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Electricity Capacity Expansion in a Cournot Duopoly
Helene K. Brøndbo, Axel Storebø, Stein-Erik Fleten, Trine K. Boomsma

Abstract—This paper adopts a real options approach to analyze
marginal investments in power markets with heterogeneous tech-
nologies and time-varying demand. We compare the investment
behavior of two firms in a Cournot duopoly to a central planner’s
when two categories of power plants are available; base and
peak load power plants. We find that producers exercise market
power and the prices increase. Furthermore, the peak load
plants become relatively more valuable and the share of installed
peak load capacity exceeds the peak load share in a perfectly
competitive market. In a numerical example, we show that this
results in welfare losses above 10 %, and significantly larger
reduction in the consumer surplus. Further, we examine the effect
of analyzing power markets without time-varying demand and
find that this underestimates investments in peak load capacity.

Keywords—Capacity expansion, duopoly, real options, social
welfare.

I. INTRODUCTION

Expansion of capacity in power systems is on the agenda,
both in developing countries, where demand is growing, and in
industrialized countries, where concerns about climate change
is a driving force. Following the deregulation of European
power markets in the last decades, the authorities’ focus on
maximizing social welfare has been replaced by the com-
panies’ aim to maximize their profits. Several mergers and
acquisitions have resulted in markets with few suppliers having
significant market shares. Despite the clear need for a better
understanding of capacity expansions in power markets with
actors in possession of market power, there is a limited amount
of academic research addressing this.

Investments in power equipment are capital intensive, and
the equipment is difficult to sell once it is installed, particu-
larly when considering the whole industry at the same time.
Hence, we assume investments to be irreversible. Further-
more, capacity expansions are rarely now-or-never decisions.
The investment can be delayed until the company has more
information about the uncertain demand. These assumptions
suit real options problems well. Treating capacity expansions
in the power sector with a real options approach provides
flexibility to the investor because it takes the value of waiting
into account while the investment is considered irreversible.

We take as a starting point the set-up of [1]. This paper
introduces a real options capacity expansion model for power
generation under perfect competition. The combination of real
options and a social welfare perspective is also found in
[3] and [4]. The framework of [1] includes heterogeneous
technologies, and power is treated as a differentiated product
by dividing the year into load segments, where the power
demand is different in each segment. On this basis, we develop
a real options capacity expansion problem under a Cournot
duopoly. This makes us able to compute social welfare losses

in settings with market power relative to a market governed
by a central planner.

This paper aims to contribute to the literature by implement-
ing the particularities described below. A number of articles
consider capacity expansion by real options, e.g. [2], [13],
[14] and [15]. However, these approaches consider only one
technology or heterogeneous technologies. We study capacity
expansions for electricity technologies that may differ in both
operational and investment costs. For instance, peak load plants
typically have higher operational costs but lower investment
costs than base load plants.

We cast the capacity expansion problem as a canonical
real options problem. Such models fit well into a stochastic
setting while allowing for an endogenous electricity price when
the level of capacity is held constant. Canonical real options
models consider a sequence of marginal capacity expansions
instead of a single. Furthermore, the value of the capacity
expansion and the optimal expansion path are determined
simultaneously. Canonical real options theory is mainly used
in markets with monopoly and perfect competition due to
assumptions about homogeneous companies and symmetric
technologies. By assuming myopia, however, we apply it to
a diverse portfolio of technologies.

Myopia implies that each investment in incremental capacity
is the last one over the time horizon, and holds for electricity
capacity expansions with one technology or several technolo-
gies with identical cost characteristics. Although myopia does
not necessarily hold for our capacity expansion problem, we
use this as an assumption to facilitate a solution. We argue
that myopia is an acceptable approximation because of the
way profit maximizing firms act. In deciding whether the next
investment is attractive, this is assumed to be the last one.
As time passes and the electricity demand increases, a new
investment might be undertaken, despite the earlier belief that
the previous investment was the last one.

Electricity is treated as a differentiated product both between
years and within each year. Pindyck [12] argues that long-term
development of electricity prices follows a geometric Brownian
motion. This view is supported in [9], [10] and [11] among
others. Hence, we model the long-term fluctuations in elec-
tricity demand as a geometric Brownian motion. Additionally,
our real options approach for electricity capacity expansion
considers the fluctuations in short-term demand by dividing
each year into a set of load segments, where the electricity
demand differs between each segment. Short-term fluctuations
of the electricity price in the load segment is modeled by an
inverse demand function. This way, the electricity price depend
on the dispatch in the market and is thus endogenous as argued
in e.g. [5] and [13].

According to [5], [6], [7] and [8], power markets may be
considered Cournot oligopolies. Hence, we use a partial equi-
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librium model to describe the market structure in the capacity
expansion model. Here, the firms extract market power and
their investment decisions depend on actions of the competitors
as well as economic variables. At each point in time, the
firms decide their production and investments simultaneously
with a view to long-term market shares and profitability. For
simplicity, we assume a power market consisting of two firms
in this paper.

The paper is structured as follows. Section 2 introduces
a framework for capacity expansion in duopolies. Section 3
presents a numerical example and studies capacity investments,
surpluses and welfare losses in a Cournot duopoly compared
to a perfectly competitive market. The section also looks at the
effect of modeling the power market with and without time-
varying demand. Section 4 concludes.

II. CAPACITY EXPANSION MODEL

A. Instantaneous Profit of a Duopolistic Firm

We model the electricity demand shock process Yt as a
geometric Brownian motion

dYt = µYtdt+ σYtdzt, (1)

in which µ is the deterministic drift, σ > 0 is the standard
deviation and dzt is the increment of a Wiener process. Elec-
tricity cannot be stored, and is thus a differentiated product. As
a result, the electricity price is time-varying. This is modelled
by dividing each year into d(L) load segments with different
electricity demand. Power generation depends on the load,
which is the energy demand per unit of time. We use linear
inverse demand functions Dl(Ql) to find the electricity prices,
in which Ql is the total dispatch in each load segment l ∈ L.

Hence, we let the electricity price depend on both the inverse
demand function Dl(Ql) and the exogenous and multiplicative
shock process Yt

Pl = YtDl(Ql) = Yt(Al − blQl), ∀l ∈ L. (2)

We assume a Cournot duopoly consisting of two firms, Firm
1 and Firm 2. Firm 1 is in possession of power plants using
technology 1, and Firm 2 is in possession power plants using
technology 2. Due to Cournot assumptions, the investment
approach is symmetric for both firms. Hence, we only show
the investment approach of Firm 1. The generators available
to Firm 1 have a capacity K1. The produced electricity by
firm 1 in load segment l is q1,l. Hence, K1 is the maximal
value of q1,l. Operational and maintenance costs of technology
1 are given in terms of the installed capacity K1. Hence,
OMC1 is the operational and maintenance cost per unit
of installed capacity of technology 1 for Firm 1. The unit
production cost for each technology 1 is denoted c1. The cost
of investing in one additional capacity unit of technology 1
is denoted I1. We assume that the cost occurs instantaneously
after an investment decision and that the additional capacity
is available immediately after the investment. The revenues in
load segment l are given as the product of the price function
in (2) and the amount of sold electricity by Firm 1 in each

load segment l ∈ L. Thus, Firm 1 finds its instantaneous profit
from the optimization problem

π1(Y1t,K1,K2) = max
q1,l

d(L)∑
l=1

τl

[
Pl(Yt, Ql)q1,l

− c1q1,l

]
−OMC1K1 (3)

s.t.

q1,l ≥ 0, ∀l ∈ L (4)
q1,l ≤ K1, ∀l ∈ L (5)
Ql = q1,l + q2,l, ∀l ∈ L (6)

where τl is the duration of load segment l. (4) and (5)
constrain the electricity produced by firm 1 q1,l not to exceed
its upper limit K1 or fall below its lower limit 0. (6) states that
in each load segment the total dispatch Ql is the sum of the
dispatches of Firm 1 and Firm 2. Due to a downward sloping
inverse demand curve, (3) is concave. Combined with linear
constraints makes the problem convex. Thus, the problem can
easily be solved numerically and has a solution.

The inverse demand function Dl(Ql) proves the profits from
each technology 1 and 2 to be non-additively separable. When
the dispatch q1,l increases, the inverse demand function Dl(Ql)
decreases. By holding Yt fixed, a larger dispatch results in
reduced electricity prices. Holding the inverse demand function
Dl(Ql) fixed, an increase in Yt results in a larger instantaneous
profit π1(Yt,K1,K2). Changes in K1 and K2 also effect the
profit flow π1(Yt,K1,K2) through setting an upper limit on
the electricity generation.

We find the welfare losses in the duopoly by comparing
the welfare in the duopoly with the welfare under perfect
competition. Social welfare is the sum of the producer and
the consumer surplus, ψ(Yt,K1,K2) = π(Yt,K1,K2) +
cs(Yt, q1,l, q2,l). The producer surplus equals the profit of the
producers π(Yt,K1,K2) = π1(Yt,K1,K2) + π2(Yt,K1,K2).
The consumer surplus cs is given by

cs(Yt,K1,K2) =

d(L)∑
l=1

τl

{∫ Ql

0

Pl(Yt, xl)dxl

− Pl(Yt, Ql)(Ql)
}
. (7)

Thus, social welfare is given by

ψ(Yt,K1,K2) =

d(L)∑
l=1

τl

{∫ Ql

0

Pl(Yt, xl)dxl

−
∑
k∈K

ckqk

}
−
∑
k∈K

OMCkKk. (8)

The social welfare is maximized when solving (3)-(6) using
(8) as the objective function.
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B. Value of Capacity Expansion
Investments are assumed irreversible and incremental over

an infinite time horizon. Future cash flows are discounted
with the exogenous annual rate ρ. In year zero, the demand
shock is Y0 and the installed capacity of Firm 1 is K1,0. For
every demand shock in each time interval Yt, Firm 1 expands
its capacity to K1,t at the per unit investment cost I1 that
maximizes its expected value. This implies that at each point in
time, Firm 1 adapts its capacity to the demand. F1(Y,K1,K2)
represents the value of all optimal capacity expansions of Firm
1. When Firm 1 has no other assets except from its generation
capacity, F1(Y,K1,K2) is equivalent to the value of Firm 1.
K1,t is the installed capacity of technology 1 at time t so that
K1,t ≤ K1,t+dt. Thus, the value of capacity expansion is

F1(Yt,K1,K2) = max
K1,t

E

[ ∫ ∞
0

π1(Yt,K1,t,K2,t)e
−ρtdt

−
∫ ∞

0

I1e
−ρtdK1,t

]
. (9)

Firm 1 invests in new capacity to maximize its expected value
over an infinite time horizon. The first term on the right-hand
side of the equality represents all future expected discounted
profits of Firm 1. The second term on the right-hand side is
the total expected discounted investment costs from capacity
investments. Hence, we integrate over every point in time t to
find the value of installed capacities F1(Y,K1,K2).

C. Optimal Stopping Problem
If the properties of myopia hold, the stochastic control

problem can be converted to an optimal stopping problem.
We propose a regression π̄1 in (10) to express the instanta-
neous profit analytically as a function of Yt, K1and K2. This
particular expression is chosen for the real options problem to
have an analytical solution.

π̄1(Y,K1,K2) =

d(γ),d(α)∑
i,j=1

b1,ijY
γiK

αj

1 +

d(γ),d(λ),d(λ)∑
i,j,l=1

c12,ijl(γi)Y
γiK

λj

1 Kλl
2 −OMC1K1. (10)

The first term of the regression shows the profit flow from
technology 1. The regression coefficients b1,ij describe how
changes in the capacity of technology 1 effect the instanta-
neous profit flow for a given shock process Yt. Since new
installed capacity has a positive effect on the profits, bk,ij ≥ 0.
Both synergies between technologies and the impact of the
other firm’s capacity are captured in the regression coefficients
c12,ijl. The coefficients are positive if the technology synergies
outweigh the lower price caused by the other players installed
capacity, and negative otherwise. Negative coefficients may
cause several roots of (18). γ, α and λ are positive base
vectors of dimensions d(γ), d(α) and d(λ) used to describe
changes in π̄(Y,K1,K2) with respect to Y , K1 and K2. We

constrain the base vectors in the regression like [1]. We set
γi by 0 < γi < β1 ∀i, where β1 represents the positive
solution of the fundamental quadratic equation β1 = ( 1

2−
µ
σ2 )+√

( 1
2 −

µ
σ2 )2 + 2ρ

σ2 . This is done to increase the likelihood of
getting a unique investment trigger. To ensure concavity and
non-increasing return to scale, we establish 0 < αj < 1, ∀j,
0 < λj < 1 ∀j and λi + λj ≤ 1 when i 6= j.

We convert the stochastic control problem to an optimal
stopping problem and introduce the convenience yield δ =
ρ − µ to simplify. The convenience yield of electricity is
interpreted as the relative benefit of delivering the commodity
earlier rather than later, according to [16]. Then the Bellman
equation of a marginal capacity of Firm 1 is stated

1

2
σ2Y 2 ∂

3F1(Y,K1,K2)

∂K1∂Y 2
+ (ρ− δ)Y1

∂2F1(Y,K1,K2)

∂K1∂Y1

− ρ∂F1(Y,K1,K2)

∂K1
+
∂π̄1(Y,K1,K2)

∂K1
= 0, (11)

with boundary conditions

∂F1(0,K1,K2)

∂K1
= 0, (12)

∂F1(Y ∗1 ,K1,K2)

∂K1
= I1, (13)

∂2F1(Y ∗1 ,K1,K2)

∂K1∂Y1
= 0. (14)

(12) ensures that the value of Firm 1’s value of the option to
invest in new capacity is zero when the demand shock equals
zero. (13) and (14) are respectively the value matching and
the smooth pasting conditions for an incremental investment
in new capacity. The solution to 11 is given by

F1(Y,K1,K2) = A1Y
β1 +

d(γ),d(α)∑
i,j=1

b̄1,ijY
γiK

αj

1 +

d(γ),d(λ),d(λ)∑
i,j,l=1

c̄12,ijl(γi)Y
γiK

λj

1 Kλl
2 −

OMC1K1

ρ
. (15)

where β1 is given by the positive root of the quadratic equation
and b̄1,ij and c̄12,ijl are given by

b̄1,ij(γ) =
b1,ij

ρ− µγi − 1
2σ

2 + γi(γi − 1)
, (16)

c̄12,ijl(γ) =
c12,ijl

ρ− µγi − 1
2σ

2 + γi(γi − 1)
. (17)
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By using (12)-(14), the myopic investment trigger for Firm 1
is therefore the solution of (18) with respect to Y ∗1

d(γ)∑
i=1

Y ∗1
γi(
β1 − γi
β1

)

{
d(α)∑
j=1

αj b̄1,ij(γi)K
αj−1
1 +

d(K)∑
u=1,u6=k

d(λ),d(λ)∑
j,k=1

c̄12,ijl(γi)K
λj

2 Kλl−1
1

}

= I1 +
OMC1

ρ
. (18)

It is optimal to invest when Yt > Y ∗1 , and Firm 1 thus
invests until Y ∗1 reaches Yt at each point in time. The identical
procedure is completed for Firm 2. Firm 2 finds its trigger
Y ∗2 and invests until Y ∗2 reaches Yt in every time step. We
emphasize that represents a simultaneous Cournot duopoly
capacity expansion game where two firms are investing in new
capacity in order to maximize their value over an infinite time
horizon.

III. RESULTS

A. Base Case
We demonstrate our approach by presenting an illustrative

example. We examine a Cournot duopoly where one firm is
in possession of base load power plants and the other firm is
in possession of peak load power plants. The demand is split
into six load segments such that d(L) = 6. All parameters are
defined in Appendix A, table II to IV. We compare the duopoly
to a market governed by a central planner in possession of
both base and peak load power plants. Thus, we investigate
the welfare effect of imperfect competition.

TABLE I. SOCIAL WELFARE

Perfect competi-
tion

Duopoly

Discounted social welfare [Me] 282 450 193 410
Discounted producer surplus [Me] 121 940 128 130
Discounted consumer surplus [Me] 160 500 65 587
Value of the firm, F [Me] - Fbase = 99 860

Fpeak = 21 958
Discounted social welfare net of invest-
ment costs [Me]

209 220 184 930

Percentage loss inn discounted social
welfare subtracted for investment costs

- 11.6 %

Table I presents the discounted total surplus, the discounted
producer surplus and the discounted consumer surplus. As
expected, the discounted social welfare and consumer surplus
of the central planner exceeds that of the Cournot duopoly. This
is due to central planner’s aim to maximize the social welfare.
Firms of the duopoly consider only the producer surplus when
deciding to invest and consequently have significantly larger
producer surpluses than the central planner. The firms hold
back capacity to increase prices. Hence, the social planner
invests in more capacity.

The central planner has flexibility to invest in both base
and peak load capacity as well as to choose the amount of
electricity generated by each technology. The duopolistic firms,
on the other hand, have to invest in and generate electricity by

Fig. 1. Optimal investments in base and peak load capacity

the one technology that is available to them. Additionally, both
of the duopolistic firms aim to maximize their own profit. As
illustrated in Figure 1, the duopolistic firm possessing peak
load capacity has a higher rate of investment than the firm
possessing base load capacity. In spite of this, the value of the
firm in the position of base load capacity exceeds the value
of the firm in the position of peak load capacity. This is a
result of the lower operational costs provided by the base load
capacity which leads to a contribution margin that outweighs
the lower investment cost provided by the peak load capacity.

When subtracting the discounted investment costs from the
discounted social surplus, the difference between the dis-
counted social welfare in perfect competition and a duopoly is
reduced. This indicates high investment costs to be a major
investment barrier for firms operating under market power.
The last line in Table I presents the percentage losses in total
discounted surplus adjusted for investment costs. The welfare
loss is 11.6 % in the duopoly. Although significant, the social
losses are modest compared to the losses for the consumers of
59.1 %. This demonstrates that consumers are the ones who
suffer from producers exercising market power.

B. Capacity Expansions and Time-Varying Demand
In actual power markets, the demand varies over the year.

Traditional real options models do not capture this. To quantify
the effect of a modeling different load segments, we compare
peak load investments when the electricity demand is time-
varying and when it is fixed throughout the year. We use
weighted averages of the variables in Table IV to compute new
values of A and b for the new load segments in the inverse
demand function, presented in Table V.

Figure 2 illustrates the peak load investments with 1, 2
and 6 load segments. We observe that peak load investments
increase with the number of load segments. An economical
interpretation is as follows. In periods with high demand, the
high electricity price results in a high contribution margin
on peak load generation. Due to the minor investment costs
on peak load capacity, it is sufficient with short periods of
high demand for peak load to be profitable. This effect is
not captured when demand is assumed constant throughout
the year, i.e. when d(L) = 1. When each year contains
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Fig. 2. Investments in peak load capacity with one, two and six load segments

2 load segments, the effect of the peak load contribution
margin is captured to some extent. We witness additional peak
load investments compared to when it is 1 load segment, but
the peak load investments are not as high as with 6 load
segments and take some time to catch up.Notice that the firms
always invest in additional peak load capacity due to a positive
contribution margin.

IV. CONCLUSION

We have adopted a real options approach to analyze
marginal investments in peak and base load generation capac-
ity. We study capacity expansion within a Cournot duopoly
and a market governed by a central planner, and we compare
optimal capacity installations for base and peak load power
plants. Our approach considers several features of the real
world power markets, including heterogeneous technologies,
endogenous electricity prices, time-varying electricity demand,
and markets with imperfect competition. We find that with
imperfect competition the installed capacity increases with
the number of firms in the market. In particular, imperfect
competition may boost peak load investments at the expense
of a loss in social welfare, explained mainly by a substantial
loss in consumer surplus. We also observe that fluctuations
in the electricity demand over the year enhance peak load
investments.

Our capacity expansion framework may provide decision
support to both policymakers and private investors. It is impor-
tant for policymakers to ensure a certain capacity and flexibility
to cover the electricity demand and a certain number of firms
in order to avoid market power. We show how increased
competition leads to a higher installed capacity and lower
electricity prices, which result in smaller welfare losses.
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APPENDIX A
INPUT DATA FOR EXAMPLE

TABLE II. POWER PLANT PROPERTIES

Technology index, k Base Peak
Marginal cost, c [e/MWh] 5 65
O. & M. cost, OMC [e/MWy] 100 000 20 000
Investment cost, I [e/MW] 3 000 000 80 000
Initial capacities Kt=0 [MW] 15 000 5 000

TABLE III. INPUT PARAMETERS

Y0 µ σ ρ β1 N d(Ω) T ∆t ∆κ
1 0.02 0.03 0.1 4.62 50 50 50y 1y 500 MW

TABLE IV. DEMAND DATA

Load Segment l 1 2 3 4 5 6
Duration, τ [h] 10 40 310 4400 3000 1000
Max. demand, Al 900 180 165 120 90 60
Slope, bl 0.007 0.0014 0.0014 0.0014 0.0015 0.0020

TABLE V. DEMAND DATA, ONE AND TWO LOAD SEGMENTS

One Load segment Two load segments
Load Segment l 1 1 2
Duration, τ [h] 8760 360 8400
Max. demand, Al 105.63 187.08 1102.14
Slope, bl 0.00151 0.00156 0.00151
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