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In rigid body dynamic simulations, often the algorithm is required to deal with

general situations where both reference point and inertia matrix are arbitrarily de-

fined. We introduce a novel Lie group variational integrator using dual quaternion

for simulating rigid body dynamics in all six degrees of freedom. Dual quaternion is

used to represent rigid body kinematics and one-step Lie group method is used to

derive dynamic equations. The combination of these two becomes the first Lie group

variational integrator for rigid body dynamics without decoupling translations and ro-

tations. Newton-Raphson method is used to solve the recursive dynamic equation. Our

method is suitable for rigid body simulations with high accuracy under large time step.

The entire dynamics-control system can now be established based on dual quaternions

without re-projection from Cartesian frame. A numerical example of spacecraft-cargo

separation process proves that our method respects the symplectic structure of the

system with excellent long-term conservation of geometry structure, momentum and

energy. In instants where separation happens, reference point transformation is no

longer required.
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Nomenclature

� = blank filler

� = quaternions

�̂ = pure quaternions

◦ = quaternion multiplication

�
† = conjugate of a quaternion

�̃ = dual quaternions

�̌ = pure dual quaternions

�̃a = first quaternion of a dual quaternion

�̃b = second quaternion of a dual quaternion

⊗ = dual quaternion multiplication

�̃† = quaternion conjugate of a dual quaternion

�̃∗ = dual transpose of a dual quaternion

t = time, s−1

h = time step, s

k = time index

δ = variational derivative

�d = discrete value mark

η = arbitrary perturbation

eW = world-fixed coordinate frame

eB = body-fixed coordinate frame

v = translational velocity, m · s−1

ω = angular velocity, rad · s−1

χ = 6-by-1 angular and translational velocity

J = moment of inertia matrix,kg ·m2

M = general inertia matrix

ζ,P = angular and translational momentum

τ = angular and translational forces in Cartesian frame
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f = incremental pose

Φ,Ψ = parameters for dual quaternion

A,B = right hand side of recursive dynamic equations

α,β = left hand side of recursive dynamic equations

J = jacobian matrix

I. Introduction

In rigid body dynamic simulations, often the algorithm is required to deal with coupled trans-

lations and rotations, meaning the reference point may not be on the center of mass. For example,

in space missions, the center of mass of a spacecraft will change when a cargo is released, while

the reference point of spacecraft motion is preferred to be constant. This paper introduces a novel

Lie group variational integrator based on dual quaternion for handling this situation in a both

symplectic and generic manner.

Different from traditional differential equations, variational integrators first temporally dis-

cretize a Hamiltonian system to its symplectic form, then solve the recursive discrete equations.

Lie group variational integrator is a more efficient method that makes the discrete system evolve

automatically on Lie groups without the use of re-projection, constraints, differential equations and

local coordinates[1]. A generic mathematical foundation of Lie group variational integrators for

geometric mechanics have been developed based on Euler-Poincare and Lie-Poisson equations[2–5].

However in the practical subject of using Lie group variational integrator for single rigid body dy-

namics, 3-by-3 rotation matrix is still widely used[6, 7], the translation and rotation of the rigid

body are also decoupled that only the rotation group SO(3) and its Lie algebra so(3) are effectively

used[8, 9], meaning the translation is still evolving on linear space R3[6].

On the other hand, quaternions are commonly used in both rigid body kinematics and dynamics

for representing SO(3) due to its clarity and compactness. Dual quaternions are an extension of the

quaternion concept that includes translations into the formulation. The advantages dual quaternions

have over many other formulations can be summarized as 1) Singularity-free; 2) Un-ambiguous; 3)

Shortest path interpolation; 4) Unified representation of translation and rotation in a single invariant
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coordinate frame[10]; 5) Computationally efficient; 6) Intuitive connection of its exponential map

to the screw motion. Many papers have used dual quaternions in kinematic representation for

motion tracking and control of rigid body[11–14]. However, only a few papers have discussed the

application of dual quaternion in rigid body dynamics and most of them used dual quaternion frame

for a modified Newton-Euler or Lagrangian differential formulation[15, 16].

This paper is inspired by Manchester and Peck’s work[17], who for the first time used quater-

nions to directly represent rotation in Lie group variational integrator. Having noticed that the

Special Euclidean Group SE(3) for spatial displacement of rigid bodies(referred as pose[18] in this

paper) is a Lie Group by itself, we introduce the Dual Quaternion Variational Integrator(DQVI),

a combination of Lie group variational integrator and the unit dual quaternion group, which is a

2-to-1 homomorphism to SE(3). To the best of our knowledge, this is the first practice of using dual

quaternion in Lie group variational integrator for rigid body dynamics without decoupling the trans-

lation and rotation. The primary improvement of DQVI over other algorithms is the application of

dual quaternion state variables that allows a fully coupled dynamic simulation in SE(3). Both the

reference point and the full 6-by-6 inertia matrix can be arbitrarily defined. The entire dynamics-

control loop can now be established in dual quaternion frame directly without re-projection from

Cartesian frame. DQVI is particularly suitable for real-time motion dynamics, estimation, and

control applications with high-order accuracy under large time step.

Section II briefly introduce the background of quaternions and dual quaternions. Section III

formulates the discretized dynamic equations for single rigid body, which will be used in the vari-

ational integrator. Section IV focuses on solving the dynamic equations using Newton-Raphson

method. A numerical example of spacecraft-cargo separation process is given in Section V in order

to demonstrate the performance of DQVI. Section VI is the conclusion.

II. Background

This section reviews the background of the algebraic and kinematic properties of quaternions and

dual quaternions in the context of Lie group and screw motion theory. More detailed introduction

can be found in [19, 20].
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A. Quaternions

Quaternions form a four-dimensional vector space H over the real numbers with one real element

and three imaginary elements.

q =

 qw

qxyz

 ; qxyz =


qx

qy

qz


Based on its definition, the quaternions in their vector form have the following unique operators

• Multiplication(noncommutative)

q1 ◦ q2 =

 q1wq2w − q1n · q2xyz

q1wq2xyz + q2wq1xyz + q1xyz × q2xyz


• Conjugate

q† =

 qw

−qxyz


Remark 1. In general, the notation system for quaternions and dual quaternions has not been

standardized yet, readers may find discrepancies in this paper from other works.

There is a useful algebraic property about the quaternion multiplication and the vector dot

product

(q1 ◦ q2) · q3 = (q†1 ◦ q3) · q2 = (q3 ◦ q
†
2) · q1 (1)

The Unit Quaternions Hu ⊂ H are quaternions with unit length. Hu is also an non-abelian Lie

group homomorphic to SO(3) under the quaternion multiplication ◦ : Hu ×Hu → Hu. The inverse

is its conjugate q† and the identity is

I = q ◦ q† = q† ◦ q = [1, 0, 0, 0]
T

A vector r ∈ R3 can be represented as a Pure Quaternion whose “real part" equals zero.

r̂ = [0, r]
T
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the rotation of r can be achieved by a combination of two quaternion rotations in SO(3).

q =

 cos θ2

n sin θ
2

 = exp

(
n̂ · θ

2

)
; r̂′ = q ◦ r̂ ◦ q† (2)

n is the rotating axis, θ is the angle of rotation. The exponential map indicates the Lie algebra of

unit quaternions exp : Hu → Hu is pure quaternion.

B. Dual Quaternions

The Dual Quaternions form a eight-dimensional space DH comprised of two quaternions for its

real and dual part respectively.

p̃ =

pa
pb


Based on its definition, the dual quaternions in their vector form also have the following unique

operators

• Multiplication(noncommunitative)

p̃1 ⊗ p̃2 =

 p1a ◦ p2a

p1a ◦ p2b + p1b ◦ p2a


• Quaternion Conjugate

p̃† =

p†a
p†b


• Dual Transpose

p̃∗ =

pb
pa


Remark 2. Here we originally propose the notion of Dual Transpose, which shall be distinguished

from conventional vector transpose.

Based on Equation 1, there is also an algebraic property, which will be used multiple times

in this paper, about the dual quaternion multiplication and the vector dot product involving dual

transpose.

(p̃1 ⊗ p̃2) · p̃3 = (p̃†1 ⊗ p̃
∗
3) · p̃∗2 = (p̃∗3 ⊗ p̃

†
2) · p̃∗1 (3)
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The Pure Dual Quaternions are dual quaternions composed by two pure quaternions. A vector

[ra, rb]
T ∈ R6 can be expressed in pure dual quaternion form

ř =

r̂a
r̂b


The Unit Dual Quaternions DHu ⊂ DH form a Lie group[20] with identity

Ĩ = p̃⊗ p̃† = p̃† ⊗ p̃ = [1, 0, 0, 0, 0, 0, 0, 0]
T

DHu can be used to represent poses in SE(3), which is the semidirect product of the translation

group and the rotation group SE(3) = R3 o SO(3). If the translation displacement is denoted as

l ∈ R3 and the rotation is represented by unit quaternion ϕ(q) = SO(3), the unit dual quaternion

representation of a pose ψ(p̃) = SE(3) can be formed as

p̃ =

 q

1
2 l̂ ◦ q

 = exp

(
š · Θ

2

)
(4)

Similar to the exponential map of Hu, the exponential map exp : DHu → DHu, where DHu is the

Lie algebra of DHu, employs the dual angle Θ = [Θa,Θb]
T and pure dual quaternions š = [ŝa, ŝb]

T .

The product š · Θ = [Θaŝa,Θaŝb,Θbŝa]
T . The geometric interpretation of those four quantities

is related to screw motion, i.e. a rotation and a translation about the same axis. According to

Chasle’s theorm[21], any rigid transformation can be described by a screw motion. θa is the angle

of rotation, unit vector sa is the direction of the axis of rotation, θb is the magnitude of translation

along the axis and sb is the moment of the axis, which is given by equation sb = c × sa. c is the

position vector of a point that the axis passes, the exact position of the point is irrelevant since

sb will remain constant. The resemblance in the exponential maps of Hu and DHu reveals that

quaternions are only a special case of dual quaternions where the rotation axes pass through the

origin, while dual quaternions can represent rotations with arbitrary axes[22].

A pose p̃ can also be used to transform a vector r ∈ R3 in SE(3). Construct a pose with

identity of Hu

r̃ =

 I
1
2 r̂


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the new vector r′ after transformation is

r̃′ = p̃⊗ r̃; r̂′ = 2r′b ◦ r′a
† (5)

The transformation also applies to nested poses that are commonly used in multibody kinematics.

r̃′ = p̃1 ⊗ p̃2 ⊗ r̃ (6)

Finally, the relationship of all groups can be represented as in Figure 1

Hu so(3)

Hu SO(3)

DHu SE(3)

DHu se(3)

dϕ

exp exp

ϕ

R3⋊
ψ

exp

dψ

exp

Fig. 1: Relationship between groups

C. Translational and Angular Velocity

The translational and angular velocities vB ,ωB in eB and vW ,ωW in eW are essential to the

rigid body simulation. Construct a 6-by-1 vector χ with v and ω

χB =

ωB
vB

 ; χW =

ωW
vW

 (7)

Its pure dual quaternion form has a key relation with the pose[19]

χ̌B = 2p̃† ⊗ ˙̃p; χ̌W = 2˙̃p⊗ p̃ (8)

III. Dynamic Equations for Single Rigid Body

This section formulates the recursive discrete-time equation for rigid body dynamics in dual

quaternion coordinate frame. The classical variational approach using homogeneous transformation

matrix can be found in [23].
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A. Continuous Formulation

The equations for a single rigid body motion satisfies the integral Lagrange d’Alembert’s prin-

ciple

δ

∫ t1

t0

L
(
p̃, ˙̃p, t

)
dt+

∫ t1

t0

F̃
(
p̃, ˙̃p, t

)
· δp̃dt = 0 (9)

where L is the Lagrangian of the system described by a pose and its derivative. F̃ ∈ R8 is the

generalized non-conservative force also expressed as dual quaternion. δp̃ is the infinitesimal variation

of pose that vanishes at the end point but otherwise arbitrary. This obviously leads to the forced

Euler-Lagrange equations

∂L

∂p̃
− d

dt

∂L

∂ ˙̃p
+ F̃ = 0 (10)

The kinetic energy T of a single rigid body is

T =
1

2

∫
m

(vB + ωB × ρ)
2
dm =

1

2
χB ·M6×6 · χB (11)

where ρ is the position vector of a mass point to the reference point in eB and

M6×6 =

 J3×3 m · S(rg)

−m · S(rg) m3×3

 (12)

J3×3 is the moment of inertia tensor with respect to the reference point. m is the mass of the rigid

body and m3×3 is the diagonal mass matrix. rg is the position vector of center of mass of the rigid

body in body-fixed frame and S(·) is the skew-symmetric matrix of cross product operator. In the

context of unit dual quaternion pose, Equation 12 can be extended into an 8× 8 matrix with extra

rows and columns filled with zeros.

M8×8 =



0 · · · 0 · · ·
... J3×3

... m · S(rg)

0 · · · 0 · · ·
... −m · S(rg)

... m3×3


(13)

Use Equation 8, Equation 12 can be written with unit dual quaternions

T =
1

2
χ̌TB ·M8×8 · χ̌B = 2

(
p̃⊗ ˙̃p

)T ·M8×8 ·
(
p̃⊗ ˙̃p

)
(14)

9



Remark 3. The major improvement here for kinetic energy formulation, compared with previous

works[6, 9], is that the reference point and can now be arbitrarily defined without being situated

at the center of mass. M6×6 can also be arbitrarily defined as long as the determinant is not

zero. This is especially important for hydrodynamic related problems involving added mass. Other

formulations based on 3-by-3 rotation matrix on SO(3) used a modified moment of inertia tensor

J ′3×3 = det(J3×3) · I3×3 − J3×3, while our method keeps the original J3×3 and the fillers for the

extra rows and columns can actually be random values since χ̃B ∈ DHu.

Since the reference point is not necessarily on the center of mass, the potential energy of the

single rigid body is generally a function of both translation and rotation of the rigid body U = U(p̃).

The Lagrangian of the system is

L = T − U = 2
(
p̃† ⊗ ˙̃p

)T
·M8×8 ·

(
p̃† ⊗ ˙̃p

)
− U (p̃) (15)

B. Discrete Formulation

Equation 9 can be discretized into

δ

N−1∑
k=0

Ldk +

N−1∑
k=0

Wdk = 0 (16)

where Ldk and Wdk represent the action integral and virtual work integral respectively.

1. Kinetic Energy Integral Variation

Equation 15 shows that the single rigid body system is time invariant. ˙̃pk can be approximated

by trapezoidal rule with a fixed time step h = tk+1 − tk.

˙̃pk =
(
p̃k+1 − p̃k

)
/h (17)

Higher order quadrature rules can also be applied, but in real-time simulations, usually there is

an “Update" function that overwrites data from last time frame. One-step quadrature rules work

better for its simplicity and low cost. The integral of the kinetic energy can be represented as

Tdk
(
p̃k, ˙̃pk

)
≈ 2

h

(
p̃†k ⊗

(
p̃k+1 − p̃k

))T
·M8×8 ·

(
p̃†k ⊗

(
p̃k+1 − p̃k

))
(18)

Simplify the expression by using the fact that p̃†k ⊗ p̃k = Ĩ and M8×8 · Ĩ = (Ĩ ·M8×8)T = 0̃

Tdk =
2

h

(
f̃
T

k ·M8×8 · f̃k
)

(19)
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where f̃k = p̃†k ⊗ p̃k+1, so that p̃k+1 = p̃k ⊗ f̃k. By requiring that f̃k ∈ DHu, p̃k is ensured to be

evolving in DHu as well. The variation of f̃k is

δf̃k = δp̃†k ⊗ p̃k+1 + p̃†k ⊗ δp̃k+1 = f̃k ⊗ η̌k+1 − η̌k ⊗ f̃k (20)

where η̌k ∈ DHu. So the variation of action integral can be written as

δ

N−1∑
k=0

Tdk =

N−1∑
k=0

4

h
ζ̃k ·

(
f̃k ⊗ η̌k+1 − η̌k ⊗ f̃k

)
(21)

where

ζ̃k = f̃
T

k ·M8×8

Due to the structure of M8×8, ζ̃k is guaranteed to be pure dual quaternion ζ̌k. With some index

manipulation

δ
N−1∑
k=0

Tdk =
4

h
ζ̌N−1 ·

(
f̃N−1 ⊗ η̌N

)
− 4

h
ζ̌0 ·

(
η̌0 ⊗ f̃0

)
+

N−1∑
k=1

4

h
ζ̌k−1 · f̃k−1 ⊗ η̌k − ζ̌k · η̌k ⊗ f̃k

(22)

The variations are computed with the boundary points p̃0 and p̃N held fixed, meaning η̌k vanishes

at k = 0 and k = N

η̌0 = η̌N = 0̌ (23)

Also use Equation 3, Equation 22 is then modified as

δ

N−1∑
k=0

Tdk =

N−1∑
k=1

4

h

(
f̃
†
k−1 ⊗ ζ̌

∗
k−1 − ζ̌

∗
k ⊗ f̃

†
k

)
· η̌∗k (24)

2. Potential Energy Integral Variation

The potential energy is only a function of p̃, so the potential energy integral variation can be

represented as

δ

N−1∑
k=0

Udk ≈
N−1∑
k=0

h

2

∂U(p̃k)

∂p̃k
· δp̃k +

N−1∑
k=0

h

2

∂U(p̃k+1)

∂p̃k+1

· δp̃k+1 (25)

After index manipulation and also using Equation 3 & 23 , Equation 25 is simplified as

δ

N−1∑
k=0

Udk =

N−1∑
k=1

h

(
p̃†k ⊗

(
∂U(p̃k)

∂p̃k

)∗)
· η̌∗k (26)
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3. Virtual Work Integral Variation

The virtual work integral is approximated as

N−1∑
k=0

Wd ≈
N−1∑
k=0

h

2

(
F̃ kδp̃k + F̃ k+1δp̃k+1

)
(27)

After index manipulation and also using Equation 3 & 23, Equation 27 is simplified as

N−1∑
k=0

Wdk =

N−1∑
k=1

h
(
F̃ k · (p̃k ⊗ η̌k)

)
=

N−1∑
k=1

h
(
p̃†k ⊗ F̃

∗
k

)
· η̌∗k (28)

Alternatively, the generalized force in dual quaternion space can be transformed from classical torque

and force in Cartesian frame by using the identity of work. Let τB and τW denote torque and force

of all 6-DOF in eB and eW respectively.

W = τB · χB = τW · χW = F̃ · ˙̃p (29)

By using Equation 3 and 8

(
p̃† ⊗ F̃ ∗

)
· χ̌∗B = 2τ̌ ∗B · χ̌∗B ;

(
F̃
∗ ⊗ p̃

)
· χ̌∗W = 2τ̌ ∗W · χ̌∗W (30)

Since χ̌B and χ̌W are both arbitrary pure dual quaternions, the 2nd-4th and 6th-8th equations of

F̃
∗

= 2p̃⊗ τ̌ ∗B = 2τ̌ ∗W ⊗ p̃† (31)

are valid. Also, because η̌k is a pure dual quaternion, Equation 27 can be simplified as

N−1∑
k=0

Wdk =

N−1∑
k=1

2hτ̌ ∗Bk_external · η̌∗k (32)

Notice that Equation 26 can also be simplified by using body-fixed conservative torque and force in

Cartesian frame. The the 2nd-4th and 6th-8th equations of

τ̌ ∗Bk_conservative = −1

2
p̃†k ⊗

(
∂U(p̃k)

∂p̃k

)∗
(33)

are valid. Hence

δ

N−1∑
k=0

Udk =

N−1∑
k=1

2hτ̌ ∗Bk_conservative · η̌∗k (34)

Return Equation 24, 32 and 34 back to Equation 16

N−1∑
k=1

[
4

h

(
f̃
†
k−1 ⊗ ζ̌

∗
k−1 − ζ̌

∗
k ⊗ f̃

†
k

)
+ 2h

(
τ̌ ∗Bk_conservative + τ̌ ∗Bk_external

)]
· η̌∗k = 0 (35)
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Since η̌k are arbitrary perturbations in every time frame, Equation 35 must hold

f̃
†
k−1 ⊗ ζ̌

∗
k−1 − ζ̌

∗
k ⊗ f̃

†
k +

h2

2

(
τ̌ ∗Bk_conservative + τ̌ ∗Bk_external

)
=



λ1

0

λ2

0


(36)

λ1 and λ2 are unknown values, meaning Equation 36 is only useful with its 2nd-4th and 6th-8th

equations. Equation 36 forms a recursive map for getting p̃k+1 from p̃k and p̃k−1. The evolution

of the system is defined given the initial values of p̃0 and p̃1.

C. Parametrization

Since f̃k ∈ DHu is homomorphic to SE(3), it can be parametrized by 6 independent variables.

Based on the definition of DHu in Equation 4 and an unconstrained vector representation of Hu

[17], f̃ can be expressed as

fa =


√

1−Φ2

Φ

 , f b =

− Ψ·Φ√
1−Φ2

Ψ

 (37)

Other ways for parametrization also exists. Put Equation 37 back to Equation 36 and only treat

Φk and Ψk as variables 
A(Φk,Ψk)−αk = 0

B(Φk,Ψk)− βk = 0

(38)

where

A(Φk,Ψk) =

(√
1−Φ2

kI + S(Φk)

)
· (M11Φk +M12Ψk)

+

− Ψk ·Φk√
1−Φ2

k

I + S(Ψk)

 · (M21Φk +M22Ψk)

(39)

B(Φk,Ψk) =

(√
1−Φ2

kI + S(Φk)

)
· (M21Φk +M22Ψk) (40)

αk =

(√
1−Φ2

k−1I − S(Φk−1)

)
· (M11Φk−1 +M12Ψk−1)

+

−Ψk−1 ·Φk−1√
1−Φ2

k−1

I − S(Ψk−1)

 · (M21Φk−1 +M22Ψk−1)

+
h2

2

(
τ ak_conservative + τ ak_external

)
(41)
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βk =

(√
1−Φ2

k−1I − S(Φk−1)

)
· (M21Φk−1 +M22Ψk−1)

+
h2

2

(
τ bk_conservative + τ bk_external

) (42)

D. Retrieving Velocity

In practice, the translational and angular velocity in Cartesian frame are used more frequently

than Φk,Ψk in f̃k. The transformation between Φk,Ψk and χBk can be achieved from the identity

of kinetic energy.

Tk =
1

2
χ̌TBk ·M8×8 · χ̌Bk =

1

2
P̃ dk · ˙̃pk (43)

where P̌Dk denote the momenta in dual quaternion frame. Hence

(
χ̌TBk ·M8×8

)
· χ̌Bk =

(
p̃†k ⊗ P̌

∗
dk

)∗
· χ̌Bk (44)

Based on Equation 17, the same trapezoidal approximation can be made for P̌ dk in discrete form

P̌ dk =

(
∂T

∂ ˙̃p

)
k

≈ ∂Tdk
∂p̃k

(45)

Equation 45 shows that P̌ dk is not a function of χ̌Bk. Since χ̌Bk is a pure dual quaternion, after

taking derivative of χ̌Bk on both side of Equation 44, a simplification can be made that the 2nd-4th

and 6th-8th equations of

M8×8 · χ̌Bk =
1

2

(
p̃† ⊗ P̌ ∗dk

)∗
(46)

are valid. After tedious but straightforward simplification, a familiar formulation appears

M6×6 · χBk =
2

h
·


A(Φk,Ψk)

B(Φk,Ψk)

 (47)

Equation 47 reveals that Equation 38 is actually the evolution map of momentum in eB . And in

each time frame with given Φk and Ψk, the translational and angular velocity in eB can be retrieved

by

χBk =
2

h
·M−1

6×6 ·


A(Φk,Ψk)

B(Φk,Ψk)

 (48)
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IV. Newton-Raphson Solver

To solve Equation 38, Newton-Raphson method is used, which involves finding the Jacobian

matrix of the equation and making proper initial estimation of the starting point.

A. Jacobian Matrix

The 6-by-6 Jacobian matrix is

J (Φk,Ψk) =


∂Ak

∂Φk

∂Ak

∂Ψk

∂Bk

∂Φk

∂Bk

∂Ψk

 (49)

where

∂A
∂Φ

=(M21Φ +M22Ψ) · (Φ× (Ψ×Φ)−Ψ)T

(1−Φ2)
3
2

+

(
− Ψ ·Φ√

1−Φ2
I + S(Ψ)

)
·M21

− (M11Φ +M12Ψ) ·ΦT√
1−Φ2

− S(M11Φ +M12Ψ) +
(√

1−Φ2I + S(Φ)
)
·M11

(50)

∂A
∂Ψ

=− (M21Φ +M22Ψ) ·ΦT√
1−Φ2

+

(
− Ψ ·Φ√

1−Φ2
I + S(Ψ)

)
M22

+
(√

1−Φ2I + S(Φ)
)
·M12 − S(M21Φ +M22Ψ)

(51)

∂B
∂Φ

= − (M21Φ +M22Ψ) ·ΦT√
1−Φ2

− S(M21Φ +M22Ψ) +
(√

1−Φ2I + S(Φ)
)
·M21 (52)

∂B
∂Ψ

=
(√

1−Φ2I + S(Φ)
)
·M22 (53)

B. Initial Estimation

In order to achieve faster convergence in Newton-Raphson solver, a proper starting point should

be estimated in every time frame. The initial condition of the system is usually given as the pose-

velocity or pose-momentum form. In either form, the initial pose and momentum are given. The

definition of f̃k gives out that

f̃k = p̃†k ⊗ p̃k+1 ≈ p̃
†
k ⊗ (p̃k + h ˙̃pk) = Ĩ +

h

2
χ̌Bk (54)

Hence Φk

Ψk

 ≈ h

2
χBk (55)
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Equation 55 reflects a constraint in this parametrization that |Φ| < 1, meaning the time step h

must be chosen small enough to ensure that the incremental rotations between adjacent times steps

are less than 180 degrees. Equation 55 also serves as the starting point for Newton-Raphson solver

to get the initial value of Φ0 and Ψ0. Then for every time frame, put Φk−1 and Ψk−1 in Equation

38 to find Ak and Bk. Finally, use Equation 48 & 55 to get the starting point of solving Equation

38. If the reference point is at the center of mass and there is no rotation, the first estimation of Ψk

will be the exact solution, meaning the Newton-Raphson solver for pure translations is equivalent

to the one-step forward Euler method. Iteration times requirement is studied in the next section.

C. Algorithm Implementation

The entire algorithm of DQVI can be implemented as in Algorithm 1-2.

Algorithm 1 DQVI
1: define initial pose: p̃← p̃0

2: define initial velocity: χ̌0

3: estimate initial increment: Φ,Ψ← χ0 · h/2 . Equation 55

4: find converged solution: Φ,Ψ← NewtonRaphson(Φ,Ψ,M6×6 · χ0)

5: loop

6: gather external forces: τ (p̃)conservative, τ (p̃)external

7: calculate momentum integral: α(Φ,Ψ, τ ),β(Φ,Ψ, τ ) . Equation 41-42

8: estimate increment: Φ,Ψ← inverse(M6×6) · [α,β] . Equation 48

9: find converged solution: Φ,Ψ← NewtonRaphson(Φ,Ψ,α,β)

10: calculate dual quaternion increment: f̃(Φ,Ψ) . Equation 37

11: update pose: p̃← p̃⊗ f̃

12: end loop
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Algorithm 2 Newton-Raphson
1: function NewtonRaphson(Φ,Ψ,α,β)

2: for i← 1, iteration do

3: calculate Jacobian: J (Φ,Ψ) . Equation 49-53

4: converge to solution: [Φ,Ψ]← [Φ,Ψ]− inverse (J ) · [α,β]

5: end for

6: return Φ,Ψ

7: end function

Based on this standard implementation, variable time step can be set up by retrieving velocity

at key frame using Equation 48 then initiating a new simulation using the new time step. DQVI

can also be easily modified to handle rigid body separation scenarios. After the key frame where

separation happens, the two new rigid bodies created will share the same reference point and velocity,

only the 6-by-6 inertia matrix is divided into two matrices. Then without performing reference point

coordinate transformation like in many traditional methods, the simulation can be directly resumed.

V. Numerical Example: Spacecraft-Cargo Separation

For the purpose of demonstrating the performance of DQVI, a numerical example of spacecraft-

cargo separation process is presented in this section. Before separation, the entire spacecraft is under

pure rotation around its stationary center of mass without external torque or force. If the reference

point is defined on the center of mass, the algorithm is effectively simplified as quaternion variational

integrator[17]. Here the reference point is defined on the separation point O′, which has an offset

from the center of mass, see Figure 2. The reference point will then follow a “wobbling" trajectory

in a ring of certain width on a spherical surface whose radius is the distance from reference point to

the center of mass. This trajectory is symmetrical around the angular momentum axis nW in eW .

Use nW as the normal vector, the normal projection of the trajectory should be restricted in a circle.

The spacecraft is in a delicate balance that any accumulated error will break the stationary position

of the center of mass. The separation happens without any reaction force or torque, meaning the

total mechanical energy is conserved before and after the process, so does the total momentum.
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O

O’

Oc

Fig. 2: Pure rotation with reference point offset

A. Before Separation: Sensitivity Study

The mass of the spacecraft-cargo system is 1000 kg, with its center of mass relative to the

reference point in eB as O′O = [1, 0.8, 0.5]m. The moment of inertia tensor with respect to the

center of mass is

J3×3 =


200 100 100

100 300 100

100 100 400

 kg ·m
2

The variables in the test are time step and initial angular velocity. The reference methods to

be compared with are quaternion and Euler angles representations of classical 2nd-order Newton-

Euler ODE [24] using 4th order Runge-Kutta method, denoted as “QUAT-RK4" and “EULER-

RK4" respectively. QUAT-RK4 explicitly normalizes the rotation quaternion in every time step

and EULER-RK4 uses the sequence in intrinsic “ZYX" order. Also to show the “gimbal lock"

phenomenon, the dual-Euler angles representation[25] is intentionally not used. The iteration times

of DQVI is 4, and a comparison of different iteration times is conducted in the end.

1. Time step

Two time steps are tested in the study: a large time step of 10fps (frames per second) and 60fps

typical for real-time simulation. The simulation time is 4 minutes. The initial angular velocity in

eB is fixed as [1, 1, 1]rad/s.
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Fig. 3: Normal projection of trajectory (10fps)
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Fig. 4: Error level (10fps)

Figure 3-4 show that for large time step, the trajectory of EULER-RK4 and QUAT-RK4 quikcly

drifts away due to the lack of conservation of energy and momentum. On the other hand, DQVI

performs well in terms of conservation of the trajectory symmetry, energy and momentum.
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Fig. 5: Normal projection of trajectory (60fps)

19



0 1 2 3 4

time (min)

-3

-2

-1

0

1

2

3

4

E
rr

o
r 

(%
)

×10-5 Energy error (%)

DQVI

EULER-RK4

QUAT-RK4

(a) Energy

0 1 2 3 4

time (min)

-4

-2

0

2

4

E
rr

o
r 

(%
)

×10-4 Angular momentum error (%)

DQVI

EULER-RK4

(b) Momentum EULER-RK4

0 1 2 3 4

time (min)

-1.5

-1

-0.5

0

0.5

1

1.5

2

E
rr

o
r 

(%
)

×10-4 Angular momentum error (%)

DQVI

QUAT-RK4

(c) Momentum QUAT-RK4
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Figure 5- 6 show that the conservation of trajectory in EULER-RK4 and QUAT-RK4 is im-

proved when time step drops, but the conservation of energy and momentum is still not achieved.

By a closer comparison between Figure 3a and 5a one can find that the trajectory of DQVI un-

der 60fps coincides better than under 10fps. This reflects the property of variational integrators

that although the symmetry, the energy and the momentum of the system are conserved, the exact

trajectory accuracy of DQVI is still dependent on the integration time step.

2. Angular Velocity

To study the influence of angular velocity to the simulation, two new sets of initial angular

velocity in eb, [3, 3, 3]rad/s and [3, 2, 1]rad/s (denoted as 333 and 321 ), are tested . Time step is

set to be 60fps and the rest parameters remain the same as in time step study.
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Fig. 7: Normal projection of trajectory (60fps, 333)
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The comparison between Figure 7-8 and Figure 5-6 shows that under the same time step, when

the initial angular velocity increases, the error level of both EULER-RK4 and QUAT-RK4 increases

as well. This indicates that the error level of the system is not only determined by time step, but

also by angular velocity. On the other hand, although the trajectory of DQVI covers more area

of the ring due to more revolutions made in the same time span, it is still restricted in the circle

compared to worsened cases of EULER-RK4 and QUAT-RK4. And the energy and momentum are

both conserved as it should be.
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Fig. 9: Normal projection of trajectory (60fps, 321)
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Fig. 10: Error level (60fps, 321)

Figure 9-10 show that under certain initial conditions, EULER-RK4 will suffer from numerical

instability when the second Euler angle is close to ±90 deg. This phenomenon is well known as

“gimbal lock". Gimbal lock can be avoided by introducing a complex dual-Euler angles represen-

tation, or using quaternions as demonstrated by QUAT-RK4. Nevertheless, DQVI is still superior

among other methods in terms of system conservation.

3. Long Term Performance

To study the dissipation/accumulation of energy and momentum one step further, with the

same parameters as in time step study, the simulation time in the 60fps case is extended to 3 hours.

Figure 11a & 12a show that DQVI has excellent performance in long term simulation in terms

of conservation of symmetry, energy and momentum. EULER-RK4 and QUAT-RK4 (Figure 11b

& 11c) as comparisons, eventually accumulate enough error to be visible on plot. In view of the

conclusion from angular velocity study, the faster the object rotates, the quicker accumulated error

will be visible.
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Fig. 12: Long term error level (3-hr)

4. Iteration times

Since the initial estimation in Newton-Raphson solver is based on translational and angular

velocity in eB (Equation 55), the solution has a close initial point and should reach convergence in a

few iteration times. Here iteration times of 2, 3 and 4 are tested with time step of 10fps in 3 hours.

The rest of the parameters are the same as in time step test. Figure 12b shows that when iteration

times equals 2, the energy error increases proportionally with time, meaning the solution has yet to

reach convergence. Figure 12c shows once iteration time reaches 3, the energy error not only drops

significantly, but also has a random pattern that is not proportional to time. This is a signal that the

solution has converged to machine precision. Therefore, a iteration time of 3 is recommended for the

Newton-Raphson solver. Under the same time step and without code optimization, DQVI(iter=3)

has a roughly equivalent simulation speed as EULER-RK4 and DQVI(iter=4) is roughly equivalent
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to QUAT-RK4, also about 33% slower than DQVI(iter=3) as expected.

B. Separation

The cargo weights 400 kg with the center of mass O′Oc = [−0.3,−0.1,−0.1]m. The moment of

inertia tensor of the cargo with respect to Oc is

Jc3×3 =


100 20 20

20 100 20

20 20 100

 kg ·m
2

The entire 6-by-6 inertia matrix of the spacecraft-cargo system is separated into two matrices. Time

step is set as 60fps and the rest parameters are identical in time step study. The simulation lasts

6 seconds and the separation happens at t = 3s. The gray lines indicate the trajectory of the

center of mass vector of the spacecraft, and the black lines indicate the cargo, see Figure 13. After

separation, the reference points of both spacecraft and cargo are still on the separation point. No

velocity coordinate transformation is required at separation key frame.
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Fig. 13: Spacecraft-cargo separation

VI. Conclusion

The Dual Quaternion Variational Integrator introduced in this paper treats the rigid body pose

in SE(3) as an entire Lie group without decoupling translation and rotation. A parametrization of
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the incremental pose with 6 independent variables guarantees that the system will evolve in SE(3).

The numerical example shows that under a variety of settings, DQVI consistently outperforms

the traditional 2nd-order Newton-Euler differential equations in terms of conservation of geometric

structure, energy and momentum. DQVI allows reference point and 6-by-6 inertia matrix to be

arbitrarily defined. In situations when separation happens, no coordinate transformation is required,

providing more generality to possible spacecraft applications. Multi-step and variable time step

integration method can be developed based on our work.
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