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Abstract— A novel imaging method for atomic force mi-
croscopy based on estimation of state and parameters is
presented. The cantilever dynamics is modeled as a linear
system augmented by the tip-sample interaction force. The
states of this augmented system are observed. The tip-sample
force function is based on the Lennard-Jones potential with
a nonlinearly parameterized unknown topography parameter.
By estimating this parameter together with the tip-sample
force using a nonlinear observer approach, the topography
of the sample can be found. The observer and parameter
estimator is shown to be exponentially stable. Simulation results
are presented and compared to a more conventional extended
Kalman filter.

I. INTRODUCTION

Atomic force microscopy (AFM) [1] is a tool capable of
studying and manipulating matter down to the atomic scale.
This has made it one of the fundamental tools within the
field of nanotechnology.

Dynamic modes of AFM [2] are often used for imaging
the sample. In these modes the cantilever is oscillated using
a dither piezo located at the base of the cantilever. Steady-
state signals such as amplitude or frequency of the cantilever
position can be detected and will change as the cantilever ap-
proaches the sample. The distance to the sample can be kept
constant by adjusting a vertically oriented z-piezoscanner
to keep the amplitude- or frequency-signal constant in a
feedback loop. The z-scanner position can then be recorded
as the sample is scanned in a raster pattern along the lateral
directions to produce a topography map of the sample. The
scanning motion is produced by a nanopositioning stage lo-
cated beneath the cantilever. Due to lightly-damped vibration
dynamics of such devices they are often controlled in a
feedback loop. Such controllers can be simple as in damping
and tracking control schemes [3], [4], [5], or by employing
more complex model-matching techniques such as Z%-
control [6], [7]. The latter schemes can be challenging to
implement due to their computational complexity. However,
this can be treated by employing model reduction [8], [9].

Dynamic modes of AFM can be limited in terms of spatial
resolution due to their dependency on steady-state signals.
For improved resolution, the error signal in the feedback loop
of the z-scanner can be imaged [10]. Some studies have used
higher harmonics to exploit additional information in the

*This work was partly supported by the Research Council of Norway
through the Centres of Excellence funding scheme, project No. 223254 —
AMOS.

The authors are with the Department of Engineering Cybernetics,
Norwegian University of Science and Technology, Trondheim, Norway.
{ragazzon, jan.tommy.gravdahl, kristin.y.pettersen,
eielsen}@itk.ntnu.no

available signal [11], [12]. Higher harmonics can provide
improved spatial resolution by utilizing the time-varying
interaction force. Other studies try to exploit the transient
response for more information [13]. Such methods are often
observer-based, and can be used for directly controlling the
interaction force [14], or for active Q-control [15], [16]. In
active Q-control the cantilever stiffness — or quality factor —
is virtually controlled. This can be exploited to reduce the
time it takes for the transient to vanish, and allows for higher
resolution and increased scanning bandwidth.

In this paper a novel approach is used for topography
imaging. Topography and interaction force signals are es-
timated directly by using a state- and parameter estimator
based on the results of Grip et al. [17]. To achieve this, the
linear cantilever dynamics is placed in a closed loop with
a model of the tip-sample interaction force. This interaction
force is described by the nonlinear Lennard-Jones potential,
which depends on the position of the cantilever and the
sample topography. Thus, the system can be described as
a linear system augmented by a nonlinearly parameterized
topography signal, which is applicable for the methodology
in [17].

The presented method is designed for noncontact mode
where the tip of the cantilever is located in the attractive
region of the interaction force. This method does not rely
on steady-state signals, thus the transient information is
exploited. Additionally, the presented scheme also provides
an estimate of the interaction force, which can allow for
more direct feedback control such as in [14]. This force
measurement can also be used for applications such as
force spectroscopy [18]. Estimation of interaction forces by
use of observers has been investigated in optical probing
systems [19], but to the authors’ best knowledge no previous
observer-based techniques for topography estimation have
included a model of the tip-sample interaction force.

The paper is organized as follows. In Section II the
modeling of the system is presented. The state- and pa-
rameter estimation scheme is presented in Section III. The
simulation setup is described in Section I'V. In Section V the
simulation results are presented. The overall imaging scheme
is discussed in Section VI. Finally, conclusions are given in
Section VII.

II. SYSTEM MODELING

A. Cantilever Dynamics

The cantilever deflection subjected to the nonlinear inter-
action forces can be described by a Luré feedback system
[20]. This model has proven effective for describing several



properties — including stability — of the cantilever loop [21].
The model can be seen in Figure 1, where F,,. controls the
force applied to the cantilever for oscillation, F;; is the tip-
sample interaction force, and 6 represents the topography of
the sample.

The motion of the cantilever deflection can be described by
a second-order harmonic oscillator [13] given by the transfer

function X

G(s)

where @y is the resonance frequency, { is the damping ratio,
and m is the effective mass of the cantilever.
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Fig. 1. Block diagram of the cantilever system. F.. is controllable,
while the cantilever deflection x; is the only measurable signal. The sample
topography is represented by the signal 6.

Cantilever

Fig. 2. Interaction between cantilever and sample, D = x; + 6.

B. Tip-Sample Interaction Force

The interaction force between the probe tip and sample
surface is nonlinear. Additionally, it has both an attractive
region at large distances due to van der Waals-forces, and a
repulsive region at very short distances due to electrostatic
forces [22]. The attractive force can lead to an undesirable
effect where the tip suddenly jumps into contact with the
repulsive region of the force [23].

The interaction force between tip and sample can be
described using the Lennard-Jones potential [24]

2 8
Fis(D) = ki Lc; - ;Ogg] @)
where D 2 x; + 0 is the tip-sample distance, x; is the
cantilever deflection, 6 is the unknown topography to be
estimated, and k; < 0,0 are parameters which depend on
the physical and geometrical properties of the tip and the
sample assumed to be known. The cantilever interaction with

the sample is illustrated in Figure 2.

C. Noncontact Mode

As we operate the cantilever in noncontact mode, the
following assumption introduces a monotonically increasing
version of the Lennard-Jones potential, valid in this operating
mode:

Assumption 1. The modified force profile g is given by
Fis(D) D> Dey
D)= 3
8(D) {S(D) otherwise ©)
S(D) = P~ P) [F (Do) — (D)) + Fis(Do) ()

where
Dy £ n})in F5(D)

=06¢/2/15 (5)

and D¢y > Dy is a user-defined constant ideally set
close to Dy.

To ensure sufficient smoothness of g, r needs to be solved
from

ﬁ — 9k (6)
aD Dcut 8D Dcut
which gives
=ty 2 Do+ 560 D @)

Fts (Dcut) - Fts (DO)

The interaction force Fi; is plotted with the modified force
g(D) in Figure 3 as a function of tip-sample distance for a
given set of parameters.

Remark 1. The purpose of introducing a monotonically in-
creasing modified force profile is to guarantee expo-
nential stability of the nonlinear observer according
to Theorem 1. Function S(D) in (4) was chosen to
provide a monotonically increasing force profile in the
contact regime with a smooth transition to the traditional
Lennard-Jones force curve Fi (D) in (2).

The operation in noncontact mode can be achieved either
by feedback control of the z-piezo in the AFM or by
controlling the cantilever oscillation amplitude. Alternatively,
one can assume sufficiently small changes in the topography.
Employing feedback control is outside the scope of this
paper, but will be briefly presented in the simulations in
Section IV-V. As such, we will make use of the following
assumption:

Assumption 2. The topography is assumed to be bounded,
that is, there exist a known © € [Oin,Omax] such that
6 € 0.

Additionally, the frequency of the driving signal for the
cantilever oscillation should be set equal to or larger than the
resonance frequency. When the tip approaches the surface,
the attractive tip-sample force will effectively lower the
resonance frequency of the cantilever. Thus, the amplitude
will be reduced as the tip comes closer to the sample and is
less inclined to approach the repulsive region [25].
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Fig. 3. The tip-sample interaction force resulting from the Lennard-Jones

potential between a half-sphere and a flat surface, plotted with the modified
force profile g employed by the nonlinear observer in noncontact mode.

III. STATE- AND PARAMETER ESTIMATOR
A. Overview

We utilize the methodology in [17] for estimation of states
and parameters. The system depicted in Figure 1 can be
written in an extended state-space form as

L IR e

where the interaction force g(x; 4+ 0) has been introduced as
a state ¢ and its time-derivative denoted as ¢ = d(x,8), and
the input u is the driving force of the cantilever.

The states x = (x1,x2)7 of the system represent the can-
tilever deflection and the deflection velocity respectively, and
the system matrices are given by

0 1 0
A= [_wg _Zé,wo}’B:E: h],c:[l 0] ©

with y = x; as the only measurable signal. Let us also
introduce the definition v £ col(u,y) to simplify notation.
The time-derivative of the interaction force can be found as

d(x.0) = ki [—20%D 73 + %6D %] x D> Dey
1 re"P=Dew) [F (Do) — Frs(Do)] X2 otherwise
(10)

where we have used 6 = 0 which assumes that 8 is slowly-
varying compared to the rest of the dynamics. This will
ultimately introduce a limitation to the lateral scanning speed
that can be employed in order for the observer to properly
track the topography. However, this will always be the case
when imaging using any type of scanning probe microscope.

The modified high-gain observer of [17] is employed to
estimate the states of this extended system, while the param-
eter estimator provides estimates for 6 in (2) as depicted in
Fig. 4. Estimates are denoted by a hat, e.g. 6.

The estimation scheme in [17] contains several assump-
tions that must be satisfied in order to guarantee stability.

Assumption 3. The time derivative u is well defined and
piecewise continuous; there exist compact sets X €
R", U C R™, and U’ C R™ such that for all t > 0,x €
X,ucU, and uc U’

Assumption 4. The triple (C,A,E) is left-invertible and
minimum-phase.

Assumption 5. There exists a number B > 0
such  that  for all (v,V,x,0,0) € V x V' x
X x@®x ® and for all (£6,9) € R" x
0 x d(v,v,x,6,9) —d(v,v,%6,9)| <

ﬁHcolx x9 Gd) ¢H

These assumptions are satisfied as follows:

« A sinusoidal input signal u# will be employed for oscil-
lating the cantilever. The states xj,x, are bounded due
to the damped nature of the cantilever dynamics (1).
Thus, Assumption 3 is satisfied.

o The system G(s) has no invariant zeros, so it is left-
invertible and minimum-phase and Assumption 4 is
satisfied.

o Due to the smooth saturation introduced on g in (3),
d becomes globally Lipschitz in terms of both x; and
6. Additionally, x, appears only linearly in (10) thus
Assumption 5 is satisfied.

Modified
high-gain
observer

Parameter

System ‘
estimator

Fig. 4. Structure of the state- and parameter estimator. From [17].

B. Modified High-Gain Observer

By following the methodology in [17] a modified high-
gain observer will be designed next where the estimated
parameters are assumed to be available.

The observer is implemented as

£ =AR+Bu+EP+K.(e)(y—CR)
984 98,
550~ 3, Kl
(13 - g(xlv 9) +2z
where the gains K,(e )Kq,( ) are to be determined. By
defining the errors ¥ £ x—£, ¢ £ ¢ — @, we can find the
error dynamics from (11). Our goal is to design the gains
K(€) £ col(Ky(g),Ky(€)) such that for a sufficiently small
€ the error dynamics is input-to-state stable with respect to
6260-6.
The error dynamics are found as

< 0 1 0 - 0
{’5}: 00 I [HJF 0 J—[KX(E)]y(u)
¢ 0 - —28ay 1

The error dynamics are then transformed to the special
coordinate basis (SCB). The Maple program developed in

[26] was used for this purpose, resulting in the transformation
matrices

—CR)+Ky(e)(y—CH) (1)

= —

1 0 0
A]Z 0 1 0 ,A2:[1]7A3:[m]
o 2l 1



which transforms the system to the SCB in accordance with
col(%,0) =Aix, §=~My, d=A38

The observer gains can now be designed. Let K, =

col(I?q1 Seen 7I?qS) be chosen such that the matrix
1 00
HZ|[0 1 0 |-K, 1 0 0] (13)
0 0 O

is Hurwitz using a pole-placement technique [17]. Then for
our special case without any invariant zeros, the resulting
gain is found from K,(€) = col(Ky1 /¢, ...,K;3/€>) and the
transformation K(€) = A1K,(€)A;". The poles of H were
placed at —1+£0.2i and —2, resulting in the gain

4.0e7!
5.0472
4.00e™" +10.08{ wye 2 +2.08¢ 3

The following Lemma from [17] ensures that this proce-
dure for determining the gains will provide a stable estimate
of the states with respect to 6:

Lemma 1. Assuming he 0, there exists 0 < €* <1 such that
Sfor all 0 < € < €, the error dynamics (12) is input-to-
state stable with respect to 0.

K(e)= (14)

C. Parameter Estimator

In the previous section a high-gain observer was designed
based on known parameters. Next, we will design a pa-
rameter estimator for the topography signal which will be
provided to the observer. An update law for the topography
estimate é,

A

9:”9(V7f7¢;7é) (15)

must be found satisfying the following assumption from [17]:

Assumption 6. There exist a differentiable function V, :
R>o x (@ —®) — R>q and positive constants ay, ... a4
such that for all (t,0) € R>o x (@ —0),

ar 6] < Va(t,0) < ar 0]

av,, ~. oV, =« ~ ~
W(l,@)fﬁ(t,e)ue(v,x,d),e—e)§7a3||6H
oV, = ~
H&é(t’e)‘ §a4||9||

Furthermore, the update law (15) ensures that if §(0) €
O, then for all t > 0,0 € ©.
Assumption 6 guarantees that the origin of the error dynam-
ics

6= —up(v,%,6,6—0) (16)

where 6 £ 60— 0, is uniformly exponentially stable whenever
f=xand ¢ = ¢.

In [27, Ch. 6], four propositions are stated in order to
satisfy Assumption 6. Being a rational function with an
8th-degree polynomial in the denominator, it is difficult to
solve g(x; + 0) in terms of 6. Instead, a numerical search
is performed to find the solution. We restate the following
proposition from [27]:

Proposition 1 Suppose that there exist a positive-definite
matrix P and a function M :V x R" x ® — RP** such
that for all (v,x) € V xR" and for all pairs 0;,6, € ©,

T
(v,x,0)M" (v,x,0;) >2P
a7
Then Assumption 6 is satisfied with the update law

P P)
M(v,x, 61)£(v,x7 92)+£

ug(v,%,9,6) = Proj (TM(v,£,6)(§ —g(v,£,6)),
(18)
where T is a symmetric, positive-definite gain matrix.

Next, we need to choose an M such that (17) is satisfied. Let
M(D) = M(v,%,0) where D £ % + 6. We then choose

M(D) = IMpax [tanh(Myae (D — Dy)) +1] (19)
where Mmax, Mrate, Dy are tunable positive constants and

M(D) > 0 for any finite value of D. Since our g and 6 are
scalar values, we have from (17),

d
2M(v,x,01) 25 (v.x,6,) > 2P

70 (20)

To satisfy this inequality for some positive P, we want to
show that dg/d6 is strictly positive in the domain of the
arguments. We have

98 g _ Jki[-20°D7 + 505D D> Dy
00 (x,8) = re"P—Daur) [Fis(Dewr) — Fis(Do)]  otherwise

(21)
The first case in (21) has only one real, positive root at the
point D = Dy. Thus, 3—5 never switches sign in D > D, >
Dy. Above this point the negative D> term dominates, and
since k; < 0, the result is positive. For the second case, we
have that Fi(D., ) — Fis(Dg) > 0, the exponential function is
positive for all real, finite values, and r has the same sign
as in the first case as evident from (7). Additionally, g—g #0
for any finite value of D, assuming k;,c # 0.

Thus, the conditions of Proposition 6.3 are satisfied, and
we can use the update law (18)—(19). The projection function
in (18) ensures that the parameters 6 never leave ©. For
implementation details of this function we refer to [27].

Remark 2. Another feasible candidate for M is the choice
M = g—g as discussed in [27]. We found this choice to
give wildly varying estimation speeds as the cantilever
tip approached the sample. At the minimum tip-sample
distance the update was very quick — limiting the
update gain — while very slow anywhere else. The new
choice of M in (19) gives a smoother transition of the
estimation speed which allows us to increase the overall
gain of the update law, providing better performance.
Because the tip-sample force at large distances is very
small, its detection will be dominated by noise. Thus, M
is saturated by M,,,, in order to limit the update speed
at large tip-sample distances.



D. Stability of Interconnected System

The interconnection between the modified high-gain ob-
server (11) and the parameter estimator (15) also needs to
be considered.

6)
)

Assumption 7. The parameter update law ug(Vv,X,
Lipschitz continuous in (£,9), uniformly in (
V xR" x Rf x @.

This assumption can be satisfied as follows:

o Consider the update law (18). We have that M in (19)
is a saturated Lipschitz continuous function because of
its dependency on the tanh(-)-function. We also have
that dg/dx; = dg/d6 given in (21) is continuous and
bounded. Thus g is Lipschitz continuous both in terms
of x; and 6. The projection function in the update law
does not change the Lipschitz properties as discussed in
[27]. Thus, Assumption 7 is satisfied.

Finally, the following theorem based on [17, Th. 1] estab-

lishes the stability of the interconnected system:

Theorem 1. If Assumption I — 7 are satisfied and 6(0) € ©,
there exists 0 < €* <1 such that for all 0 < € < €%, the
origin of the error dynamics of the observer (12) and
parameter estimator (16) is exponentially stable.

A A
’

is
on

)
A
,0

Remark 3. Note that the system is globally exponentially
stable with respect to the observer error states, i.e. it
is only the parameter estimates that have limitations on
their initial values.

E. Extended Kalman Filter

In order to provide a more detailed discussion on the
performance of the nonlinear approach, an extended Kalman
filter (EKF) was implemented for comparison. EKF is a well-
established method for estimating the states of a nonlinear
system, see e.g. [28].

The system as described in Section II can be modeled by
the following set of equations:

X1 =X

X = —wpxy — 2§ oxa + Lu+ LE (D) 22)
D=x,4+w

y=x1+v

where the zero-mean white process noise w models the
changes in topography with covariance Q, and v is zero-
mean white measurement noise with covariance R.

The observer was implemented by using the continuous-
time extended Kalman filter described in [28]. From the state
estimates, the topography 0 can be found from 6 = D — x;
and the estimated interaction force is found by calculating
Fis(D).

IV. SIMULATION SETUP

A simulation of the system has been set up with the
system dynamics and estimation laws described in the pre-
vious sections. The parameters used in the simulation are
given in Table I. A sinusoidal input signal is used for the
cantilever giving it a freely oscillating amplitude of 100 nm.

An oscillating cantilever is chosen in order to avoid the jump-
to-contact behavior thereby satisfying Assumption 1. Initial
distance to the sample is set to 105nm from the resting
position of the cantilever, while the topography is modeled
as a square-like wave. The interaction force parameters o, k|
in (2) are based on values and formulas from [22].

The cantilever position is only controlled by a feedforward
signal. Thus, over cavities in the sample the tip-sample
distance will increase, and ultimately reduce the interaction
force. This does affect the performance of the observers.
To compensate for this, one simulation was run with a
feedback controller to illustrate some possibilities for actual
implementation. The feedback controller uses the estimated
tip-sample distance D = £; + @ to find the closest approach
distance each cycle. A P-controller on the error between this
signal and a reference distance is then used to control the
amplitude of the cantilever oscillations.

Simulations were run both with and without additive white
noise on the output of the cantilever deflection measurement,
in order to discuss the effects of noise on the system. Note
that the actual force Fj; in (2) is used in the plant dynamics
to provide a more physically accurate simulation.

TABLE I
SIMULATION PARAMETERS

Param. Value Param. Value

wy 1000Hz Mpya:e 1077

¢ 0.005 Myge 5x10*

m  1.5728 x 107 kg Dy 1073

o 341x107m Dew Do+1071%m

ky  —2.2242x 107N Q0 10°°

e 107 R 10°1'°

r 5xI10* u(t)  6.21 x 10~ sin(wpt) [N]

V. RESULTS

The simulation results are plotted in Figure 5 — Figure 10.

Figure 5 shows the estimated topography parameter 6
plotted together with the actual topography. It can be seen
that the estimates from both the nonlinear observer and the
extended Kalman filter (EKF) are reasonably accurate. In
Figure 6 it can be seen that the estimates have a staircase-like
behavior. The steps occur when the cantilever position is at
the bottom of its oscillation cycle, where the force interaction
is the strongest. Far from the sample, the force field is so
weak it does not provide any information on the distance.

After adding output noise to the simulations, we had to
increase the e-value and reduce the gain I' of the nonlinear
observer to give sufficiently accurate estimations. However,
this resulted in some loss in performance as seen in Figure 7,
noticeable by the slightly slower response and small drifting
when the cantilever oscillates far from the surface over
the sample cavities. The closest tip-sample distance each
oscillation cycle is plotted in Figure 8, which varies with
the topography due to the lack of feedback control.

With the feedback controller turned on the nonlinear
observer regains some of its lost performance after adding
output noise, as seen in Figure 9. Both observers also provide
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an estimate of the tip-sample interaction force as seen in
Figure 10.

VI. DISCUSSION

The results demonstrate the efficiency of both the non-
linear observer (NLO) scheme and extended Kalman filter
(EKF). The advantage of the NLO is its near-global expo-
nential stability results as given in Theorem 1. The results
suggest that the EKF provides a somewhat better trade-off
between noise attenuation and response time. However, this
could possibly be due to the tuning of the parameters.

The choice of M in (19) was based on an improvised
approach after studying the observed characteristics of the
NLO. Possibilities for further improvements to this function
is considerable, as it is only required to be positive definite
and to satisfy the Lipschitz conditions of Assumption 7.

For studying highly inhomogeneous samples the parame-
ters in the Lennard-Jones potential in (2) would need to be
estimated simultaneously. This can be achieved by including
them in the parameter estimator of the nonlinear observer.
This should be possible with relative ease, as a reformulation
of these parameters will make them appear linearly in (2).

Ongoing work includes adopting the nonlinear observer
scheme to tapping mode operation and experimental studies
on an AFM.

VII. CONCLUSIONS

In this paper we have introduced a novel imaging tech-
nique for noncontact operation mode in AFM based on
observers. Two distinct observer schemes were presented to
show the viability of this technique, both of which directly
estimates the tip-sample interaction force and topography
of the sample. The nonlinear observer shows well-defined
exponential stability results. A simulation study confirms
the stability and convergence properties of the analysis. The
second observer — based on an extended Kalman filter — show
good performance in terms of accuracy and noise tolerance,
but the nonlinear observer has stronger stability properties.
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