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Abstract— The application of a nonlinear control law for
vibration damping on a typical nanopositioning system is
investigated. The nonlinear control law is an augmentation of
the linear integral force feedback scheme, where the constant
gain used in integral force feedback, is replaced by a passive
nonlinear operator. The nonlinear control law improves the
performance of integral force feedback as it provides more
rapid suppression of large disturbances, while maintaining low
noise sensitivity. L2-stability for the control law is established.
Experimental results are presented, showing improved per-
formance when applying the nonlinear augmentation of the
integral force feedback scheme, compared to the original linear
integral force feedback scheme.

I. INTRODUCTION

Nanoscience and nanotechnology have experienced sub-
stantial growth in recent decades, contributing to numerous
areas such as biology, chemistry, materials science, and
physics [1]. A key enabling technology for nanoscience and
nanotechnology is scanning probe microscopy [2], [3], as
scanning probe microscopy can be used for both manipula-
tion [4] and interrogation [5] at the nanometer scale.

Scanning probe microscopy requires one or more position-
ers to physically position the probe in space. As such, scan-
ning probe microscopy requires high performance motion
control. The motion can be generated using e.g. piezoelectric
actuators [6], [7], electrostatic comb drives [8], or voice
coil actuators [9], [10]. However, many positioner designs
feature high stiffness materials and little structural damping.
Thus, the mechanical structures of such devices have lightly
damped vibration modes which limit the usable bandwidth,
since reference signals with high frequency components will
excite the vibration modes, which results in non accurate po-
sitioning. In addition, the device is affected by environmental
disturbances, such as sound and floor vibrations. Depending
on the actuator, a positioner might exhibit various non-linear
behavior as well.

For known signals, the effect of mechanical vibrations
in these systems can be reduced using feed-forward tech-
niques [11]. However, feedback control may be necessary in
order to reduce the sensitivity to uncertainty and unknown
disturbances. In order to control lightly damped vibrational
modes in active structures, several control schemes that intro-
duce damping have been developed, such as positive position
feedback [12], integral force feedback [13], passive shunt-
damping [14], resonant control [15] and integral resonant
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control [16]. With regards to nanopositioning applications,
positive position feedback and resonant control has been
applied in [17], integral force feedback in [18], passive shunt-
damping in [19], [20], and integral resonant control in [21].
These control schemes tend to be simple to implement and
robust towards plant uncertainty and nonlinearities.

All these control schemes are very effective in introducing
damping and reducing the sensitivity of the systems they are
applied to. However, since they are linear control laws, there
are general limitations to the achievable performance [22].
Additional improvement in performance can be obtained
using nonlinear control laws.

In this paper, the nonlinear control law for vibration
damping presented in [23] is applied to a nanopositioning
device. The nonlinear control law in an augmentation of
the integral force feedback (IFF) scheme [13]. When ap-
plying IFF, the output of a piezoelectric force transducer is
integrated, multiplied with a gain constant, and applied to
a co-located actuator. The augmented nonlinear control law
replaces the gain constant with a passive nonlinear operator
which includes a second-order term. The nonlinear control
law improves the performance of integral force feedback as
it provides more rapid suppression of large disturbances,
while maintaining low noise sensitivity, since the second-
order term only provides high gain for large error signals.
The stability properties of the closed loop system can be
established using the theory of passivity [24].

The control law has been implemented on a nanoposition-
ing device. The aim of the control law is not to achieve
reference trajectory tracking, but to reject unknown exoge-
nous disturbances. Experimental results are presented, which
confirm that the nonlinear control law provides improved
performance compared to an optimally tuned linear IFF
scheme.

The paper is organized as follows: In Section II the
nanopositioning system and the mathematical model is pre-
sented. Section III presents integral force feedback and then
nonlinear control law, together with results establishing L2-
stability. Experimental results are presented in Section IV.
In Section VI conclusions are drawn.

II. SYSTEM DESCRIPTION AND MODELING

A. Description of the Experimental System

The experimental set-up consists of a dSPACE DS1103
hardware-in-the-loop (HIL) system, an ADE 6810 capacitive
gauge, an ADE 6501 capacitive probe from ADE Technolo-
gies, a Piezodrive PDL200 voltage amplifier, two SIM 965
programmable filters from Stanford Research Systems, and
the custom-made long-range serial-kinematic nanopositioner



shown in Fig. 1. The nanopositioner is fitted with a Noliac
SCMAP07-H10 actuator, where one of the stack elements is
used as a force transducer. The transducer charge is measured
using a simple charge conditioning amplifiers employing
a Burr-Brown OPA2111. The voltage amplifier with the
capacitive load of the actuator, has a first-order response
and a bandwidth around 40 kHz. With the DS1103 board,
a sampling frequency of fs = 125 kHz was obtained.
For numerical integration, a third-order Runge-Kutta scheme
was used. Two second-order Butterworth filters with a cut-
off frequency of 40 kHz were used as anti-aliasing and
reconstruction filters.

The experimental set-up includes the custom-made long-
range serial-kinematic nanopositioner shown in Fig. 1. The
serial-kinematic motion mechanism is designed to make the
first vibration mode dominant and to occur in the actuation
direction (piston mode). More details on the design of this
stage can be found in [25].

The displacement is generated using a piezoelectric ac-
tuator. Such actuators generate a force proportional to an
applied voltage [26]. The applied external force from the
piezoelectric actuator fa (N) can be expressed as

fa = eau , (1)

where ea (N V−1 = C N−1) is the effective gain of the
piezoelectric actuator from voltage to force, and u (V) is the
applied voltage.

The dynamics due to an applied voltage u for a point d (m)
on the flexible structure, as observed by a co-located sensor,
is adequately described by the following lumped parameter,
truncated linear model [27],

Gd(s) = ea
d

fa
(s) ≈

nd∑
i=1

βi
s2 + 2ζiωis+ ωi

2
+Dr (2)

where nd is the number of vibration modes included. Here,
{βi} (m s−2 V−1) are the control gains, {ζi} are the damping
coefficients for each mode, and {ωi} (rad s−1) are the
natural frequencies for the modes. The term Dr (m V−1)
is the residual mode, which is an approximation of the non-
modeled higher frequency modes, and can be included to
improve prediction of zero-locations. The addition of Dr

produces a model that is not strictly proper, but as the
instrumentation, such as the amplifier and sensors, have
limited bandwidth, Dr can be considered equal to zero for
this system.

The integral force feedback scheme utilizes a co-located
piezoelectric force transducer. The force transducer generates
a charge, depending on the applied force. The current or
charge produced by the force transducer is typically con-
verted to a voltage signal using a simple op-amp circuit with
a high input impedance. The output voltage from such a
sensor when measuring the charge, can be found to be [18],
[27]

vf = ks(kfu− d) ,

where d is the displacement of the mechanical structure, u
is the applied voltage to the actuator, kf (m V−1) is the gain

of the feed-through term, and ks (V m−1) is the sensor gain.
The transfer-function from applied voltage ua to measured
sensor voltage vf can therefore be found as

Gf (s) =
vf
u

(s) = ks(kf −Gd(s)) . (3)

In order to identify the parameters in (2) and (3),
the frequency responses for the displacement and force
were recorded using an SR780 Dynamic Signal Analyzer
from Stanford Research Systems using a 100-mV RMS
bandwidth-limited white noise excitation. The models were
fitted to the procured data using the MATLAB System Iden-
tification Toolbox and Optimization Toolbox. The responses
for Gd(s), and Gf (s) are displayed in Figs. 2a and 2b,
respectively. The identified parameter values are presented
in Tab. I. For the displacement model (2), only the dominant
vibration mode is included, i.e. nd = 1. The dominant piston
mode occurs at 1680 Hz.

Fig. 1: Custom flexure-guided nanopositioning stage.

TABLE I: Identified model parameters.

Displacement model (2)
β1 2.00 · 106 µm s−2 V−1

ζ1 0.0196

ω1 2π · 1680 rad s−1

Force model (3)
ks 0.00197 V µm−1

kf 0.0253 µm V−1

III. CONTROL SCHEMES

A. Integral Force Feedback

Integral force feedback (IFF) was introduced in [13], and
has successfully been applied to a nanopositioning device
in [18]. An advantage of using this scheme, is that a
piezoelectric force transducer typically has an extremely low
noise density, compared to many other sensors [18]. The
control law is also simple to tune and implement, as pro-
vides damping for several vibration modes simultaneously.
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(b) Force transducer.

Fig. 2: Frequency responses; measured and using the models.

Assuming sensor-actuator co-location, it provides robust L2-
stability.

The basic implementation of the control scheme is shown
in Fig. 3a. Here

Φ = k2

and the IFF control scheme is therefore equivalent of the
integral control law on the form

C(s) =
k2
s
, (4)

where k2 is the control law gain.
The methodology for optimally tuning the gain k2 is

elaborately explained in [18], [28]. Ignoring the damping,
ζ1 = 0, and assuming that ±jω1 are the poles and ±jz1
are the zeros of Gf (s), then, if z1 > ω1/3, the maximum
achievable damping using IFF is

ζmax
1 =

ω1 − z1
2z1

,

which occurs when

k2 = ω1

√
ω1

z1

1

kfks
. (5)

For the system at hand, this results in k2 = 7.2 · 107.
When not ignoring the damping, the optimal value is slightly
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Fig. 3: Block diagrams for closed-loop system.

different. Maximum damping is achieved where the root
locus intersects a line radiating from the origin, and this is
simply found by plotting the root locus for C(s) ·Gf (s), as
has been done in Fig. 4. In this case k2 = 7.4 · 107 is found
to be optimal, and is the value used in the experiments.
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Fig. 4: Root locus of 1/s ·Gf (s).

B. Nonlinear Control Scheme

Linear control laws in general have limitations to the
achievable performance [22]. For a single-input-single-output
system, this is perhaps most noticeable from the limitations
imposed by the Bode sensitivity integral [29]. For the IFF
scheme, performance depends on the tuning for the gain



k2 in (4). There is one optimal value for the gain k2 that
provide maximum damping. Choosing other values for k2
results in either a larger overshoot, a longer convergence
envelope, or both. In order to improve the performance of the
IFF scheme, a nonlinear augmentation was proposed in [23].
Here, a gain proportional to the force measurement is added
to the constant gain k2. Thus, with reference to Fig. 3a,

Φ = K

where

K = sat(k1|vf |, L) + k2, L, k1, k2 > 0 (6)

and

sat(x, L) =

{
x, |x| < L

L sgn(x), |x| ≥ L .

In order to establish L2-stability, the closed-loop system
in Fig. 3a is put on the equivalent form shown in Fig. 3b.
Firstly, the nonlinear gain is examined. The inner product on
the extended L2-space of the input vf to the output of the
operator, or sector nonlinearity,

Φ(vf ) = (sat(k1|vf |, L) + k2) vf

is

〈Φ(vf )|vf 〉T =

∫ T

0

Φ(vf )vf dt =∫ T

0

(sat(k1|vf |, L) + k2)vf
2 dt ≥∫ T

0

k2vf
2 dt = k2||vf ||2T , (7)

which satisfies the requirements for being strictly passive
according to Theorem 1 in the Appendix. In addition, the
operator Φ(vf ) has a finite gain, i.e.,

‖Φ(vf )‖T =

(∫ T

0

Φ(vf )
2

dt

)1/2

=

(∫ T

0

(sat(k1|vf |,K) + k2)2)v2f dt

)1/2

≤

(∫ T

0

(K + k2)2v2f dt

)1/2

= (K + k2)‖vf‖T . (8)

Next, consider the transfer function

1

s
·Gf (s) =

1

s
ks

(
kf −

nd∑
i=1

βi
s2 + 2ζiωis+ ωi

2
−Dr

)
for which the Fourier transform is

G1(jω) =
1

jω
·Gf (jω) =

ks

(
nd∑
i=1

βi
(
2ζiωiω

2 + j(ωi
2ω − ω3)

)
(2ζiωiω2)2 + (ωi

2ω − ω3)2
− j kf −Dr

ω

)
,

thus

Re [G1(jω)] =

ks

(
nd∑
i=1

2ζiωiβiω
2

(2ζiωiω2)2 + (ωi
2ω − ω3)2

)
≥ 0 ∀ ω ∈ R , (9)

and given Theorem 2 in the Appendix, it can be seen that
the mapping u 7→

∫ t

0
vf (t), described by G1(jω), is passive.

Now, (7) and (8) establishes that Φ(vf ) is a strictly passive
mapping with finite gain, and (9) establishes that 1

sGf (s)
is passive, the operator Gf (s) is also exponentially stable,
thus the closed-loop system is L2-stable with exogenous
disturbances w according to Theorem 3 in the Appendix.

IV. EXPERIMENTAL RESULTS

Experiments were carried out applying the linear control
law and the nonlinear control law on the system described in
Section II. A diagram for the implementation of the control
laws is shown in Fig. 5. Here Wo(s) represents the dynamics
due to the reconstruction filter and the voltage amplifier, and
Wi(s) the dynamics due to the capacitive sensor gauge and
anti-aliasing filter. As the charge measurement had a bias
component, a second-order high-pass Butteworth filter with
a cut-off frequency of 1 Hz was introduced, represented by
Whp(s).

For the linear control law, Φ was the to the constant gain
as in (5), and in the case of the nonlinear control law, Φ
was defined as in (6). In order to avoid integral windup
and amplification of low-frequency noise from the charge
amplifier, a limited integrator,

C(s) =
s

s+ ωli
· 1

s
, (10)

was used. The cut-off frequency ωli was set to 50 Hz.

w
r=0

–
vfWo

Φ

uC Gf

WiWhpDSP

dGd

Fig. 5: Experimental implementation.

In order to assess the performance of the linear control
law and the nonlinear control law, a disturbance signal w
was generated as a 5 Hz square-wave with an amplitude of
6 V which was applied to the piezoelectric actuator, and the
resulting displacement was measured.

The tuning of the linear control law used, was as presented
in Section III and Fig. 4, i.e., k2 = 7.4·107. As the nonlinear
control law is an augmentation of the linear control law, with
the addition of a second-order damping term with gain k1, the
gain for the linear component k2 was kept at the same value.
The tuning for gain k1 was simply done by increasing it until



the system went unstable, and then reducing it somewhat.
The value used for the experiments was k1 = 2.0 · 1012.
The main limiting factor for the gain k1 appears to be the
low-pass characteristic dynamics of the instrumentation, as
reducing the cut-off frequency of the programmable low-
pass filters also reduced the maximum gain before instability.
The higher the value of k1, the more effective the nonlinear
control law appears to be.

Time-series of the responses from the displacement sensor
and the force transducer when applying the square-wave
excitation signal as a disturbance are presented in Figs. 6
and 7, respectively. The responses when using the linear
and the nonlinear control laws are shown. A power spectral
density estimate for the displacement measurement is shown
in Fig. 8. Here the plot also includes the results from when
operating the system in open-loop.
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Fig. 6: Measured displacement for the linear and nonlinear
control law.
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Fig. 7: Measured transducer voltage for the linear and
nonlinear control law.
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Fig. 8: Power spectral density estimate for the displacement
signal when operating in open-loop, and when using the
linear and the nonlinear control law.

V. DISCUSSION

The results presented in Figs. 6 and 8 indicate that the
nonlinear control law provides improved performance with
regards to disturbance rejection and vibration damping over
the linear control law. Fig. 6 show a reduced overshoot and
a somewhat faster settling time for the nonlinear control law.
It is interesting to note that the measured force is larger in
the nonlinear case, indicating that the nonlinear control law
produces a larger actuation signal for the same disturbance
compared to the linear control law. Lastly, the power spectral
density estimate in Fig. 8 confirms a significant reduction in
spectral content of the displacement signal when using the
nonlinear control law. As can be seen, both the linear and
the nonlinear control law attenuates several resonant modes,
but the nonlinear control law is apparently more effective.

VI. CONCLUSIONS

This paper presents the application of a nonlinear aug-
mentation of the vibration damping control scheme integral
force feedback (IFF). The original linear control law was
compared to the augmented nonlinear control law in a set of
experiments using a nanopositioning device exhibiting highly
resonant vibrational modes. The nonlinear control law was
seen to result in improved damping performance compared to
the original linear scheme, while having the same theoretical
stability properties, i.e. the augmentation retains the robust
L2 stability property.

APPENDIX

The following Theorems are taken from [30], [31].
Theorem 1: The operator H : Ln

2e → Ln
2e is strictly

passive if and only if

∃β, δ > 0, 〈Hx|x〉T ≥ δ‖x‖2T + β, ∀ x ∈ Ln
2e, ∀ T ∈ T .

Typically T ∈ R+, R, Z, or Z+.



Theorem 2: Let H : L1
2e → L1

2e and be defined by Hu ,
H ∗ u, where H ∈ A and u ∈ L1

2e, then

H is passive ⇔ Re
[
Ĥ(jω)

]
≥ 0, ∀ ω ∈ R .

Note that since H ∈ A, H is casual, where A denotes the set
of generalized functions (distributions) f(·) such that f(t) =
0 when t < 0, and have the form

f(t) =
i=0∑
∞
fiδ(t− ti) + fa(t), t ≥ 0 ,

where δ(·) denotes the unit delta distribution,
0 ≤ t0 < t1 < . . . are constants, and fa(·) is a measurable
function.

Theorem 3: The feedback system of Fig. 9 is L2-stable
with finite gain and zero bias if G2 is strictly passive and
has finite gain, and G1 is passive.

–

G2

G1 y1

e2y2

e1

u2

u1

Fig. 9: General feedback system.
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