age was well
motivated by the discovery that the Universe is expanding. It was V. M. Slipher who
in 1914 discovered the first signs that the Universe is expanding. When observing
the spectral lines of a series of galaxies, he found that the spectral lines most of the
galaxies appeared to be redshifted. Using the Doppler formula for small velocities
(v � c ≡ 1),

v = ∆λ/λ ≡ z, (3.1)

the redshift, z, in the spectral lines can be attributed to a recessional velocity, v; the
galaxies are moving away from us. λ is here the wavelength of the light in the rest
frame of the source, and ∆λ is difference in the observed wavelength between the
source and the observer.

Using Slipher’s results, combined with his own results from studies of Cepheids
in other galaxies, Edwin Hubble found that the recessional velocity of a galaxy is
proportional to its distance from us. This relation is today known as Hubble’s law:

v = H0d. (3.2)

H0 is here the Hubble constant, and d is the coordinate distance to the object being
observed. The interpretation of Hubble’s law is that the Universe is expanding, and
that H0 describes describes the expansion rate of the Universe. The Hubble constant,
H0, has a unit of inverse time, and the Hubble time, tH ≡ 1/H0 ∼ 1.4 × 1010 yr, is
interpreted as a characteristic time scale for the age of the Universe. It was Lemâıtre
who first suggested that the Universe is expanding, and through his work, he derived
Hubble’s law before Hubble did. The significance of Lemâıtre’s work was, however,
not recognized at the time.

There has historically been a large uncertainty in the value of H0. It has therefore
been common to define it in terms of a dimensionless parameter, h,

H0 = 100h km s−1 Mpc−1, (3.3)

with a value measured by the WMAP satellite to be h = 0.735±0.032 [51]. Quantities
depending on H0 are often expressed in terms of this parameter, separating the
uncertainty in H0 from other uncertainties in the calculations. In principle, the
expansion rate of the Universe does not have to be a constant, H0, but could rather be
a function of time, H(t). Modern cosmological models do, indeed, generally operate
with a time dependent expansion rate.

We note that the interpretation of the Hubble parameter, H(t), as the expansion
rate of the Universe implies that it can be expressed as the ratio of the scale factor of
the Universe, a(t), and its time derivative, ȧ(t):

H(t) =
ȧ(t)

a(t)
. (3.4)

The scale factor, a(t), describes the size of the universe, and is commonly normalized
such that a(t0) = 1, where t0 is the present time.

12
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3.3 The geometry of space

The geometry of a homogeneous and isotropic universe with a time dependent scale
factor can be represented by the maximally symmetric Friedmann-Robertson-Walker
(FRW) metric in comoving coordinates,

ds2 = dt2 − a2(t)

[(
dr√

1− kr2

)2

+ r2dΩ2

]
, (3.5)

where
dΩ2 = dθ2 + sin2 θ dφ2, (3.6)

and ds is the line element, which describes spacetime separation. The line element is
related to the metric, gαβ(x), through

ds2 = gαβ(x)dxαdxβ. (3.7)

Some further clarification is also in place: The comoving coordinate system is such
that the spatial coordinates (r, θ, φ) of a “stationary” object are constant in time,
even though the Universe expands. By “stationary” we here mean an object that
follows the average motion of the galaxies; an object that perceives the Universe as
isotropic. Maximally symmetric refers to a universe with a constant and uniform
curvature, which in equation (3.5) is described by the constant parameter k:

• k = +1: This is called a closed universe, and has a spherical geometry with
finite size.

• k = 0: This is a flat universe. The (3-dimensional) space is Euclidean, and has
infinite size.

• k = −1: This is called an open universe. The geometry is hyperbolic, and of
infinite size.

Equation (3.5) describes the geometry of a universe that obeys the cosmological
principle, and depends on a general time dependent scale factor a(t). In order to
obtain information of how this scale factor is connected to observable quantities in
our universe, we need the Einstein equation,

Gαβ = 8πGTαβ + Λgαβ. (3.8)

G is the Newtonian gravitational constant, while Gαβ is the Einstein curvature
tensor, and describes the curvature of the Universe. Tαβ is the energy-momentum
stress tensor. For comoving coordinates in the FRW case, this tensor has the form
Tαβ = diag(ρ, p, p, p), where ρ is the energy density of the Universe, and p is the
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(isotropic) pressure. The off-diagonal terms describe energy/momentum flux, momen-
tum density, and stress. In a homogeneous and isotropic universe, there should be no
large scale fluxes or stress forces, and these terms are thus zero.

Λ is a possible cosmological constant, and corresponds to a non-zero vacuum energy,
which, depending on its sign, contributes to expand or contract the Universe. This
energy is often referred to as ‘dark energy’. The cosmological constant was originally
introduced by Einstein in order to obtain a stationary solution for the Universe, but
with the discovery that the Universe is expanding, he abandoned it, dubbing it “the
biggest blunder in my life”. More recent observations, however, indicate that such a
constant must be present after all, and it is now a crucial part of many cosmological
models.

From the Einstein equation, we understand that the geometry of the Universe is
determined by its energy content. A relation between the scale factor of the Universe
and observable quantities, such as the matter density, can be found by solving the
Einstein equation for the FRW metric, (3.5). It is the α = β = 0 component that is
of interest here, and the solution for this component is the Friedmann equation,

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
. (3.9)

It is useful to include the cosmological constant in the energy density, ρ, by defining

ρΛ ≡
Λ

8πG
. (3.10)

If we now solve the Friedmann equation for ρ, and set k = 0, we obtain the critical
density; the energy density required for a flat universe:

ρc ≡ ρ(k = 0) =
3H2

8πG
. (3.11)

It is common to express the abundance of different energy types in the Universe
through the density parameter,

Ωi ≡
ρi
ρc

=
8πGρi
3H2

, (3.12)

where i denotes the “energy species”. We further define

Ω ≡ Ω tot ≡
∑
i

Ωi, (3.13)

so that Ω = 1 now corresponds to a flat universe, while Ω < 1 and Ω > 1 correspond
to open and closed universes, respectively.
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3.4 The constituents of the Universe

The scale dependence of different energy forms can be found using the first law of
thermodynamics for an adiabatically evolving system,

dE = −p dV. (3.14)

We assume that the energy forms have an equation of state p = wρ, where w
is a constant which characterizes the specific energy form. For (non-relativistic,
pressureless) matter, w = 0, for radiation, w = 1/3, and for the cosmological constant,
w = −1. Using E = ρV and V ∝ a3, we obtain

d(ρa3) = −3pa2 da = −3wρa2 da (3.15)

dρ

ρ
= −3(1 + w)

da

a
. (3.16)

Integration then gives

ρ ∝ a−3(1+w) =


a−3 matter
a−4 radiation
const. cosmological constant

, (3.17)

or more explicitly

ρ(t) = ρ(t0)

(
a(t)

a(t0)

)−3(1+w)

, (3.18)

where t0 is generally chosen to be the present time.
The different scale dependencies of the different energy types imply that there

should be eras in the lifetime of the Universe, in which different energy forms would
dominate. Let us consider an expanding universe that started with a Big Bang, where
all 3 terms are present. In this case, radiation would dominate the early Universe. The
energy density of radiation drops faster than that of matter as the Universe expands,
and after a given time, matter would dominate over the radiation. The energy densities
of both matter and radiation drop in time, and the cosmological constant would at
some point become the dominant term. Depending on the balance of the different
terms, matter may or may not dominate in a period before the cosmological constant
takes over. There is, of course, an infinite number of possible density combinations,
and we must look to observations in order to find the correct parameters for our
universe.

There is, unfortunately, no way that we can directly measure the vacuum energy
density that would be connected to a cosmological constant. As we will discuss in
more detail later, it can, however, be found using methods of indirect observation.
We could, of course, try to make naive estimates for the vacuum energy density using
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quantum field theory, but these estimates turn out to yield values that are off from
observations by a whopping 120 orders of magnitude!

While the contribution from the cosmological constant can only be found through
indirect measurements, the contribution from radiation can be found in a more
direct manner. The main contribution of radiation comes from the cosmic microwave
background, which will be discussed in more detail in section 3.5.2. The CMB has a
black body spectrum with a temperature of T = 2.725 K± 0.002 K [38]. The energy
density of a photon gas is related to the temperature through

ρr = g
π2

30
T 4, (3.19)

where g is the number of degrees of freedom. For photons, the number is 2, corre-
sponding to the possible polarization directions2. This yields

Ωr ∼ Ω CMB = 2.5× 10−5h−2 ≈ 5× 10−5. (3.20)

Other contributions to the radiation energy density may also be included, but the
difference will not be of orders of magnitude.

Information on the baryon abundance can be calculated from Big Bang nucleosyn-
thesis (BBN). BBN is the process in which the lightest elements were created a few
minutes after the Big Bang, and the calculations yield connections between the total
baryon abundance and the fractions of the abundances of different elements. The
estimated baryon abundance from BBN calculations is [21]

Ωbh
2 = 0.0224± 0.0009 (3.21)

Ωb ≈ 0.04. (3.22)

Observations indicate that the Universe should be nearly flat, but the baryonic
matter and radiation only seem to amount to a fraction of the energy required for a
flat universe. It is therefore clear that a substantial amount of non-baryonic matter
and/or a large cosmological constant is needed if our universe is to be flat.

3.5 Finding the cosmological parameters

As mentioned before, indirect observations are necessary in order to find the energy
contributions from matter and a cosmological constant to the Universe. There are
several observations we can use, for example redshift-magnitude relations for standard
candles, as well as measurements of the cosmic microwave background.

2If we were to include contributions from relativistic particles (e.g. neutrinos) as well, an
approximate solution could be found by replacing g = 2 with an effective number of degrees of
freedom.
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3.5.1 Redshift-magnitude relation

A standard candle is an astrophysical object whose luminosity is known, and as the
Universe expands, the light from these objects is redshifted. For the large distance
scales needed to observe the geometry of the Universe, type I supernovae are frequently
used. Supernovae have a high luminosity, and can be observed at large distances,
where other standard candles, such as Cepheid stars can not. For a given cosmological
model, one can find a relation between the observed flux, f , the luminosity, L, and
the redshift, z. As an example, the redshift-magnitude relation for a flat, matter
dominated (Ωm = 1) FRW model is given by [28]

f

L
=

H2
0

16π

1

(1 + z)(
√

1 + z − 1)2
. (3.23)

Inserting the measured flux and the expected luminosity on the left-hand side,
and the Hubble constant and measured redshift on the right-hand side, shows us
how well this model fits. If both sides of the equation are equal, the model (in this
case, a flat, matter dominated FRW model) successfully describes the observations. A
significant discrepancy between the two sides implies that the model is off, and that a
different model may be more suitable. By applying the redshift-magnitude relations
for different cosmological models to supernova data, one can find out which models
best describe these observations.

3.5.2 The cosmic microwave background

The cosmic microwave background is, as the name suggests, background radiation in
the microwave range. In accordance with the cosmological principle, this background
radiation is highly isotropic, and as mentioned in section 3.4, it is a blackbody spectrum
with a temperature T = 2.725 K. While the CMB does not contribute much to the
energy density of the Universe, it holds precious information on the contributions from
other constituents. Extracting this information is somewhat involved, and we will only
present the details required to get an overview of this process. The information in this
section was found in [47], and we refer to this book for a more detailed description.

The cosmic microwave background is remnant radiation from the time after the
Big Bang. In the time leading up to approximately 0.24 Myr after the Big Bang, the
Universe was hot enough that baryonic matter had the form of ionized plasma, and
the radiation density was significant. Any atomic states would quickly be ionized in
interactions with high energy photons. Since the matter was ionized, a significant
amount of free charged particles were around, on which photons would scatter (most
importantly free electrons). Due to the frequent scattering through these processes,
the Universe was effectively opaque to radiation.

As the Universe expanded, the temperature went down, and so did the interaction
rates. Around 0.24 Myr after the Big Bang, at a temperature of roughly 3700 K, the
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Universe was cold enough for the ions and electrons to form neutral atomic states.
This is a period referred to as recombination. With the charged particles more or less
out of the way, the Universe became transparent, and the photons could move freely3.
This radiation is still observable today as the cosmic microwave background, and is
an image of the last scattering surface; an image of the Universe at the time when the
photons decoupled.

While highly isotropic, the cosmic microwave background has some minor fluc-
tuations of order δT/T ∼ 10−5 − 10−4. These anisotropies have been measured by
several experiments, such as WMAP, and can be seen in figure 3.1. The temperature
fluctuations in the CMB arose from density fluctuations in the matter of the early
Universe. Their angular scales are connected to their spatial size as the Universe
became transparent, as well as the evolution of the Universe after this time.

Since the fluctuations are distributed on a spherical surface, it is convenient to
express them in terms of spherical harmonics:

δT

T
(θ, φ) =

∞∑
l=0

l∑
m=−l

almYlm(θ, φ). (3.24)

To study the spatial scales of the anisotropies, it is common to use the two-point
correlation function

C(θ) =

〈
δT

T
(n̂1)

δT

T
(n̂2)

〉
n̂1·n̂2=cos(θ)

, (3.25)

which is defined as the average product of the temperature fluctuations in two points
on the celestial sphere, separated by an angle θ. In terms of the spherical harmonics,
the correlation function can be written as

C(θ) =
1

4π

∞∑
l=0

(2l + 1)ClPl(cos(θ)), (3.26)

where Pl are the Legendre polynomials. The terms Cl can be interpreted as measures
of the temperature fluctuations at the angular scales θ ∼ π/l. The multipoles, l, thus
correspond to the angular scales of the fluctuations.

We note that many papers use δT , rather than δT/T in the spherical harmonic
expansion and correlation function. This is the case in figure 3.2, which shows the
power spectrum of the CMB, as measured by the WMAP satellite. CTT

l in this
figure corresponds to ClT

2 in our definition. The quantity of the vertical axis is a
commonly used measure for the contribution to the temperature fluctuation from a
given multipole l.

3Strictly speaking, recombination is often defined as the time when the number densities of
charged and neutral particles were equal. The time at which photons decoupled (stopped frequently
interacting with the matter) came somewhat later.
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Figure 3.1: Image of the CMB temperature anisotropies across the sky, as observed by
the WMAP satellite. The temperature range is ±200µK from the average temperature,
where dark blue is colder, and red is hotter. Image credit: NASA/WMAP Science
Team.

Figure 3.2: Angular power spectrum of the cosmic microwave background, as measured
by the WMAP satellite. Image credit: NASA/WMAP Science Team.
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The first peak in the power spectrum is of particular importance to cosmology,
as its position (in terms of l) holds information the geometry of the Universe. The
observed angular scale of an object is smaller in a negatively curved universe (k = −1)
than in a flat universe (k = 0). Correspondingly, the angular scale would be larger in
a positively curved universe (k = +1). For the power spectrum, this means that the
first peak would be further to the left for a positively curved universe, and further to
the right for a negatively curved universe4. From the position of this peak, the first
year WMAP result [11] gave a value

Ω tot = 1.02± 0.02, (3.27)

which is consistent with a flat universe.
In the time leading up to recombination, cold dark matter had already been

decoupled from baryonic matter and radiation for a long time (see section 3.6). As
long as the Universe was radiation dominated, free streaming (particles moving in
random directions at relativistic velocities) prevented structures from being formed.
When the Universe had cooled enough to reach matter-radiation equality (ρm = ρr),
however, free streaming diminished. Fluctuations in the dark matter density now
lead to gravitational wells, into which the baryonic matter accumulated, thus creating
regions of higher density5. Without the presence of cold dark matter, such density
anisotropies would in the time before recombination largely be erased by interactions
with the photons. We note that hot dark matter, i.e. dark matter particles moving
at relativistic velocities at this time, would contribute to the creation of large scale
structures, but also tend to erase small scale structures.

Gravitational wells due to dark matter, as well as a multitude of other effects
related to the constituents of the Universe at this time, all have characteristic impacts
on the CMB temperature power spectrum. By taking all these effects into account,
and fitting different cosmological models to the observed power spectrum, we can
find which model best describes the observations. The best fit model to the CMB
observations is currently the ΛCDM-model, which depicts a flat universe that is
dominated mainly by a cosmological constant (Λ) and cold dark matter (CDM). The
most recent results from fits to this model are [30]:

ΩΛ = 0.728+0.015
−0.016 (3.28)

Ωmh
2 = 0.1334+0.0056

−0.0055 (3.29)

Ωbh
2 = 0.02260± 0.00053. (3.30)

4We note that since the observed angular scales of the CMB anisotropies also depend on the
“distance” to the last scattering surface, the position of the peak also depends on the value of the
Hubble constant, H0.

5Other effects, such as standing pressure waves in the infalling baryonic matter, are related to
such gravitational wells.
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ΩΛ, Ωm, and Ωb are the density parameters for the cosmological constant, total matter
abundance, and baryons, respectively. h ≈ 0.7 is, as always, the parameter containing
the uncertainty in the Hubble constant, as defined by eq. (3.3). We note that the
baryonic contribution, (3.30), is quite consistent with the estimate from Big Bang
nucleosynthesis, (3.21). By inserting for h, we also see that the contributions from
baryonic matter and the cosmological constant are not sufficient to ensure a flat
universe. For this, a substantial amount of dark matter is required, as seen in the
discrepancy between Ωm and Ωb.

To sum it up, we find that the Universe is (very close to) flat, and that the energy
content is made up of approximately 73% dark energy, 23% dark matter, 4% baryonic
matter, and ∼ 10−5 radiation. The required amount of dark matter and restrictions on
baryonic matter from these cosmological studies add to the evidence for dark matter
that we have already shown from galaxies and clusters. The fact that evidence can be
found on so many different scales makes it all the more compelling.

3.6 Freezeout of dark matter

The early Universe was very hot and dense; hot enough for heavy hypothetical particles
to be created through various interactions. It is common to divide proposed dark
matter candidates into two groups, according to their behaviour in this early Universe:
Thermal dark matter, and non-thermal dark matter.

Thermal dark matter consists of particles that were once in thermal equilibrium
with the radiation and the ordinary matter in the Universe. This means that dark
matter particles could be created or destroyed through reactions like6

χχ←→ νν̄, (3.31)

and exchange energy with ordinary matter through reactions like

χν ←→ χν. (3.32)

In thermal equilibrium, dark matter would be created and destroyed at equal rates,
and reactions like (3.32) would keep the temperature of the dark matter equal to
that of the matter and radiation in the Universe7. We can, in other words, obtain
information on the abundance and clustering properties8 of thermal dark matter today

6We assume that the dark matter particles are Majorana particles; particles that are their own
antiparticles: χ = χ̄.

7Dark matter cannot interact directly with photons (radiation), but most of the ordinary matter
can. The ordinary matter would thus be in equilibrium with the radiation, and if the dark matter
was in equilibrium with the ordinary matter, it would be so with the radiation as well.

8The clustering properties of dark matter are directly related to its velocity distribution at
freezeout.
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through knowledge of its interactions with ordinary matter and the conditions in the
early Universe. This will be discussed in more detail below.

In contrast to thermal dark matter, non-thermal dark matter was never in thermal
equilibrium. This implies that this type of dark matter must mainly have been
produced through different non-thermal mechanisms. Its temperature and abundance
is mainly determined by these mechanisms, and must be be found in different ways
than for thermal dark matter. In some cases, the temperature and abundance of such
dark matter may have been affected by interactions with ordinary matter in the early
Universe, but not enough to reach thermal equilibrium.

In this thesis, we study Weakly Interacting Massive Particles (WIMPs) as dark
matter, which (in most models) means that we are dealing with thermal dark matter.
Following [27] and [31], we will go through some of the steps in estimating the current
abundance of a WIMP dark matter particle.

As already mentioned, a dark matter particle in thermal equilibrium could interact
with ordinary matter through interactions like (3.32) and (3.31). We want to find
the abundance of dark matter, and are only interested in interactions like (3.31), as
these are the only ones that change the total number of dark matter particles. The
interaction rate (annihilation rate) per particle9, Γ, of these interactions is given by

Γ = 〈σ annv〉n, (3.33)

where 〈σ annv〉 is the thermally averaged annihilation cross section times relative
velocity of the annihilating particles, and n is the number density of the dark matter.
In thermal equilibrium, detailed balance dictates that the production and annihilation
rates should be equal.

The number density of massive, non-relativistic particles in thermal equilibrium
can be described by the Maxwell-Boltzmann distribution

neq =

(
mT

2π

)3/2

e−m/T . (3.34)

m is here the mass of the particles, and T is the temperature. We understand that if a
dark matter particle was to stay in equilibrium, its abundance would be exponentially
suppressed. In order to have a significant abundance today, the particles must at
some point have gone out of equilibrium.

As the Universe expanded, the temperature went down, and as long as the dark
matter stayed in thermal equilibrium, the number density of dark matter particles went
down as well. The annihilation cross section, 〈σ annv〉, also decreases with decreasing
temperatures, thus implying that the interaction rate of the dark matter creation and
annihilation processes like (3.31) went down as the Universe expanded. At some point,
the density of dark matter particles became too low for annihilations to be effective.

9The average rate at which each dark matter particle interacts.
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At the same time, the number of ordinary particles with sufficient energy to produce
dark matter became too low for creation of dark matter to be effective. When this
happened, the total number of dark matter particles became effectively frozen in time,
and we refer to this event as chemical freezeout. Chemical freezeout occurred around
the time when the interaction rate fell below the expansion rate of the Universe,

Γ = 〈σ annv〉n ∼ H. (3.35)

At some later point, energy exchanging processes like (3.32) also became ineffective,
and the temperature of dark matter decoupled from the temperature of the other
constituents. This event is referred to as kinetic freezeout.

It is common to distinguish between hot and cold dark matter by whether or not
the particles were relativistic at the time of chemical freezeout. WIMPs are typically
cold dark matter, and have non-relativistic velocities at freezeout. Their number
density in equilibrium can thus be described by (3.34). Hot dark matter particles
are typically very light, and are relativistic at freezeout. An example of a hot dark
matter particle is the neutrino. The relativistic velocities of hot dark matter make
it difficult for it to clump together via gravitational interactions. Due to this, HDM
alone does a poor job explaining the structure formation in the early Universe [31],
and cosmological models based mainly on cold dark matter are generally favored.

In order to find the abundance of our WIMP dark matter candidate today, we
need an equation that describes the time evolution of the number density. Such an
equation can be derived from the Boltzmann equation [52], or simply written down
’by hand’:

dn

dt
= −3Hn− 〈σ annv〉

(
n2 − n2

eq

)
. (3.36)

The first term on the right hand side comes from dn/dt = d/dt (N/V ), using V ∝ a3

and H = ȧ/a, and describes the change in density due to the expansion of the
Universe. As for the second term, we first note that while eq. (3.33) describes the
interaction rate per particle, the total interaction rate is proportional to 〈σ annv〉n2.
We thus understand that this term describes the net production or destruction rate of
dark matter particles due to a difference between the actual number density and the
equilibrium number density.

It is common to assume that the entropy, S, of the Universe is constant. We can
then find an expression for the time evolution of the entropy density s = S/V ∝ a−3

in the expanding Universe as well:

ds

dt
=

ds

da︸︷︷︸
−3s/a

da

dt︸︷︷︸
Ha

= −3Hs. (3.37)

Assuming that the Universe was radiation dominated at the time of freezeout10,

10This assumption should be checked for the dark matter candidate being considered.
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we can make the approximation ρ tot = ρr. Since the curvature term in the Friedmann
equation, (3.9), is proportional to a−3, while the (radiation dominated) density term
is proportional to a−4, the curvature term can be neglected in the early Universe.
Thus

H2 =

(
ȧ

a

)2

=
8πG

3
ρ ≡ 8π

3M2
Pl

ρ, (3.38)

where MPl ≈ 1.22 × 1019 GeV is the Planck mass. Inserting the relation ρr ∝ a−4

in (3.38), and solving the resulting differential equation, we find that in the early
Universe,

H(t) = 1/(2t). (3.39)

We now introduce the new variables Y ≡ n/s and x ≡ m/T , where m is the mass
of our dark matter particle. Using t−2 ∝ H2 ∝ ρr ∝ T 4 ∝ x−4, we find that
t = 1/(2H) = t∗x

2 for some constant t∗. Using this relation, along with our newly
defined variables, we combine eq. (3.36) and eq. (3.37), and obtain

dY

dx
= −sx

H
〈σ annv〉

(
Y 2 − Y 2

eq

)
. (3.40)

This relation describes the evolution of Y as the temperature decreases. The abundance
of dark matter today can be found by solving this equation numerically, and some
possible results are illustrated in figure 3.3. The expression can also be written out
further by making assumptions on the expression for the annihilation cross section.
We will do neither. Instead, we will rather find an approximate expression for the
abundance using the simple freezeout criterion described by eq. (3.35). In order to do
so, however, we will need expressions for the temperature dependence of the Hubble
parameter and the entropy density. These would also be needed in finding a numerical
solution of eq. (3.40).

The energy density for radiation, ρr, is given by eq. (3.19), but in order to include
contributions from relativistic particles, the number of degrees of freedom for photons,
g = 2, is replaced by an effective number g∗. Combining eq. (3.38) and eq. (3.19),
we obtain a relation between the Hubble parameter, H, and the temperature of the
Universe, T ,

H(T ) ≈ 1.66
√
g∗

T 2

MPl

. (3.41)

The entropy density of the Universe can be approximated by

s(T ) =
2π2

45
g∗T

3 ≈ 0.4g∗T
3, (3.42)

where we again can obtain the expression for a pure photon gas by setting g∗ = g = 2.
We make the assumption that Y0 = Yf , where f indicates the value at freezeout,

and 0 indicates the value today. Combining the equations (3.42) and (3.41) with our

24



CHAPTER I. GENERAL INTRODUCTION TO DARK MATTER

Figure 3.3: The figure shows Y = n/s as a function of x = m/T , and describes the
evolution of the number density of dark matter for decreasing temperatures. The solid
line shows the evolution for a dark matter particle that stays in thermal equilibrium,
while the dashed lines show the freezeout of dark matter particles with different
annihilation cross sections. Figure borrowed from [27].

freezeout criterion, (3.35), this yields(n
s

)
0

=
(n
s

)
f

=
4.15

√
g∗MPl 〈σ annv〉Tf

. (3.43)

The freezeout temperature, Tf , depends on the annihilation cross section of our dark
matter particle. For a known annihilation cross section with a known temperature
dependence, this temperature can be found numerically by inserting eq. (3.34) and
eq. (3.41) in the freezeout criterion (3.35), and solving for T . For the annihilation
cross section of a typical WIMP candidate, one finds [31]

Tf '
m

20
. (3.44)

g∗ is actually a slowly increasing function of T , and is plotted in figure 3 in [31].
From this figure, we found that for the freezeout temperature of a WIMP with a mass
m = 100 GeV − 1 TeV, a value of g∗ ' 90 is appropriate.

Using the above expressions, along with the current entropy density, s ' 4000 cm−3,
and critical energy density, ρc ' 10−5h2 GeVcm−3, we can now find the approximate
expression for the current WIMP abundance:

Ω WIMPh
2 =

ρDM,0h
2

ρc
=
mn0h

2

ρc
'
(

3× 10−27 cm3s−1

〈σ annv〉

)
. (3.45)
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Incidentally, inserting the annihilation cross section for a typical WIMP candidate
with a mass in the weak scale range ( few × 100 GeV) yields the very dark matter
abundance required by CMB observations [31]. This is considered a strong piece
of evidence for WIMP dark matter, and is rather remarkable, as the derivation of
the WIMP abundance from the freezeout condition has nothing to do with weak
scale physics. The coincidence that the WIMP abundance predicted by the freezeout
condition so well matches the abundance required by observations is often referred to
as the ‘WIMP Miracle’.

One thing one should keep in mind here, is that the cross section, σ ann, involved
in the thermally averaged cross section, 〈σ annv〉, depends on the relative velocity, v.
It is common to expand the thermally averaged cross section in v2, such that

〈σ annv〉 = σ0 + σ1v
2 + σ2v

4 + · · · =
∞∑
i=0

σiv
2i, (3.46)

where σi are independent of the relative velocity. In principle, σ0 could be equal
to zero, in which case 〈σ annv〉 would have a strong velocity dependence. Since the
velocities of the dark matter particles were significantly higher at the time of freezeout
than they are today, so would, in this case, the thermally averaged cross section. This
would imply a much lower annihilation rate for dark matter today than at freezeout,
and thus poor prospects for observing dark matter through indirect detection. In
order for indirect detection to be a viable approach, the annihilation cross section
today must not be significantly smaller than at freezeout.

4 Dark matter candidates

Since the first evidence of dark matter started appearing in the early 1900s, numerous
dark matter candidates have been proposed. The candidates range in scale from
undiscovered elementary particles to low luminosity galaxies. In this section, we will
give an overview of some of the different dark matter candidates that have been
proposed. We emphasize that the candidates listed here are only a fraction of the
dark matter candidates that are being (or have been) considered.

4.1 Baryonic dark matter

With no knowledge of the cosmological constraints on the energy content of the
Universe, baryonic matter would be the obvious place to start the search for dark
matter. The dark matter problem is older than the cosmological models of big bang
nucleosynthesis and dark matter freezeout, and baryonic matter was for a long time a
viable prime candidate. Even though modern cosmological models indicate that most
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of the unseen matter in the Universe is non-baryonic, a small fraction of the dark
matter should also be of baryonic nature.

Baryonic matter comes in several forms, of which many can be ruled out as dark
matter candidates by observation. Large quantities of interstellar dust would, for
example, have been observed through the extinction of starlight, while gas clouds
would be given away by absorption lines in the spectra of light sources behind the gas.
For dark matter within our galaxy, the most likely baryonic dark matter candidates
would be Massive Compact Halo Objects (MACHOs). MACHOs can be any massive
compact objects with a very low luminosity; objects like dwarf stars, black holes,
neutron stars, and Jupiter-like objects. These are objects which either are not massive
enough to begin fusion of hydrogen and become stars (brown dwarfs, planets), or
remnants of dead stars (black holes, neutron stars, white dwarfs). On galactic scales,
some of the missing mass in galaxy clusters could equivalently be contributed by low
luminosity galaxies.

Due to the low luminosity of these objects, they are very hard to observe by
direct detection. For the MACHO case, it is, however, possible to detect such objects
indirectly through gravitational lensing effects. MACHOs have been observed this
way, but statistical analysis indicates that at most 19% of the mass of our galaxy can
be attributed to such objects [17][31].

4.2 WIMPs

The dark matter candidates that are being considered in this thesis are Weakly
Interacting Massive Particles (WIMPs). As the name suggests, WIMPs can only
interact with ordinary matter through gravity and through the weak interaction.
These hypothetical particles fall in the category of cold dark matter, and can have rest
masses in the range from 10 GeV up to tens of TeV (the dark matter abundance from
the WMAP data sets a constraint of mDM < 34 TeV [13]). WIMPs are especially
compelling dark matter candidates due to the WIMP miracle discussed in section 3.6.

There are no WIMP candidates in the standard model, and we therefore have
to look to unproven models to find a good WIMP candidate. The extension to the
standard model most commonly used in dark matter searches is supersymmetry. As
will be discussed in section 7.1, supersymmetric models introduce a large number of
new particles, and the lightest particle of such models is often considered as a dark
matter candidate.

WIMPs can potentially be detected both directly, through scattering on ordinary
matter, and indirectly, through observations of WIMP decay or annihilation products.
These detection mechanisms will be discussed in some detail in section 5 and 6.
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4.3 Neutrinos

Neutrinos are the only particles in the standard model that only interact weakly and
gravitationally. This would in principle make them excellent dark matter candidates.
In contrast to other proposed dark matter candidates, neutrinos have also been proven
to exist. For some time, a heavy neutrino species was considered as a possible WIMP
candidate, but this has since been excluded by experimental neutrino mass limits.
The current upper limit on the neutrino mass is mν < 2.05 eV (95% C.L.) [13], and
neutrinos are currently among the leading hot dark matter (HDM) candidates.

An upper limit on the density parameter for neutrinos can be found by considering
the freezeout condition for HDM neutrinos with the current mass limit. This calculation
will not be performed here, but yields Ωνh

2 . 0.07 [13]. Hot dark matter in the early
Universe would also contribute to erase small scale anisotropies, and according to
[13], an analysis of the CMB anisotropies in combination with large scale structure
data suggests an even more stringent limit of Ωνh

2 < 0.0067 on the neutrino density
parameter. Both of these limits imply that neutrinos are not the primary component
of dark matter.

4.4 Axions

The particles discussed so far are all thermal dark matter candidates; particles that
were once in thermal equilibrium. There are, however, dark matter candidates that are
non-thermal as well. The axion is one such candidate. The axion was introduced as a
possible solution to the CP problem of QCD (why strong interactions do not appear
to break the CP-symmetry). Experimental data impose a very low upper limit on
the mass of the axion, m . 0.01 eV [13], and they are expected to interact extremely
weakly with ordinary matter, thus never having been in thermal equilibrium.

The abundance of this particle depends on assumptions made regarding the
production mechanism, but models exist in which the axion has sufficient abundance
to be a viable dark matter candidate [13]. If axions do exist, they could potentially
be observed through conversion of axions into photons in magnetic fields [31], a
mechanism known as the Primakoff effect.

4.5 Superheavy dark matter

While the axion is an extremely light non-thermal dark matter candidate, we find
another non-thermal candidate on the other edge of the mass scale: Superheavy dark
matter (SHDM), often nicknamed “Wimpzillas”. SHDM particles have masses in the
range mDM > 1011 GeV, and may have been produced gravitationally at the end of
inflation. Superheavy dark matter can be motivated by observations of cosmic ray
protons with energies above the so-called GZK-cutoff.
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The GZK-cutoff occurs at an energy of ∼ 5× 1019 eV, where the center-of-mass
energy in collisions between protons and CMB photons hits the mass resonance of the
∆-baryon. Interactions between cosmic ray protons and CMB photons above the GZK
cutoff lead to pion production, and high energy protons will be suppressed by this
mechanism. This means that the Universe will be effectively opaque to high energy
protons over distances of & 50 Mpc [13]. No production mechanisms for ultra-high
energy cosmic rays are known to exist within this range, and decaying or annihilating
SHDM particles could be a possible solution to this problem.

4.6 Alternative theories

Though dark matter is currently the predominant theory, there are alternative ways
to explain observations that are commonly attributed to the presence of dark matter.
The strongest alternative to dark matter today is modified gravity. Gravity is the
only fundamental force that is yet to be well described by a quantum theory, and it
could be that our understanding of gravity for large distances or small accelerations
is incorrect. While a fundamental understanding of gravity still seems to be a long
way off, theories have been developed that approach the problem by modifying the
existing laws of gravity. The simplest of these approaches is Modified Newtonian
Dynamics (MOND).

As the name suggests, MOND is merely a modification of Newtonian physics. We
will here show how such a modification can be used to explain the rotation curves of
galaxies. One way to do this is by modifying the gravitational acceleration as follows:

µ

(
g

a0

)
~g = ~gN , (4.1)

where g = ‖~g‖, ~g is the original acceleration, ~gN is the modified acceleration, and a0

is some natural constant (typically a0 ∼ 10−10 m/s2). The function µ(x) here modifies
the acceleration, and has the properties µ(x)→ 1 for x→∞ and µ→ x for x→ 0.

We note that a more common approach here is not to distinguish between forces,
and modify Newton’s second law instead:

µ

(
a

a0

)
m~a = ~F . (4.2)

With a proper choice of a0 and µ(x), the gravitational acceleration can be modified
to produce flat rotation curves for large r. Consider an object far from the center of
the Galaxy, such that g < a0, and thus gN = g2/a0. Inserting this in Newton’s law of
gravity, (1.1), we obtain

GM

r2
=
g2

a0

, (4.3)
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where M is the mass enclosed by the sphere of radius r. Inserting the relation between
orbital speed and radial acceleration for circular orbits, (1.2), and solving for v, we
obtain

v = 4
√
GMa0. (4.4)

At this large distance, most of the mass of the Galaxy is contained within the radius
r, and M does not increase significantly with increasing r. This implies a roughly
constant rotation curve for large r.

Theories of modified gravity can explain many of the phenomena that are usually
attributed to the presence of dark matter. In theories of modified gravity, the
equations behind the discussion on cosmology would also be modified. The dark
matter abundance required by cosmology is therefore not enough reject such theories.
Theories of modified gravity do, however, have problems of their own. Cases like the
Bullet cluster, discussed in section 2.3, are, for example, difficult to explain without
the presence of unseen matter. A certain amount of dark matter is also generally
required to explain large scale cosmological structures in these theories as well.

5 Direct detection of dark matter

There is a wide range of possible types of dark matter, and the different types may be
detected in different ways. In this thesis, we concentrate on the case of dark matter
in the form of unknown particles. When searching for a new particle, the obvious
place to start is trying to detect it directly. Since dark matter particles in most
models interact with other matter only through gravity and weak interactions, direct
detection is a difficult endeavor. The case of purely gravitational interaction is not
excluded, but the prospects of proving the existence of dark matter would not be very
promising. The dark matter of interest in this thesis is weakly interacting massive
particles, and we will in this section discuss direct detection of such particles.

Since observations indicate that the Milky Way contains a large amount of dark
matter, our solar system should be passing through such matter at all times. The dark
matter halo of the Galaxy is not believed to rotate along with the Galactic disk, and
we should thus experience a directionally dependent flux of dark matter. Moreover,
this flux should have an annual modulation due to the Earth’s movement around the
Sun, thus having extrema on June 2 and December 2.

As WIMPs interact through the weak interaction, they can interact with ordinary
matter. The cross sections for these interactions are very small, but it could still
be possible to detect WIMPs directly through elastic scatterings on ordinary matter
in a detector. In contrast to e.g. photons, WIMPs typically scatter off the nucleus
of an atom rather than the surrounding electrons. In such a scattering processes,
the target nucleus will be recoiled, and the recoil energy may produce a detectable
signal, whose nature depends on the detector. Events like these will typically ionize

30



CHAPTER I. GENERAL INTRODUCTION TO DARK MATTER

the detector material, and ionization measurements is a standard way to detect
dark matter interactions. One can either detect the ionization directly through the
released electrons, or by utilizing scintillating materials, which produce photons in
these ionization events. Another, more direct way to detect recoils from dark matter
interactions, is through the heat/sound (phonons) generated in the interactions.

The predicted event rate for the case of neutralinos as dark matter candidates
(see section 7.1) lies in the range of 10−6 to 10 events per day and kilogram of
detector material [10]. This, of course, depends greatly on the parameters of the
supersymmetric model, and also depends on the detector material being used. With
such event rates, it is crucial to be able to distinguish between signals from WIMP
scatterings and signals from other sources.

Detectors with both ionization and phonon measurements are especially good at
discriminating between WIMP interactions and background sources. As mentioned
earlier, WIMPs predominantly interact with the nuclei of the atoms in the target ma-
terial. Electron recoils are therefore likely be due to background processes. Detectors
that measure both ionization and phonons are able to discriminate between electron
and nuclear recoils. This is done by finding the ratio between the ionization and the
phonon recoil energy in a scattering event, a quantity known as the ionization yield.
For a given amount of energy transferred (corresponding to a given phonon energy),
electron interactions will produce a higher ionization (and thus ionization yield) than
a corresponding nuclear interaction.

There are certain general steps and considerations that may be taken in order to
reduce the influence of background signals. For example, in order to avoid influence
by cosmic rays of any kind, direct dark matter detectors are generally placed in deep
underground locations, such as tunnels or mines. Detectors with good positional (and
temporal) resolution are favorable, as they are able to determine if a signal originates
near the surface of the detector. WIMP signals would be distributed uniformly in
the detector, while external background particles often have short penetration depths,
and mainly produce signals near the surface. Signals originating near the surface are,
in other words, likely produced by background sources, and may thus be discarded.
In addition to the general considerations, one should also identify and reduce the
influence of individual background sources. There are several background sources to
consider, and we list some of the more important ones [9]:

• Especially for scintillating detectors, one of the most important background
sources is gamma rays. The gamma rays that may affect these detectors are
produced by radioactive decays in surrounding materials. In addition to the
measures mentioned above, further shielding and clever choice of materials
can also significantly reduce the background from gamma rays. Gamma rays
may also scatter on electrons in the detector, producing electron recoils. Many
modern detectors can, however, discriminate between electron and nuclear recoils
through the ionization yield.
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• Electrons are also an important background source. Electrons, like photons,
mostly produce electron recoils, which may be identified through the ionization
yield. Electrons may originate from cosmic rays, but in sufficiently shielded
facilities, the main source is β-decays in the materials surrounding the detector.
External electrons will generally interact near the surface of the detector, and
can be discarded by detectors with sufficient positional resolution.

• Fast neutrons is a background source that is difficult to distinguish from WIMP
signals. Neutrons, like WIMPs, will generally produce nuclear recoils, and
an interaction from a neutron with an energy of a few MeV may produce a
signal that is indistinguishable from that of a WIMP. Neutrons do, however,
tend to produce multiple interactions, whereas WIMPs only produce single
interactions due to their low scattering cross sections. Simultaneous signals are
therefore usually discarded as background. Fast neutrons can be produced as
end products of cosmic ray interactions or in radioactive decays. Eliminating the
neutron background completely is difficult, but shielding may help by slowing
the neutrons down.

• Neutrino interactions would be indistinguishable from WIMP interactions on a
per-event basis. This background is, however, only expected to be relevant for
very large detectors.

The measures taken to reduce background influence in modern detectors are
extensive, and the CDMS II collaboration claim to have a misdetection factor of
< 10−6 for electron recoils [5]. Even so, the event rate of dark matter interactions is
extremely low, and the results may still be prone to errors and unforeseen background.

One of the best indicators of an actual WIMP signal was mentioned earlier, namely
the observation of an annual modulation of the signal. A signal with such periodicity
and a modulation of 8σ has actually been observed by the DAMA experiment. The
result has, however, been highly disputed; especially so due to null-results in other
detectors, such as CDMS and XENON [44]. The data is also criticized because the
observed modulated signal is near 3 keV, an energy range where the detector efficiency
drops significantly, and which is close to the 3.2 keV peak expected in the background
from 40K decays [9]. It is also worth noting that DAMA lacks the mechanisms
mentioned above for identifying electron recoil events, and that the resulting data
thus will contain radioactivity background as well as possible WIMP signals [9].

The modulation is what makes the DAMA signal interesting, and many efforts
have been made in trying to consistently combine the signal with the non-observations
of other experiments. Possible explanations exist, but it will ultimately be up to
future experiments to draw a conclusion in this matter.
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6 Indirect detection of dark matter

As previously stated, the purely weak and gravitational interactions of dark matter
makes direct detection a difficult affair. Assuming that we are dealing with relatively
heavy weakly interacting massive particles, a more promising approach could be to
look for signs of annihilation or decay of dark matter particles. As will be discussed
section 7.1, we will in this thesis be using the lightest MSSM neutralino as dark matter
particle. In the R-parity conserving model we are using, this is a completely stable
particle. The case of annihilating dark matter particles will therefore be our prime
example.

The annihilation of two dark matter particles could produce a range of known
detectable particles, but their flux would be relatively low compared to the typical
cosmic ray fluxes from other astrophysical processes. The best hope of detecting
such events would therefore be to find particle channels or energy ranges that are
uncommon among known astrophysical processes. It is, of course, necessary for the
chosen signal particle to have a sufficiently long lifetime. Otherwise, the particle
would decay before reaching Earth, becoming a secondary source to other particle
channels. If suitable particle channels and energy ranges can be found, the flux from
these events should appear as an excess in one or more cosmic ray channels, above
the expected astrophysical background.

6.1 Ordinary cosmic rays

In this section, the term ‘ordinary cosmic rays’ refers to cosmic rays of matter or
photons, but not antimatter. The case of antimatter will be discussed in section 6.2.

The main constituents of cosmic rays are protons and helium nuclei, constituting
almost 90% and 9% [15]. Contributions from electrons and heavier nuclei are both of
order 1%. Supernova remnants are likely the main sources of these cosmic rays, and
the production mechanism involves acceleration of matter through blast waves [15].
Because ordinary cosmic rays are so common, the prospects of being able to identify
a dark matter annihilation signal in any of the ordinary charged particle channels are
not too promising. The astrophysical background is simply too strong, and the weak
signal from dark matter annihilations would be drowned by the background.

There are, however, two neutral channels which are often considered in the search
for dark matter annihilations, namely gamma ray photons and neutrinos. These
channels are not rid of background, but have certain advantages that many other
channels do not:

• Neutral particles are unaffected by Galactic magnetic fields, and are thus hardly
deflected on their path from the source to us. This means that directionally
sensitive detectors could be able to identify whence the incoming cosmic rays
originate. Gamma rays from dark matter annihilations are expected to be
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observable in terms of anisotropies in the cosmic gamma ray background (CGB).
The CGB has been found to be isotropic to leading order, but more sensitive
experiments with a higher angular resolution, such as the Fermi gamma-ray space
telescope, are hoped to detect anisotropies, possibly revealing the occurrence of
dark matter annihilations [8].

• Photons and (especially) neutrinos are less prone to scattering and interactions
with interstellar matter than other cosmic rays. Very little of the primary signal
is therefore lost, and since few other energy loss mechanisms exist for these
particles, the signal would also be mostly unchanged.

• With little interaction, inability to decay, and velocities of (roughly) the speed
of light, photons and neutrinos have a very long range. This makes it possible
to use these particle channels for dark matter searches outside our own galaxy.
This may include satellite galaxies, extragalactic space, galaxy clusters, and
emissions from the early Universe [53].

Of the two particles, photons are by far the easiest to detect. Since neutrinos
interact only through the weak interaction, extremely large detector volumes are
needed to detect them. Even with the kilometer size of the newly completed IceCube
neutrino observatory, the expected event rate is only in the range of “several” per year.
Despite of the low event rate, the neutrino channel is still a viable option for dark
matter searches. Monte Carlo calculations show that in at least some dark matter
models models, a neutrino signal from dark matter annihilations in the center of the
Sun or the Earth should be detectable by existing and upcoming neutrino telescopes.
Such signals could also be detectable from annihilations in the Galactic center or halo
[37].

In summary, gamma rays and neutrinos are seemingly the only “ordinary” cosmic
ray channels with good prospects of detecting a dark matter annihilation signal. For
nuclei and other charged particles, there are simply too many ordinary astrophysical
background sources. The low degree of deflection of photons and neutrinos during
propagation makes directionally dependent detection possible. This way, a signal may
be also detected through anisotropies in the cosmic ray flux, and not just through
excesses alone. Simulations utilizing this have been made for both gamma rays and
neutrinos, and will eventually be tested against data that are being collected by
ongoing experiments.
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6.2 Antiparticle channels

There is a distinct matter-antimatter asymmetry in the Universe. There is no evidence
to suggest that there is any significant amount of antimatter around; on the contrary,
the lack of the high intensity gamma ray fluxes that would result from collisions
between bodies of matter and antimatter implies that there should be very little
antimatter around.

Astrophysical processes producing cosmic rays of antimatter do exist, but they
are far less common than those producing ordinary cosmic rays. In contrast to
ordinary cosmic rays, which are mainly produced through processes that only involve
acceleration of existing matter, cosmic rays of antiparticles must be produced in
processes involving pair production. Since antiparticle cosmic rays are so much
rarer than ordinary cosmic rays, the astrophysical background for a dark matter
annihilation signal to overcome is significantly lower in antiparticle channels than in
the corresponding particle channels. In a hypothetical WIMP annihilation processes,
the amounts of matter and antimatter produced should be equal, and antiparticle
channels should therefore be especially suitable for dark matter searches.

Like ordinary matter, antimatter can exist both in the form of free elementary
particles, and in the form of (anti)nuclei. Antinuclei are, however, difficult to produce,
and as we shall see, only the lightest antinuclei are realistic candidates for observation.
The number of viable antiparticle channels is further be narrowed down by considering
lifetimes of the particles. In the end, the antiparticle channels worth considering can
be found by looking to the ordinary cosmic ray equivalents. Antiprotons, positrons
(anti-electrons), and light antinuclei are the antiparticle channels that are being
considered in searches for a dark matter annihilation signal. Background sources
exist for all these antiparticle channels, but as mentioned earlier, they are much less
significant than those for the corresponding particle channels.

Heavy antinuclei are not known to be produced in ordinary astrophysical processes,
but while detection of such nuclei would be a very strong indication of the existence
of dark matter, the conditions required to produce them imply that they should be
extremely rare. The coalescence model of nucleus formation, which will be introduced
in section 8, can be generalized to heavier nuclei, and requires all the constituent
nucleons to have a momentum difference smaller than some maximum value, p0, in
order to produce a nucleus. In any astrophysical process (including dark matter
annihilations), this condition would be extremely rarely fulfilled for more than a
couple of nucleons at a time. Very light nuclei, such as antideuterons, would therefore
realistically be the only observable candidates.

The coalescence condition is very strict, and the flux of even the lightest antinuclei
would be very low compared to that of antiprotons and positrons. The best place
to start would therefore be to look for an excess over the expected astrophysical
background in the positron and antiproton channels.
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6.2.1 Positrons

Dark matter annihilations would (in most models) be able to produce electron-positron
pairs, and a resulting positron signal might be observable. Positrons are known to
be produced in collisions of cosmic ray nuclei on interstellar matter (secondary
production), and this is believed to be the main production mechanism. The hope is
to observe an annihilation signal as an excess from this background in the positron
fraction,

φ(e+)

φ(e+) + φ(e−)
, (6.1)

where φ(X) denotes the flux of a particle X.

Experiments such as HEAT, AMS-01, PAMELA, and Fermi LAT have all observed
such an excess [14], something which has created great excitement, and motivated the
search to find suitable dark matter models that can describe it. Figure 6.1 shows the
positron fraction as measured by the PAMELA satellite. The black line shows the
expected astrophysical background from secondary production, while the red data
points show the PAMELA data. We notice that the expected background decreases
with increasing energies. The reason for this is related to the residence time of
cosmic ray particles in the Galaxy, and the fact that the energies of the positrons are
related to the energies of the cosmic ray particles that produced them. High energy
particles move quickly through the Galaxy with little deflection, and have little time
to interact with interstellar matter. This low number of interactions again leads to
a correspondingly low positron flux at high energies. Going to lower energies, the
cosmic rays are more deflected when moving through the Galaxy, and thus have a
higher residence time. This gives them more time to interact with the interstellar
matter, and thus a higher probability of producing electron-positron pairs.

The discrepancy in the lower energy range (where the measurements fall below the
expected background) can according to [3] be attributed to charge dependent Solar
modulation effects. The data that have been causing excitement, is the large excess
above ∼10 GeV. Somewhat ironically, the size of the excess is actually problematic
for the dark matter annihilation scenario. The expected positron flux from the
annihilations of a typical thermal WIMP candidate turns out to be a factor of order
50 too small to explain the observed excess [29].

This problem has been attempted solved in several ways. The WIMP annihilation
rate may, for example, be increased by fluctuations in the dark matter density that
cause the dark matter to clump together. This clumping effect would increase the
density, and thus also the annihilation rate of dark matter. Other effects, such
as Sommerfeld enhancement and resonances may also contribute to an increased
annihilation rate [20]. These effects are commonly accounted for by introducing a
boost factor, which, if big enough, could make it possible to explain the excess by
WIMP annihilations. A sobering alternative is, of course, that the positron excess has
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Figure 6.1: Positron fraction, as measured by the PAMELA satellite. The black line
shows the expected astrophysical background from secondary production, while the
red data points are the PAMELA measurements. Figure from [3].

nothing to do with dark matter at all, but is contributed by an unknown astrophysical
source, such as a nearby pulsar. Other alternatives include other dark matter models.
For example, [33] claims to succeed quite well in describing the PAMELA excess in a
non-thermal WIMP model, without the need for any boost factor. Those results do,
however, not succeed in describing the Fermi LAT data.

In summary, the positron excess is a promising observation, but is difficult to
explain in terms of dark matter annihilations. Positrons can also be produced in
the magnetospheres of pulsars [3], and the presence of nearby pulsars is a strong
alternative. In order to correctly interpret the excess, we must be able to distinguish
between a signal from dark matter annihilations and signals from other sources. The
best way to do so, is to search for dark matter signals in other channels that are
consistent with the measured positron excess.

6.2.2 Antiprotons

The antiproton channel is another antiparticle channel where a dark matter annihi-
lation signal could be observable. As with positrons, the main background source
of antiprotons is secondary production from collisions of cosmic ray particles on
interstellar matter. The most common reaction is cosmic ray protons on interstellar
hydrogen. Due to charge and baryon number conservation, a reaction p+ p→ p̄+X
must at least produce 3 protons in addition to the antiproton. This imposes a lower
energy threshold of Ep = 7mp for the incoming proton in the rest frame of the ISM
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proton [12]. The incident proton will, in other words, have a high momentum, and
taking momentum conservation into account, this means that the antiproton is less
likely to be produced with a low kinetic energy. As in positron case, the expected
background flux decreases with increasing energies, but is suppressed below a few
GeV due to the production energy threshold.

Such a suppression should not be present for antiprotons from dark matter an-
nihilations, and there was initially hope was to find an excess from dark matter
annihilations in the low energy region. Early studies actually suggested that such an
excess was present around 1 GeV [15], something which motivated further studies. We
now have a better understanding of the secondary antiproton production mechanisms,
as well as the propagation through the Galaxy. It has been found that cosmic ray
collisions involving heavier nuclei (e.g. helium) can produce antiprotons well below
the threshold for p− p collisions. Moreover, tertiary production mechanisms, such
as non-annihilating inelastic scattering of the antiprotons on interstellar matter, con-
tribute by shifting high energy antiprotons towards the lower parts of the spectrum.
With improved understanding and larger amounts of observational data, the excess
suggested by the early data diminished.

While PAMELA and other experiments have given promising measurements in
the positron channel, the current situation for the antiproton channel is not quite as
promising. Measurements have so far been made for kinetic energies up to 180 GeV,
and no excess has yet been found that cannot be explained in terms of secondary
production mechanisms [4]. Figure 6.2 shows the data for the antiproton channel
measured by PAMELA, and as we can see, the data can be well explained by the
models for the astrophysical background flux.

Though annihilations of heavy dark matter likely should produce some amount
of antiprotons, the occurrence of such events is not ruled out by the current non-
observation of an excess antiproton signal. There are several possible options:

• The dark matter mass could be high enough that the energies of the resulting
antiprotons fall above the measured range. The data would in this case impose
constraints on the possible masses of dark matter candidates. This case generally
requires dark matter with masses in the TeV range.

• Due to high uncertainties in the Galactic propagation models, the lack of a
definitive excess does not exclude the possibility that a part of the antiproton
flux actually does originate from dark matter annihilations [23]. The signal may
simply be a part of what is considered to be the background flux.

• In principle, it is possible that the dark matter could have purely leptonic anni-
hilation channels [20]. This is, however, not supported by most well motivated
extensions of the SM, such as the MSSM.
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Figure 6.2: PAMELA data for the cosmic ray antiproton flux. The red points are
the PAMELA data set, while the other points show the data from other experiments.
The lines indicate the expected astrophysical background flux calculated in different
models. Figure from [4].

Other explanations are also be possible. More pessimistic perspectives would be
that dark matter interacts purely gravitationally, or that it does not annihilate into
detectable particles at all. In these cases, the prospects of finding conclusive evidence
for dark matter would be bleak. We note that none of the above scenarios require
the positron excess to be (fully) explained by dark matter annihilations, and are thus
compatible with the likely scenario that the PAMELA positron excess originates from
other astrophysical processes.

In the search for a dark matter annihilation signal, the antiproton channel currently
seems to be a dead end. Until experiments are launched that can probe higher energy
ranges, it is difficult to rule out any of the suggested explanations for the lack of
excess in the antiproton spectrum. The data from this channel puts restrictions on
the possible dark matter models, but in order to find an observable dark matter
annihilation signal, the best choice is to look for other antiparticle channels.

6.2.3 Antideuterons

While more scarce than antiprotons and positrons, light antinuclei may provide
channels in which a dark matter annihilation signal can be detected. The Monte
Carlo simulations made for this thesis show that the average numbers of antiprotons
and antineutrons produced in annihilations of neutralinos with masses in the TeV
range are of order 1. Combined with the strict coalescence condition of a momentum

39



6. Indirect detection of dark matter

difference less than a maximum value, p0, between antinucleons in order to produce
an antinucleus, it is highly unlikely that these annihilation events would produce any
antinuclei heavier than antideuterons. The antideuteron channel is therefore the most
promising antinucleus channel.

As with the previous antiparticles, antideuterons can also be produced in cosmic
ray collisions on interstellar matter. As in the antiproton case, there is also an energy
threshold involved in the production of antideuterons. Both the antiproton and
antineutron that will make up the antideuteron need to be produced in the same
cosmic ray interaction. For the case of a cosmic ray proton colliding with interstellar
hydrogen (a p− p interaction), charge and baryon number conservation requires at
least 3 protons and 1 neutron to be produced in addition to the antiproton and the
antineutron. This imposes an even higher energy threshold on the cosmic ray proton
than in the antiproton case.

As before, momentum conservation implies that the antineutron and antiproton
are less likely to be produced with low energies. This, however, means that the
coalescence condition of a momentum difference less than p0 between the antiproton
and antineutron only will be fulfilled if the two antinucleons have almost equal and
parallel momenta. The number of antideuterons produced in these reactions should
thus be low, and further suppressed at low energies due to the suppression of the
antinucleon production at low energies. When it comes to dark matter annihilations,
however, the antinucleons should be produced mainly in low energy ranges [24]. A
resulting antideuteron signal from such processes could therefore be possible to detect
in the low energy part of the spectrum.

There is currently no observational data available for the antideuteron channel.
Searches for cosmic ray antideuterons were performed by by the BESS balloon-borne
experiment from 1997 to 2000, but no antideuteron candidates were found [26]. This
imposes an upper limit on the flux in the measured energy range. The antideuteron
channel is currently one of the most important candidates in the search for a dark
matter annihilation signal, and simulations have been made in several models that
predict a possible observable excess. The high activity in simulating antiparticle fluxes
from dark matter annihilations has motivated upcoming experiments such as GAPS
and AMS-02, which are dedicated to measuring antiparticle cosmic rays. The race is
therefore on for astroparticle physicists to make predictions for the spectrum in the
antideuteron channel, before results from these experiments become available.
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Chapter II

Calculation of the antideuteron
spectrum

7 The models and programs

The main goal of this thesis is to study the antideuteron flux from WIMP annihilations
within our galaxy. As already mentioned, there are no suitable dark matter candidates
in the standard model, so the first thing we need to do, is to select a particle physics
model that introduces one or more suitable dark matter candidates. Subsequently,
we need Monte Carlo event generators that support the chosen model, and that are
capable of calculating the source spectrum of antideuterons from these annihilations.
With the source spectrum in place, we then need to calculate the final antideuteron
flux near Earth using an appropriate galaxy propagation model. The dark matter
model model and the Monte Carlo generators will be introduced in this section, while
the models for antideuteron production and propagation are discussed in section 8
and 11, respectively.

7.1 Supersymmetry

Since there are no WIMP candidates in the standard model of particle physics, we
need to introduce one by using an extension of the standard model. The standard
model is not believed to be a complete model, and a large number of extensions
exist, which aim to solve different problems. Supersymmetry (SUSY) is one of these
extensions, and is well motivated by particle physics.

7.1.1 Motivations for supersymmetry

One of the problems many supersymmetric models can solve, is the so-called hierarchy
problem of particle physics. We will only give a superficial explanation, and refer
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to [6] for more details. The hierarchy problem is a fine-tuning problem, and arises
when calculating the radiative corrections to the Higgs boson mass. The one-loop
correction to the mass is quadratic in the cutoff, Λ:

δm2 ∝ λΛ2, (7.1)

where λ is the Higgs coupling. The one-loop corrected physical mass of the Higgs
boson becomes

µ2
phys ∼ µ2 − λΛ2. (7.2)

Minimizing the Higgs potential using this mass, and inserting the vacuum expectation
value v ≈ 246 GeV, we obtain µ phys ≈

√
λ 123 GeV. The value of the coupling, λ,

should be of order unity, while the cutoff, Λ, should correspond to the energy at
which some new physics become important. Quantum gravity is believed to become
important near the Planck mass, MP ' 1.2× 1019 GeV. Using this as the cutoff scale,
we see that in eq. (7.2), a remarkable cancellation must take place between two terms
of order (1019 GeV)2 on the right-hand side, leaving only the left-hand side term of
order (102 GeV)2.

Supersymmetric models introduce a fermionic ‘superpartner’ for all standard model
bosons and vice versa. In supersymmetric models, the radiative correction to the Higgs
mass will also include loop diagrams of the fermionic superpartner. The fermionic
loop diagrams produce terms with opposite signs of those of the corresponding bosonic
loops, and thereby cancel the problematic Λ2 mass correction.

Another trait of supersymmetry is the unification of the gauge couplings at high
energies. As seen in figure 7.1, the electromagnetic, weak, and strong couplings do
not evolve towards a unified value in the standard model. If supersymmetry is used,
however, the couplings converge for energies above the so-called grand unification
scale (≈ 1016 GeV). Unification of the couplings is the basis for Grand Unification
Theories (GUTs), and supersymmetry is an essential ingredient in many of these
theories.

7.1.2 The MSSM

Supersymmetry is not a single model, but rather an umbrella term for a range of
different supersymmetric models. In this thesis, we have been using the Minimal
Supersymmetric Standard Model (MSSM). The MSSM introduces an additional Higgs
doublet, as well as superpartners to this and all the fermions and gauge bosons. Even
though the MSSM introduces a large amount of new particles, the term ‘minimal’
refers to the model being minimal in the number of new particles introduced.

When it comes to the naming conventions for the new particles, the superpartners
of the fermions are given the name of the original particle with an s-prefix, while
the Higgs and gauge boson superpartners are given an -ino suffix. These naming
conventions are also applied to the common names of the particles, and names like
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Figure 7.1: The measurements of the gauge coupling strengths at LEP (left) do not
evolve towards a unified value in the standard model. If supersymmetry is included
(right), however, the couplings converge. Figure borrowed from [13].

‘sleptons’, ‘gauginos’, and ‘squarks’ thus refer to the superpartners of leptons, gauge
bosons, and quarks, respectively. A list of the MSSM particles and superpartners is
found in table 7.1.

The interaction eigenstates of the MSSM superpartners are not necessarily the
same as the mass eigenstates. For the superpartners of the Higgs and gauge bosons,
the mass eigenstates are superpositions of the interaction eigenstates. As seen in table
7.1, the superpartners of the charged Higgs and gauge bosons (the charged winos and
higgsinos) are mixed to produce mass eigenstates called charginos. Correspondingly,
the superpartners of the neutral Higgs and gauge bosons (the bino and the neutral
wino and higgsinos) are mixed to produce mass eigenstates called neutralinos.

In the search for dark matter, the lightest supersymmetric particle (LSP) is an
attractive dark matter candidate. Which supersymmetric particle is the lightest
depends on the parameters of the supersymmetric model. A frequently studied case,
which we will be using in this thesis, is the lightest neutralino as LSP. When referring
to ‘the neutralino’ later in this thesis, we refer to the lightest of the four, which in our
case is the χ̃0

1. We note that the neutralino is a Majorana fermion, and is thus its
own antiparticle.
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Standard Model particles and fields Supersymmetric partners
Interaction eigenstates Mass eigenstates

Symbol Name Symbol Name Symbol Name
q = d, c, b, u, s, t quark q̃L, q̃R squark q̃1, q̃2 squark

l = e, µ, τ lepton l̃L, l̃R slepton l̃1, l̃2 slepton
ν = νe, νµ, ντ neutrino ν̃ sneutrino ν̃ sneutrino
g gluon g̃ gluino g̃ gluino

W± W -boson W̃± wino

H− Higgs boson H̃−
1 higgsino

 χ̃±
1,2 chargino

H+ Higgs boson H̃+
2 higgsino

B B-field B̃ bino

W 3 W 3-field W̃ 3 wino
H0

1 Higgs boson
H̃0

1 higgsino

 χ̃0
1,2,3,4 neutralino

H0
2 Higgs boson

H̃0
2 higgsino

H0
3 Higgs boson

Table 7.1: Standard Model particles and their superpartners in the MSSM. Table
borrowed from [13].

7.1.3 R-parity

The MSSM allows interaction terms that violate lepton and baryon number (B and
L) conservation. This is problematic, as such terms would allow the proton to decay,
a process which has never been observed. Since these quantum numbers are not
absolutely conserved quantities, imposing conservation of these numbers is not a good
solution to this problem. Instead, a new, multiplicatively conserved quantum number
is introduced: The R-parity. The R-parity is defined by

R = (−1)3B+L+2s, (7.3)

where s is the spin of the particle in question. All standard model particles have an
R-parity of +1, while their superpartners (‘sparticles’) have R-parity -1. Since this
quantum number is multiplicatively conserved, any decaying sparticle must decay
into an odd number of sparticles. This implies that the LSP in R-parity conserving
supersymmetric models (such as the one used in this thesis) is absolutely stable. If
the LSP is neutral, (e.g. the neutralino as LSP) it would serve as an excellent dark
matter candidate.

7.1.4 Parameterizations and practical considerations

In this thesis, we want to perform calculations for various neutralino mass scenarios.
Since the mass spectra of the supersymmetric particles are not independent, we cannot
freely change the neutralino mass. The neutralino mass depends on the mixings and
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masses of the higgsinos and gauginos, which again depend on the parameters of the
supersymmetric model. Not only the mass, but also the interactions of the neutralino
depends on these parameters. The higgsinos and gauginos interact differently, and
the annihilation cross sections into various channels will thus vary according to the
mixing matrix for the neutralino.

The MSSM has more than 100 free parameters, and in order to be able to put it
to practical use, the number of free parameters must be reduced. By making well
motivated assumptions, parameterizations of the model have been made which have
less than 10 free parameters. In order to be able to calculate cross sections and generate
events for neutralino annihilations, we have to choose a suitable parametrization of
the MSSM, and adjust the parameters in such a way that we obtain the wanted
neutralino masses. Several parameterizations exist, and calculators are available for
the mSUGRA, NUHM, and AMSB parameterizations at the CERN website [2]. We
used the calculator for the mSUGRA parameterization, and obtained the wanted
neutralino masses by adjusting the m0 and m1/2 parameters. The spectra can be
generated using three different codes (Softsusy, SPheno and Suspect), and we used
the spectra generated by the SPheno code in our calculations.

We note that MSSM calculations for high masses rely on precise cancellations
between terms that depend on the mass spectra and mixing matrices from the spectrum
generators. Unfortunately, the results from the spectrum generators become inaccurate
for high masses, and calculations for neutralino masses above a few TeV are therefore
unreliable. Supersymmetry scenarios typically operate with neutralino masses in
the 100 GeV range, and the spectrum generators simply were not made to handle
scenarios with a neutralino mass in the TeV range. To avoid any complications, we
therefore perform calculations mainly for neutralino masses below 1 TeV.

7.2 The Monte Carlo generators

After choosing a dark matter model, we need suitable Monte Carlo generators for
calculating the antideuteron flux from annihilations of our dark matter particles. The
MSSM has already been implemented in certain Monte Carlo event generators, such
as MadGraph.

MadGraph can generate events and calculate matrix elements and cross sections
for processes with up to 9 external particles. Since MadGraph can only handle 9
external particles, and does not handle hadronization (binding of final state quarks
into hadrons), this program is not suited for calculating the nucleon (or antideuteron)
production in dark matter annihilation processes. The common approach for such
calculations, is to use MadGraph to generate events for tree level annihilation processes
like

χ̃0
1χ̃

0
1 −→ W+W− (7.4)
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and

χ̃0
1χ̃

0
1 −→ qq̄, (7.5)

and pass these events on to a different Monte Carlo generator that can handle showering
(cascade into lighter particles) of these particles, as well as hadronization of final state
quarks. For the MadGraph calculations, we requested 105 events. MadGraph may not
always be able to produce the requested number of events, but did so for the above
tree level diagrams.

After generating the tree level events using MadGraph, we go on by passing these
events on to a different Monte Carlo event generator: Herwig++. Herwig++ handles
the showering of these particles, as well as hadronization. Herwig++ uses the input
events from MadGraph to generate a phase space for the input particles. It can
then generate an arbitrary number of events from this phase space, which may also
be higher than the number of input events. A higher number of input events will,
of course, give a more accurate phase space. With Herwig++, we generally ran
calculations for 107 events; a factor 100 higher than the number of input events.

While Herwig++ handles hadronization, it does, however, not handle the formation
of atoms or nuclei. In order to find the resulting antideuteron flux, we must implement
a model for this formation ourselves. For this we use the coalescence model, as one
of the aims of this thesis is to investigate how the implementation of this model
affects the antideuteron source spectra. In order to perform coalescence, we also
specifically set the antineutrons not to decay. This should be physically unproblematic,
as neutrons have a long lifetime (885.7s), and would not decay during the time in
which nuclei are produced.

In the procedure described above, we calculate the antideuteron spectra from
the different annihilation channels separately. The total antideuteron spectrum can
afterwards be found by weighting the spectra according to the branching ratios for
the different channels. Even if we could calculate the total antideuteron spectrum
from all possible annihilation channels simultaneously, there is one good reason not
to: Generality. While the branching ratios between the different annihilation channels
depend heavily on the nature of the dark matter particle, the antideuteron spectra
from the different channels do not. The antideuteron spectrum from two neutralinos
annihilating into W+W− should not differ significantly from that of a different
dark matter candidate (of the same mass) annihilating into W+W−. Therefore, by
calculating the antideuteron spectra for the different annihilation channels separately,
we can obtain the total antideuteron spectrum from a different dark matter candidate
of the same mass by applying the appropriate branching ratios.
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8 Coalescence

For the fusion of (anti)protons and (anti)neutrons into (anti)deuterons, it is common
to use the so-called coalescence model. The coalescence model is based on the simple
idea that any nucleons with a momentum difference ∆p < p0 for some given p0 will
merge with each other to create a nucleus. For collisions with energies as high as the
TeV range, one can expect relativistic final state particles. Special relativity must
therefore be taken into account. The appropriate reference frame for applying the
coalescence prescription would be the center-of-momentum (also called center-of-mass)
(COM) frame of the respective antiproton-antineutron pairs.

For a Monte Carlo simulation, the coalescence model can easily be implemented by
comparing the momenta of the final state particles from each individual event. The
coalescence model was, however, developed before the onset of computational physics,
so a coalescence model for individual events was not very useful. Instead, expressions
have been developed that apply to particle densities dN/dk3 in momentum space.
After some assumptions, expressions can then be made which apply to the particle
energy spectra, dN/dT , as will be shown in section 8.2. Particle energy spectra are
found by measuring the final state nucleon energies in a large number of events, and
can also be found experimentally.

Even though it is possible to do coalescence per-event in Monte Carlo simulations,
it is common to use the traditional approach which applies to the nucleon energy
spectra from the Monte Carlo instead. This was, for example, done by Bräuninger et
al. in [14]. In this thesis, we will discuss and compare the two different approaches,
and we will also examine validity of the assumptions needed to perform coalescence
with energy spectra.

Some equations from special relativity are used in the derivations in this section,
and are listed and explained in the appendix.

8.1 Per-event coalescence

Per-event coalescence within the Monte Carlo is fairly straightforward, as the coales-
cence condition only involves finding the momentum difference between the antiproton
and antineutron in their center-of-momentum frame. In Herwig++, all quantities are
given in the lab frame, and some calculations are needed in order find the correspond-
ing COM frame values. One way to do so, is by making use of the Lorentz invariant
Mandelstam variable s (A.14), which can be written out as

s = (p1 + p2)2 = p2
1 + p2

2 + 2p1p2. (8.1)

Inserting for p1 and p2 yields

s = E2
1 + E2

2 + 2E1E2 − ~p1
2 − ~p2

2 − 2~p1 · ~p2, (8.2)
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or, using (A.4),
s = m2

1 +m2
2 + 2E1E2 − 2~p1 · ~p2. (8.3)

E and ~p for the various particles are available in Herwig++, and s can thus be
calculated using eq. (8.3).

Now, let ~pi,CM be the momentum of particle i in the COM frame, and let Ei,CM
be the corresponding energy. The COM frame is characterized by

~p1,CM = −~p2,CM ≡ ~pCM . (8.4)

Using (8.4), (8.2) becomes

s = E2
1,CM + E2

2,CM + 2E1,CME2,CM = (E1,CM + E2,CM)2. (8.5)

Inserting E2
2,CM = m2

2 + E2
1,CM −m2

1 and rewriting gives

s+m2
1 −m2

2

2
= E1,CM(E1,CM + E2,CM). (8.6)

Using (8.5), we identify the bracket on the right hand side to be
√
s, giving

E1,CM =
s+m2

1 −m2
2

2
√
s

. (8.7)

This expression is Lorentz invariant, and we can thus find E1,CM by inserting s, as
calculated using (8.3) in the lab frame. With E1,CM known, the momentum difference
for the coalescence can now be calculated using

∆p = ‖~p1,CM − ~p2,CM‖ = 2‖~pCM‖ = 2
√
E2

1,CM −m2
1. (8.8)

Any antiproton-antineutron pair with ∆p < p0 is accepted, and creates an antideuteron
with energy Ed̄ = En̄ + Ep̄. Pairs that do not fulfill this condition are rejected. The
probability that a given antiproton/antineutron fulfills the coalescence condition with
more than one antineutron/antiproton is negligible, but measures should in general
be taken to avoid double counting.

8.2 Coalescence with energy spectra

8.2.1 Number densities

In order to find an expression for energy spectra, we begin by first deriving the
standard expression for coalescence of number densities of the particles in momentum
space. There are several ways to approach this problem, but aside from some numerical
constant, the resulting equation is generally the same.
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The condition for coalescence of an antiproton and an antineutron, is for the
particles have a momentum difference, ∆k, less than some maximum value, p0. As
stated before, this condition should be evaluated in the COM frame of the two particles.
We want to find a relation that connects the particle densities (in momentum space)
of the different species, and a COM frame will in this case not be well defined. The
closest we can get is the COM frame of the average antiproton and antineutron
momenta. Let us therefore begin by choosing a point in momentum space around
which we search for antideuterons, and then find the average COM frame of the
antinucleons that create these antideuterons. Let this point in momentum space be
denoted ~kd̄ in the lab frame.

In the lab frame, the coalescence should be strongly peaked around ∆~k = ~kp̄ − ~kn̄ ≈ 0,

where ~kp̄ and ~kn̄ are the antiproton and antineutron momenta, respectively. Imposing
momentum conservation, this gives

~kp̄ ≈ ~kn̄ ≈
~kd̄
2
. (8.9)

Assuming that the distributions of antineutrons and antiprotons do not vary too much
around ~kd̄/2, this point should denote the average antiproton and antineutron momenta.

Our “near COM” frame will thus be the frame where ~kp̄ ≈ ~kn̄ ≈ 0. The velocity of
this frame can be found using eq. (A.5) with a mass m ≈ mp̄ ≈ mn̄ and a momentum
p = kd̄/2. Conveniently, using this velocity, along with md ≈ 2mp ≈ 2mn and eq.

(8.9) in (A.10), we find that the antideuteron momentum, ~kd̄, is also approximately
zero in this frame.

The condition ∆k < p0 can in this frame roughly be expressed as a condition that
both particles are found within a sphere of radius p0 around the origin1. The resulting
antideuteron should then have a momentum equal to the sum of the antiproton and
antineutron momenta, and thus be found within a sphere of radius 2p0. Let us now
express this in terms of probabilities:

P (d̄ within 2p0) = P (p̄ within p0) · P (n̄ within p0 | p̄ within p0). (8.10)

We assume that the densities, and thus also the probabilities of finding an antiproton
and an antineutron within the sphere, are uncorrelated. This gives us

P (d̄ within 2p0) = P (p̄ within p0) · P (n̄ within p0). (8.11)

Let us now evaluate these probabilities. The probability of finding a particle within
the sphere should be equal to the integral of the particle density within the sphere:

P ( particle i within p0) =

(∫
d3k

dNi

d3k
Θ(p0 − k)

)
. (8.12)

1It should optimally be a condition to find one particle within such a sphere around the other
particle, but with the assumption that the particle densities do not vary too much in the area, it
should be a good approximation
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Θ(x) is here the Heaviside step function, and dNi/d
3k is the number density of particle

i in momentum space. It is here common to make the approximation that dNi/d
3k is

roughly constant within the sphere, so that (8.12) becomes

P ( particle i within p0) =
4πp3

0

3

(
dNi

d3k

)
~k=0

, (8.13)

where the subscript denotes that the density is to be evaluated at the point ~k = 0 in
this frame. Inserting this into (8.11), we then get(

dNd̄

d3k

)
~k=0

=
1

8

4πp3
0

3

(
dNp̄

d3k

)
~k=0

(
dNn̄

d3k

)
~k=0

. (8.14)

The factor 1/8 comes from the radius of the antideuteron sphere being 2p0. The above
expression relates the particle densities in our “near COM”-frame. In order to be
useful, however, it needs to relate the densities in the lab frame. In eq. (8.14), p0 is
just a constant, so all we need to do is to express the particle densities in this frame
in terms of the corresponding particle densities in the lab frame.

In order to find the connections to the lab frame densities, it is necessary to look
at how the derivative of a momentum transforms between different Lorentz frames.
Using (A.10), we find

dk′ =
dk + v dE√

1− v2
=

1√
1− v2

(
1 +

vk

E

)
dk =

1√
1− v2

(1 + vw) dk, (8.15)

where w is the velocity of a given particle measured in the current frame. Using the
requirement that k < p0 for our antinuclei and k < 2p0 for the antideuteron, we see
that w can at most reach a value of w = p0/(p

2
0 + m2

p)
1/2 ∼ 1/6. md ≈ 2mp ≈ 2mn

can here be used to see that it holds for the case of the antideuteron. v is the relative
velocity between our frame and the lab frame, and can have values from 0, up to close
to 1. This means that the term vw in (8.15) has a maximal value of order 1/6, and
one would expect the mean value to be a fair bit lower - possibly of order 1/10. If we
neglect this term, we arrive at the simple expression

dk′ = γdk, (8.16)

where γ, as usual, is defined by (A.6).
Let us now try applying a Lorentz transformation to a number density, (dN/d3k)~p=0,

of a particle of mass m. For simplicity, we choose the coordinate system such that the
transformation will be along the x-axis. The transformation will then only affect one
of the components of the volume element d3k, while the two others remain unchanged.
The Lorentz transformation will also change the point (~p = 0) at which the density
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is to be evaluated. Since ~p = 0 in the original frame, (A.10) states that in the new
frame,

~p′ = (γmv, 0, 0). (8.17)

Using this and (8.15), we then get(
dN

d3k′

)
~p′

=
1

γ

(
dN

d3k

)
~p=0

. (8.18)

We can now use this to make the substitution(
dN

d3k

)
~k=0

= γ

(
dN

d3k′

)
~p′

(8.19)

in (8.14). ~p′ equals ~kp̄, ~kn̄, and ~kd̄ for the antiproton, antineutron, and antideuteron,
respectively. Dropping the prime in d3k′, we then arrive at the lab frame expression(

dNd̄

d3k

)
~kd̄

=
1

8

4πp3
0

3
γ

(
dNp̄

d3k

)
~kp̄=~kd̄/2

(
dNn̄

d3k

)
~kn̄=~kd̄/2

, (8.20)

where, of course, all densities (dNi/d
3k) and momenta ~ki are measured in the lab

frame.
Equation (8.20) tends to vary by some constant numerical factor in different

articles, depending on how it was derived. Such a factor can, however, be absorbed by
re-defining p0. Many articles, such as the one by Bräuninger et. al [14] do not have
the factor 1/8, which means that p0 should be divided by a factor 2 when comparing
to these articles.

8.2.2 Energy spectra

Now that we have an expression in terms of number densities, we can can find the
coalescence expression for energy spectra. In order to find this expression, it is
necessary to assume that the number densities are isotropic, such that(

dN

d3k

)
~k

=
1

4πk2

(
dN

dk

)
k≡‖~k‖

. (8.21)

Taking the derivative of (A.8) gives us dT = dE, and using k ≡ |~p| in (A.4) gives
EdE = kdk, thus (

dN

d3k

)
~k

=
1

4πkE

(
dN

dT

)
T=
√
m2+~k2−m

, (8.22)

where T is the kinetic energy of the particles, as defined by (A.8). Inserting the above
into (8.20) gives(

dNd̄

dT

)
Td̄

=
1

8

4πp3
0

3

4πkd̄Ed̄
(4π)2kn̄kp̄En̄Ep̄

γ

(
dNn̄

dT

)
Tn̄=Td̄/2

(
dNp̄

dT

)
Tp̄=Td̄/2

. (8.23)
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The approximations we have made so far, mp̄ ≈ mn̄ ≈ md̄/2 and (8.9), imply
that Tn̄ = Tp̄ = Td̄/2. Using this, and replacing the γ-factor using (A.7), we get the
expression for coalescence with energy spectra,

(
dNd̄

dT

)
Td̄

=
p3

0

6

md̄

mn̄mp̄

1

kd̄

(
dNn̄

dT

)
Tn̄=

Td̄
2

(
dNp̄

dT

)
Tp̄=

Td̄
2

=
p3

0

6

md̄

mn̄mp̄

1√
T 2
d̄

+ 2md̄Td̄

(
dNn̄

dT

)
Tn̄=

Td̄
2

(
dNp̄

dT

)
Tp̄=

Td̄
2

.
(8.24)

8.3 Finding p0

The momentum difference p0 must in both approaches be found by running simulations
on processes for which we have experimental data, and adjusting p0 such that the
computational result matches the experiment. p0 values for the energy spectrum
approach can be extracted from a number of articles, but since many assumptions and
approximations were made in the derivation of eq. (8.24), it is not given that the p0

value for coalescence within the Monte Carlo should be the same. Coalescence within
the Monte Carlo is still an uncommon approach, and no values of p0 were available
for this approach when this work was conducted. We therefore had to find this value
ourselves through calibration against experimental data.

There is little data available that can be used for calibrating p0. One of the
few data sets that can be used, is the result for antideuteron production in e+e−-
collisions from the ALEPH data [48]. At the Z-resonance, each event should give
rise to (5.9± 1.8± 0.5)× 10−6 antideuterons in the momentum range 0.62 GeV < kd̄,
kd̄ < 1.03 GeV. The detector had an angular acceptance range | cos θ| < 0.95,
something which was also taken into account. We want to compare the antideuteron
spectra from the two different approaches, and in order to do so consistently, the p0

value for both approaches should be calibrated against the same data. Instead of
relying on the p0 value used in other papers for the energy spectrum approach, we
therefore calibrated this p0 value against the ALEPH data as well.

Our calculations yielded a value of p0 = 110 MeV for the case where coalescence
was performed within the Monte Carlo, and p0 = 126 MeV for coalescence applied
to antiproton and antineutron spectra. We will be comparing our results to those
of Bräuninger et. al [14], and have to keep in mind that the definition of p0 varies
between different papers. We obtain the definition by Bräuninger et. al by absorbing a
factor 1/8 in p3

0; in other words by multiplying our p0 by a factor 1/2. Our calibrated
p0 value for the energy spectrum approach thus corresponds to p0 = 63 MeV in their
definition.

Bräuninger et. al use a p0 value of 79 MeV (in their definition of p0). We note
that there is a significant uncertainty in what is the “correct” value of p0. A wide
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range of possible values has been proposed; [22] suggests a window between 66 MeV
and 105 MeV (in the definition of Bräuninger et. al), and mentions that values as
low as 58 MeV have been proposed by earlier papers. For us, it is most important to
have p0 values that are consistently calibrated for the two approaches. The result for
a different value of p0 can be obtained by multiplying our result by a factor (p′0/p0)3,
where p′0 is the new value. For coalescence within the Monte Carlo, this is only an
approximation, while for coalescence of energy spectra, this is an exact relation.

9 Computational results: Source spectra

The results presented in this section were generated using 107 events, and most results
are presented in terms of the scaled kinetic energy x ≡ T/MDM , where MDM is the
dark matter mass. In order to generate antiproton, antineutron, and antideuteron
spectra, these particles were binned in 100 logarithmic bins in the kinetic energy range
x = 10−10 − 100 (10 bins per order of magnitude).

For simplicity, we will from now on mostly refer to results from calculations where
coalescence was applied per-event within the Monte Carlo as ‘Monte Carlo’ results, and
results from calculations where coalescence was applied to the average antiproton and
antineutron energy spectra (using (8.24)) as ‘isotropic’ results (due to the assumption
of isotropy required in the derivation of (8.24)). We correspondingly refer to the two
approaches as the Monte Carlo approach and the isotropic approach.

9.1 The antideuteron source spectra

The primary goal of this thesis is to investigate the significant difference in magnitude
between the antideuteron source spectra from the bb̄ and W+W− channels presented
by Bräuninger et. al [14]. By source spectra, we here refer to the energy spectra
of the particles immediately after production; in other words: The spectra before
propagation through the Galaxy. The antideuteron source spectra from the calculations
by Bräuninger et. al are shown in figure 9.1. We note that Bräuninger et. al used the
minimal dark matter (MDM) model, rather than the MSSM in their calculations. The
MDM model is a simple extension of the standard model, whose sole purpose is to
introduce a dark matter particle candidate. This model does not have the problems
with precise cancellation of terms at high dark matter masses, and Bräuninger et. al
were therefore able to generate antideuteron spectra for dark matter masses of several
TeV.

We begin by comparing our results for the isotropic case to those of Bräuninger
et. al. The antideuteron source spectra calculated by Bräuninger et. al are shown in
figure 9.1, while our corresponding isotropic result at 1 TeV is plotted in figure 9.2.
Since our calculations are restricted to dark matter masses below a couple of TeV, the
only mass we can compare for (and thus the only case plotted in figure 9.2) is 1 TeV.
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We immediately notice that there appears to be an approximate factor 20 discrepancy
between our and their results2. Assuming that our antiproton and antineutron spectra
are the same, a factor 2 can be accounted for by our lower p0 value, but the spectra
still differ by a factor 10. We also note that the shape of the spectra differ somewhat
for low energies, especially in the bb̄ case. Some differences in shape and magnitude
can be expected since Bräuninger et. al used PYTHIA rather than Herwig++ as
event generator, but a factor 10 difference should not come from this.

Bräuninger et. al claim that their antiproton source spectra (before coalescence)
agree with those from an earlier study by Donato et. al [23] (aside from a factor 2 due
to setting the antineutron not to decay). A good test would therefore be to compare
our antiproton spectra to those by Donato et. al as well. We note that Donato et.
al do not provide an antiproton spectrum for the W+W− channel, but according to
[14], the antiproton spectrum from the ZZ channel should be similar to that from
W+W− (this can e.g. be seen in the plots in [19]). Similarly, the spectrum from any
quark channel should also be similar to that from bb̄. We will therefore compare the
spectrum from the W+W− channel to that from the ZZ channel by Donato et. al.

We note that the spectra of antiprotons and antineutrons are approximately equal.
We do not include a plot of the antineutron spectrum here, but the total number
of antineutrons and antiprotons per event are plotted in figure 9.10. Antineutrons
would under normal circumstances decay into antiprotons, but since we specifically
set the antineutron not to decay, our antiproton spectrum will be a factor 2 too small.
Like for Bräuninger et. al, our antiproton spectra should therefore be multiplied by a
factor 2 for this comparison.

The antiproton spectra from Donato et. al [23] are shown in figure 9.3, while the
spectra from our calculations, with and without the factor 2, are shown in figure 9.4.
We see that our spectra agree fairly well with those by Donato et. al after taking the
decay of antineutrons into account. We note minor differences in the shapes, but this
can be expected due to different Monte Carlo generators. Some differences may also
be expected when comparing the spectrum from W+W− to a spectrum from ZZ.

If the antiproton source spectra of Bräuninger et. al truly agree with those
by Donato et. al [23], they should consequently agree with ours too. Given that
this is the case, the factor 10 difference must be due to an error in either their or
our calculations of the antideuteron spectra. We checked for such an error in our
calculations by manually reading out the data for the antiproton and antineutron
spectra, and calculating the corresponding antideuteron spectrum by hand using eq.
(8.24) for several data points. The points did in all cases agree with the antideuteron
spectra plotted in figure 9.2, and the likely explanation to the discrepancy is therefore
that the spectra of Bräuninger et. al are off by a factor 10.

2For the W+W− case, the discrepancy is approximately a factor 20 for the entire plotted energy
range, while in bb̄ case, the discrepancy is approximately a factor 20 for high energies, and somewhat
higher for lower energies.

54



CHAPTER II. CALCULATION OF THE ANTIDEUTERON SPECTRUM

Figure 9.1: Antideuteron source spectra per event for dark matter annihilations into
bb̄ (left) and W+W− (right), as calculated by Bräuninger et. al [14].

Figure 9.2: Antideuteron source spectra per event for dark matter annihilations into
bb̄ (left) and W+W− (right) from our calculations.
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Figure 9.3: Antiproton spectra per event for dark matter annihilations into bb̄ (left)
and ZZ (right), as calculated by Donato et. al [23]. Note that the quantity on the
vertical axes is (likely) supposed to be dN/dx rather than dN/dT .

Figure 9.4: Antiproton spectra per event for dark matter annihilations into bb̄ (left)
and W+W− (right) from our calculations. Solid lines show the results from the
calculations, while dotted lines show the spectrum multiplied by a factor 2, in order
to account for antineutron decays. The fluctuations for low energies in the spectrum
from W+W− are due to insufficient data (too few particles in the energy bins).
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Figure 9.5: Antideuteron source spectra per event for dark matter annihilations into
bb̄ (left) and W+W− (right). The solid lines show the spectra for per-event coalescence
within the Monte Carlo, while the dotted lines show the spectra for coalescence of
the average antiproton and antineutron spectra. Red lines show the result for a dark
matter mass of 1 TeV, while blue lines show the result at 300 GeV.

While the results differ by an overall factor, we see that our results agree with
those by Bräuninger et. al in that there is a significant difference in the magnitude of
the antideuteron spectra from bb̄ and W+W−. The difference appears to be slightly
lower in our calculations (due to the different shape of the spectrum in the bb̄ case),
but the ratio between the peaks are still of order 103. What we want to investigate in
this thesis, is whether or not this difference is affected by how coalescence is performed;
i.e. if the isotropic or the Monte Carlo approach is used.

The antideuteron fluxes from the isotropic and Monte Carlo approaches are plotted
for dark matter masses of 300GeV and 1TeV in figure 9.5. We see that in the bb̄
case, the magnitude of the spectrum seems to be roughly the same for the two
approaches. The spectra are, however, shifted towards higher energies, and there
are some differences in the shapes of the spectra. For the W+W− case, there is a
significant difference in the magnitude of the antideuteron spectrum between the two
approaches. For 1 TeV, the difference is of order 102, while it appears to be a factor
∼ 3 smaller for 300 GeV. The shapes of the spectra also differ somewhat between the
two approaches, in particular for the 300 GeV case.

It is clear that when using the more correct Monte Carlo approach, the difference
in magnitude between the bb̄ and W+W− antideuteron spectra becomes much smaller
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than in the isotropic approach. Another interesting feature is that this difference
appears to depend on the dark matter mass. Both of these results will be investigated
in more detail in section 9.2.

During the time in which this work was conducted, the difference in antideuteron
spectra between the Monte Carlo and isotropic approaches was independently found
by Kadastik et. al [32]. Before proceeding in analyzing the data, we will compare our
results to their findings. We note that Kadastik et. al (like Bräuninger et. al) used
the MDM model to introduce a dark matter candidate, and used PYTHIA rather
than Herwig++ as event generator. They have the same definition of p0 as us, and
use a value of p0 = 160 MeV for both the isotropic and Monte Carlo approach. Their
p0 value for the Monte Carlo approach is supposedly calibrated against the ALPEPH
data, while the value for the isotropic approach has not been separately calibrated.
We can only speculate why their p0 value is higher than ours, but it can likely be
attributed to the use of different Monte Carlo event generators.

The source spectra from the calculations by Kadastik et. al are plotted in figure
9.7. They plot their spectra in terms of x dN/dx, and our spectra are plotted similarly
in figure 9.6. We note that figure 9.7 shows the result for annihilations into light
quarks (labeled qq̄) rather than bb̄. As discussed earlier (and as can be seen in the
other plots in their article), the spectrum from bb̄ is similar to the spectra from other
quarks. We also note that while we plot results for both approaches, Kadastik et. al
only plot the source spectra from the Monte Carlo approach.

Comparing the results, we see that our spectra agree quite well for the W+W−

case, while there seems to be a factor ∼ 3 discrepancy in the bb̄ case. Our curves
are in the Monte Carlo case fitted to the data points with a factor ∼ 1.5 uncertainty.
This uncertainty may account for some of the discrepancy, as well as for some of the
differences in the shapes of the curves. We also keep in mind that Kadastik et. al
use a significantly higher value of p0, something which alone could account for such
discrepancy. The difference in discrepancy between the W+W− and the quark case
could either be due to differences in the Monte Carlo generators, or possibly due to
differences in the p0-dependence of the different annihilation channels. Since we used
the same program for calculating the spectra for both the W+W− and bb̄ case, it is
highly unlikely that this difference is due to an error on our side.

9.2 Analysis of the spectra

We found that there is a significant discrepancy in magnitude between the spectra
from the Monte Carlo and isotropic approaches. We also found that this discrepancy
appears to depend on the dark matter mass in the W+W− case. In order to investigate
the dependence of the antideuteron spectra on the dark matter mass, we plotted the
total number of antideuterons produced against the dark matter mass for the two
approaches, as seen in figure 9.8. The corresponding plot by Kadastik et. al can
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Figure 9.6: Antideuteron source spectra per event for dark matter annihilations into
W+W− (left) and bb̄ (right) from our calculations. The solid lines show the spectra
for per-event coalescence within the Monte Carlo, while the dotted lines show the
spectra for coalescence of the average antiproton and antineutron spectra. Red lines
show the result for a dark matter mass of 1 TeV, while blue lines show the result at
300 GeV.

Figure 9.7: Antideuteron source spectra per event for dark matter annihilations into
W+W− (left) and qq̄ (right), as calculated by Kadastik et. al [32]. All results are
from the Monte Carlo approach. Results are shown for dark matter masses of 0.1, 1,
10 TeV (black, blue, red solid lines) and 0.3, 3, 30 TeV (black, blue, red dashed lines).
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be seen in figure 9.9. Comparing the figures, we find that the shapes of the graphs
agree very well. We note some differences in the overall magnitudes of order . 2. We
see that the factor ∼ 3 difference we had in the spectrum from the bb̄ channel is not
reflected in the total number of antideuterons produced (though some difference is
still present). This suggests that our calculation produced a wider spectrum (and thus
a lower peak) than that of Kadastik et. al. This again points to the use of different
event generators as the source of the discrepancies.

Analyzing the results, we again see a significant discrepancy in the overall an-
tideuteron yield between the Monte Carlo and isotropic approaches, and we also see
that there is a clear difference in the dark matter mass dependence of the antideuteron
yield between the two approaches. For the W+W− case, the difference in mass
dependence is very large; the ratio of the number of antideuterons produced in the
two approaches changes by a factor 102 when increasing the dark matter mass from
100 GeV to 1 TeV. There is also some difference in the mass dependence for the bb̄
case, but it is far less significant. Two major questions arise from these observations:

• Why the overall difference in antideuteron yield between the two approaches?

• Why is there a significant difference in the mass dependence in the W+W− case,
while only a minor difference in the bb̄ case?

9.2.1 The differences in mass dependence

The two questions are interrelated, and we begin by investigating the difference in
the DM mass dependence between the annihilation channels. Equation (8.24) can be
expressed in terms of the scaled kinetic energy, x:(

dNd̄

dx

)
xd̄

=
p3

0

6

md̄

M2
DMmn̄mp̄
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x2
d̄
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(
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)
xn̄=

xd̄
2

(
dNp̄

dx

)
xp̄=

xd̄
2

. (9.1)

For large dark matter masses, MDM , we would therefore expect the total number of
antideuterons produced to be suppressed as 1/M2

DM . From figure 9.8 we see that this
is the case for W+W−, but that it does not hold for bb̄. The 1/M2

DM suppression can
only be expected if the number of antiprotons and antineutrons produced does not
depend on the dark matter mass. We investigate this by plotting the average total
numbers of antiprotons and antineutrons produced per event, as seen in figure 9.10.
We see that the antinucleon yields are indeed constant in the W+W− case, but that
they increase fast enough in the bb̄ case to overcome the 1/M2

DM suppression in eq.
(9.1).

The difference between the two cases here is not entirely physical. The quarks
and the gauge bosons are actually treated differently by Herwig++. When Herwig++
reads the input from MadGraph, it treats the gauge bosons as on-shell particles; it
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does not know that they are merely intermediate states in a larger process. Quarks,
on the other hand, cannot exist as free particles, and when given as input, they must
always be virtual, intermediate particles. Treating the gauge bosons as on-shell is a
good approximation at low energies, but is problematic at high energies. The problem
when going to high energies, is that the gauge bosons are simply Lorentz boosted,
and decay into the same number of final state particles as they would at low energies.
An on-shell particle must always decay into particles where the total mass does not
exceed the mass of the initial particle. Virtual particles, on the other hand, can decay
into a group of particles with a higher total mass than the initial particle. This is
exactly what we see in figure 9.10: Quarks, which are being treated as virtual particles,
produce more final state particles at high energies, while the gauge bosons, which are
being treated as on-shell particles, always produce the same number of final state
particles.

9.2.2 The overall antideuteron yield

We continue our discussion by investigating the difference in the overall antideuteron
yield between the two approaches. The source of this discrepancy is suggested in our
naming of one of the coalescence approaches: Isotropy. In deriving equation (8.24),
we had to assume that the momentum distributions of antiprotons and antineutrons
were uncorrelated and isotropic. This, however, is not the case. Rather than being
isotropically distributed, the final state particles from the neutralino annihilation
events come out in confined jets. The momenta of the final state particles within each
jet are more closely aligned than they would be in an isotropic distribution, and the
probability of finding an antiproton-antineutron pair with a momentum difference less
than p0 is thus significantly higher than in the isotropic case.

To illustrate this effect, figure 9.11 shows the distribution of the angles between
the momenta of the final state antiprotons and antineutrons. These distributions
are of the internal angles for all possible antiproton-antineutron pairs, and should
not be mistaken for the angles from the beam axis, i.e. the movement axis of the
incident dark matter particles. We see that the distributions are peaked for angles
near 0 and π, which indicates that the antiprotons and antineutrons are produced
in back-to-back jets. We also see that the jet effect is much stronger in the W+W−

case than for bb̄, and that the jet effect for W+W− is considerably stronger for a dark
matter mass of 1 TeV than for 300 GeV. There are two effects at play here. One of
them is a QCD jet effect, while the other is related to special relativity, and comes
back to the on-shell treatment of the gauge bosons.

For the bb̄ case, only the QCD effect is of importance. The details of how these
jets are formed is an advanced topic of QCD, and will not be discussed in detail here.
The physical principle behind the jets is an angular ordering mechanism. The two
particles produced in the tree level annihilation process move out back-to-back, and
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decay in QCD cascades. For each step (each decay or particle emission) in a QCD
cascade, the angles between the momenta of the produced particles decrease. This
effect accumulates through the cascade, giving rise to confined particle jets. The jet
effect is in this case somewhat suppressed by the fact that the quarks carry color, and
particles from the two different jets will therefore have to combine in order to produce
colorless final states.

For the W+W− case, the two particles do not carry color, and only particles within
each jet will have to combine in order to produce colorless final states. This is, however,
not the main mechanism behind the strong jet confinement in the W+W− case. The
explanation for this strong confinement brings us back to the on-shell treatment of
the gauge bosons. As already mentioned, an increase in dark matter mass will in the
W+W− case correspond to a Lorentz boost of the final state particles3. This Lorentz
boost will in itself produce a jet effect.

Consider an annihilation event that produces a W+W− pair, where the two gauge
bosons move back-to-back along the x-axis with a velocity V . Consider now a final
state particle being created with a velocity v =

√
v2
x + v2

y in the rest frame of the
W -boson moving in the positive x-direction (unprimed coordinates). vx and vy are
here the velocity components along the x and y axes. The angle between the x-axis
and the movement direction of the particle is in this frame given by

cos(θ) =
vx√
v2
x + v2

y

. (9.2)

The Lorentz transformations to the lab frame (primed coordinates) of the velocity
components of are given by eq. (A.11) and (A.12). We can now calculate the angle
between the movement direction of the particle and the x-axis in the lab frame:

cos(θ′) =
v′x√

v′2x + v′2y
=

vx + V√
(vx + V )2 + v2

y(1− V 2)
. (9.3)

If V = 0, the angles are the same in both frames. We see, however, that for
V → c = 1, cos(θ′) → 1, or θ′ → 0. In other words: As the velocities of the gauge
bosons increase, the angular distribution of the decay products (in the lab frame)
becomes narrower. This effect is the source of the extra strong jet confinement seen
for the W+W− case in figure 9.11, and explains why the confinement is significantly
stronger at 1 TeV than it is at 300 GeV. We note that the stronger angular confinement
from special relativity does not affect coalescence, as the coalescence prescription is
applied in the center-of-momentum frame of the antiproton and antineutron. If it
did affect coalescence, we should have seen an increase in the number antideuterons
produced with higher dark matter masses, but as seen in figure 9.8, the number
remains roughly constant.

3Some change in this behaviour can, however, be expected in the regime where energies are low
enough for particles from different jets to interact with each other.
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Figure 9.8: Average total antideuteron yield per annihilation event as function of
the dark matter mass. The solid lines show the results from calculations where the
coalescence was performed within the Monte Carlo simulation, whereas the dashed
lines show the results where the coalescence prescription was applied to the average
antiproton and antineutron energy spectra.

Figure 9.9: Average total antideuteron yield per annihilation event as function of the
dark matter mass, as calculated by Kadastik et. al [32]. The annihilation channels
are listed on the right. The thin lines correspond to the isotropic approach (labeled
‘Spherical approximation’), while the thicker lines correspond to the Monte Carlo
approach.
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Figure 9.10: Average total antiproton and antineutron yields per annihilation event as
function of the dark matter mass. Green indicates antineutrons, while blue indicates
antiprotons. The solid lines show the results for the bb̄ case, while the dashed lines
show the results for the W+W− case.

Figure 9.11: Distribution of the angles between the momenta of antiprotons and
antineutrons. For each possible antiproton-antineutron pair, the angle between the
momenta was calculated in the lab frame. These angles were averaged over all pairs,
over 105 events. The blue and green lines show the actual Monte Carlo result for bb̄
and W+W−, while the red lines show the expected result for the case of isotropic
distributions.
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10 Higher order processes

Since the difference between the coalescence implementations was investigated by
Kadastik et. al during the work on this thesis, we decided to also look for other
factors that may influence the antideuteron spectrum. Earlier papers on the subject
have only considered tree level processes, and we therefore decided to investigate the
corrections from higher order processes.

We are here more interested in the branching ratios between the processes than
in the antideuteron spectra from the individual processes. As mentioned in section
7.2, the branching ratios between different annihilation channels are very much model
dependent, while the antideuteron spectra from the different channels are not. The
results in this section are therefore specifically related to the MSSM.

We calculated the low velocity annihilation cross sections (corresponding to kinetic
energies T ∼ few GeV � MDM) for χ̃0

1χ̃
0
1 → W+W−, and for the higher level

processes in which one and two extra Z-bosons are emitted. MadGraph was unable
to calculate cross sections for processes with a higher number of gauge bosons in the
final state. The calculations were performed for several different neutralino masses in
the range 100 GeV to 2 TeV 4. Using these cross sections, we calculated the branching
ratios with the W+W− cross section as benchmark. The branching ratios are, in other
words, normalized such that W+W− has a constant branching ratio of 1. The results
from these calculations are plotted in figure 10.1.

We note that we are not looking to give a complete view of the different annihilation
channels, but rather to get a phenomenological indication on the influence of higher
order processes. We therefore do not consider the branching ratios between quarks and
gauge bosons, or calculate the cross sections for other processes of the same orders.

From figure 10.1, we see that the contribution from higher order processes is
negligible for low neutralino masses. The contributions do, however, increase rapidly
with increasing masses. For 2 TeV, the branching ratio for W+W−Z is roughly 10%
of that for the tree level process. We see that the process involving 2 Z-bosons is
more strongly suppressed for low neutralino masses than the single-Z-boson process,
but that the contribution appears to increase faster with increasing masses than for
W+W−Z. Due to the unreliability of the spectrum generators for high masses, we do
not calculate results for neutralino masses above 2 TeV. Note that the bump in the
graphs at roughly 1100 GeV is not due to statistical uncertainty, but more likely due
to the MSSM calculation becoming unreliable for high masses.

Extrapolating our results, we would expect the contribution from higher order
processes to become significant for a neutralino mass in the mid-TeV range. The
emission of additional Z-bosons are, of course, not the only possible higher order
processes, and when performing calculations in the TeV range, the contributions from

4Annihilations into W+W−Z and W+W−ZZ are only possible when the combined mass of the
two neutralinos is higher than combined the mass of the 3 and 4 gauge bosons.
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Figure 10.1: Branching ratios for various annihilation channels as function of the dark
matter (neutralino) mass. The red line shows the benchmark branching ratio for the
tree level process χ̃0

1χ̃
0
1 → W+W−. The blue and green lines show the branching ratios

for the higher order processes χ̃0
1χ̃

0
1 → W+W−Z and χ̃0

1χ̃
0
1 → W+W−ZZ, respectively.

a number of processes should be considered. In calculations for neutralino masses
below 1 TeV, however, the contributions from higher order processes can be neglected.
Since the contribution from the higher order processes is so low in the mass range
available to our calculations, we do not calculate the antideuteron spectra from these
processes.

We emphasize again that this result is specific to the MSSM. Similar results may
be expected in other models, but the mass range in which the higher order corrections
become important will likely vary. For papers like those of Bräuninger et. al and
Kadastik et. al, where annihilation spectra are being calculated for dark matter
masses up to 30 TeV, the contributions from higher order processes should certainly
be investigated and taken into account.
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11 Propagation through the Galaxy

Using Monte Carlo simulations, we obtained the average particle energy spectra from
dark matter annihilation events. In order to detect dark matter indirectly, however,
we need to calculate the fluxes and energy spectra we would expect to measure in
chosen particle channels near Earth.

Measurable signals from dark matter annihilations would be expected to originate
mainly from annihilations within our own galaxy. In section 1.2, we presented some
common models for dark matter distributions in galaxies. Using these profiles, along
with the data from the Monte Carlo simulations, we can find the resulting spectrum
and production rate of antideuterons at any given point in the Galaxy. What we now
need to know, is how these particles propagate in the Galaxy, from the point where
the annihilation took place, to Earth, where the total flux can be measured.

There are several physical phenomena in the Galaxy that will influence the
propagation of cosmic ray particles. Since we are dealing with charged particles
(antideuterons), magnetic fields are of particular importance. We will discuss this in
more detail below, and introduce one of the most commonly used propagation models.
Before doing so, however, we have a closer look at what we know about the Galaxy.

11.1 The Milky Way

The Milky Way is a spiral galaxy, and our solar system is located approximately
8 kpc from the Galactic center, close to the arm structure known as the Orion-Cygnus
arm. The Galaxy consists of several different regions, of varying importance to cosmic
ray propagation. We will briefly discuss some of these regions below. Most of the
numerical values in this section are taken from [17].

The Galactic disk: This is arguably the most important important structure in
the Galaxy, and contains many of the stars, as well as most of the gas and dust of the
Galaxy. It has a radius of approximately 25 kpc and a thickness of about 350 pc (for
the region referred to as the thin disk). As already mentioned, the Milky Way is a
spiral galaxy, which implies that the Galactic disk has a spiral arm structure. The
exact spiral structure is not fully known, but a four-arm logarithmic spiral model is a
likely candidate [25].

For the discussion of cosmic ray propagation, there are a number of processes
taking place in the disk that could influence the cosmic ray spectra. Examples of
such processes are annihilations on interstellar matter, energy loss processes related
to scattering on interstellar matter, and reacceleration due to plasma shock waves or
magnetic irregularities 5. Moreover, as briefly discussed in [39], an outflow of matter

5These reacceleration processes are known as first and second order Fermi acceleration. See for
example [46] for more information.
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Figure 11.1: Illustration of the Milky Way. The arrow shows the position of the Sun.
Credit: NASA JPL.

from the Galactic disk (a galactic wind) is necessary for the disk to be stable. Such
winds have been observed in other galaxies, and will contribute to push low energy
particles away from the Galactic disk.

Stellar halo: The stellar halo is a spherically symmetric distribution of old stars
around the Galactic center. The halo does not rotate around the Galactic center like
the disk, and the stars in the halo generally have high velocities compared to those in
the disk. Many of these halo stars are also gravitationally bound together in globular
clusters. The radius of the halo is not very well defined, but a value of about 50 kpc
seems appropriate. The stellar halo is not of significant importance for cosmic ray
propagation.

Galactic bulge: In the center of the Galaxy, we find the Galactic bulge, which is
a region with a higher vertical extension than the Galactic disk. It has a half-light
radius (radius of a sphere from which half of the light is emitted) of about 0.7 kpc.
The bulge contains a large number of stars, whose motions can be described as an
intermediate between a purely rotating system (like the Galactic disk) and a system
that is supported by its velocity dispersion (like the stellar halo) [41]. The bulge was
originally thought to be fully spheroidal, but more recent studies strongly indicate that
it contains an elongated bar structure with a radius (half-length) of approximately
4.4 kpc (illustrated in figure 11.1) [17].
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In terms of cosmic ray propagation, the bulge is often disregarded, and treated
the same way as the Galactic disk.

Dark matter halo: As already discussed, there is significant evidence that the
Galaxy might have a spherically symmetric halo of dark matter. The distribution of
dark matter is crucial for finding the dark matter annihilation rates in different parts
of the Galaxy, and possible distribution models were discussed in section 1.2. Since
(WIMP) dark matter interacts very weakly with ordinary matter, the dark matter
halo has no influence on the propagation of cosmic rays after their production.

Galactic magnetic field: It is well established that the Galaxy has a magnetic
field. In the disk, this field can be observed in several ways, for example through
Faraday rotation6. Outside the disk, there are fewer means to observe this field, but
observations such as synchrotron radiation from far above the disk indicate that the
magnetic field stretches far beyond the disk [18]. One often refers to this extended
magnetic field region as the magnetic halo of the Galaxy.

The magnetic field is often divided into two main components: One “regular”
component which follows the spiral structure of the disk, and one component which is
inhomogeneous and highly turbulent. The inhomogeneous component is of particular
importance to cosmic ray propagation, as it effectively leads to a random walk
behaviour for low energy particles. Cosmic rays from WIMP annihilations within the
Galaxy are considered low energy particles in this respect. The random walk of the
particles in this magnetic field can be described by a diffusion equation. Unfortunately,
the details of the magnetic field are poorly known, so one has to resort to simple
models for the diffusion coefficient [40].

The region where this diffusion takes place is often modeled as a cylinder with a
radius equal to that of the disk. The height of the region is still a matter of discussion,
but a half-height of ∼ 4 kpc is, according to many measurements, a reasonable value
[40].

6Faraday rotation is a rotation of the polarization of light due to a magnetic field in the interstellar
medium. The rotation depends on the wavelength of the light, so for a pulsar, which emits light
with the same polarization on different wavelengths, comparing the observed polarization at different
wavelengths can give us information on the magnetic field along the line of sight. See for example
[16] for more information.
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11.2 The two-zone propagation model

For the propagation of charged cosmic rays, the magnetic field of the Galaxy is by
far the most important factor. As mentioned above, the details of this field gives rise
to a random walk behaviour for charged cosmic rays, and it is therefore common to
describe the propagation in the Galaxy using diffusion models. We will mainly follow
[19], and use the so-called two-zone propagation model for the Galaxy. The model in
[19] is applied to antiprotons, but there is no phenomenological difference between the
cases of antiprotons and antideuterons, and the model can be applied to antideuterons
with only minor adjustments.

11.2.1 The model

The two-zone propagation model is a simple cylindrical diffusion model, and is, as the
name suggests, divided into two zones: A thin gaseous disk and a magnetic halo. In
this model, the disk and the halo have the same radius, R = 20 kpc. The half-height
of the disk is usually chosen to be h = 100 pc, while the half-height, L, of the magnetic
halo is a free parameter (see table 11.1).

Only dark matter annihilations taking place within the cylinder(s) are considered
in this model, and it is assumed that the number density of antideuterons goes to
zero at z = ±L and r = R. The dark matter halo is described by one of the density
profiles from section 1.2, and goes beyond the cylinder of this model. A portion of
the flux, corresponding to annihilations outside the cylinder, is thereby lost. A three-
zone diffusion model, taking the extended size of the dark matter halo into account,
was investigated in [43]. It was, however, found that the correction from including
this region is smaller than the uncertainty related to the parameters describing the
two-zone model.

We will consider 3 sets of parameters for the diffusion model, labeled ‘max’, ‘min’,
and ‘med’. The parameters in these sets are explained at different points in this
section, and values are listed in table 11.1. The sets of parameters can be found
by comparing the cosmic ray Boron/Carbon ratios from diffusion simulations with
different parameters to observational results [14]. While all the sets are compatible
with observed B/C ratios, the ‘max’ and ‘min’ models are physically extreme, and are
not likely to correspond to the actual conditions in the Galaxy. They can, however,
be considered upper and lower limits.

As mentioned in the discussion on the Galactic disk, there is a galactic wind
flowing outwards from the disk. This outflow of diffusive material leads to convection,
and we refer to it as a convective wind. In this model, it is common to use a constant
convective wind, Vc, which is perpendicular to the Galactic disk, and is effective in the
entire cylinder. Vc is another free parameter, whose value can be found in table 11.1.

Energy redistribution effects, such as reacceleration and energy losses due to
interactions with interstellar matter will be neglected in this calculation. This approx-
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Model L in kpc δ K0 in kpc2 Myr−1 Vc in km s−1

max 15 0.46 0.0765 5
med 4 0.7 0.0112 12
min 1 0.85 0.0016 13.5

Table 11.1: Propagation parameters for the max, med and min models. Data extracted
from [14].

imation is commonly made in these kind of calculations, as the processes in question
mainly take place in the rather thin Galactic disk. Since the dark matter annihilations
take place in the vast dark matter halo, the antideuterons will generally spend very
little time in the disk [14].

There is, however, one kind of process in the disk that should be considered,
namely annihilations on interstellar matter. Annihilations will remove particles from
the flux, rather than simply redistributing their energies, and can therefore have a
much more profound effect on a possible dark matter annihilation signal.

11.2.2 The diffusion equation

Assuming steady state conditions (no time dependence in the antideuteron flux), the
diffusion equation describing this model is given by

−K(T )∇2f︸ ︷︷ ︸
(Spatial) diffusion

+
∂

∂z
( sign(z)fVc)︸ ︷︷ ︸

Convection

= Q︸︷︷︸
Source

− 2hδ(z)Γ ann(T )f︸ ︷︷ ︸
Annihilation

, (11.1)

where f(~x, T ) = dNd̄/dT is the number density of antideuterons per unit (kinetic)
energy, K(T ) is the diffusion coefficient, and Γ ann(T ) describes annihilation of the
antideuterons on interstellar matter.

The diffusion coefficient is related to the power spectrum of the inhomogeneities
in the Galactic magnetic field. The reason for this is related to the energy dependence
of the deflection of charged particles in magnetic fields. High energy particles are
less deflected by a magnetic field than lower energy particles, and have to move for
larger distances in the field in order to obtain the same deflection. This implies that
higher energy particles are more susceptible to larger (and less susceptible to lower)
scale inhomogeneities in the field than lower energy particles. The power spectrum
is, unfortunately, poorly known. The best we can do to find an expression for the
diffusion coefficient, is therefore to find a suitable analytical model. Following [19],
we choose the following expression for the diffusion coefficient:

K(T ) = K0βRδ. (11.2)

K0 and δ are free parameters, and can be found from B/C ratio studies, as mentioned
earlier. Values are found in table 11.1. β is the antideuteron velocity in units of c,
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while the quantity R is called the rigidity, and is defined as

R ≡ pc

Ze
· ( GV)−1 =

Z=1

( pc

GeV

)
, (11.3)

where p is the antiproton momentum, e is the elementary charge, and Z = 1 is the
atomic number of (anti)deuterons. For antideuterons, the rigidity is (in natural units)
just the momentum in units of GeV.

Antideuterons can annihilate on interstellar matter in the Galactic disk. In this
model, it is assumed that the interstellar matter in question is hydrogen and helium.
The annihilation term, Γ ann(T ), in equation (11.1) is then defined as

Γann(T ) = (nH + 4
2
3nHe)v σ

ann
d̄p (T ). (11.4)

nH and nHe are here the number densities of hydrogen and helium in the disk, and
we adopt the values of nH ≈ 1 cm−3 and nHe ≈ 0.07nH from [19]. The factor 4

2
3

corrects for different cross sections for H and He interactions. v is the velocity of the
antideuteron, while σ ann

d̄p
(T ) is the cross section of a d̄p-collision where the antideuteron

is destroyed. This is an inelastic interaction, and for finding the cross section, σ ann
d̄p

,

we will follow [14].
We begin by expressing this cross section as

σ ann
d̄p ≡ σ ann

inel = σ inel − σ non−ann
inel = σ tot − σ el − σ non−ann

inel . (11.5)

All these cross sections are, of course for a d̄p interaction. Experimental data for the
total cross section, σ tot, is not available for this reaction, so we use data for the charge
conjugate reaction, p̄d, thus assuming

σd̄ptot ≈ σp̄dtot. (11.6)

For the elastic cross section, σ el, we have no experimental data for neither the reaction
nor its charge conjugate. This is also the case for the total cross section data at high
energies. For the elastic cross section, as well as the total cross section above 103 GeV,
we must therefore make the assumption

σd̄pel ≈ 2σp̄pel . (11.7)

The term σ non−ann
inel corresponds to an inelastic interaction where the antideuteron

survives. Again, no data is available, and we approximate it by using the charge
conjugate reaction, summing up the available p̄d → Xd cross sections, which are
basically p̄d→ (Nπ)p̄d, where N indicates the number of pions.

The total and elastic cross section data for p̄d and p̄p can be obtained from the
Particle Data Group [7], while the data for p̄d→ (Nπ)p̄d can be obtained from [50].
These data are plotted in figure 11.2. We note that very little data is available for
the non-annihilating inelastic cross section, and our fit to these data is somewhat
different to that in [14]. However, since this cross section is so small compared to the
two others, the uncertainty in this cross section is of little importance.
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Figure 11.2: Cross section data for antideuterons on interstellar protons as a function
of the antideuteron momentum. The points indicate experimental data, while the
lines show the fits to the data which were used in our calculations.

11.2.3 The flux near Earth

The diffusion equation, (11.1), (with the boundary condition of zero antideuteron
density at z = L and r = R) can be solved analytically (see for example [23] or [39]),
leading to an expression for the total flux, Φd̄, at the position of the Earth:

dΦd̄

dT
(T,~r�) = B

vd̄
4π

(
ρ�
MDM

)2

R(T )
∑
k

1

2
〈σv〉k

(
dNd̄

dT

)
k

. (11.8)

Here, B is the boost factor discussed in section 6.2.1, which is needed if one wants to
reproduce the PAMELA positron excess. vd̄ is the antideuteron velocity, ρ� is the
dark matter density at the position of the Earth, MDM is the dark matter particle
mass, 〈σv〉k is the annihilation cross section for process k (k = W+W−, bb̄ etc.), and
(dNd̄/dT )k is the corresponding antideuteron source spectrum. For our case, we will
not sum over the different annihilation channels within the calculation, but rather
calculate the contribution to the final flux from each channel separately.

The astrophysical data is encoded in the function R(T ), which does not depend on
the source spectra or the dark matter mass. We therefore only need to calculate the
function R(T ) once for different propagation parameters and dark matter distributions.
R(T ) is a somewhat nasty function, and is given by

R(T ) =
∞∑
n=1

J0

(
ζn
r�
R

)
exp

[
−VcL

2K

]
yn(L)

An sinh(SnL/2)
, (11.9)

where J0(x) is the cylindrical Bessel function of 0th order, and ζn is the nth zero of
this function. r� is the radial distance of the Earth from the Galactic center, and
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R is the radius of the Galaxy in our model. Note that we drop the dependencies of
some of the variables from our notation (e.g. we write K rather than K(T )). y(Z),
An, and Sn are all functions, and are defined by

yn(Z) =
4

J2
1 (ζn)R2

∫ R

0

dr rJ0(ζnr/R)

∫ Z

0

dz

exp

[
Vc(Z − z)

2K

]
sinh(Sn(Z − z)/2)

(
ρ(r, z)

ρ�

)2

,

(11.10)

An = 2hΓ ann + Vc +KSn coth(SnL/2), (11.11)

and

Sn =

√
V 2
c

K2
+ 4

ζ2
n

R2
. (11.12)

J1(x) is here the cylindrical Bessel function of 1st order. The other variables have
already been introduced earlier in the discussion. We note that the notation ρ(r, z)
corresponds to ρ(r′) with r′ =

√
r2 + z2. Numerical results for R(T ) are presented in

section 11.2.4.

After calculating R(T ), we can find the flux at the position of the Earth using
equation (11.8). There is, however, a local effect that is not accounted for in this
equation, namely Solar modulation: The Sun emits a stream of charged particles
through the Solar System, called the Solar wind. This solar wind contributes to
decrease the kinetic energy of charged cosmic rays, making up the effect referred to as
solar modulation. Without going into further detail, we follow [19], and adopt the
following simple approximation to account for the solar modulation effect:

dΦ Earth

dTEarth

=
p2

Earth

p2

dΦ

dT
, (11.13)

where the variables labeled ‘Earth’ are after Solar modulation, and the unlabeled ones
are the variables before Solar modulation. The momentum pEarth is given by

p2
Earth = 2md̄TEarth + T 2

Earth, (11.14)

where

TEarth = T − |Ze|φFisk. (11.15)

φFisk is here some effective potential called the Fisk potential. This potential charac-
terizes the energy loss due to the Solar wind, and varies with the cyclic Solar activity.
We here adopt the value of φFisk = 0.5 GV from [19].
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11.2.4 Numerical results for R(T)

We calculated the astrophysical function R(T ) numerically for different dark matter
distributions in all the three sets of propagation parameters. For calculating terms
related to Bessel functions, we used the GSL library [1], and for integration we used
an unnamed open integration formula of order 1/N4 (eq. 4.1.18 in Numerical Recipes
[45]). We used 300 integration steps for the z integral, and 500 for the r integral.

Performing this computation was, however, not entirely straightforward. The
reason for this is the convergence of the infinite sum in eq. (11.9). How fast the sum
converges depends on the antideuteron energy, the set of propagation parameters,
and the dark matter density profile. For a given parameter set, the sum converges
faster for higher energies. For a given energy, the sum converges far faster in the ‘max’
parameter set than it does with the ‘med’ and ‘min’ parameters7. A large number of
summation steps is required in the ‘min’ model to achieve sufficient accuracy.

The problem here is that as the number of steps increases, so does the size of
the (largest) Bessel function zeros ζn. Sn is a function of ζn, and is involved in
several hyperbolic terms. When ζn becomes large, so does Sn, and at some point, the
sinh(aSn) terms become too large to be represented by a double precision variable.
When this happens, the computation breaks down, and we end up with ‘inf’ or ‘NaN’
results. For the NFW profile with ‘min’ propagation parameters, this happens slightly
above 4000 steps. For the other propagation sets, this happens after even fewer steps,
but in these cases the sum converges much faster. What this basically means, is that
there is an upper limit to the accuracy we can achieve. If the accuracy condition is
too strong, the computation will break down.

Instead of using a fixed number of steps for this calculation, we used only the
number of steps required to reach our accuracy condition. We used a two-part
condition:

• We require the fractional change in the sum,
∣∣∣∑n−

∑
n−1∑

n

∣∣∣, to have been less than

1% for the last 10 steps.

• A negative sum is unphysical, but when R(T ) is small, the sum may take on
negative values before having converged sufficiently. In order to avoid negative
values, we require the 50 last steps in the sum to have been positive. 50 is
perhaps unnecessarily strict for this purpose, but it also serves as a minimum
number of summation steps.

These conditions may not sound very strict, but for the lowest energies with the
NFW or Einasto density profiles and the ‘min’ model, the conditions are only fulfilled
after some 3800 steps (while the computation breaks down slightly above 4000). Any
stricter conditions would not be possible to fulfill before the computation breaks down.

7The convergence rate goes down with max→med→min.
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The results from the calculations are plotted in figure 11.3. We see that there is a
significant difference between the different sets of propagation parameters, implying a
significant uncertainty in the observable flux on Earth. There is also some difference
between the different the density profiles, but this is far less significant. Note that the
discrepancy between the dark matter profiles for low T in the ‘min’ model likely is
due to insufficient convergence of the sums, rather than a physical difference.

This calculation was also performed by Kadastik et. al [32], and their result is
shown in figure 11.4. We see that our result agrees very well with theirs, but note that
the labels for the Einasto and Moore profiles appear to have been exchanged in their
figure. We performed the calculation for the Moore profile in the ‘max’ and ‘med’
propagation models to confirm this, and the result agreed with the graph labeled
‘Einasto’ in their figure. The figure of Kadastik et. al shows no difference between the
dark matter profiles for low energies in the ‘min’ model, something which supports
our suspicion that the variation for these energies in our results is due to insufficient
convergence of the sums.
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Figure 11.3: The function R(T ), plotted for different dark matter profiles and propa-
gation settings. The filled grey areas show the differences in R(T ) between the density
profiles for a given propagation model. The upper lines correspond to the ‘max’ model,
the middle lines correspond to the ‘med’ model, and the lower lines correspond to the
‘min’ model.

Figure 11.4: The function R(T ) for different dark matter profiles and propagation
settings, as calculated by Kadastik et. al [32].
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12 The final antideuteron spectra

With the source spectra and propagation model in place, we can finally calculate the
resulting antideuteron flux near Earth. In order to compare our results to those of
Kadastik et. al [32], we adopt their value for the thermally averaged cross section
〈σv〉 = 3 × 10−26 cm3/s for all annihilation channels. This is the expected total
annihilation cross section predicted by cosmology, and the result for each annihilation
channel will thus correspond to a situation where the branching ratio of the given
channel is 100%. In order to obtain the true antideuteron flux from annihilations of a
given dark matter candidate, the results from the different annihilation channels should
be weighted according to the corresponding branching ratios. This will, however, not
be done in this thesis.

For comparison with the results of Kadastik et. al, we calculate results using
the NFW density profile and the ‘med’ propagation setting. The ‘med’ propagation
setting is physically the most realistic of the three, and as we saw in figure 11.3, the
difference between different density profiles is comparatively small. As discussed in
section 6.2.1, a boost factor, B, is required in equation (11.8) in order to explain the
PAMELA excess through WIMP annihilations. In our calculations, this factor was
set to 1. If enhancement mechanisms such as clumping of dark matter or Sommerfeld
enhancement are in effect, the correct final spectra can be found by multiplying our
results with the correct boost factor.

The results from our calculations are plotted in figure 12.1, while the corresponding
results by Kadastik et. al are plotted in figure 12.2. Our plots are cut for high energies
in the 100 GeV graphs, and for low energies in the 1 TeV W+W− case due to
insufficient data in these energy ranges. Analyzing the graphs, we see that there is a
significant enhancement in the peaks of the spectra when going from the isotropic to
the more correct Monte Carlo approach. This enhancement is most significant for the
1 TeV W+W− case, where the new peak is 2 magnitudes higher than it was in the
isotropic approach. In figure 12.3, we show the antideuteron fluxes from the Monte
Carlo approach using the best and worst case scenario propagation settings. From the
figure, we see that the uncertainty in the propagation model leads to an uncertainty
in the final antideuteron spectrum of ∼ 1.5 orders of magnitude.

Comparing our result to that of Kadastik et. al, we find that that our overall
results agree fairly well. Again we note that the plot of Kadastik et. al shows the
result for annihilation into light quarks rather than bb̄. The spectra from these two
cases should be similar, but not necessarily identical. We see that there are no
order-of-magnitude differences between our results, but that there is some discrepancy
in the shapes of the graphs; especially for the 1 TeV case. As before, there is a factor
∼ 1.5 uncertainty in our plots for the Monte Carlo approach. The curves shown are
5th to 8th degree polynomials fitted to the data points, and some of the differences in
the shapes of the curves are related to this curve fitting. Other sources of discrepancy
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Figure 12.1: Final antideuteron spectra near Earth after propagation and Solar
modulation. Calculations are done for dark matter masses of 1 TeV and 100 GeV,
using the NFW density profile and the ‘med’ propagation parameters. In both plots,
we assumed a thermally averaged cross section of 〈σv〉 = 3× 10−26 cm3/s. Continuous
lines show the result for the Monte Carlo approach, while dashed lines show the result
from the isotropic approach.

Figure 12.2: Final antideuteron spectra near Earth, as calculated by Kadastik et. al
[32]. The plots show results calculated using the NFW profile, ‘med’ propagation
settings, and thermally averaged cross sections of 〈σv〉 = 3× 10−26 cm3/s. The results
are plotted for MDM = {0.1, 1, 10}TeV in the corresponding colors grey, blue and red.
Continuous lines show the Monte Carlo results, while dashed lines show the isotropic
results. The black dotted lines show the expected astrophysical background.
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12. The final antideuteron spectra

Figure 12.3: Final antideuteron spectra near Earth after propagation and Solar
modulation for different propagation settings. Calculations are done for dark matter
masses of 1 TeV and 100 GeV for the density profiles and propagation parameters
that produce the highest and lowest fluxes (solid and dashed lines, respectively). All
calculations were made using the Monte Carlo approach. In both plots, we assumed a
thermally averaged cross section of 〈σv〉 = 3× 10−26 cm3/s.

are, as discussed in section 9, differences between the Monte Carlo generators, as well
as the use of different p0 values.

The black dotted line in the plots by Kadastik et. al shows the expected astrophys-
ical background from the secondary production mechanisms discussed in section 6.2.3.
We see that without the presence of a boost factor, there is only hope of detecting
light WIMPs through indirect detection in the antideuteron channel. For higher dark
matter masses, the antideuteron spectra become orders of magnitude smaller than the
expected background flux, and thus hard or impossible to detect. For the case of a
dark matter with a mass of 1 TeV, we would have to rely on a boost factor B ∼ 50 in
order to be able to detect an annihilation signal in the antideuteron channel. As we
can see from the plot by Kadastik et. al, even higher boost factors will be necessary
for higher dark matter masses. Whether or not such a large factor is realistic is not a
subject that will be discussed in this thesis.

We note that if such a boost factor should be present, a heavy WIMP candidate
could produce an excess in the high energy range of the antiproton spectrum. In the
isotropic coalescence approach, this does not appear to be the case, as the antideuteron
spectrum drops off quickly for high kinetic energies. With the Monte Carlo approach,
however, we see that the antideuteron spectrum does not drop off as quickly, and with
a sufficient boost factor, a signal could be detectable at high kinetic energies.
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Chapter III

Summary and conclusions

13 Summary

In this thesis, we have studied the expected antideuteron spectrum from annihilations
of WIMP dark matter. We have presented some of the evidence for dark matter in
galaxies and clusters of galaxies, and seen how modern cosmological models depict
a universe consisting of 73% dark energy, 23% dark matter, and only 4% ordinary
baryonic matter. We have also shown how calculations on freezeout of dark matter
automaticly suggest WIMPs as dark matter candidates. We have briefly presented
some of the proposed dark matter candidates, and we have discussed the means of
direct and indirect WIMP detection.

The abundance of antimatter in the Universe today is extremely low, and since
WIMPs should annihilate into equal parts matter and antimatter, antimatter cosmic
ray channels may therefore offer the best prospects of observing a signal from WIMP
annihilations. A significant excess above the expected astrophysical background has
been found in the positron channel, while the measured spectrum of antiprotons can
be explained entirely by known astrophysical sources. The excess in the positron
channel is much larger than the signal one would expect from WIMP annihilations,
and physical effects leading to a boost factor for the annihilation cross section would
be required to explain the excess in terms of dark matter annihilations. The results
from these two channels can be interpreted in several ways, and other channels are
being investigated, in hope of being able to distinguish between the options.

The antideuteron channel is the most promising of the other antiparticle channels,
and aside from upper limits on the flux, no observational data currently exist for this
channel. Upcoming experiments such as GAPS and AMS-02 are expected to provide
such data, and there is much activity in producing the expected antideuteron fluxes
from various dark matter models before the data come in.

To describe the production mechanism of antideuterons, it is common to use
the coalescence model. The coalescence model is based on the simple principle that
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any (anti)nucleons with a momentum difference less than a threshold value, p0, in
their center-of-momentum frame will coalesce to produce a(n) (anti)nucleus. This
prescription can be applied directly within a Monte Carlo simulation, but since the
model was developed before the onset of Monte Carlo simulations, an approximate
model was developed which applies the prescription to nucleon energy spectra. We
went through one of the many possible derivations of the energy spectrum version of
the model, and showed how an assumption of uncorrelated and isotropic (anti)nucleon
momenta was required in this derivation.

For our calculations, we used the lightest MSSM neutralino as WIMP candidate,
and theoretical motivations, as well as practical considerations around this choice have
been discussed. With our WIMP candidate in place, we calculated the antideuteron
source spectra from quark and gauge boson annihilation channels using both of the
coalescence implementations. The primary goal of this thesis was to investigate if
the large difference in magnitude of the antideuteron spectra from quark and gauge
boson annihilation channels found by Bräuninger et. al in [14] was related to the
approximations in the energy spectrum application of the coalescence model. Our
calculations using the energy spectrum approach produced a similar difference between
the two channels, while only a small difference in magnitude was found using the
direct implementation of the model.

Investigating these results, we found the differences between the two models to
depend on the dark matter mass, and that the gauge boson channel has a radically
different behaviour in the energy spectrum approach. We found that main reason for
the special behaviour of the gauge bosons is related to that the Monte Carlo generator
treats quarks as virtual particles, while the gauge bosons are (incorrectly) being treated
as on-shell particles. An overall difference in the number of antideuterons produced
between the two versions of the coalescence model is related to the assumption of
isotropy. The final state particles from dark matter annihilations come out in confined
jets, and the probability of finding an antiproton-antineutron pair that satisfies the
coalescence condition is therefore higher than if the momenta were isotropically
distributed. In the gauge boson case, the jet confinement is stronger due to relativistic
effects, but this does not affect coalescence, as the coalescence prescription is applied
in the center-of-momentum frame of the particles.

During course of this work, the difference between the two implementations of the
coalescence model was independently discovered by Kadastik et. al [32]. Their results
appear to be in general agreement with ours, with exception of minor differences in
the spectra, which are likely related to the use of different Monte Carlo generators and
differences in the calibration. Since the primary goal of this thesis was investigated
by Kadastik et. al, we decided to also consider the contributions from higher order
annihilation processes. Our calculations showed that for the lightest MSSM neutralino,
higher order processes will likely become important for neutralino masses in the TeV
range. For the 100 GeV range, which we considered, corrections from higher order
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processes can be neglected. These results depend heavily on the model used to
introduce the WIMP candidate, but similar results can be expected for different mass
ranges in other theories as well.

We finally investigated the commonly used two-zone propagation model for propa-
gation of antideuterons in the Galaxy. Using this model, we calculated the expected
observable antideuteron spectra near Earth from the different annihilation channels.
We found our results to be in fair agreement with those calculated of Kadastik et. al.
From these results, we found that using the direct implementation of the coalescence
model leads to an order of magnitude enhancement of the antideuteron spectrum
compared to the energy spectrum approach. Even so, only WIMPs with masses in the
low 100 GeV range are likely to produce antideuteron fluxes higher than the expected
astrophysical background without the presence of a boost factor.

14 Conclusions and future outlook

The primary goal of this thesis was to investigate the difference in the magnitude
of the antideuteron spectra between the quark and gauge boson channels found by
Bräuninger et. al [14]. In our analysis of the source spectra in section 9.2, we found
that this difference mainly is due to the gauge bosons incorrectly being treated as
on-shell particles by the Monte Carlo generators1. Being treated as on-shell, the
gauge bosons decay to produce the same number of final state particles for all dark
matter masses. The quarks, on the other hand, are being treated as virtual particles,
and decay into a higher number of final state particles with increasing dark matter
masses. Equation (9.1), which governs coalescence with energy spectra, contains
a factor 1/M2

DM. Since the gauge bosons incorrectly produce a constant average
number of final state particles, the number of antideuterons produced is accordingly
suppressed as 1/M2

DM. In the quark case, the number of final state particles increases
with increasing dark matter masses, something which to some degree compensates for
the 1/M2

DM suppression.
From our studies, we have, in other words, found that difference between the quark

and gauge boson cases in the article by Bräuninger et. al was not mainly due to the
assumption of uncorrelated and isotropic nucleon momenta, but rather due to how
the particles are treated by the Monte Carlo generators. The incorrect treatment
of the gauge bosons does not only affect the isotropic coalescence approach. If the
bosons had been treated as virtual particles, the number of available nucleons for
coalescence would have increased for increasing dark matter masses. This would have
affected the number of antideuterons produced in the direct coalescence approach as
well. Not only that; the error in the number of final state particles produced affects
the contribution from this annihilation channel to all other cosmic ray channels as

1Treating the gauge bosons as on-shell is, however, a good approximation at low energies.
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well. Future studies of dark matter annihilations should therefore find a way for the
Monte Carlo generators to correctly treat the gauge bosons as virtual particles.

While the difference between the antideuteron spectra from the different annihila-
tion channels was not directly related to the isotropic assumption, we found that the
assumption does have a profound effect on the shapes and overall magnitudes of the
spectra. The final state particles from dark matter annihilations emerge in confined
jets, rather than being isotropically distributed. This leads to a higher probability
of finding an antiproton-antineutron pair that fulfills the coalescence condition of
a momentum difference less than p0. In the coalescence approach that applies to
energy spectra, this jet effect is missed, and the produced antideuteron spectrum is
consequently lower. The shapes of the spectra also differ between the two approaches.
For the final antideuteron spectrum near the Earth, these differences lead to spectra
that are about a magnitude lower in the isotropic approach for a dark matter mass of
1 TeV. From our results in figure 12.1, as well as those of Kadastik et. al in figure 12.2,
we find that the difference in magnitude between the approaches does not seem to
depend much on the dark matter mass. Instead, the antideuteron spectrum appears
to broaden as the dark matter mass increases.

The direct implementation of the coalescence model is not much more cumbersome
to implement than the energy spectrum approach, and since it yields more physically
correct results, future studies of the antideuteron flux from dark matter annihilations
should use the direct implementation rather than the traditional energy spectrum
approach. For studies that fail to get the Monte Carlo to treat the gauge bosons
correctly, using the direct implementation of the coalescence approach will, as we
have seen, also have a dramatic effect on the antideuteron spectrum from gauge boson
annihilation channels.

From the final antideuteron spectra near Earth, we found that even in the direct
implementation, only WIMP candidates with masses in the low 100 GeV range
will produce antideuteron fluxes that are higher than the expected astrophysical
background without a significant boost factor. Such a boost factor has already
been motivated by the large excess in the positron spectrum, and could arise from
phenomena such as clumping of dark matter or Sommerfeld enhancement. We are
not going to discuss any of these effects, nor are we going to investigate how large
boost factors could be expected from these effects. If a large boost factor should
be present, however, our results indicate that heavy dark matter particles could be
detected through an excess in the high energy range of the antideuteron spectrum.
Due to the quick falloff in the spectrum generated by the isotropic approach, such an
excess is only predicted by the direct implementation of the coalescence model.

In addition to calculating the antideuteron spectra from tree level processes, we
investigated how big the influence of higher order processes can be expected to be.
These calculations depend heavily on the model used to introduce the WIMP candidate,
and only apply directly to the MSSM. The contribution to the antideuteron spectrum
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from the various annihilation channels depend on the branching ratios between the
channels. Our calculations were not meant to give a full picture of all the annihilation
channels, but rather give an indication on the influence of higher order processes. We
therefore only calculated the branching ratios between the W+W− channel and the
processes in which one and two extra Z-bosons are emitted. Our results showed that
corrections from higher order processes are negligible for neutralino masses below 1
TeV, but that the higher order processes are likely to become important for masses in
the multi-TeV range. The contribution from the two-Z-process increases faster with
increasing neutralino mass than that from the one-Z-process. This indicates that for
increasing neutralino masses, corrections from an increasing number of processes must
be considered.

We only considered neutralino masses below 1 TeV, and did not have to take higher
order processes into account. In studies where multi-TeV neutralinos are considered,
however, corrections to the spectra from higher order processes should be taken into
account. While our result only applies directly to the MSSM, similar results may be
expected for different mass ranges in other models as well. For articles like those of
Bräuninger et. al and Kadastik et. al, where dark matter masses up to tens of TeV are
considered, corrections from higher order processes should definitely be investigated.

The reason why we could not consider neutralinos in the TeV range, is that
the SUSY spectrum generators become too inaccurate for these masses. Studies
considering high mass neutralinos should therefore either calculate the exact mass
spectra and mixing matrices by hand, or develop improved spectrum generators, which
can provide sufficient accuracy in this mass range.

The ultimate test of our results will be comparison against observational data. As
mentioned earlier, no observational data is yet available for the antideuteron channel,
but upcoming experiments such as GAPS and AMS-02 are expected to shed new light
on the energy spectrum of the antideuteron channel. There is currently large activity
in finding the expected antideuteron fluxes for different dark matter scenarios, but
only when the observational results become available will we be able to distinguish
between them.
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Appendix

Special Relativity

Some equations from special relativity are needed in the derivation of the equations
for the coalescence model. These equations are listed and explained here, but not
derived.

We use the following definition of the Minkowski metric as our metric tensor:

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (A.1)

The inner product of two four-vectors, a and b, is thus given by

aµbµ = ηµνa
µbν = a0b0 − a1b1 − a2b2 − a3b3. (A.2)

We note again are using natural units, c = ~ = kB = 1, and generally do not
explicitly write these quantities in our equations. Factors of c are, in other words left
out in many of the equations in this section.

Energies and momenta

The four-momentum of a particle of mass m is defined as

p = (
E

c
, px, py, pz), (A.3)

where pi is the momentum component in the i-direction, and

E =
√
m2 + ~p2, (A.4)

is the energy. The relativistic momentum, p ≡ ‖~p‖ , is given by

p = γmv. (A.5)
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γ is the Lorentz factor, and is given by

γ =
1√

1− β2
, (A.6)

where β = v/c. The energy of a particle moving at a velocity v can also be expressed
in terms of the Lorentz factor:

E = γm. (A.7)

The relativistic kinetic energy of a particle is defined as

T ≡ E −m. (A.8)

Lorentz transformations

The Lorentz transformation from a frame S to frame S ′, which is moving with velocity
−v along the x-axis with respect to S, is governed by

Λµ
ν =


γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1

 . (A.9)

Assume that a particle is moving along the x-axis with momentum p (corresponding
to a four-momentum p = (E, p, 0, 0)) in the S-frame. Applying (A.9) to (A.3) gives
us the momentum p′ in the frame S ′, which is moving at a velocity −v along the
x-axis:

p′ ≡ p′1 = Λ1
νp
ν =

p+ vE√
1− v2

. (A.10)

E ′ =
√
m2 + p′2 is there the energy of the particle in the S ′-frame.

Lorentz transformations can also be applied to velocities. We will not go through
the calculation here, only list the result. Consider a particle that is moving in the
xy-plane in frame S with velocity components vx in the x-direction and vy in the
y-direction. The corresponding velocity components in frame S ′, which is moving
with a velocity −V along the x-axis with respect S, are given by

v′x =
vx + V

1 + V vx
(A.11)

v′y =
vy

γ(1 + V vx)
. (A.12)
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Lorentz invariant quantities

Rather than Lorentz transforming quantities between frames, it is often more conve-
nient to work with quantities that are the same in all frames, i.e. Lorentz invariant
quantities. The four-momentum squared is one such quantity:

p2 ≡ pµp
µ = E2 − ~p2 = E2 − (E2 −m2) = m2. (A.13)

In two-body scattering events, it is common to introduce the Lorentz invariant
quantities known as Mandelstam variables. Let pi denote the 4-momentum of particle
i, where particle 1 and 2 are the incoming particles, and 3 and 4 are the outgoing
ones. The Mandelstam variables are then given by:

s = (p1 + p2)2 = (p3 + p4)2 (A.14)

t = (p1 − p3)2 = (p2 − p4)2 (A.15)

u = (p1 − p4)2 = (p2 − p3)2. (A.16)

The Mandelstam variables are Lorentz scalars, and thus have the same value in any
reference frame. This makes them a valuable tool for connecting quantities in different
frames.
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