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Abstract: We present analytical theory of dissipative soliton absorption
spectroscopy. A dissipative soliton formed in an all-normal-dispersion oscil-
lator with a narrowband intracavity absorber acquires spectral features that
follow the index of refraction of the absorber, as confirmed by numerical
simulations and experimental evidence. In contrast to the soliton absorption
spectroscopy in an anomalous dispersion regime, we anticipate resonant
enhancement of a modulation signal near the pulse spectrum edges that
results in an additional signal gain. We further show that the pulse acquires
a nanosecond-long tail in the time domain and provide simple formula for
estimation of its energy content.
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1. Introduction

Broadband solid-state and fiber lasers have become promising tools for optical metrology, spec-
troscopy, environment and industrial monitoring including trace gas detection. Combination of
broad smooth spectra with diffraction-limited brightness inherent in such lasers is especially
important for high-sensitivity spectroscopic applications. Recent availability of these fem-
tosecond sources, especially those operating in the finger-print region of molecular vibrations
at/above 2 μm, enables novel spectroscopic approaches, which allow achieving simultaneously
high resolution and record sensitivity at very short recording times. In comparison to LEDs and
lamp sources, the femtosecond sources offer higher spectral brightness, permitting more rapid
measurements in the broader spectral range, covering several absorption lines simultaneously.

One of the possible implementations of laser spectroscopy is the intracavity absorption spec-
troscopy allowing direct measurement of important molecular gases with high resolution and
good signal-to-noise ratio [1–5]. Progress in development of broadband solid-state oscillators
operating in the mid-IR [6], where there is a strong atmospheric absorption, as well as of fiber
lasers [7–9], covering the overtone absorption lines of a number of important gases makes the
intracavity technique to be of special interest for trace gas analysis applications. At the same
time, advancement of the femtosecond oscillators towards mid-IR brings them into the wave-
length regions, where the atmosphere itself becomes a major absorber inside the oscillator.
The issues of operation stability, spectrum and pulse deformation become important, whenever
these sources are to be used for quantitative spectroscopic measurements or ultrashort-pulse
applications.

As it was observed in Cr:ZnSe and Cr:YAG femtosecond lasers [10–12], the spectral sig-
natures from the absorption lines look differently, when an absorber is inside the cavity of a
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mode-locked oscillator or when it is introduced after the output mirror. For the conventional
femtosecond oscillator, the spectral signal induced by an intracavity absorption line followed
an associated index of refraction of absorber and was significantly enhanced compared to the
linear absorption signal from the same optical path. This observation stimulated research aimed
at developing the theory of the soliton absorption spectroscopy [13]. This theory is based on the
soliton perturbation theory and applies to both, passively modelocked femtosecond pulse oscil-
lators with intracavity absorbers and soliton propagation in fibers with narrowband impurities.
The main condition underlying the theory is that the soliton propagation conditions are realized,
i.e. the net-group-delay dispersion (GDD) is anomalous (anomalous dispersion regime, ADR)
and the femtosecond pulse is chirp-free.

During the last five years, rapid progress has been achieved in the theoretical studies and
experimental realization of the alternative regime of ultrashort pulse generation using the net-
normal GDD. Such a regime (normal dispersion regime, NDR) has been realized in chirped-
pulse solid-state oscillators (CPOs) [14] and all-normal-dispersion (ANDi) fiber lasers [15].
The NDR possess important advantages: energy scalability [16], and flattened spectrum cov-
ering the gain band - hence, making this regime more and more employed for generation of
high energy pulses and frequency combs. Extension of intracavity absorption techniques to the
NDR is therefore of special interest for trace gas analysis and other applications. The issue at
the core of this study is that the pulse developing in the NDR is strongly chirped and corre-
sponds to the so-called chirped dissipative soliton (CDS) [16]. Hence, the theory of Ref. [13]
cannot be extended to the NDR in a straightforward way. It is the purpose of this paper to
develop an analytical theory of dissipative soliton absorption spectroscopy in the NDR.

In this paper we consider the effect of a narrowband absorption on the CDS developing in
the NDR. The analytical treatment is based on the perturbation analysis of the approximated
CDS solutions of the complex cubic-quintic nonlinear Ginzburg-Landau equation (CNGLE).
We find that the spectrum acquires signatures, which follow the associated refractive index of
absorber and scale with the soliton wavenumber, as it takes place in the anomalous dispersion
regime. At the same time, the perturbation exhibits resonance enhancement when approaching
the CDS spectrum edges. Further, the narrow line may cause asymmetric distortion of the pulse
spectrum as a whole, which, however, does not affect recognition of individual signals from the
lines. The analytical theory is confirmed by numerical simulations and by experimental data
from a chirped-pulse Cr:ZnSe laser. Finally, we provide quite general expressions that allow
measuring the absorption from signal amplitude using only experimental observables such as
dispersion and spectrum width.

2. Model

Our approach is based on description of the ultrashort pulse developing in an oscillator (solid-
state or fiber) represented by a complex cubic-quintic nonlinear Ginzburg-Landau equation
(CNGLE) [17]:

∂a(z, t)
∂ z

=−σa(z, t)+(α + iβ )
∂ 2

∂ t2 a(z, t)+ [κ (1−ζP(z, t))− iγ]P(z, t)a(z, t)+ Π̂ [a] , (1)

where the non-dissipative factors are the self-phase modulation (SPM) with the inverse power
coefficient γ and the GDD with the coefficient β (β >0 corresponds to the NDR); and the
dissipative factors are the net-loss (i.e. the unsaturable loss minus the gain saturated by the
energy E ≡ ∫ ∞

−∞ |a|2 dt) with the coefficient σ , the frequency filtering with the squared inverse
bandwidth α (e.g. gain bandwidth), the self-amplitude modulation (SAM; κ is the inverse loss
saturation power multiplied by the saturable loss coefficient), and the saturation of SAM with
the inverse power coefficient ζ . In Eq. (1) z is the cavity round-trip number for a distributed
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oscillator, t is the local time, and P ≡ |a|2 is the instant power. The operator Π̂ describes a
perturbation caused by the frequency- dependent losses.

The general solution of Eq. (1) is unknown, but the approximate CDS solution can be ob-
tained on the basis of the adiabatic approximation and the method of stationary phase [18, 19].
In the time-domain, the CDS can be expressed in the following form:

a(z, t) =
√

P(t)exp [i(φ (t)−qz)] , (2)

where φ (t) is the phase and q is the wavenumber, i.e. the phase produced by slip of the carrier
phase in relation to the slowly varying envelope. Substitution of Eq. (2) in Eq. (1) allows obtain-
ing the approximated analytical solution in the spectral domain (calculations are documented
in [20, 21]):

e(ω)≈

√
6πB

Ξ2 +ω2 exp

[
3iBCω2

2(Ξ2 +ω2)(Δ2 −ω2)
− iπ

4

]

H
(
Δ2 −ω2) , (3)

where e(ω) is the spectral amplitude, H is the Heaviside function, power is normalized to ζ ,
and time is normalized to

√
αζ/κ . The normalized parameters become

q = P0 =
3
4

(

1− C
2
±
√
(1−C/2)2 −4A

)

,

Δ2 =Cq, (4)

Ξ2 = (1+C)C− 5
3

Δ2,

T =
3CD

Δ2(Δ2 +Ξ2)
,

Here Δ is the normalized half-width of the spectrum, T is the characteristic CDS temporal
width, and P0 is the normalized peak power, where two signs correspond to the so-called
positive and negative branches. The solution has a shape of the Lorentz function truncated
at ±Δ [18]:

p(ω)≡ |e(ω) |2 ≈ 6πB
Ξ2 +ω2 H

(
Δ2 −ω2) . (5)

The positive branch CDS has non-trivial limit A→ 0 (the vacuum stability limit of the CNGLE),
higher energy, and broader spectrum, while the negative branch CDS has almost a flat-top spec-
trum, corresponding to Δ2 � Ξ2. The oscillator parameters enter the solution as dimensionless
coefficients

A ≡ ζ σ
κ

, B ≡ γ
ζ
, C ≡ αγ

βκ
, D ≡ γ

κ
. (6)

The stability of the approximated solution [Eq. (3)] has been explored in Refs. [19, 22, 23]
on the basis of extensive numerical simulations. It has been shown that the CDS correspond-
ing to Eq. (3) is stable in the presence of gain saturation, i.e. when σ -parameter in Eq. (1) is
energy-dependent. It has been also demonstrated that a distortion of the CDS spectral profile
can develop at the singularity points ω =±Δ [23], where the resonant amplification of pertur-
bations is possible (see Fig. 4,a below and [24]). With these limitations in mind in the rest of
this section we apply the perturbation approach to the analytical solution [Eq. (3)].

As the perturbation source, we consider a superposition of N weak and narrow absorption
lines with causal Lorentz profiles [13]:

Π̂ [a(z, t)] ∝ ∑
l

εlΩl

t∫

−∞

e−(Ωl−iωl)(t−t ′)a
(
z, t ′

)
dt ′, (7)
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where εl <0 are the loss coefficients, ωl are the resonant frequencies, and Ωl are the bandwidths
corresponding to each absorption line.

By analogy to [13], we define f (t)exp(−iqz) as a perturbation signal with an assumption
of its phase-matching to the soliton by setting the propagation wavenumber of the perturbation
equal to q [17]. Substituting a′(z, t) = a(t)+ f (t)exp(−iqz) into Eq. (1), and linearizing with
respect to f , we obtain

i

(

σ f (t)−α
∂ 2 f (t)

∂ t2

)

+q f (t)+β
∂ 2 f (t)

∂ t2 = iΠ̂ [a(t)]+

+iκ
[
a(t)2 f ∗ (t)+2 |a(t)|2 f (t)−ζ |a(t)|2

(
2a(t)2 f ∗ (t)+3 |a(t)|2 f (t)

)]
+ (8)

+γ
(

a(t)2 f ∗ (t)+2 |a(t)|2 f (t)
)
,

where f ∗ is the complex conjugate perturbation amplitude.
Simple analytical form of solution [Eq. (3)] suggests developing the perturbation theory in

the spectral domain. Then the perturbation [Eq. (7)] takes the form

Π(ω)≡
N

∑
l=1

εl
1− i(ω −ωl)/Ωl

1+(ω −ωl)
2 /Ω2

l

(9)

and the Eq. (8) becomes

f (ω)
[
i
(
σ +αω2)+q−βω2]= ie(ω)

N

∑
l=1

εl

[

1+
i(ω −ωl)

Ωl

]−1

+ (10)

+
i

2π

∞∫

−∞

dω ′
[
ϒ1(ω −ω ′) f ∗(ω ′)+ϒ2(ω −ω ′) f (ω ′)+ϒ3(ω −ω ′) f ∗(ω ′)+ϒ4(ω −ω ′) f (ω ′)

]
,

where ϒ-terms in the convolution represent the nonlinear terms of CNGLE. ϒ1and ϒ3 (i.e.
images of (κ − iγ)a2 and −2κζ |a|2a2, respectively) can be found by means of the stationary
phase method like Eq. (3):

ϒ1 ≈ B

(
1
D
− i

)√
3πB(Δ2 −ω2)

C (Ξ2 +ω2)
exp

[
3iBCω2

4(Ξ2 +ω2)(Δ2 −ω2)
− iπ

4

]

H
(
Δ2 −ω2) , (11)

ϒ3 ≈−2B
D

√
3πB

Ξ2 +ω2

(
Δ2 −ω2

) 3
2

C3/2
exp

[
3iBCω2

4(Ξ2 +ω2)(Δ2 −ω2)
− iπ

4

]

H
(
Δ2 −ω2) . (12)

To find ϒ2 and ϒ4 (images of 2(κ − iγ) |a|2 and −3κζ |a|4, respectively), one can use the ap-
proximated expression for the CDS power profile: P(t)≈ P0sech(t/T )2, which becomes exact
in the ζ → 0 limit [16]. Then

ϒ2 ≈ 2B

(
1
D
− i

)

P0πT 2ω csch

(
πωT

2

)

, (13)

ϒ4 ≈− B
2D

P2
0 πT 2ω

(
4+T 2ω2)csch

(
πωT

2

)

. (14)

Equation (10) is the Fredholm integral equation of the second kind. Its solution can be obtained
iteratively in the form of the Neumann series, in analogy to [13]. The zero-order approximation
only accounts for the contribution of the first term in the right-hand side of Eq. (10). For weak
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absorption lines |ε| � 1 sufficiently far from the edges of the spectrum Ω2
l � Δ2 the perturbed

spectral power profile p′(ω) = |e(ω)+ f (ω)|2 can be expressed as [21]

p′ (ω)≈ 6πB
Ξ2 +ω2 H

(
Δ2 −ω2)

[

1+
2C
B

N

∑
l=1

εl

Δ2 −ω2
l

(ω −ωl)/Ωl

1+(ω −ωl)
2 /Ω2

l

]

, (15)

where we also assumed low saturation per pass (σ � 1) and prevalence of non-dissipative
factors such as SPM and GDD over dissipative such as SAM and frequency filtering: κ � γ ,
κζ � γ2, and α � β . These assumptions are well justified for most NDR solid-state oscillators.

For stronger absorption lines (|ε|� 1) or lines near the edges of the spectrum (Ω2
l ≈ Δ2) we

can obtain corrections to Eq. (15) in the form of Neumann series solution of Eq. (10) under the
above assumptions σ � 1, κ � γ , κζ � γ2, α � β , and

∞∫

−∞

dω ′ϒ1
(
ω −ω ′) f ∗(ω ′) =

∞∫

−∞

dω ′ϒ2
(
ω −ω ′) f (ω ′). (16)

The resulting iterative solution for the spectral perturbation is

fn(ω) = S(ω)+
3T 2

2(1−ω2/Δ2)

∞∫

−∞

dω ′ (ω −ω ′)csch

(
πT
2

(
ω −ω ′)

)

fn−1(ω ′),

S(ω) =
iC

B(Δ2 −ω2)
e(ω)Π(ω), (17)

f0(ω) = S (ω) .

In the general case, we should include all convolutions in Eq. (10) which results in two interre-
lated iterative equations for fn and f ∗n , with f0 = S and f ∗0 = S∗.

It should be noted at this point that zero-order solution in the form of Eq. (15) is linear with
respect to the individual absorption lines. It is therefore equally applicable to the dense line
groups like e.g. Q-branch, and inhomogeneously broadened lines like e.g. Gaussian and more
general Voigt profiles, as they can be represented as a superposition (convolution) of individual
narrow Lorentzians. Since the spectral signatures trace the index of refraction of an absorber,
the shape of this trace depends on the profile of an absorption line.

Another interesting property of the solution [Eq. (15)] is its temporal structure. The per-
turbed field a′(t) is by construction a sum of an unperturbed pulse a(t) and the perturbation
f (t), which in the zero-order approximation is a time-domain image of the S(ω) function in
Eq. (17). In the vicinity of a narrow resonance ω ≈ ωl both e(ω) and Δ2 −ω2 are slowly vary-
ing, so that the perturbation signal becomes S(ω)∝ iΠ(ω), i.e. a sum of imaginary Lorentzians.
Their time-domain images are decaying exponentials, so that the perturbation f (t) is a super-
position of exponential tails at frequencies ωl with time constants 1/Ωl . This property holds
for conventional soliton [13] as well.

In the next sections we shall concentrate on the zero-order solution [Eq. (15)]: illustrate its
properties and numerically explore limitations of applicability, as well as provide experimental
verification.

3. Results and discussion

To illustrate the results of the previous section, we will perform calculations for a model system
with parameters approaching those of a typical Cr:ZnSe oscillator. Table 1 summarizes the
parameters, used for the simulations.
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Table 1. Basic Parameters for Numerical Simulations

α , fs2 β , fs2 κ ζ σ A ≡ ζ σ
κ B ≡ γ

ζ C ≡ αγ
βκ D ≡ γ

κ
16 250 0.04γ 0.2γ 2.5×10−4 1.25×10−3 5 1.6 25

The unperturbed analytical spectra [Eq. (5)] corresponding to the positive (solid) and neg-
ative (dashed) branches of CDS are shown in Fig. 1. The properties of these solutions are
reviewed in [16, 19, 22]. The negative branch CDS exists in a broader range of GDD and its
lower bandwidth Δ would even stronger perturbation signal Eq. (13). The positive branch CDS
has a broader spectrum and is energy scalable (in the sense of [16]). Below, we shall consider
the negative branch CDS without loss of generality.

Fig. 1. The unperturbed CDS spectra corresponding to Eq. (5) and to parameters in the
Table 1. The positive (negative) branch is shown by a solid (dashed) line.

The central part of the CDS spectrum perturbed by a single absorption line with ε1 =-0.0025,
ω1 =0 (all frequencies are measured relative to the CDS carrier), and Ω1 =1 GHz is shown in
Fig. 2. The spectrum shown by the red solid curve corresponds to the zero-order approximation
in Eq. (17). Note that the perturbed power spectrum follows an associated index of refraction
of the absorber, like it does in the case of a Schröinger soliton [13].

Open black circles in Fig. 2 show the power spectrum in the first-order approximation in
Eq. (17) under the assumption Eq. (16) while blue crosses show the same approximation but
without the assumption Eq. (16). One can see that all profiles coincide within a spectral scale
comparable with Ωl , and as a result, Eq. (15) gives a perfect local approximation for the exact
solution.

Simultaneously, the contribution of the convolutions in Eq. (10) results in a large-scale per-
turbation of the CDS spectrum (compare red curve in Fig. 3 with black open circles and blue
crosses). If the assumption Eq. (16) is abandoned (blue crosses), the large-scale perturbations
occur mainly on the high-frequency side of the spectrum.

Figure 3 (circles and crosses) demonstrates that the spectrum edges are most sensitive to the
perturbations (compare with the results of [16, 23, 24]), which grow due to the resonant term
in Eq. (17). Such enhancement can be useful for additional increase of sensitivity for the weak
absorption lines as it is shown in Fig. 4. Figure 4, a demonstrates the contribution of several
identical absorption lines located at the different position ωl >0. The contribution is calculated
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Fig. 2. The perturbed CDS spectra for the negative branch CDS and the parameters of Ta-
ble 1. A single absorption line with ε1 =-0.0025, ω1 =0, and Ω1 =1 GHz contributes. Solid
red curve corresponds to contribution of f0 (ω) in Eq. (17), open black circles correspond to
contribution of f1 (ω) under the assumption Eq. (16), and blue crosses show f1 (ω) without
the assumption Eq. (16).

Fig. 3. The scaled-down perturbed CDS spectra corresponding to those in Fig. 2.
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Fig. 4. Perturbed spectra obtained from the zero-order approximation of Eq. (17) (a), and
from the numerical simulations of the Eq. (1) (b). Six identical absorption lines are con-
sidered, with εl =-0.0025 and Ωl =1 GHz. Simulation parameters correspond to those in
Table 1.

in the zero-order approximation of Eq. (17). The enhancement of the perturbation amplitude
near the spectrum edge is clearly visible. The giant jump at the spectrum edge ω = Δ results
from a singularity in Eq. (17) and is beyond the used approximations.

4. Numerical and experimental verification

For verification of the analytical results, the numerical simulations of Eq. (1) perturbed by
Eq. (9) have been performed on a basis of the symmetrized split-step Fourier method. The
time step equals to 2.5 fs, the time window equals to ≈10 ns (222 mesh points), and the cavity
round trip is divided into 10 sub-steps. Other parameters correspond to those in Table 1. The
simulation time is chosen to > 10000 round-trips to ensure reliable convergence. As the initial
condition, we used a 250-fs long sech-shaped seed pulse without chirp and with 10−10/γ peak
power.

A representative numerical spectrum is shown in Fig. 4, b. As was pointed out previously
[19], the numerical CDS spectrum has somewhat smoothed edges (this also corresponds to
the experiment) but its basic features are perfectly described by the approximated analytical
solution. The structure of numerical spectrum agrees with the analytical, which is obtained in
the zero-order approximation of Eq. (17), and he enhancement of perturbation near the spectrum
edge is clearly visible. At the same time, there are two minor differences between the spectra.
The first difference is the large-scale perturbation of the spectrum envelope as a whole. The
source of this effect can be identified with the contribution of higher-order terms in Eq. (17)
resulted from the convolutions in Eq. (10) (see Fig. 3). The remarkable feature of the large-
scale perturbation is that it appears exclusively in the NDR and within the region of ω > ωl

(Figs. 4, b; Fig. 5). The second difference is the increasing up-down asymmetry of the numerical
perturbation spikes near the spectrum edge. When the absorption line is located right at the
spectrum edge, the asymmetry becomes so high that the perturbation is observed only as a gap
(right and left sides of the spectrum in Fig. 5). We attribute this effect to the breaking of the
approximations at the spectrum edge.

As experimental verification we consider the chirped-pulse operation of a Kerr-Lens mod-
elocked Cr:ZnSe laser [25]. The laser operated at 91.6 MHz repetition rate at open air in the
vicinity of zero intracavity dispersion. Besides the 4-mm long active element, the cavity in-
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Fig. 5. Numerical spectrum for εl =-0.0025 and Ωl =1 GHz and another parameters de-
scribed in Table 1.

cluded a 6.3-mm thick YAG plate, 5 highly-reflective mirrors and an output coupler. The over-
all round-trip dispersion is computed using the known material and mirror coating data and is
shown in Fig. 6, a. Since the zero-dispersion wavelength at 2450 nm coincided with the gain
maximum of the material, it was possible to operate the laser in both, soliton and chirped-
pulse regimes [25]. In the first case, the laser spectrum was centered near 2500 nm, and was
in the region of the anomalous dispersion. The pulses of ≈100 fs duration did not carry any
significant chirp, and the spectrum contained all the typical features of intracavity absorption
as described in Ref. [13]. This regime was rather unstable because of the fast increase of water
vapor absorption beyond 2500 nm. In the second regime, the laser operated with its spectrum
shifted towards 2300 nm, emitting strongly chirped pulses of about 1 ps duration (Fig. 6, b).
This regime was stable with the main part of the spectrum well in the normal dispersion region.
At 91 MHz repetition rate the average output power was 170 mW through the 1.8% output
coupler, corresponding to 1.9 nJ output pulse energy or 100 nJ intracavity pulse energy.

Figure 6, a clearly demonstrates typical dispersion-like features superimposed on the smooth
pulse spectrum, as predicted by the solution Eq. (15). For quantitative analysis, it is convenient
to single out the modulation part of the solution [Eq. (15)] and revert the normalizations:

p′ (ω)

p(ω)
= 1+

1
βΔ2

N

∑
l=1

2εl

1−ω2
l /Δ2

(ω −ωl)/Ωl

1+(ω −ωl)
2 /Ω2

l

, (18)

where now the observables β and Δ can be directly accessed as the group delay dispersion
and spectrum half-width in circular frequency units, respectively. Recalling that q = βΔ2 is the
chirped soliton wavenumber, we see that this result has the same form as Eq. (17) in Ref. [13].
The principle difference lies with the frequency dependence of the modulation depth. While
the chirped soliton exhibits resonance enhancement towards spectrum edges as (1−ω2

l /Δ2)−1,
the modulation depth for conventional soliton would decrease as (1+ω2

l T 2
0 )

−1 (Eq. (14) in
Ref. [13]).

Applying numerical values to the spectrum in Fig. 6, a can not be performed as straitfor-
wardly as in [13], because the pulse spectrum strongly deviates from the symmetric profile with
cut wings, required by the expression (15) due to the large third-order dispersion (51000 fs3 at
2400 nm). Detailed description of the third-order dispersion influence on dissipative soliton is
beyond the scope of this work, but for our purposes it is sufficient to estimate the 2Δ parameter,
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(a) (b)

Fig. 6. Kerr-lens mode-locked Cr:ZnSe laser in normal dispersion regime. (a) Round-trip
dispersion and output spectrum (note that the GDD curve presented here corrects the data
of Ref. [25] by accounting for the mirrors’ dispersion.) The round-trip transmission of the
atmosphere (HITRAN) is shown in blue. (b) The autocorrelation trace of the chirped pulse.

for which we take the full width at half maximum 2Δ = 70± 5 nm. Taking β = 1100± 100
fs2 in the central part of the spectrum we obtain βΔ2 = 0.155± 0.025, i.e. (6.5± 1)-fold en-
hancement of the intracavity modulation with respect to the absorption peak. Fig. 7 shows the
expanded central part of the measured spectrum along with the absorption lines, calculated
from HITRAN database, assuming the measured conditions of 30±2% relative humidity and
23.5± 0.5 ◦C at the time of experiment. The observed 6-fold enhancement of the modulation
amplitude is in a very good agreement with the estimation, well within the uncertainty in β and
2Δ parameters.

Finally, it is instructive to express the modulation amplitude |εl/q| at ωl =ω±Ωl through the
observable parameters, such as spectrum FWHM Δν and round-trip GDD β , peak absorption
χlL = 2εl over the round-trip intracavity absorber path length L, equal to the double resonator
length in our case: ∣

∣
∣
∣
εl

q

∣
∣
∣
∣=

χlL
2

1
βΔ2 = χlL

0.0507
β (Δν)2 . (19)

The numerical coefficient 1/2π2 ≈ 0.05066 in the numerator differs only by a factor of 1.6 from
the corresponding coefficient arccosh(3)2/π4 ≈ 0.0319 obtained for a chirp-free conventional
soliton [13]. The good agreement with the experiment suggests also that this relation is quite
tolerant to the presence of higher-order dispersion, as already observed in [13], and to the
deviation of the the spectrum from analytical expression.

The fact that the analytical form and numerical expressions for the intracavity signal in so
different regimes of operation coincide within a small correction factor allows making a more
general statement. In particular, we suggest that the spectral modulation caused by a narrow-
band inracavity absorber in any passively modelocked laser has a form of the associated index
of refraction, with the modulation amplitude at the spectrum center depending only on the ab-
sorber coefficient, pulse spectrum width, and GDD parameter. It is given by the expression (19)
with a correction factor, close to unity. At the same time, the behavior of modulation amplitude
at the spectrum wings does depend upon the spectrum shape and chirp.
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Fig. 7. Modulation signal due to the atmospheric water-vapour lines in the Cr:ZnSe laser,
central part expanded. The percentage marks show the peak line absorption (2εlL) and
signal amplitude (2εl/βΔ2) between the peaks at ω = Ωl ±ωl .

Formula (19) also provides means to estimate the energy content of the extended pulse tail
in the time domain, discussed in Section 2. Since the time constant of this tail is much longer
than the pulse duration, its overlap with the main pulse is negligible. We can therefore assume
that the energy content of the tail equals the total energy of the perturbation signal f (t) and
calculate the energy fraction within the tail as

Etail

Epulse
≈ 1

βΔ2

N

∑
l=1

2εl ·π
1−ω2

l /Δ2
=

0.05
β (Δν)2

N

∑
l=1

Sl

1−ω2
l /Δ2

, (20)

where Sl is the integrated absorption of the lth line over the cavity round-trip. Neglecting the
enhancement factor 1/(1−ω2

l /Δ2) we finally obtain a practical estimation formula, valid for
any passively modelocked laser:

Etail

Epulse
= (0.04±0.01) · S

|β |(Δν)2 , (21)

where S is the total integrated intracavity absorption over the spectrum width Δν .

5. Conclusion

Summarizing, we present an analytical theory of dissipative soliton absorption spectroscopy.
We demonstrate that a dissipative soliton formed in a net-normal-dispersion oscillator with a
narrowband intracavity absorber acquires spectral features that follow the index of refraction
of the absorber. Similarly to the case of soliton absorption spectroscopy in an anomalous dis-
persion regime [13], we observe over tenfold enhancement of the spectral signal induced by an
absorption line on the pulse spectrum in comparison to the conventional absorption signal. The
signal enhancement inversely scales with the dispersion and the square of the spectrum width
and can be controlled experimentally. In contrast to the soliton absorption spectroscopy in an
anomalous dispersion regime, we anticipate resonant enhancement of the modulation signal
near the pulse spectrum edges that results in additional signal gain. In the time domain, the
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pulse acquires a tail with characteristic time constant defined by the inverse linewidth of the
absorber.

The validity of the developed theory is confirmed by results of the numerical simulations and
by experimental evidence in a Cr:ZnSe laser oscillator operating in the chirped-pulse regime.
The quantitative result and qualitative dependence of the signal on laser parameters are very
close to those for the conventional soliton [13] and probably hold for any passively mode-
locked laser. The results are particularly interesting for the ultrabroadband femtosecond solid-
state and fiber laser sources operating at wavelengths near and above 1.5 μm. They can be
used to calculate the influence of the atmospheric absorption on oscillator parameters and for
designing sensitive quantitative intracavity measurements.

Acknowledgments

VLK acknowledges the support of the Austrian Fonds zur Föerderung der wissenschaftlichen
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