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Abstract

The inspiration for snake robots comes from biological snakes. Snakes display superior

mobility capabilities and can move over virtually any type of terrain, including nar-

row and confined spaces. They are good climbers, very efficient swimmers, and some

snakes can even fly by jumping off branches and using their body to glide through the

air. Also, a snake robot is a highly articulated robot manipulator arm with the capability

of providing its own propulsion.

In this work, we review recent results on modeling, analysis, and control of snake

robots moving both on land and underwater. We also describe a new research direction

within snake robotics, where underwater snake robots are equipped with thrusters along

the body to improve maneuverability and provide hovering capabilities, and how this

robot addresses current needs for subsea resident robots in the oil and gas industry.
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1. Introduction35

The inspiration for snake robots comes from biological snakes. Snakes display ex-

cellent mobility capabilities and can move over virtually any type of terrain, including

narrow and confined locations. They are good climbers, very efficient swimmers, and

some snakes can even fly by jumping off branches and using their body to glide through

the air. Also, a snake robot is a highly articulated robot manipulator arm with the ca-40

pability of providing its own propulsion. These capabilities have spurred an extensive

research activity investigating the design and control of snake robots.

A snake robot is a robotic mechanism designed to move like a biological snake.

Inspired by the robustness and stability of the locomotion of biological snakes, snake

robots carry the potential of meeting the growing need for robotic mobility in unknown45

and challenging environments. These mechanisms typically consist of many serially

connected joint modules capable of bending in one or more planes. The many degrees

of freedom of snake robots make them challenging to control, but provide potential

locomotion skills in irregular and challenging environments which may surpass the

mobility of wheeled, tracked and legged robots (Liljebäck et al. (2012, 2013)).50

Research on snake robots has been conducted for several decades. The research

field was pioneered about 40 years ago by Professor Shigeo Hirose at Tokyo Institute of

Technology, who developed the world’s first snake robot as early as 1972 (see Hirose,

1993). The robot, which is shown in Fig. 1, was equipped with passive wheels mounted

tangentially along its body. The wheels enabled the robot to travel forward on a flat sur-55

face by controlling the joints according to a periodic body wave motion similar to the

body waves displayed by biological snakes. In the decades following the pioneering

research by Professor Hirose, research communities around the world have developed

several agile and impressive snake robots in efforts to mimic the motion capabilities
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Figure 1: The snake robot ACM III, which was the world’s first snake robot developed by Prof. Shigeo
Hirose in 1972. Courtesy of Tokyo Institute of Technology.

of their biological counterpart. In addition to the research of Shigeo Hirose’s group,60

this includes the seminal works of the research groups of Howie Choset, e.g. (Wright

et al. (2007); Tesch et al. (2009)), Auke Ijspeert, (Crespi et al. (2005); Crespi and

Ijspeert (2008)), Gregory Chirikjian, (Chirikjian and Burdick (1990, 1995)), Tetsuya

Iwasaki, (Prautsch et al. (2000); Saito et al. (2002)), Shugen Ma (Ma (1999, 2001) Jim

Ostrowski, (Ostrowski and Burdick (1996); McIsaac and Ostrowski (2003)), and Fu-65

mitoshi Matsuno, (Fukushima et al. (2012); Tanaka and Matsuno (2014)). Please note

that this list of significant researchers and papers on snake robots is by no means com-

plete, and the reader is referred to the reviews of snake robotics research in Transeth

et al. (2008), Hirose and Yamada (2009), Hopkins et al. (2009), Liljebäck et al. (2013),

and Sanfilippo et al. (2017) for a more comprehensive exposition.70

The present paper reviews a selection of recent work by the author’s research group

on modeling, analysis, and control of snake robots. A central goal of this work has been

to understand the fundamental and inherent properties of snake robots, in order to effi-

ciently control them. The primary focus of our research has thus been on model-based

nonlinear analysis and control design. For experimental verification of the theoretical75

results, we have developed several dedicated snake robots, including Kulko (Fig.2),

a snake robot with force sensors, designed for obstacle-aided locomotion; Wheeko

(Fig. 3), a snake robot with passive wheels, developed to study snake robot locomotion
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Figure 2: The snake robot Kulko developed for locomotion in uneven and cluttered environments.

Figure 3: The snake robot Wheeko developed for locomotion across flat surfaces.

across flat surfaces; and Mamba (Fig. 4), an amphibious snake robot developed for

experimental validation of modeling and control theory of swimming snake robots.80

A first goal was thus to derive analytically tractable mathematical models of the

snake robots and to utilize these to understand more about the properties of snake

robots. The paper starts with a review of mathematical models of snake robots. The

kinematics is similar regardless of whether the snake robot moves on land or in water,

while the dynamics differs and is presented for snake robots moving on land in Sec-85

tion 2.3 and for snake robots moving underwater in Section 2.4. Then we move on the

question of how to make the snake robot move forward. Based on the mathematical

models, we see that if the friction or drag force coefficients of a snake robot are larger

in the sideways direction than in the longitudinal direction of the robot links, the snake
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robot achieves forward propulsion by continuously changing its body shape to induce90

either ground friction forces or hydrodynamic drag forces that propel the robot forward.

When the snake robot follows an undulatory gait pattern, it thus achieves propulsion.

Furthermore, the nature of undulatory locomotion allows us to develop simpler mathe-

matical models, which capture the essential behavior of snake robots during undulatory

locomotion, and which are well-suited for analysis and control design.95

Based on these models, we derive the relationship between the undulatory gait

parameters and the forward velocity, such that we can choose the gait parameters to

achieve the desired velocity and also make an informed trade-off between speed and

power consumption. We then develop path following controllers for the snake robots.

For snake robots moving on land, a line-of-sight (LOS) guidance control law is pro-100

posed and shown to exponentially stabilize the desired straight line path under a given

condition on the look-ahead distance parameter. For snake robots moving underwater,

the control law must handle ocean currents of unknown direction and magnitude. To

this end, an integral line-of-sight (ILOS) guidance control law is proposed and shown

to exponentially stabilize the desired straight line path under given conditions on the105

look-ahead distance and integral gain parameters. For some applications, it is desirable

also to control the forward velocity of the robot. Instead of using tuning of the gait pat-

tern parameters based on the relationship between these parameters and the velocity,

which constitute open-loop control of the velocity, we then include feedback control of

the forward velocity in the control law, solving the maneuvering control problem. Ma-110

neuvering control laws, based on biologically inspired virtual holonomic constraints,

are proposed for snake robots moving both on land and underwater.

The paper furthermore presents the underwater swimming manipulator (USM). The

USM arises from the question: “What if we combine the best from biology with the

best from technology, and equip the snake robot with additional effectors?” This com-115

bination of bio-inspiration and technology is also seen in Sarcos’ Guardian S, which is a

snake-like robot equipped with magnetized tracks (Briggs (2017)), and Boston Dynam-

ics’ Handle, which is a humanoid robot with wheels (Guizzo and Ackerman (2017)).

The USM combines the slender, multi-articulated and thus flexible body of snakes with

the efficient propulsion provided by thrusters. The thrusters give the robot hovering ca-120
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Figure 4: The amphibious snake robot Mamba.

pabilities in addition to faster propulsion, while the snake-like body provides the robot

with beneficial hydrodynamic properties for long-distance transportation, and excep-

tional access to narrow areas. In addition, equipping the robot with sensors and tools,

the multi-articulated body constitute a dexterous robot manipulator arm that can per-

form inspection and intervention operations subsea. This robot addresses current needs125

for subsea resident robots in the oil and gas industry, and also constitute an efficient

robotic tool for subsea operations within marine biology, archaeology, aquaculture, and

port security.

The paper is organized as follows: Section 2 presents a mathematical model of

snake robots moving in 2D on land and underwater. Based on this model, we ana-130

lyze snake robot locomotion in Section 3. In Section 4 we present a control-oriented

model of snake robots, modeling their kinematics and dynamics during undulatory lo-

comotion. In Section 5 we find the relationship between the gait pattern parameters

and the resulting forward velocity during undulatory locomotion, based on this model.

Section 6 presents solutions to the path following control and maneuvering control135

problems for snake robots. In Section 7 we introduce the underwater swimming ma-

nipulator, and in Section 8 we discuss why the USM is an interesting robotic solution

for industrial subsea operations.
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2. Mathematical model

This section reviews the mathematical models of snake robots moving on land and140

in water. In particular, snake robots moving on a horizontal and flat surface on land,

and in a 2D plane underwater, are described.

2.1. Notation

We use the following notation throughout this article:

• The operator diag(·) produces a diagonal matrix with each element of its argu-145

ment along its diagonal.

• The sign, sine and cosine operators, sgn(·), sin(·) and cos(·), are vector opera-

tors when their argument is a vector and scalar operators when their argument is

a scalar value.

• We will use subscript i to denote element i of a vector (see Table 1 below). When150

parameters of the links (joints) of the snake robot are assembled into a vector,

we associate element i of this vector with link i (joint i).

• We use a bold font for symbols representing a vector or a matrix.

• The matrix Ik represents the k× k identity matrix, and 0i× j represents the i× j

matrix of zeros.155

• A vector related to link i of the snake robot is either expressed in the global co-

ordinate system or in the local coordinate system of the link (see Fig. 5). We

indicate the chosen coordinate system by the superscript global or link, i, respec-

tively. If not otherwise specified, a vector with no superscript is expressed in the

global coordinate system.160

The snake robot consists of N rigid links of equal length 2l interconnected by N−1

motorized joints. All N links are assumed to have the same mass m and moment of

inertia J = 1
3 ml2. The mass of each link is uniformly distributed so that the link center

of mass (CM) is located at its center point (at length l from the joint on each side).
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In the following subsections, we model the kinematics and dynamics of snake robots165

moving on land and in water using the mathematical symbols described in Table 1 and

illustrated in Fig. 5 and Fig. 6. We use the following vectors, matrices and operators

in the subsequent sections:

A =


1 1

. . . . . .

1 1

 , D =


1 −1

. . . . . .

1 −1

 , (1)

where A,D ∈ R(N−1)×N . Furthermore,

e =
[

1, . . . ,1
]T
∈ RN , E =

 e 0N×1

0N×1 e

 ∈ R2N×2 , (2)

sinθθθ =
[

sinθ1, . . . ,sinθN

]T
∈ RN , Sθ = diag(sinθθθ) ∈ RN×N , (3)

cosθθθ =
[

cosθ1, . . . ,cosθN

]T
∈ RN , Cθ = diag(cosθθθ) ∈ RN×N (4)

sgn(xxx) =
[

sgn(x1), . . . ,sgn(xn)
]T
∈ Rn ∀xxx ∈ Rn (5)

xxx2 =
[

x2
1, . . . ,x

2
n

]T
∈ Rn ∀xxx ∈ Rn (6)

The matrices A and D represent, respectively, an addition and a difference matrix,170

which we use for adding and subtracting pairs of adjacent elements of a vector. Fur-

thermore, the vector e represents a summation vector, which will be used for adding all

the elements of an N-dimensional vector.

2.2. The kinematics of the snake robot

The kinematics of the snake robot is the same for moving on land and in water, and

the material in this section is based on Liljebäck et al. (2013). The snake robot moving

on land is assumed to travel on a horizontal and flat surface. The snake robot moving

underwater is assumed to travel in a virtual horizontal plane, fully immersed in water.

The snake robot has N+2 degrees of freedom (N link angles and the x-y position of the

robot). The link angle of link i∈ {1, . . . ,N} of the snake robot is denoted by θi ∈R and

9



Figure 5: The kinematic parameters of the snake robot.

Table 1: Parameters that characterize the snake robot

Symbol Description Vector
N The number of links
l The half length of a link
m Mass of each link
J Moment of inertia of each link
θi Angle between link i and the global x-axis θθθ ∈ RN

φi Angle of joint i φφφ ∈ RN−1

(xi,yi) Global coordinates of the CM of link i X,Y ∈ RN

(px, py) Global coordinates of the CM of the robot pCM ∈ R2

ui Actuator torque of the joint between link i and link i+1 u ∈ RN−1

ui−1 Actuator torque of the joint between link i and link i−1 u ∈ RN−1

( fR,x,i, fR,y,i) Ground friction force on link i fR,x,fR,y ∈ RN

( fx,i, fy,i) Fluid force on link i fx,fy ∈ RN

τi Fluid torque on link i τττ ∈ RN

(hx,i,hy,i) Joint constraint force on link i from link i+1 hx,hy ∈ RN−1

−(hx,i−1,hy,i−1) Joint constraint force on link i from link i−1 hx,hy ∈ RN−1

10



(a) Moving on land (b) Moving in water

Figure 6: Forces and torques acting on each link

is defined as the angle that the link forms with the global x-axis, while the joint angle

of joint i ∈ {1, . . . ,N−1} is denoted φi ∈ R and defined as

φi = θi−θi+1 i = 1, . . . ,N−1. (7)

In other words, the link angle is the orientation of a link with respect to the global

x-axis, while the joint angle is the angle between two adjacent links. The link an-

gles and the joint angles are assembled in the vectors θθθ = [θ1, . . . ,θN ]
T ∈ RN and

φφφ = [φ1, . . . ,φN−1]
T ∈ RN−1, respectively. There are several alternatives for defining

the orientation of the snake robot. A common choice is defining the orientation (or

heading) θ̄ ∈ R of the snake as the average of the link angles (Hatton and Choset

(2009); Hu et al. (2009); Liljebäck et al. (2013)):

θ̄ =
1
N

N

∑
i=1

θi. (8)

175

Remark 1. Note that there is no unique definition for the orientation of a snake robot.

Equation 8 gives one of several alternative measures. Other measures may for instance

be the heading of the head link or the orientation of the velocity vector of the CM.

Which definition to choose will depend on what our control objectives are.

The kinematics of the snake robot is derived using link angles instead of joint angles, as

this simplifies the mathematical expressions. We position the local coordinate system

of each link in the CM of the link with the x- (tangential) and y- (normal) axis oriented
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such that they align with the global x- and y-axis, respectively, when all the link angles

are zero. The rotation matrix from the global frame to the frame of link i is

Rglobal
link,i =

 cosθi −sinθi

sinθi cosθi

 . (9)

The global frame position pCM ∈ R2 of the CM of the robot is given by

pCM =

 px

py

=

 1
Nm ∑

N
i=1 mxi

1
Nm ∑

N
i=1 myi

=
1
N

 eT X

eT Y

 , (10)

where (xi,yi) are the global frame coordinates of the CM of link i, X= [x1, . . . ,xN ]
T ∈

RN and Y= [y1, . . . ,yN ]
T ∈RN . The forward velocity of the robot is denoted by ῡt ∈R

and is defined as the component of the CM velocity ṗCM along the current orientation

of the snake robot, θ̄ , i.e. as

ῡt = ṗx cos θ̄ + ṗy sin θ̄ . (11)

where the subscript t denotes tangential.

The connection between the adjacent links i and i+1 at joint i ∈ {1, . . . ,N−1} has to

comply with the two holonomic constraints

xi+1− xi = l cosθi + l cosθi+1, (12a)

yi+1− yi = l sinθi + l sinθi+1. (12b)

Using the notation from Section 2.1, we can write the joint constraints for all the links

of the robot in matrix form as

DX+ lAcosθθθ = 0, (13a)

DY+ lAsinθθθ = 0. (13b)
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We can now express the position of the individual links as a function of the CM position

and the link angles of the robot by combining (10) and (13) into

TX =

−lAcosθθθ

px

 , TY =

−lAsinθθθ

py

 , (14)

where

T =

 D

1
N eT

 ∈ RN×N . (15)

It can be shown that180

T−1 =
[

DT
(
DDT )−1 e

]
, (16)

which enables us to solve (14) for X and Y according to

X = T−1

−lAcosθθθ

px

=−lKT cosθθθ + epx, (17a)

Y = T−1

−lAsinθθθ

py

=−lKT sinθθθ + epy, (17b)

where K = AT (DDT )−1 D∈RN×N , and where DDT is nonsingular and thereby invert-

ible Liljebäck et al. (2013).

We find the linear velocities of the links by differentiating the position of the indi-

vidual links (17a) and (17b) with respect to time, which gives

Ẋ = lKT Sθ θ̇θθ + e ṗx, Ẏ =−lKT Cθ θ̇θθ + e ṗy. (18)

By manually investigating the structure of each row in (18), it can be verified that the

linear velocity of the CM of link i in the global x and y directions is given by

ẋi = ṗx−σσσ iSθ θ̇θθ , (19a)

ẏi = ṗy +σσσ iCθ θ̇θθ , (19b)
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where

σσσ i =

[
a1,a2, . . . ,ai−1,

ai +bi

2
,bi+1,bi+2, . . . ,bN

]
(20a)

ai =
l (2i−1)

N
,bi =

l (2i−1−2N)

N
. (20b)

The notation and model derivations presented above are based on (Liljebäck et al.,

2013, Chapter 2) where further details can be found for snake robots moving on land.

For modeling the dynamics of the underwater snake robot in Section 2.4, it is necessary

also to derive the equations of the linear acceleration of the links in order to express the

fluid forces. We find the linear accelerations of the links by differentiating the velocity

of the individual links (18) with respect to time, which gives (Kelasidi et al. (2014c)):

Ẍ = lKT
(

Cθ θ̇θθ
2
+Sθ θ̈θθ

)
+ ep̈x,

Ÿ = lKT
(

Sθ θ̇θθ
2−Cθ θ̈θθ

)
+ ep̈y.

(21)

2.3. The dynamics of snake robots moving on land

In this section we present the dynamics of a snake robot moving on a horizontal

and flat surface. As we will see in Section 3, the ground friction properties are decisive185

for snake robot motion. We will start by presenting the ground friction model, and then

present the mathematical equations describing the dynamics of snake robots moving

on land. The material in this section is based on Liljebäck et al. (2013).

2.3.1. Ground friction model

We assume that the ground friction force on a link is proportional to the velocity of190

the link, i.e. we use a viscous friction model, and we assume that the viscous ground

friction forces act on the CM of the links.
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Isotropic viscous friction

The isotropic viscous friction force on link i in the global x and y direction is pro-

portional to the global frame velocity of the link given by (19) and is given by

fR,i = fglobal
R,i =−c

ẋi

ẏi

=−c

 ṗx−σσσ iSθ θ̇θθ

ṗy +σσσ iCθ θ̇θθ

 , (22)

where c is the viscous friction coefficient. The friction forces on all links can be written

in matrix form as

fR =

fR,x

fR,y

=−c

Ẋ

Ẏ

=−c

 lKT Sθ θ̇θθ + eṗx

−lKT Cθ θ̇θθ + e ṗy

 , (23)

where we have used the expression for the link velocities given by (18), and where

fR,x = [ fR,x,1, . . . , fR,x,N ]
T ∈ RN and fR,y = [ fR,y,1, . . . , fR,y,N ]

T ∈ RN contain the friction195

forces on the links in the global x and y direction, respectively.

Anisotropic viscous friction

Under anisotropic friction conditions, a link has two viscous friction coefficients, ct

and cn, describing the friction force in the tangential (along the link x axis) and normal

(along the link y axis) direction of the link, respectively. We define the viscous friction200

force on link i in the local link frame, flink,i
R,i ∈R2, as

flink,i
R,i =−

ct 0

0 cn

vlink,i
i , (24)

where vlink,i
i ∈R2 is the link velocity expressed in the local link frame. By using (9),

we can express the global frame viscous friction force on link i as

fR,i = fglobal
R,i = Rglobal

link,i flink,i
R,i =−Rglobal

link,i

ct 0

0 cn

vlink,i
i

=−Rglobal
link,i

ct 0

0 cn

(Rglobal
link,i

)T

ẋi

ẏi

 ,
(25)
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By performing the matrix multiplication in (25), we get

fR,i =−

ct cos2 θi + cn sin2
θi (ct − cn)sinθi cosθi

(ct − cn)sinθi cosθi ct sin2
θi + cn cos2 θi

ẋi

ẏi

 . (26)

By assembling the forces on all links in matrix form, the global frame viscous friction

forces on the links can be written as

fR =

fR,x

fR,y

=−

ct (Cθ )
2 + cn (Sθ )

2 (ct − cn)Sθ Cθ

(ct − cn)Sθ Cθ ct (Sθ )
2 + cn (Cθ )

2

Ẋ

Ẏ

 ∈ R2N . (27)

Note that (27) reduces to (23) in the case of isotropic friction, i.e. when ct = cn = c.

2.3.2. The dynamics of the snake robot

The N + 2 degrees of freedom of the snake robot are defined by the link angles

θθθ ∈RN and the CM position pCM ∈R2. We now present the equations of motion of205

the robot expressed by the acceleration of the link angles, θ̈θθ , and the acceleration of

the CM position, p̈CM. The details of the derivation of these equations can be found in

Liljebäck et al. (2013).

Mθ θ̈θθ +WWW θ̇θθ
2− lSθ KfR,x + lCθ KfR,y = DT u, (28a)

Nmp̈CM = Nm

p̈x

p̈y

=

eT fR,x

eT fR,y

= ET fR, (28b)

where fR is the viscous friction force given by (27), and where

Mθ = JIN +ml2Sθ VSθ +ml2Cθ VCθ , (29a)

W = ml2Sθ VCθ −ml2Cθ VSθ , (29b)

V = AT (DDT )−1 A, (29c)

K = AT (DDT )−1 D. (29d)

16



By introducing the state variable x =
[
θθθ

T pT
CM θ̇θθ

T ṗT
CM

]T
∈R2N+4, the model of

the snake robot can be written compactly in state space form as

ẋ =



θ̇θθ

ṗCM

θ̈θθ

p̈CM


= F(x,u) , (30)

where the elements of F(x,u) are easily found by solving (28a) and (28b) for θ̈θθ and

p̈CM, respectively.210

To express the dynamics in a control affine form, a partial feedback linearisation

which includes a separation of the actuated and the unactuated part of the dynamics,

is presented in (Liljebäck et al., 2013, Chapter 2.8). In particular, the new state vector

is defined by x1 = qa, x2 = qu, x3 = q̇a, x4 = q̇u, and x =
[
xT

1 ,x
T
2 ,x

T
3 ,x

T
4
]T ∈ R2N+4,

where qa = [φ1, . . . ,φN−1]
T ∈ RN−1 represents the actuated degrees of freedom, qu =

[θN , px, py]
T ∈ R3 represents the unactuated degrees of freedom. The partial feedback

linearization gives a new set of control inputs, u = [u1, . . . ,uN−1]
T ∈ RN−1, and the

resulting system is then given in the control-affine form

ẋ =



ẋ1

ẋ2

ẋ3

ẋ4


= f(x)+

N−1

∑
j=1

(g j (x1)u j) . (31)

The mathematical model can also be extended to include contact forces from inter-

action with obstacles in the environment around the robot. Since the interaction with an

obstacle represents a discrete event that only occurs when a link of the robot comes into

contact with the obstacle, the snake robot model will then incorporate both continuous

and discontinuous dynamics. The resulting hybrid model can be found in Liljebäck215

et al. (2013).
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Figure 7: Visualization of a ten link snake robot moving fully submerged in a virtual horizontal plane.

2.4. The dynamics of snake robots moving underwater

In this section we present the dynamics of a snake robot moving in a virtual hor-

izontal plane, i.e. moving at a constant depth, fully immersed in water as shown in

Fig. 7. The snake robot is assumed to be neutrally buoyant, such that its depth remains220

constant unless active depth control is used (using the rotation of the links around the

body-fixed y-axis). The material in this section is based on Kelasidi et al. (2014b,c,

2017b).

2.4.1. Hydrodynamic forces and torques

The underwater snake robots will swim at Reynolds numbers between 104 and 105,225

and this entails that both resistive forces (drag forces) and reactive forces (added mass

effects) need to be modeled since both will have a decisive effect on the propulsion of

the swimming snake robot (Wiens and Nahon (2012)). The model is derived under the

following assumptions:

Assumption 1. The fluid is viscid, incompressible, and irrotational in the inertial230

frame.
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Assumption 2. The robot is neutrally buoyant.

Assumption 3. The ocean current velocity in the inertial frame, vc = [Vx,Vy]
T , is con-

stant and irrotational.

Remark 2. Assumptions 1 and 2 are common assumptions in hydrodynamic model-235

ing of slender body swimming robots (Boyer et al. (2006a); Wiens and Nahon (2012)),

while Assumption 3 is a reasonable simplification of the real-world situation and is

a standard assumption in marine control theory (Fan and Woolsey (2013); Fossen

(2011)).

Remark 3. Neutral buoyancy, i.e. that the mass per unit of volume of the robot is equal240

to that of the water, such that gravity and buoyancy cancel each other, is achieved by

proper ballasting of the snake robot. The ballast will furthermore be positioned at the

bottom of each snake robot link, to prevent it from rolling, making it self-stabilized in

roll.

Assumption 4. The relative velocity at each section of the link in the body-fixed frame245

is equal to the relative velocity of the respective center of mass of each link.

Remark 4. This approximation is valid when the link length is small compared to the

length of the total robot, which means that the linear velocity of each point along a link

will be approximately the same. Due to Assumption 4 it is not necessary to numerically

evaluate the drag forces using an algorithmic approach of modeling, and we derive250

instead a compact and closed-form model that is suited for model-based analysis and

control.

The hydrodynamic forces (fluid forces) are expressed as functions of the relative ve-

locity, where the relative velocity of link i is defined as vlink,i
r,i = ṗlink,i

i −ν
link,i
c,i , where

ν
link,i
c,i = (Rglobal

link,i )
T vc = [νx,i,νy,i]

T is the ocean current velocity expressed in the body-

fixed frame coordinates, and vc = [Vx,Vy]
T is the ocean current velocity expressed in

inertial frame coordinates. Due to Assumption 3, v̇c = 0 and thus

ν̇
link,i
c,i =

d
dt

(
(Rglobal

link,i )
T vc

)
=

 −sinθiθ̇i cosθiθ̇i

−cosθiθ̇i −sinθiθ̇i


 Vx

Vy

 . (32)
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Each link of the robot is subject to a force from the fluid acting on the CM of the

link and also a fluid torque acting on the CM. In the following, we will present the

fluid forces and torques acting on the snake robot. In particular, we present how the

force exerted by the fluid on a cylindrical object is made up of two components: the

virtual mass force (added mass effect) and the drag force. The drag model takes into

account the generalized case of anisotropic resistive (drag) forces acting on each link.

The anisotropy means that each link has two drag coefficients, ct and cn, describing the

drag force in the tangential (along the link x axis) and normal (along the link y axis)

direction of the link, respectively.

The fluid forces exerted on link i by the fluid are

f link,i
i =−ĈAv̇link,i

r,i − ĈD vlink,i
r,i − ĈD diag(sgn

(
vlink,i

r,i

)
)
(

vlink,i
r,i

)2
, (33)

where v̇link,i
r,i = p̈link,i

i − ν̇
link,i
c,i is the relative acceleration of link i, ṗlink,i

i and p̈link,i
i are

the velocity and the acceleration of link i, respectively, expressed in the body frame.

The matrices ĈA and ĈD are constant diagonal (2×2) matrices depending on the shape

of the body and the fluid characteristics. For cylindrical links with major diameter 2a

and minor diameter 2b, and taking into account that the length of each link is 2l, the

matrices ĈA, ĈD are

ĈA =

 µt 0

0 µn

=

 0 0

0 ρπCAa22l

 , (34)

ĈD =

 ct 0

0 cn

=

 1
2

ρπC f
(b+a)

2
2l 0

0
1
2

ρCD2a2l

 , (35)

where C f and CD are the drag coefficients in the body-fixed x- (tangential) and y-

(normal) direction of the links, ρ is the density of the fluid, and CA denotes the added

mass coefficient in the normal direction. Since we assume that the USR is fully im-255

mersed in water, below the wave zone, the added mass parameters µt and µn are con-

stant (i.e. equal to the asymptotic values when the wave frequency is going to zero).
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The added mass parameter in the x-direction is considered equal to zero (µt = 0) be-

cause the added mass of a slender body in the longitudinal direction can be neglected

compared to the body mass Newman (1977).260

By assembling the fluid forces acting on all links in a vector, the fluid forces on the

links expressed in the global frame can be written as

f =

 fx

fy

=

 fAx

fAy

+
 f I

Dx

f I
Dy

+
 f II

Dx

f II
Dy

 , (36)

where the vectors f I
Dx

, f I
Dy

and f II
Dx

, f II
Dy

represent the effects from the linear (37) and

nonlinear drag forces (38), respectively: f I
Dx

f I
Dy

=−

 ctCθ −cnSθ

ctSθ cnCθ


 Vrx

Vry

 , (37)

 f II
Dx

f II
Dy

=−

 ctCθ −cnSθ

ctSθ cnCθ

diag

sgn


 Vrx

Vry




 V2

rx

V2
ry

 , (38)

and where the relative velocities expressed in the body-fixed frame are given by Vrx

Vry

=

 Cθ Sθ

−Sθ Cθ


 Ẋ−Vx

Ẏ−Vy

 . (39)

Furthermore, Vx = eVx ∈RN and Vy = eVy ∈RN , where Vx and Vy are the ocean current

velocities in the inertial x- and y-direction, respectively, cf. Assumption 3.
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The relative accelerations of the links in the body-fixed frame can be found by

differentiating (39) with respect to time, which gives V̇rx

V̇ry

=

 Cθ Sθ

−Sθ Cθ


 Ẍ

Ÿ


+

 −Sθ Cθ

−Cθ −Sθ


 diag(θ̇θθ) 0

0 diag(θ̇θθ)


 Ẋ−Vx

Ẏ−Vy

 .
(40)

Following the procedure presented in Kelasidi et al., (2014a) and using the equation of

the relative acceleration in body frame (40), the vectors fAx and fAy representing the

added mass effects can be expressed as fAx

fAy

=−

 Cθ −Sθ

Sθ Cθ


 0 0

0 µµµ


 V̇rx

V̇ry

 . (41)

The parameter µµµ = µnIN represents the added mass of the fluid that is carried when the

links move in their normal direction, cf. (34).

The fluid torque τi applied on link i by the fluid can be modeled as

τi =−λ̃1θ̈i− λ̃2θ̇i− λ̃3sgn(θ̇i)θ̇
2
i , (42)

where the parameter λ̃1 represents the added mass parameter, and the coefficients λ̃2,265

λ̃3 represent the drag torque parameters. These parameters depend on the shape of the

body and the fluid characteristics.

Assembling the fluid torques acting on all links in matrix form, the fluid torques

acting on all links are given by the vector

τττ =−ΛΛΛ1θ̈θθ −ΛΛΛ222θ̇θθ −ΛΛΛ333diag
(
sgn(θ̇θθ)

)
θ̇θθ

2
, (43)

where ΛΛΛ111 = λ̃1IN , ΛΛΛ222 = λ̃2IN and ΛΛΛ333 = λ̃3IN .
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2.4.2. The dynamics of the underwater snake robot (USR)

This section presents the resulting equations of motion for the underwater snake

robot. In Kelasidi et al. (2014b,c, 2017b) it is shown that the force balance equation for

all links of a USR can be expressed as

mẌ = DThx + fx, mŸ = DThy + fy. (44)

Furthermore, the acceleration of the CM of the robot is given by p̈x

p̈y

=
1

Nm

 eT 0

0 eT


 fx

fy

 . (45)

By first inserting (36) into (45), then inserting (41) into the resulting equation, there-

after inserting (40), and finally (18) and (21), we obtain the following equation for the

acceleration of the CM of the robot: p̈x

p̈y

=−MpNp

 diag(θ̇θθ) 0

0 diag(θ̇θθ)

E

 ṗx

ṗy


−MpNp

 diag(θ̇θθ) 0

0 diag(θ̇θθ)


 lKT Sθ θ̇θθ −Vx

−lKT Cθ θ̇θθ −Vy


−MpLp

 lKT (Cθ θ̇θθ
2
+Sθ θ̈θθ)

lKT (Sθ θ̇θθ
2−Cθ θ̈θθ)

+MpET

 fDx

fDy

 ,
(46)

where fDx = f I
Dx

+ f II
Dx

and fDy = f I
Dy

+ f II
Dy

, and the matrices Mp, Np and Lp are given

by:

Mp =

 m11 m12

m21 m22

=

 Nm+ eT S2
θ µµµe −eT Sθ Cθ µµµe

−eT Sθ Cθ µµµe Nm+ eT C2
θ µµµe


−1

, (47)

Np =

 eT Sθ Cθ µµµ eT S2
θ µµµ

−eT C2
θ µµµ −eT Sθ Cθ µµµ

 , (48)
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K = AT (DDT )−1 D, (49)

Lp =

 eT S2
θ µµµ −eT Sθ Cθ µµµ

−eT Sθ Cθ µµµ eT C2
θ µµµ

 . (50)

Additionally, the torque balance equation is given by

Jθ̈θθ = DT u− lSθ AT hx + lCθ AT hy + τττ, (51)

where J = JIN and τττ is given by (43). The joint constraint forces can be obtained by

multiplying (44) by D and solving for hx and hy:

hx = (DDT )−1D(mẌ− fx)

hy = (DDT )−1D(mŸ− fy).
(52)

By inserting (52), (21) and (36) into (51), we get

(J+ml2Sθ VSθ +ml2Cθ VCθ )θ̈θθ − (−ml2Sθ VCθ +ml2Cθ VSθ )θ̇θθ
2

= DT u−mlSθ Kep̈x +mlCθ Ke p̈y + lSθ KfAx− lCθ KfAy

+ lSθ KfDx− lCθ KfDy + τττ.

(53)

Finally, by inserting (41), (46) and then (43) into (53), we are able to express the

rotational equation of motion of the robot as follows:

Mθ θ̈θθ +Wθ θ̇θθ
2
+V

θ ,θ̇ θ̇θθ +N
θ ,θ̇ (eṗx−Vx)+P

θ ,θ̇ (e ṗy−Vy)+KxfDx +KyfDy = DT u,

(54)

where u ∈ RN−1 is the control input, and the matrices Mθ , Wθ , V
θ ,θ̇ , N

θ ,θ̇ P
θ ,θ̇ , Kx

and Ky are given by:

Mθ = J+ml2Sθ VSθ +ml2Cθ VCθ − lSθ KA1 + lCθ KA4 + lK5K1KT Sθ

− lK5K2KT Cθ + lK6K3KT Sθ + lK6K4KT Cθ +ΛΛΛ1

(55)

24



Wθ = ml2Sθ VCθ −ml2Cθ VSθ − lSθ KA2 + lCθ KA5 + lK5K1KT Cθ

+ lK5K2KT Sθ + lK6K3KT Cθ − lK6K4KT Sθ

(56)

V
θ ,θ̇ =−lSθ Kdiag(θ̇θθ)A3 + lCθ Kdiag(θ̇θθ)A6− lK5K2diag(θ̇θθ)KT Sθ

− lK5K1diag(θ̇θθ)KT Cθ + lK6K4diag(θ̇θθ)KT Sθ

− lK6K3diag(θ̇θθ)KT Cθ +ΛΛΛ2 +ΛΛΛ3diag(|θ̇θθ |)

(57)

N
θ ,θ̇ =

(
lSθ KSθ Cθ µµµ + lCθ KC2

θ µµµ−K5K2 +K6K4
)

diagθ̇θθ (58)

P
θ ,θ̇ =

(
lSθ KS2

θ µµµ + lCθ KSθ Cθ µµµ +K5K1 +K6K3
)

diag(θ̇θθ) (59)

where

Kx =−lSθ K−K5m11eT −K6m21eT , Ky = lCθ K−K5m12eT −Ks6m22eT

A1 =−lS2
θ µµµKT Sθ − lSθ Cθ µµµKT Cθ , A2 =−lS2

θ µµµKT Cθ + lSθ Cθ µµµKT Sθ

A3 =−lSθ Cθ µµµKT Sθ + lS2
θ µµµKT Cθ , A4 = lSθ Cθ µµµKT Sθ + lC2

θ µµµKT Cθ

A5 = lSθ Cθ µµµKT Cθ − lC2
θ µµµKT Sθ , A6 = lC2

θ µµµKT Sθ − lSθ Cθ µµµKT Cθ

K1 = m11eT S2
θ µµµ−m12eT Sθ Cθ µµµ, K2 =−m11eT Sθ Cθ µµµ +m12eT C2

θ µµµ

K3 = m21eT S2
θ µµµ−m22eT Sθ Cθ µµµ, K4 = m21eT Sθ Cθ µµµ−m22eT C2

θ µµµ

K5 =−mlSθ Ke− lSθ KS2
θ µµµe− lCθ KSθ Cθ µµµe

K6 = mlCθ Ke+ lSθ KSθ Cθ µµµe+ lCθ KC2
θ µµµe

By defining the state variable x =
[
θθθ

T , pT
CM, θ̇θθ

T
, ṗT

CM

]T
∈ R2N+4, we can rewrite

the model of the robot compactly in state space form as

ẋ =
[
θ̇θθ

T
, ṗT

CM, θ̈θθ
T
, p̈T

CM

]T
= F(x,u), (60)

where the elements of F(x,u) are found by solving (46) and (54) for p̈CM and θ̈θθ , re-270

25



ψ

x
global

y
global

z
global

Figure 8: Visualization of a ten link underwater snake robot motion in any 2D tilted plane.

spectively.

Remark 5. It is interesting to note that if we, in the dynamic model (46,54), set the

fluid parameters equal to zero and replace the drag forces in the x- and y-direction

with the ground friction forces from Section 2.3.1, then the model reduces exactly to275

the dynamic model of the snake robot moving on land described in Section 2.3.2. The

underwater snake robot model is thus an extension of the land-based snake robot model

and may be used for amphibious snake robots moving both on land and in water.

The model can be extended to the case where the snake robot is not neutrally buoy-

ant and moves in any 2D tilted plane, as shown in Fig. 8, including both the vertical280

and the horizontal plane. Please see Kelasidi et al. (2014a) for details.

Furthermore, the model can be extended to allow links of different mass and length,

and to include various types of effectors along the snake robot body, like caudal, dor-

sal and pectoral fins, in addition to thrusters like tunnel thrusters and stern propellers

Kelasidi et al. (2017b).285
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3. Analysis of locomotion: How to move forward

In this section we will see that if the friction or drag force coefficients are larger

in the sideways (normal) direction than in the longitudinal (tangential) direction of the

robot links, the snake robot can achieve forward propulsion by continuously changing

its body shape to induce either ground friction forces or hydrodynamic drag forces that290

propel the robot forward. Biological snakes have this friction/drag property (Bauchot

(1994)).

3.1. Controllability with isotropic friction or drag forces

We begin by analyzing the controllability of the snake robot when the ground fric-

tion forces, or drag forces when moving underwater, are isotropic, i.e. ct = cn = c in295

(27) and (37)-(38).

Theorem 1. Consider the snake robots described in Section 2.

• A snake robot moving on a flat horizontal plane, influenced by isotropic viscous

ground friction, is not controllable.

• A snake robot moving in a virtual horizontal plane underwater, influenced by300

isotropic drag forces, and with negligible added mass and non-linear drag ef-

fects, is not controllable.

Proof. A nonlinear system is called controllable if there exist admissible control

inputs that will move the system between two arbitrary states in finite time (Nijmeijer

and Schaft (1990)). When ct = cn the equations of motion take on a particularly simple

form that enables us to study controllability through inspection of the equations of

motion. First, consider the case when the snake robot moves on land. From (28b), the

acceleration of the CM of the snake robot moving on land is given as

p̈x

p̈y

=
1

Nm

eT fR,x

eT fR,y

=
1

Nm


N
∑

i=1
fR,x,i

N
∑

i=1
fR,y,i

 . (61)

27



By inserting (22) into (61), the CM acceleration of the robot is given as

p̈x

p̈y

=
c

Nm

−N ṗx +

(
N
∑

i=1
σσσ i

)
Sθ θ̇

−N ṗy−
(

N
∑

i=1
σσσ i

)
Cθ θ̇

=− c
m

ṗx

ṗy

 , (62)

because it can be shown that
N
∑

i=1
σσσ i = 000.

To control the position, the snake robot must accelerate its CM. From (62), it is

clear that the CM acceleration is proportional to the CM velocity. If the robot starts305

from rest (ṗCM = 0), it is therefore impossible to achieve acceleration of the CM. The

position of the robot is in other words uncontrollable in this case.

When the snake robot moves underwater, under the assumption that the added mass

and non-linear drag effects are negligible, the acceleration of the CM is given by p̈x

p̈y

=
1

Nm

 eT f I
Dx

eT f I
Dy

 , (63)

with the drag forces given by (37): f I
Dx

f I
Dy

=−

 ctCθ −cnSθ

ctSθ cnCθ


 Vrx

Vry

 . (64)

By using (39) and then (18), and that the drag forces are isotropic, i.e. cn = ct = c, we

find that  p̈x

p̈y

=
c

Nm

 −N(ṗx−Vx)− eT lKT Sθ θ̇θθ

−N(ṗy−Vy)+ eT lKT Cθ θ̇θθ

 . (65)

By manually investigating the structure of each row, cf. (19), and again using that
N
∑

i=1
σσσ i = 000, we then have that

 p̈x

p̈y

=− c
m

 ṗx−Vx

ṗy−Vy

 . (66)
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We see that if the velocity of the robot’s CM equals the ocean current velocity, i.e. if the

robot drifts along with the current, then the right-hand side is zero and it is impossible

to achieve an acceleration of the CM. Consequently there exist no admissible control310

inputs that will move the system from this state to an arbitrary other state, and the

system is thus not controllable. �

Remark 6. Negligible added mass effects is a common assumption for slowly mov-

ing underwater vehicles (Fossen (2011)). In particular, it is an assumption that is

frequently made for bio-inspired robots (Colgate and Lynch (2004); McIsaac and Os-315

trowski (2003); Wang et al. (2013)). Furthermore, the quadratic terms of the nonlinear

drag effects will be negligible for slowly moving robots.

Remark 7. The result agrees with studies of aquatic swimming animals. These have

shown that there are three dominant mechanisms that are responsible for the propul-

sion of aquatic animals: drag forces, added mass forces and forces due to lift effects.320

Furthermore, it is shown that the drag forces are dominant for the anguilliform swim-

mers, i.e. for flexible elongate aquatic animals like snakes and eels (Sfakiotakis et al.

(1999)).

Theorem 1 is an extended version of (Liljebäck et al., 2013, Theorem 4.4).

3.2. Propulsive forces with anisotropic friction and drag325

In Section 3.1 we saw that anisotropic ground friction forces are necessary for

controllability when the snake robot moves on land. Furthermore, we found that when

the snake robot swims underwater, something which will entail relatively low velocities

such that added mass and higher-order drag effects are negligible, we need anisotropic

drag forces in order to efficiently control the snake robot.330

Snake robots should, therefore, be designed such that they have this anisotropic

friction/drag property. For snake robots moving on land, this can be achieved by equip-

ping each link of the robot with passive wheels, or mounting edges, or grooves, that

run parallel to each link on the underside of each link (see e.g. Saito et al. (2002)).

For snake robots moving in water, on the other hand, the robot can have a completely335
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smooth outer surface, and it will still have this anisotropic drag property due to its pro-

longed shape which produces higher drag forces in the direction normal to each link

compared to in the tangential link direction (see e.g. Boyer et al. (2006b); McIsaac and

Ostrowski (2003)).

In the following, we will analyze the forces acting in the forward direction of the

snake robot, to identify how and why anisotropic friction/drag provides propulsive

forces. Without loss of generality, we assume that global coordinate system is posi-

tioned such that the forward direction of motion is along the global positive x-axis,

i.e. such that |θi| < π/2, ∀i ∈ [1,N]. From (28b) and (27), we find that the total force

acting on the snake robot in the forward direction when moving on land is

Fprop= Nmp̈x = eT fR,x =−eT
((

ct(Cθ )
2+cn(Sθ )

2
)

Ẋ+(ct−cn)Sθ Cθ Ẏ
)

(67)

i.e.

Fprop =−
N

∑
i=1

Fx (θi) ẋi−
N

∑
i=1

Fy (θi) ẏi, (68)

where

Fx (θi) = ct cos2
θi + cn sin2

θi, (69)

Fy (θi) = (ct − cn)sinθi cosθi, (70)

and where we recall from Section 2.2 that the angle θi of link i is expressed with340

respect to the global x-axis, cf. Fig. 9. We see from (68) that Fprop consists of two

components, one involving the linear velocity of each link in the forward direction

of motion, Fx (θi) ẋi, and one involving the linear velocity normal to the direction of

motion, Fy (θi) ẏi. Due to the negative signs in (68), the products Fx (θi) ẋi and Fy (θi) ẏi

provide a positive contribution to the propulsive force only if they are negative. Since345

the friction coefficients, ct and cn, are always positive, the expression Fx (θi) given by

(69), is obviously always positive. We assume that the snake robot motion does not

involve x-direction velocity opposite to the direction of motion for any of the links.

When the snake robot moves in the forward direction (ṗx > 0) we, therefore, have that
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Figure 9: Kinematic variables the in forward and sideways direction of the snake robot

ẋi > 0, which means that the product Fx (θi) ẋi of the propulsive force is always positive.350

This product is, therefore, not contributing to the forward propulsion of the robot, but

rather opposing it. This is as expected since the friction acts in the opposite direction

of the direction of motion.

Any propulsive force in the forward direction of motion must, therefore, be pro-

duced by the sideways motion of the links, i.e. the product Fy (θi) ẏi. We see from355

(70) that if cn = ct , then Fy (θi) = 0, and consequently there exist no propulsive forces

driving the snake robot forward, which complies with the controllability result in The-

orem 1. However, when cn > ct , it can be seen from (70) that Fy (θi) ẏi is negative (the

sideways motion of link i contributes to the propulsion) as long as sgn(θi) = sgn(ẏi)

(Liljebäck et al. (2013)). This is achieved when the snake robot moves according to an360

undulatory motion pattern, which will be discussed in Section 3.3. The above analysis

can be summarized in the following theorem and property (see Liljebäck et al. (2013)

for further details):

Theorem 2. Consider snake robots that move on land, described by (30). If cn > ct ,

sideways motion of link i contributes to the propulsion of the snake robot if sgn(θi) =365

sgn(ẏi).

Property 1. For a snake robot described by (30) with cn > ct , the magnitude of the

propulsive force produced by link i,
∣∣Fprop,i

∣∣, is increased by increasing the ratio cn
ct

, or

by increasing the magnitude of the sideways link velocity, |ẏi|, or by increasing |θi| as

long as |θi|< 45◦.370

For underwater snake robots, it is not straightforward to obtain results that are anal-
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ogous to Theorem 2, because added mass effects, nonlinear drag, and ocean currents

complicate the structure of (68) significantly. However, with additional assumptions

regarding the gait pattern, it is possible to obtain a similar result, as will be shown in

the next section.375

3.3. Undulatory locomotion

We have seen in Section 3.2 that if the snake robot moving on land has the anisotropic

friction property cn > ct , then propulsive forces driving the snake robot forward are

generated if sgn(θi) = sgn(ẏi). This is achieved when the snake robot follows an

undulatory gait pattern Liljebäck et al. (2013). An undulatory gait pattern can be gen-

erated by requiring each link angle, φi, i∈ {1, . . . ,N−1}, to follow the reference signal

φi,ref(t) = αg(i,N)sin(ωt +(i−1)δ )+φ0, (71)

where α is the maximum amplitude, ω is the frequency, δ is the phase shift between

adjacent joints, and φ0 is a constant offset that induces turning motion Saito et al.

(2002). The function g : R 7→ [0,1] scales the amplitude of the joints. For instance,

g(i,N) = 1 gives the motion pattern lateral undulation, while g(i,N) = N−i
N+1 gives eel-380

like motion Kelasidi et al. (2014b).

In Liljebäck et al. (2013) it is shown that anisotropic ground friction gives the robot

the controllability property locally strongly accessible from any equilibrium point, ex-

cept from certain singular configurations. These singular configurations are shapes

where all the relative joint angles are equal, i.e. φ1 = · · ·= φN−1. This supports includ-385

ing the phase shift δ in the undulatory motion pattern (71).

The gait pattern (71) has the property that the sign condition of Theorem 2 always

holds. It was furthermore shown in Kohl et al. (2015a) that it has an additional im-

portant property for underwater robots: the sign of the force components due to added

mass and the current component in the y-direction alternate along the body. This means390

that when taking the sum of the forces that act on all links, these terms will cancel each

other, except for a small remainder that can be treated as a disturbance. If the gait has

certain symmetry properties, they will even be canceled completely. Furthermore, the
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gait pattern (71) leads to slow motion, which is why non-linear drag effects do not sig-

nificantly contribute to the propulsion. This is summarized in the following theorem395

which states that the undulatory gait pattern (71) gives forward propulsion when the

snake robot moves underwater if the drag coefficients satisfy cn > ct (see Kohl et al.

(2015a) for further details):

Theorem 3. Consider underwater snake robots, described by (60). If cn > ct then the

undulatory gait pattern (71) gives a sideways motion of link i that contributes to the400

propulsion of the snake robot. Furthermore, the ocean current contributes to propul-

sion if it has a positive x-component, while it opposes propulsion if the x-component is

negative.

4. The control-oriented model: Modeling undulatory locomotion

The mathematical models from Section 2 are complex, and we will in this section405

show that an observation about the nature of undulatory locomotion allows us to de-

velop simpler models. These models capture the essential behavior of snake robots

during undulatory locomotion and are well-suited for analysis and control design.

In Section 3.2 we saw that it is the sideways motion (transversal to the direction of

motion of the robot) of each link that makes the snake robot move forward, something410

which is obtained by an undulatory motion pattern. In particular, lateral undulation

mainly consists of link displacements that are transversal to the direction of motion

(Liljebäck et al., 2013, Property 4.8). So during undulatory motion, it is the sideways

motion of each link that produces propulsion. This insight motivates us to model the

sideways motion of each link instead of the rotational motion of each joint. In this way,415

we capture the essential behavior of the robot, which is its propulsion, when designing

controllers for path following.

Modeling the transversal link displacements instead of the rotational joint motion,

corresponds to modeling the snake robot as a series of prismatic (translational) joints

instead of revolute joints, see Fig. 10. Correspondingly, we now define the sideways420

displacement of the center of mass of each link as new state variables.

Assumption 5. The snake robot moves using an undulatory gait pattern.
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Figure 10: The snake robot is modeled as a series of prismatic joints that displace the CM of each link
transversal to the direction of motion.

Assumption 6. The joint angles of the snake robot are assumed to be small, and the

joints can thus be modeled as prismatic joints.

Remark 8. Assumption 6 is a valid assumption for all joint angles φi < 45deg, and425

the smaller the joint angles are, the better is the accuracy of the approximation.

Remark 9. Note that the control-oriented models presented in this section are not in-

tended as accurate simulation models of snake robot locomotion. The models are in-

tentionally based on the simplifying Assumption 6 to capture the essential dynamics

of the robot during undulatory locomotion, to arrive at equations of motion that are430

well-suited for control design and stability analysis purposes. To this end, the model

only needs to be qualitatively similar to the mathematical models in Section 2.

Furthermore, to ensure that an undulatory gait pattern leads to propulsion, the following

assumption must be made, as seen in Section 3:

Assumption 7. The friction/drag coefficients satisfy cn > ct .435

4.1. Notations

When describing the kinematics and dynamics of the control-oriented model, we

will use the mathematical symbols outlined in Table 2 and illustrated in Fig. 11 and

Fig. 12.

In addition to notation defined in Section 2.1, we define the summation vector440

e = [1, . . . ,1]T ∈ RN−1 for adding all elements of (N−1)-dimensional vectors, and
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Figure 11: Illustration of the two coordinate frames employed in the control-oriented model. The global x-y
frame is fixed. The t-n frame is always aligned with the snake robot.

Figure 12: Parameters characterizing the kinematics and dynamics of the snake robot.
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Table 2: Parameters that characterize the snake robot.

Symbol Description
N Number of links.
l Length of a link.
m Mass of each link.
φi Normal direction distance between links i and i+1.

vφ ,i Relative velocity between links i and i+1.
θ Orientation of the snake robot.
vθ Angular velocity of the snake robot.

(ti,ni) Coordinates of the CM of link i in the t-n frame.
(pt , pn) Coordinates of the CM of the robot in the t-n frame.
(px, py) Coordinates of the CM of the robot in the global frame.
(vt ,vn) Forward and normal direction velocity of the robot.

ui Actuator force at joint i.
( fR,x,i, fR,y,i) Friction force on link i in the global frame.
( ft,i, fn,i) Friction force on link i in the t-n frame.

the matrix D = DT
(
DDT )−1 ∈ RN×(N−1).

We consider a planar snake robot with N links of length l interconnected by N−1

motorized prismatic (translational) joints. Note that we denote the total link length in445

the control-oriented model by l, whereas the total link length in the model in Section 2

was 2l for notational convenience.

We define the motion of the robot with respect to the two coordinate frames illus-

trated in Fig. 11. The x-y frame is the fixed global frame. The t-n frame is always

aligned with the snake robot, i.e. the t- and n-axis always point in the tangential and450

normal direction of the robot, respectively. The origin of both frames are fixed and co-

incide. We will denote the direction of the t-axis as the tangential or forward direction

of the robot, and the direction of the n-axis as the normal direction. Note that we do

not refer to the t-n frame as the body frame of the snake robot since the t-n frame is not

fixed to the robot. However, if a body frame fixed to the robot had been defined, the455

orientation of this frame would be identical to the orientation of the t-n frame.

The position of the snake robot is described through the coordinates of its center
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of mass. As seen in Fig. 11 and Fig. 12, the global frame position of the robot is

denoted by (px, p y) ∈ R2, while the t-n frame position is denoted by (pt , p n) ∈ R2.

The global frame orientation of the robot is denoted by θ ∈ R and is expressed with460

respect to the global x axis. The angle between the global x-axis and the t-axis is also θ

since the t-n frame is always aligned with the robot. Describing the position in a frame

which is always aligned with the snake robot is inspired by and similar to a coordinate

transformation proposed in Pettersen and Egeland (1996).

We denote the t-n frame position of the CM of link i by (ti,n i) ∈ R2. The N− 1

prismatic joints of the snake robot control the normal direction distance between the

links. As seen in Fig. 12, the normal direction distance between link i and link i+1 is

given by

φi = ni+1−ni, (72)

and represents the coordinate of joint i. The controlled distance φi replaces the con-465

trolled joint angle in the original model from Section 2.2

Remark 10. The state φi of joint i in the control-oriented model is a translational

distance, while the state φi of joint i in the model in Section 2 is a joint angle. In the

control-oriented model we, therefore, refer to φi as a joint coordinate instead of a joint

angle.470

4.2. The kinematics and dynamics of the snake robot moving on land

In (Liljebäck et al., 2013, Chapter 6) it is shown that under Assumptions 5–7 the

control-oriented kinematics and dynamics of snake robots moving on land with viscous
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friction can be written

φ̇φφ = vφ , (73a)

θ̇ = vθ , (73b)

ṗx = vt cosθ − vn sinθ , (73c)

ṗy = vt sinθ + vn cosθ , (73d)

v̇φ =−cn

m
vφ +

cp

m
vtADT

φφφ +
1
m

DDT u, (73e)

v̇θ =−λ1vθ +
λ2

N−1
vteT

φφφ , (73f)

v̇t =−
ct

m
vt +

2cp

Nm
vneT

φφφ −
cp

Nm
φφφ

T ADvφ , (73g)

v̇n =−
cn

m
vn +

2cp

Nm
vteT

φφφ , (73h)

where u ∈ RN−1 are the actuator forces at the joints, A, D, D, and e are defined in

Section 2.1 and at the beginning of Section 4, ct and cn correspond, respectively, to

the tangential and normal direction friction coefficient of the links in the mathematical

model of the snake robot in Section 2.3, cp =
cn−ct

2l , and λ1 and λ2 are positive scalar475

constants which characterize the rotational motion of the snake robot.

We choose the state vector of the system as

x =
[
φφφ

T ,θ , px, py,vT
φ ,vθ ,vt ,vn

]T ∈ R2N+4, (74)

where φφφ ∈RN−1 are the joint coordinates, θ ∈R is the absolute orientation, (px, p y) ∈

R2 is the global frame position of the CM, vφ = φ̇φφ ∈ RN−1 are the joint velocities,

vθ = θ̇ ∈R is the angular velocity, and vt and v n are the tangential and normal direction

velocity of the snake robot, respectively.480

Similar to the partial feedback linearization performed for the model in Section 2,

we will usually assume that the actuator forces of the control-oriented model are set

according to the linearizing control law

u = m
(
DDT )−1

(
u+

cn

m
φ̇φφ −

cp

m
vtADT

φφφ

)
, (75)
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where u = [u1, . . . ,uN−1]
T ∈ RN−1 is a new set of control inputs. This control law

transforms the joint dynamics (73e) into

v̇φ = u. (76)

4.3. The kinematics and dynamics of the snake robot moving underwater

For the control-oriented model, higher order damping terms will be disregarded

since these higher order nonlinearities complicate the analysis and corresponding con-

trol design, and at the same time they are helpful, stabilizing terms during locomotion.

We would therefore not want to cancel these out through control design, but rather keep485

their stabilizing effect. Furthermore, the velocity of the robot during undulatory loco-

motion is relatively low, especially for small link angles, which also makes the linear

drag forces dominate the higher order drag forces. We, therefore, make the following

assumption:

Assumption 8. The nonlinear drag forces (38) are negligible during undulatory loco-490

motion.

Furthermore, since the snake robot moves relatively slowly during undulatory loco-

motion, as discussed in Section 3.1, Remark 6, it is a valid assumption that the added

mass effects are negligible. This assumption further simplifies the control-oriented

model, while capturing the effects that are significant for control design.495

Assumption 9. The added mass effects are negligible during undulatory locomotion.
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The kinematics and dynamics of swimming snake robots that satisfy Assump-

tions 1-9 can be described by the control-oriented model (Kohl et al. (2015b))

φ̇φφ = vφ , (77a)

θ̇ = vθ , (77b)

ṗx = vt cosθ − vn sinθ , (77c)

ṗy = vt sinθ + vn cosθ , (77d)

v̇φ =−cn

m
vφ +

cp

m
vt,relADT

φφφ +
1
m

DDT u, (77e)

v̇θ =−λ1vθ +
λ2

N−1
vt,releT

φφφ , (77f)

v̇t =−
ct

m
vt,rel +

2cp

Nm
vn,releT

φφφ −
cp

Nm
φφφ

T ADvφ , (77g)

v̇n =−
cn

m
vn,rel +

2cp

Nm
vt,releT

φφφ , (77h)

The ocean current disturbance enters the above equations through vt,rel and vn,rel, which

are the relative velocities in the body-aligned frame. They are obtained by

vt,rel

vn,rel

=

vt

vn

−
Vt

Vn

 , (78)

where Vt and Vn denote the ocean current velocities in the body-aligned frame, i.e.

Vt

Vn

=

 cosθ sinθ

−sinθ cosθ


Vx

Vy

 , (79)

where Vx and Vy are given by Assumption 3.

We see that the structure of this model is the same as for the snake robot moving on

land (73). The friction coefficients when moving on land play the same role as the drag

parameters when moving underwater. The additional feature of (77) is that it takes into500

account the disturbances from ocean currents.

It is verified by analysis and experiments in (Liljebäck et al., 2013, Chapter 6), Kohl

et al. (2015b) and Kohl et al. (2017) that the control-oriented models (73) and (77) are
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valid representations of the snake robot dynamics for motion on land and underwater,

respectively, when the joint angles are small.505

5. How to choose the gait pattern parameters for undulatory locomotion

From Section 3 we know that under Assumption 7 the undulatory gait pattern gen-

erated by the reference signal (71):

φi,ref(t) = αg(i,N)sin(ωt +(i−1)δ )+φ0,

will make the snake robot move forward. In this section we address the question of

how to choose the gait parameters α,ω and δ . In particular, we want to understand the

relationship between these gait parameters and the forward velocity.

5.1. Relationship between the gait parameters and the forward velocity510

The joint motion following (71) is time-periodic, and this suggests that there is

some average effect of the joint motion that propels the robot forward. We, therefore,

use averaging theory Sanders et al. (2007) to study the average effect of the joint mo-

tion during undulatory locomotion, applied to the control-oriented models from Sec-

tion 4. This analysis reveals properties of undulatory snake robot locomotion that are515

both fundamental and useful from a motion planning perspective. In particular, we

see that the average velocity of a snake robot during undulatory locomotion converges

exponentially fast to a steady-state velocity, and an analytical expression is given for

calculating this steady-state velocity as a function of the gait pattern parameters.

5.1.1. Snake robots moving on land520

In this section, we consider snake robots that move on land using lateral undulation,

i.e. according to the reference signal (71) with g(i,N) = 1:

φi,ref(t) = α sin(ωt +(i−1)δ )+φ0, (80)
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We assume that the joint offset φ0 is constant so that

φ̇i,ref(t) = αg(i,N)ω cos(ωt +(i−1)δ ) ,

φ̈i,ref(t) =−αg(i,N)ω2 sin(ωt +(i−1)δ ) ,
(81)

It is shown in (Liljebäck et al., 2013, Chapter 7) that under the condition that (please

note that there was a typo in the original expression):

|φ0|< N
2(N−1)

√
cnct
cp

, (82)

the average velocity, vav, will converge exponentially to the steady state velocity

v∗ = α
2
ωkδ


Ncncp

2(cnct N2−4(N−1)2c2
pφ2

0 )

c2
pφ0(N−1)

cnct N2−4(N−1)2c2
pφ2

0
Ncncpλ2φ0

2λ1(cnct N2−4(N−1)2c2
pφ2

0 )

. (83)

Averaging theory gives that for sufficiently large frequencies ω , the average velocity

of the snake robot will approximate the exact velocity v = [vt vn vθ ]
T given by (73f),

(73g), and (73h). This is summarized in the following theorem (see Liljebäck et al.

(2013) for further details):

Theorem 4. Consider a snake robot described by (73). Suppose the joint coordinates

φφφ are controlled in exact accordance with (80) and (81), and that the joint coordinate

offset φo satisfies (82). Then there exist k > 0 and ω∗ > 0 such that for all ω > ω∗,

‖v(t)−vav(t)‖ ≤ k
ω

for all t ∈ [0,∞) , (84)

Furthermore, the average velocity vav(t) of the snake robot will converge exponentially525

fast to the steady state velocity v∗ given by (83).

Theorem 4 is a powerful result. First of all, it proves mathematically that lateral un-

dulation enables a snake robot with anisotropic ground friction properties to achieve

forward propulsion (under the assumption that the body shape motion is modeled as

translational link displacements). Second, the result gives an analytical expression for530
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the steady state velocity as a function of the controller parameters α , ω , δ , and φo, i.e.

the amplitude, frequency, phase shift and offset of the joint motion during lateral undu-

lation. This information is relevant for motion planning purposes. We can for example

immediately see from (83) that the steady state velocity of the snake robot when it

conducts lateral undulation with zero joint offset (φo = 0) is given by v∗t =
cp

2Nct
α2ωkδ ,535

v∗n = 0, and v∗
θ
= 0, i.e. that it moves in a straight line along the global x-axis. A final

powerful feature of Theorem 4 is that it applies to snake robots with an arbitrary num-

ber of links N. The relationship between the gait parameters and the average forward

velocity of the snake robot can be summarized as follows:

Corollary 1. Consider a planar snake robot with N links modelled by (73) and con-540

trolled in exact accordance with (80) and (81). The average forward velocity of the

snake robot will converge exponentially to a value which is proportional to:

• the squared amplitude of the sinusoidal joint motion, α2,

• the angular frequency of the sinusoidal joint motion, ω ,

• the function of the constant phase shift, δ , between the joints given by

kδ =
N−1

∑
i=1

N−1

∑
j=1

ai j sin(( j− i)δ ) , (85)

where ai j denotes element i j of the matrix AD.545

By using (85), the phase shift δ that maximizes the forward velocity of the snake robot

can be found. In Liljebäck et al. (2013) the optimal δ is seen to be a decreasing function

of the number of links N. The results in this section are validated by simulations and

experiments in (Liljebäck et al., 2013, Chapters 7.7-7.9)

5.1.2. Snake robots moving underwater550

In this section, we consider snake robots that move underwater using undulatory

locomotion according to the general reference signal (71). In particular, the velocity

dynamics of the control-oriented model (77) whose joints follow (71) is analyzed using

averaging theory.
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It is assumed that the joint offset φ0 is constant so that (81) is satisfied. Following

the same approach as in Section 5.1.1, it is shown in Kohl et al. (2015b) that under the

assumption that

|φ0|< N
2(N−1)

√
cnct
cp

, (86)

and Vt and Vn are constant, the average velocity, vav, will converge exponentially to the

steady state velocity

v∗ = α
2
ωkδ


Ncncp

2(cnct N2−4(N−1)2c2
pφ2

0 )

c2
pφ0(N−1)

cnct N2−4(N−1)2c2
pφ2

0
Ncncpλ2φ0

2λ1(cnct N2−4(N−1)2c2
pφ2

0 )

+


Vt

Vn

0

. (87)

Averaging theory gives that for sufficiently large frequencies ω , the average velocity555

of the snake robot will approximate the exact velocity v = [vt vn vθ ]
T given by (77f),

(77g), and (77h). This is summarized in the following theorem (see Kohl et al. (2015b)

for further details):

Theorem 5. Consider a snake robot described by (77). Suppose the joint coordinates

φφφ are controlled in exact accordance with (71) and (81), and that the joint coordinate

offset φo satisfies (86). Then there exist k > 0 and ω∗ > 0 such that for all ω > ω∗,

‖v(t)−vav(t)‖ ≤ k
ω

for all t ∈ [0,∞) , (88)

Furthermore, the average velocity vav(t) of the snake robot will converge exponentially

fast to the steady state velocity v∗ given by (87).560

Note that the presence of ocean currents does not influence the stability properties

of the snake robot, but shifts the equilibrium of the velocity dynamics. Moreover,

by subtracting the ocean current velocities from both sides of (87) we see that the

average relative velocities vt,rel and vn,rel (79) converge to the same values as the average

velocities of the snake robot moving on land (83).565

Theorem 5 thus proves mathematically that the general lateral undulation given by

(71) enables a snake robot moving underwater with anisotropic drag forces to achieve
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forward propulsion (again under the assumption of small joint angles which can be

modeled as translational link displacements). It also makes it possible to analyze a sce-

nario that is particularly interesting for motion planning purposes: steady state motion570

with zero offset φ0 = 0, which will be shown to be motion in a straight line.

By inserting φ0 = 0 into (83) and subtracting the current velocities from both sides,

the expression 
v∗t,rel

v∗n,rel

v∗
θ

=


α2ωkδ

cp
2ct N

0

0

 (89)

is obtained. It can easily be seen that the relative velocity normal to the robot’s orienta-

tion is zero, as is the rotational velocity. This means that the robot moves in a straight

line, with its absolute normal velocity equal to the normal current velocity. For the

forward velocity, the following property can be derived from (89):575

Corollary 2. Consider an underwater snake robot with N links described by (77) and

controlled in exact accordance with (71) and (81). For ω > ω∗ and sufficiently small

φ0 for (86) to hold, the average relative forward velocity of the robot will converge

exponentially to v∗t,rel, which is proportional to

• the squared amplitude of the joints, α2,580

• the frequency of the gait, ω ,

• a function of the phase shift δ , which is given by

kδ =
N−1

∑
i=1

N−1

∑
j=1

ai jg(i)g( j)sin(( j− i)δ ). (90)

This result extends the findings of previous studies: In McIsaac and Ostrowski (2003)

it was shown that the averaged forward dynamics of a three- and a five-link eel-like

robot are captured by a function proportional to the squared amplitude, frequency, and

a sum of sinusoidal functions. It also extends the result from Section 5.1.1 where the585

special case of lateral undulation, yielding g(i,N) = 1, and without disturbances like

ocean currents, was investigated. Similarly as pointed out in Section 5.1.1, Corollary 2
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provides a powerful tool for motion planning: an increase/decrease of the relative for-

ward velocity can be invoked by using α or ω as a control input. Furthermore, the

controller can be optimized by finding the optimal phase shift δ that maximizes kδ for590

the given number of links and choice of gait.

Kelasidi et al. (2015a) experimentally validated the empirical properties that were

derived for underwater snake robots based on a simulation study in Kelasidi et al.

(2015b), and the experimental results are also in agreement with the properties pre-

sented here.595

5.2. Relationship between the gait parameters, the forward velocity and power con-

sumption

In Kelasidi et al. (2016a) a multi-objective optimization problem was formulated

to investigate how to choose gait parameters to maximize the forward velocity and at

the same time minimize the power consumption of snake robots. The analysis was600

performed using particle swarm optimization to obtain optimal gait parameters for the

gait patterns lateral undulation and eel-like motion. The analysis was conducted using

the model of underwater snake robots presented in Kelasidi et al. (2014c), and although

some added mass terms were not included in this model, the results are expected to hold

also for the model presented in Section 2.4 since the added mass effects are negligible605

at low speeds, cf. Remark 6. Furthermore, since the model for snake robots moving

on land falls out as a special case when the added mass effects are zero, and the drag

forces are replaced by friction forces (cf. Remark 5), the qualitative results are expected

to hold also when the snake robots move on land.

The analysis in Kelasidi et al. (2016a) shows that there is a clear trade-off between610

the forward velocity and the power consumption, as should be expected. In particular,

the maximum power is consumed in the cases that achieve maximum velocity. Fur-

thermore, the Pareto front analysis illustrates that the power consumption of the robot

can be decreased significantly by a minor reduction in the forward velocity for certain

choices of gait parameters. For the particular snake robot considered in the simulations,615

a 44.75% decrease is achieved in the power consumption while the forward velocity is

only reduced by 3.57% for a particular choice of gait parameters for lateral undulation.
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A similar reduction is also shown for eel-like motion. The multi-objective analysis and

corresponding Pareto fronts, therefore, constitute a useful tool for choosing optimal

gait parameters in the control design.620

6. Snake robot control

From Section 3 we know that under Assumption 7 an undulatory gait pattern will

make the snake robot move forward, and from Section 5 we know how to choose the

gait parameters. The next question is then how to design a control law to make the

robot not only move forward but follow the desired path.625

6.1. Path following control

We consider the path following control objective of making the snake robot con-

verge to a desired straight line path and subsequently progress along this path. Without

loss of generality, we align the global x-axis with the desired path, such that the posi-

tion of the robot along the global y-axis, py, corresponds to the shortest distance from630

the CM of the robot to the desired path (i.e. the cross-track error). Then the orientation

of the robot, θ̄ , which was defined in (8), is the angle that the robot forms with the de-

sired path. The control objective is thus to regulate py and θ̄ so that they oscillate about

zero, i.e. so that their trajectories trace out a limit cycle containing
(

py = 0, θ̄ = 0
)

in

its interior. We do not attempt to regulate py and θ̄ to zero since we expect the heading635

and position of the robot to display oscillating behavior during undulatory locomotion.

From the above discussion, the control problem is to design a feedback control law

such that for all t > tc ≥ 0, there exists a τ ∈ [t, t +T ] satisfying

py(τ) = 0, (91)

θ̄(τ) = 0, (92)

where tc is some (unknown) finite time duration corresponding to the time it takes the

snake robot to converge to the desired straight path, and T > 0 is some constant that

characterizes the time period of the cyclic gait pattern of the snake robot. In other
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words, we require that py and θ are zero at least once during each cycle of the locomo-640

tion since this means that py and θ̄ oscillate about zero. Note that we require vt(t)> 0

for all t > tc.

6.1.1. Path following control of snake robots moving on land

For snake robots moving on land, we use the gait pattern lateral undulation which

is generated by requiring each link angle, φi, i ∈ {1, . . . ,N−1}, to follow the reference

signal

φi,ref(t) = α sin(ωt +(i−1)δ )+φ0. (93)

With this gait pattern, the period of the cyclic locomotion considered in control objec-

tives (91) and (92) will be T = 2π/ω .645

Line-of-sight (LOS) guidance control

In order to steer the snake robot towards the desired straight path (i.e. the global x-axis),

we define the heading reference angle according to the line-of-sight (LOS) guidance

law

θ̄ref =−arctan
( py

∆

)
, (94)

where py is the cross-track error, and ∆ > 0 is a design parameter referred to as the

look-ahead distance that influences the rate of convergence to the desired path. This

LOS guidance law is commonly used during e.g. path following control of marine

surface vessels (see e.g. Fossen, 2011; Fredriksen and Pettersen, 2006). As illustrated650

in Fig. 13, the LOS angle θ ref corresponds to the orientation of the snake robot when

it is headed towards the point located a distance ∆ ahead of itself along the desired

path. The value of ∆ is important since it determines the rate of convergence to the

desired path. In particular, the value of the parameter ∆ will influence the transient

motion of the robot, giving a well-damped transient motion for large values of ∆ and655

large overshoots or even instability for too small values. When LOS guidance is used

for marine vehicles, a rule of thumb is to choose ∆ larger than twice the length of the

vehicle (see e.g. Fossen (2011)).

The joint offset angle φo can be used to control the direction of the locomotion, and
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Figure 13: The LOS guidance law.

we, therefore, conjecture that we can control the heading θ̄ to follow the LOS angle

given by (94), by defining this joint offset angle as

φo = kθ

(
θ̄ − θ̄ref

)
, (95)

where kθ > 0 is a controller gain. To make the joints track the resulting reference angles

given by (93), we use the feedback linearizing controller from (Liljebäck et al., 2013,

Chapter 2.8), briefly described in Section 2.3, and we let the control input u ∈RN−1 be

given as

ui = kp (φi,ref−φi)− kd φ̇i i = 1, . . . ,N−1, (96)

where kp > 0 and kd > 0 are controller gains.

In (Liljebäck et al., 2013, Chapter 5) a Poincaré map analysis is performed which660

shows that the control objectives (91)–(92) are satisfied for snake robots described by

the model (31) with the control law given by (93)–(96). Note, however, that since the

Poincaré map analysis is based on simulations, it holds only for the given choice of nu-

merical parameters used in the simulations. To obtain a stability analysis that holds for

a general snake robot, we utilize the control-oriented model described in Section 4.2:665

LOS guidance control based on the control-oriented model

From the analysis in Section 3 we know that lateral undulation will create propulsive

forces, and Corollary 1 gives that the resulting forward velocity is contained in some
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Figure 14: Left: The coordinate transformation of the snake robot. Right: The LOS guidance law (108).

non-zero and positive interval [Vmin,Vmax] that can be scaled based on the gait pattern670

parameters. We can thus make the following assumption in the control design:

Assumption 10. The snake robot moving by lateral undulation has a forward velocity

which is always non-zero and positive, i.e. vt ∈ [Vmin,Vmax] ∀ t ≥ 0 where Vmax≥Vmin >

0.

By Assumption 10, we can consider the forward velocity vt as a positive parameter675

satisfying vt ∈ [Vmin,Vmax].

As seen in (73f) and (73h), the joint coordinates φφφ are present in the dynamics

of both the angular velocity vθ and the sideways velocity vn of the snake robot. This

complicates the controller design since the body shape changes will affect both the

heading and the sideways motion of the robot. Motivated by Do and Pan (2003) and

Fredriksen and Pettersen (2006), we see that it is possible to remove the effect of φφφ

on the sideways velocity by performing a coordinate transformation. In particular, we

move the origin of the body-fixed coordinate system a distance ε from the CM along the

tangential direction of the robot, to a new location, denoted the pivot point. The pivot

point is where the body shape changes of the robot (characterized by eT
φφφ ) generate

a pure rotational motion and no sideways force. This coordinate transformation is
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illustrated to the left in Fig. 14 and is defined as

px = px + ε cosθ , (97a)

py = py + ε sinθ , (97b)

vn = vn + εvθ , (97c)

where ε is a constant parameter defined as

ε =−2(N−1)
Nm

cp

λ2
. (98)

With the new coordinates given by (97), the model (73) is transformed into

φ̇φφ = vφ , (99a)

θ̇ = vθ , (99b)
.
py = vt sinθ + vn cosθ , (99c)

v̇φ =−cn

m
vφ +

cp

m
vtADT

φφφ +
1
m

DDT u, (99d)

v̇θ =−λ1vθ +
λ2

N−1
vteT

φφφ , (99e)

.
vn = Xvθ +Y vn, (99f)

where, by Assumption 10, the parameter vt ∈ [Vmin,Vmax] with Vmax ≥ Vmin > 0, and

where

X = ε

(cn

m
−λ1

)
, (100a)

Y =−cn

m
. (100b)

The two scalar constants X and Y have been introduced in (99f) for simplicity of no-

tation. Note also that (73c) is not included in (99) since we do not consider the time

evoluation of the position of the system along the path during path following.

The path following control problem for snake robots described by the control-
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oriented model (99), is to design a feedback control law

u = u(t,φφφ ,θ , py,vφ ,vθ ,vt ,vn) ∈ RN−1, (101)

such that the following control objectives are reached:

lim
t→∞

py(t) = 0, (102)

lim
t→∞

θ(t) = 0. (103)

Remark 11. The path following control objectives that were given in (91)-(92) did680

not attempt to suppress the oscillatory behavior of the heading and position of the

snake robot during undulatory motion along the desired path. However, since the path

following controller proposed in the following is based on the control-oriented model

of the snake robot, it is possible to prove convergence to zero.

We use the linearizing control law

u = m
(
DDT )−1

(
u+

cn

m
φ̇φφ −

cp

m
vtADT

φφφ

)
, (104)

where u∈RN−1 is a new set of control inputs. This control law transforms the joint dy-

namics (99d) into v̇φ = φ̈φφ = u. To make the joints track the joint reference coordinates

given by (93), we choose the new control input u to be

u = φ̈φφ ref + kvφ

(
φ̇φφ ref− φ̇φφ

)
+ kφ (φφφ ref−φφφ) , (105)

where kφ > 0 and kvφ
> 0 are scalar controller gains, and φφφ ref ∈ RN−1 are the joint

reference coordinates given by (93). By introducing the error variable

φ̃φφ = φφφ −−−φφφ ref, (106)

the joint dynamics given by (99a) and (99d) can be rewritten as the error dynamics

..

φ̃φφ + kvφ

.

φ̃φφ + kφ φ̃φφ = 0, (107)
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which is clearly globally exponentially stable. This implies that the joint coordinates685

exponentially track the reference signal given by (93).

We use the LOS guidance law, adapted to the coordinates of the transformed control-

oriented model (99), cf. Fig. 14:

θref =−arctan(
py

∆
), (108)

To derive the expression for φo to control the heading of the robot, we first rewrite

the dynamics of vθ given by (99e) with the new coordinates φ̃φφ in (106), which gives

the dynamics of vθ as a function of the joint reference coordinates given by (93). From

(106), we have that φφφ === φφφ ref + φ̃φφ . By using (93) we can, therefore, rewrite (99e) as

v̇θ =−λ1vθ +λ2vtφo +
λ2

N−1
vt

(
N−1

∑
i=1

α sin(ωt +(i−1)δ )+ eT
φ̃φφ

)
. (109)

Consequently, choosing φo as

φo =
1

λ2vt

(
θ̈ref +λ1θ̇ref− kθ (θ −θref)−

λ2

N−1
vt

N−1

∑
i=1

α sin(ωt +(i−1)δ )

)
, (110)

where kθ > 0 is a scalar controller gain, enables us to express the dynamics of the

heading angle θ , which is given by (99b) and (99e), as the error dynamics

..

θ̃ +λ1

.

θ̃ + kθ θ̃ =
λ2

N−1
vteT

φ̃φφ , (111)

where we have introduced the error variable

θ̃ = θ −θref. (112)

Remark 12. The joint coordinate offset in (110) depends on the inverse of the forward

velocity vt . This does not represent a problem since, by Assumption 10, the forward

velocity is always non-zero. When implementing the path following controller, this

issue can be avoided by activating the controller after the snake robot has obtained a690

positive forward velocity through lateral undulation.
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Figure 15: The structure of the LOS-based path following control system.

Remark 13. The error dynamics of the joints in (107) and the error dynamics of the

heading in (111) represent a cascaded system. In particular, the system (107) perturbs

the system (111) through the interconnection term λ2
N−1 vteT

φ̃φφ .

We have now presented the complete path following controller of the snake robot.695

The structure of the complete control system is summarized in Fig. 15.

By using cascaded systems theory Panteley et al. (1998), Panteley and Loria (2001),

it is shown in (Liljebäck et al., 2013, Chapter 8.3.6) that the origin of the closed-loop

system is uniformly globally asymptotically stable and locally exponentially stable un-

der a given condition on the control parameter ∆. In particular, the following theorem700

is proved:

Theorem 6. Consider a planar snake robot described by the model (99) and suppose

that Assumption 10 is satisfied. If the look-ahead distance ∆ of the LOS guidance law

(108) is chosen such that

∆ >
|X |
|Y |

(
1+

Vmax

Vmin

)
, (113)

then the path following controller defined by (93), (104), (105), (108), and (110) guar-

antees that the control objectives (102) and (103) are achieved for any set of initial

conditions satisfying vt ∈ [Vmin,Vmax].

Remark 14. Any gait pattern controller that uniformly globally exponentially stabi-705

lizes the error variable (106), i.e. not just the joint controller proposed in (104)-(105),

makes the complete cascaded system uniformly globally asymptotically and locally ex-

ponentially stable.

Remark 15. As explained in Section 4, the assumptions underlying the control-oriented

model are only valid as long as the joint angles are small. The stability result in The-710
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orem 6 is therefore claimed only for snake robots conducting lateral undulation with

limited joint angles.

In (Liljebäck et al., 2013, Chapter 8.4) it is furthermore shown how the straight-line

path following controller presented above can be extended to path following also of

curved paths.715

6.1.2. Path following control of snake robots moving underwater

For snake robots moving underwater, we use the general gait pattern that encom-

passes both lateral undulation and eel-like motion, and which is generated by requiring

each link angle, φi, i ∈ {1, . . . ,N−1}, to follow the reference signal

φi,ref(t) = αg(i,N)sin(ωt +(i−1)δ )+φ0. (114)

Also with this gait pattern, the period of the cyclic locomotion considered in control

objectives (91) and (92) will be T = 2π/ω .

Integral line-of-sight (ILOS) guidance control

When the snake robot moves underwater, it will be subject to ocean currents of un-

known direction and magnitude, and the path following controller needs to adapt to

this. If we were to use a pure LOS guidance law, the ocean current would make the

robot drift away from the desired path, giving a stationary cross-track error. To steer

the snake robot towards the desired straight path (i.e. the global x-axis), we thus define

the heading reference angle by the integral LOS guidance law

θ̄ref =−arctan
(

py +σyint

∆

)
, ∆ > 0, (115)

ẏint =
∆py

(py +σyint)2 +∆2 , (116)

where py is the cross-track error, while both the look-ahead distance ∆ and the integral720

gain σ > 0 are constant design parameters, and yint represents the integral action of

the guidance law. Note that the integral LOS guidance law (115)-(116) includes an
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Figure 16: The integral line-of-sight guidance law.

anti-windup effect, as ẏint converges to zero when the cross-track error py is large. The

integral LOS path following controller was proposed for straight path following con-

trol of marine surface vessels in the presence of unknown constant irrotational ocean725

current Borhaug et al. (2008), Caharija et al. (2013). Fig. 16 illustrates the intuition

behind the integral LOS approach: Instead of heading towards a point that lies a dis-

tance ∆ ahead of the robot along the global x-axis, as for the original LOS approach,

the robot is made to head towards a point that lies a distance ∆ ahead of the robot along

a displaced axis. The displaced axis lies upstream of the path, and the magnitude of730

the displacement is proportional to the integrated cross-track error. The intention is

to make the robot move along the desired path with the crab angle that is necessary

to compensate for the unknown ocean current. In Kelasidi et al. (2017a) a Poincaré

map analysis is performed which shows that path following is achieved, and this is also

validated by experiments. Again these results only hold for the particular numerical735

simulation model used in the simulations, and also for the particular physical snake

robot employed in the experiments. To prove that an integral-LOS controller achieves

path following for a general snake robot, we will also here use the control-oriented

model:

740

Integral LOS guidance control based on the control-oriented model

We consider the control-oriented model (77) for snake robots moving underwater. The

development of the model-based integral LOS guidance controller is based on the fol-
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lowing assumptions:

Assumption 11. The ocean current, vc = [Vx, Vy]
T , is constant and irrotational in the745

global frame. It is furthermore bounded by Vc,max ≥
√

V 2
x +V 2

y .

Remark 16. The ocean current will be slowly varying compared to the dynamics of

the snake robot, and barring turbulent flow, Assumption 11 is thus a valid assumption.

Assumption 12. The underwater snake robot is moving with some constant relative

forward velocity vt,rel ∈ [Vmin,Vmax] ∀ t ≥ 0, where Vmax ≥Vmin > 0.750

Assumption 13. The forward velocity is large enough to compensate for the current,

i.e. vt,rel >Vmin >Vc,max.

Remark 17. As seen in Corollary 2, when using the general gait pattern (114) the rel-

ative forward velocity converges to a constant value that can be tuned by the choice of

gait parameters α , ω and δ , something which makes Assumption 12 a valid assump-755

tion. If the robot actuators are not sufficiently strong to achieve a forward velocity that

satisfies Assumption 13, the robot can not achieve path following when subjected to

ocean currents of this magnitude.

From the dynamical equations (77f) and (77h) we see that the joint coordinates φ enter

the dynamics of both vθ and vn. As pointed out in Section 6.1.1, this complicates the760

design of the control system. We, therefore, apply the same coordinate transformation

(97)-(98) as for snake robots moving on land. Furthermore, the absolute velocities are

removed from (77) by inserting the relations [vt , v̄n]
T = [vt,rel +Vt , v̄n,rel +Vn]

T , where

Vt = Vx cosθ +Vy sinθ , and Vn = −Vx sinθ +Vy cosθ are the ocean current velocities

expressed in the body frame, and ˙̄vn = ˙̄vn,rel +V̇n, with V̇n =−Vt θ̇ Fossen (2011).765

By using the transformation (97) and the relative velocities, the model can be
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rewritten in the new coordinates as

φ̇φφ = vφ , (117a)

θ̇ = vθ , (117b)

˙̄py = vt,rel sinθ + v̄n,rel cosθ +Vy, (117c)

v̇φ = ū, (117d)

v̇θ =−λ1vθ +
λ2

N−1 vt,relēT
φφφ , (117e)

˙̄vn,rel = (X +Vt)vθ +Y v̄n,rel, (117f)

where X and Y also here are defined as X = ε( cn
m −λ1),Y = − cn

m . By Assumption 12

the relative forward velocity vt,rel is treated as a positive time-varying parameter. Fur-

thermore, (77c) is not included in (117) since the time evolution of the position along

the path is not considered during path following. Furthermore, the linearizing feedback

control law

u = m
(
DDT )−1

(
u+

cn

m
φ̇φφ −

cp

m
vt,relADT

φφφ

)
, (118)

has been applied, Kohl et al. (2015b).

Based on the above discussion and model, the path following control objectives can

be stated as follows:

lim
t→∞

p̄y(t) = 0, (119)

lim
t→∞

θ(t) = θ
eq. (120)

The desired heading angle θ eq is constant and θ eq ∈ (−π

2 ,
π

2 ). The equilibrium head-

ing θ eq will be non-zero for non-zero ocean currents, thus providing the necessary crab

angle to compensate for the path transversal current-component, cf. Fig. 16. The mag-

nitude of the required crab angle θ eq will be determined by the magnitude of the ocean770

current, through the integral effect.
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Figure 17: The integral LOS guidance law (123).

Similarly as for snake robots moving on land, we choose the control input u to be

u = φ̈φφ ref + kvφ

(
φ̇φφ ref− φ̇φφ

)
+ kφ (φφφ ref−φφφ) , (121)

where kφ > 0 and kvφ
> 0 are scalar controller gains, while φφφ ref ∈RN−1 for underwater

robots are the joint reference coordinates given by (114). The resulting joint dynamics

given by (117a) and (117d) can be expressed by the dynamics of the error variable

φ̃φφ = φφφ −−−φφφ ref: ..

φ̃φφ + kvφ

.

φ̃φφ + kφ φ̃φφ = 0, (122)

which is clearly globally exponentially stable, such that the joint coordinates exponen-

tially track the reference signal given by (114).

We use the integral LOS guidance law, adapted to the coordinates of the trans-

formed control-oriented model (117), cf. Fig. 17:

θref =−arctan
(

p̄y+σyint
∆

)
, (123a)

ẏint =
∆ p̄y

(p̄y+σyint)2+∆2 , (123b)

By similar arguments as for snake robots on land, we choose the joint offset as

φo =
1

λ2vt,rel

(
θ̈ref +λ1θ̇ref− kθ (θ −θref)−

λ2

N−1
vt,rel

N−1

∑
i=1

αg(i,N)sin(ωt +(i−1)δ )

)
.

(124)
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Figure 18: The structure of the integral LOS-based path following control system

which yields the following error dynamics of the heading angle:

¨̃
θ +λ1

˙̃
θ + kθ θ̃ = λ2

N−1 vt,relēT
φ̃φφ . (125)

Remark 18. In (124), a singularity will occur when vt,rel = 0. When implementing the775

control system, the singularity problem can also here be circumvented by starting the

heading controller after the snake robot has gained a sufficiently large forward velocity

through undulations.

The structure of the closed-loop system is shown in Fig. 18 and has a cascaded structure

that can be analyzed using cascaded systems analysis tools. It can then be shown that780

the following result holds (Kohl et al. (2016b)):

Theorem 7. Consider a fully submerged, neutrally buoyant snake robot described by

(117) that moves in a plane according to (114), and is exposed to ocean currents.

Suppose that Assumptions 11 to 13 are fulfilled. If the look-ahead distance ∆ and the

integral gain σ of the ILOS guidance law (123) are chosen such that

∆ >
|X |+2Vc,max
|Y |

[
5
4

Vmax+Vc,max+σ

Vmin−Vc,max−σ
+1

]
, (126a)

0 < σ <Vmin−Vc,max, (126b)

then the path following controller defined by (114), (118) (121), (123), and (124) guar-

antees that the control objectives (119) and (120) are achieved for any set of initial
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conditions satisfying vt,rel ∈ [Vmin,Vmax]. Control objective (120) is met with

θ
eq =−arctan

(
Vy√

v2
t,rel−V 2

y

)
. (127)

Remark 19. The analysis in Kohl et al. (2016b) shows that any gait pattern controller

that uniformly globally exponentially stabilizes the error variable φ̃φφ , i.e. not just the

joint controller proposed in (118),(121), makes the complete cascaded system uni-

formly globally asymptotically and locally exponentially stable.785

Remark 20. As explained in Section 4, the assumptions underlying the control-oriented

model are only valid as long as the joint angles are small. The stability result in The-

orem 7 is therefore claimed only for snake robots conducting undulatory locomotion

with limited joint angles.

Theorem 7 is experimentally validated in Kohl et al. (2017).790

While the LOS path following control for straight paths can be extended to path

following of curved paths for snake robots moving on land, it is not straightforward

to extend the ILOS path following control to curved paths for snake robots moving

underwater. In particular, when the desired path is curved, the path transverse compo-

nent of the ocean current changes as the robot moves along the path, and the integral795

action does not handle this time-varying disturbance as well as it handles constant dis-

turbances.

6.2. Maneuvering control

For some applications, it is desirable also to control the forward velocity of the

robot. Instead of using tuning of the gait pattern parameters based on Section 5, we800

then include feedback control of the forward velocity in the control law. Controlling

the forward velocity in addition to path following is denoted maneuvering (Skjetne

et al. (2004)).

In Mohammadi et al. (2015) and Kohl et al. (2016a), a control strategy is proposed

for maneuvering control of land-based and underwater snake robots. The proposed
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feedback control strategy enforces virtual constraints to produce undulatory locomo-

tion. The biologically inspired virtual holonomic constraints (VHCs) come from adapt-

ing the reference signal for the single joints 71 in the following way:

φi,ref(λ ,φ0) = αg(i)sin
(

λ +(i−1)δ
)
+φ0, (128)

where λ and φ0 are the states of the two dynamic compensators

λ̈ = uλ , φ̈0 = uφ0 , (129)

with the new control inputs uλ ,uφ0 . Note that in (128) the time signal t no longer

appears explicitly. Instead, the dynamic gait time evolution is governed by the state of805

the compensators in (129) and the new inputs uλ and uφ0 .

The proposed VHCs are then the state-dependent relations φi = φi,ref(λ ,φ0), i ∈

{1, . . . ,N−1}. The state φ0 is used to control the orientation, while the state λ is used

to control the forward velocity (relative forward velocity resp.) of the snake robot. Note

that λ̇ is the frequency of the sine function in (128), and we hence use the frequency810

of the undulations to control the forward velocity of the robot. This is in line with

Corollaries 1-2 which show a linear dependence between the frequency and the average

forward velocity (relative forward velocity, resp.), making the frequency an efficient

choice as a virtual control input for velocity control.

VHCs make the control design amenable to a hierarchical synthesis (Seibert and815

Florio (1995); El-Hawwary and Maggiore (2013)), where the biological gaits are en-

forced at the lowest level of hierarchy and path planning is done for a point-mass ab-

straction of the snake robot at the highest level of hierarchy Mohammadi et al. (2014,

2015):

• Stage 1 Body shape controller that enforces the VHCs820

This stage represents the inner control loop and has the highest priority. The

control torque u of the snake robot ((28a), alt. (54)) is used to stabilize the VHCs

(128). The controller is an input-output feedback linearizing controller that di-

rectly imposes the VHCs by stabilizing ei = φi−φi,ref(λ ,φ0), i∈ {1, . . . ,N−1}.
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Once the VHCs are enforced, the system dynamics evolve according to (128),825

and the states λ and φ0 can be interpreted as new inputs for the second stage of

the control design.

• Stage 2 Velocity controller that consists of a heading and a speed controller

At this stage, the inputs uφ0 and uλ of the two dynamic compensators (129)

are designed. First, uφ0 is designed such that the head angle, θN , of the snake830

robot is practically stabilized to a reference heading θref(p). Secondly, uλ is

designed such that the forward velocity vt (vt,rel resp.) is practically stabilized to

the reference speed vref(p) (vt,relref(p) resp.). The references θref(p) and vref(p)

(vt,relref(p) resp.) are derived from the reference velocity vector µµµ that is assigned

by the third control stage.835

• Stage 3 Path-following controller that provides the reference signals for the ve-

locity controller

This is the final stage of the control design with the lowest priority. At the

last stage of the control hierarchy, the reference signals for Stage 2, θref(p) and

vref(p) (vt,relref(p) resp.) are designed to make the robot approach the path and840

follow it with the desired speed. For underwater applications, where the snake

robot is exposed to ocean currents, the third stage of the control hierarchy in-

cludes the design of an ocean current observer to compensate for the perturbing

effect of ocean currents.

Please see Mohammadi et al. (2015) and Kohl et al. (2016a) for the equations describ-845

ing the control law and the ocean current observer that is derived through this approach.

(See Fig. 19 for an illustration of the control approach for underwater snake robots.)

By using a reduction theorem for the stability of nested closed sets, practical stability

(Teel and Praly (1995)) is shown for the resulting closed-loop system, thus achieving

both the path following and velocity control objectives, i.e. solving the maneuvering850

control problem.

Remark 21. The control laws are derived based on the models in Section 2 (with the

assumptions of negligible added mass (Remark 6) and constant irrotational ocean cur-
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Figure 19: The maneuvering controller with current compensation.

rent, for the underwater snake robots). The results, therefore, do not rely on the simpli-

fying assumption of small link angles like the controllers derived in the previous sec-855

tions, which were based on the control-oriented models from Section 4, cf. Remarks 15

and 20. Furthermore, an ocean current observer is applied instead of integral action

for the control system in the underwater case, something which yields results for gen-

eral paths, including both curved and straight line paths. Since the models in Section 2

are used, oscillations around the origin are expected, as discussed in Section 6.1 and860

described in (91)-(92), and this is achieved by the practical stability results.

7. Underwater swimming manipulators (USMs)

The snake robots and results presented in the previous sections are all purely bio-

motivated. A natural next question was: “What if we combine the best from biology

with the best from technology, and equip the snake robot with additional effectors?” In865

particular, for the underwater snake robots, a natural next step was to investigate what

can be achieved by equipping the robot with thrusters along its body. By combining

the slender, multi-articulated and thus flexible body of snakes with the efficient propul-

sion provided by thrusters, we obtain a new type of robot that is called an underwater

swimming manipulator (USM), Sverdrup-Thygeson et al. (2016b), Sverdrup-Thygeson870

et al. (2017a). This robot may constitute the next generation intervention AUV, which

is the next step in the line of ROVs and AUVs for subsea operations (Kelasidi et al.

(2016b)). A generic illustration is given in Fig. 20. The thrusters give the robot hov-

64



Figure 20: Generic illustration of a USM

ering capabilities in addition to faster propulsion, while the snake-like body provides

the robot with beneficial hydrodynamic properties for long-distance transportation, and875

exceptional access to narrow areas. Also, equipping the robot with sensors and tools,

the multi-articulated body constitute a dexterous robot manipulator arm that can per-

form inspection and intervention operations subsea, operating as a floating base robotic

manipulator.

Mathematical models of the USM are derived in Sverdrup-Thygeson et al. (2016b)880

and Kelasidi et al. (2017b). Since the links of the USM generally will be different,

depending on the size and number of the actuators, the length and mass of the links can

be different. The model in Section 2.4 falls out as a special case when all the links have

the same length and mass, and there are no forces from additional effectors.

Sverdrup-Thygeson et al. (2016a) and Sverdrup-Thygeson et al. (2017a) present a885

generic motion control framework for the USM, as shown in Fig. 21. The framework

itself resembles a typical guidance, control, and thrust allocation system for marine ve-

hicles (Fossen (2011)). However, the challenges faced by the different subsystems are

more complex for a USM, due to kinematic redundancy (with the additional effectors,

the robot generally becomes overactuated for the task of controlling its position and890

orientation), multi-body dynamics, dynamic coupling effects, and a state dependent

thruster configuration matrix.

Motion planning
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Figure 21: Motion control framework for the USM

The motion planning (guidance), generates the reference signals to the dynamic con-

trollers for the joints and the thrusters. The objective of the motion planning module895

is therefore to specify the desired motion of the joints and the desired position and

orientation of the USM, i.e. controlling the USM in the configuration space. Which

algorithm that is best suited for this will typically depend on the given task:

Transport Mode: Moving the USM from its starting point to an area of interest will

require the USM to follow a path, either pre-planned or created on-the-fly. One control

approach is to use the joint angles for directional control while the propulsion of the

robot is provided by the thrusters(Sverdrup-Thygeson et al. (2017a), Sans-Muntadas

et al. (2017)). This approach is particularly relevant when the USM only has thruster

forces acting in the longitudinal direction, for instance through aft thrusters, and no

thruster control force in the sideways direction. The robot then functions as an artic-

ulated AUV with improved maneuverability compared to rigid AUVs that use rudders

for directional control. The reference heading, θ̄ref, of the USM is then given by a

guidance law, and the joint angle references are chosen as

φi,ref = g(i,N)φ0, (130)

φ0 = kp(θ̄ − θ̄ref)+ ki

∫ t

t0
(θ̄(τ)− θ̄ref(τ)dτ)+ kd(

˙̄
θ − ˙̄

θref), (131)

where kp,kd and ki are control gain parameters, and g(i,N) is a function that distributes

the joint action along the body of the robot. For instance, one may want to keep the900

head quite still to stabilize a head-mounted camera stream, and mainly use the tail part

for directional control, and then g(i,N) is chosen to decrease from tail to head. The ref-

erence heading θ̄ref can, for instance, be given by the integral LOS guidance law (123).

By using a standard PID control law to generate the required thruster forces to achieve
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the desired forward speed, and tuning the control parameters properly, a smooth motion905

and fast convergence to the desired path can be achieved, while keeping the required

thruster forces and joint angles within the actuator limitations. For further details, the

reader is referred to Sverdrup-Thygeson et al. (2016b), where also simulation results

are presented that validate the LOS guidance control for USMs. Furthermore, in Sans-

Muntadas et al. (2017) experiments are presented that validate this approach for path910

following of spiral paths, achieving autonomous docking of USMs.

Work mode: When the USM has reached the target position and is set to perform

an inspection or intervention operation, a typical task would then be to control the

motion of the USM end-effector, i.e. the head link of the USM. The desired end-effector

motion will typically be specified by a human operator or by a high-level autonomy915

system. Moving the end-effector of the USM can be made either by moving the whole

USM as a rigid body using the thrusters or by changing the joint angles. Together this

constitutes a system with a high degree of kinematic redundancy, and thus, there are

infinitely many ways to fulfill the end-effector positioning task. To this end, it is useful

to utilize the inherent redundancy of the USM to achieve the satisfaction of multiple920

objectives simultaneously. While the primary objective is given by the desired end-

effector motion, the USM allows for several alternative secondary control objectives.

The secondary control objectives for USMs may typically be:

1. Satisfy the mechanical constraints, e.g. the maximum joint deflections and max-

imum angular velocity for the joints925

2. Maintain good manipulability, i.e. avoid singular joint configurations

3. Maintain controllability, i.e. avoid singular thruster configurations

4. Avoid collision with other moving objects and stationary obstacles

5. Minimize the total thruster effort

6. Minimize drag forces, i.e. attempt to align the USM with the dominant direction930

of the ocean currents

In Sverdrup-Thygeson et al. (2017b) it is shown how kinematic singularity avoidance

can be guaranteed using set-based singularity avoidance tasks within the singularity-

robust multiple task priority framework. In particular, the USM achieves a desired
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position and orientation of the end-effector, and a desired position of the USM base,935

at the same time as high manipulability is accomplished through kinematic singularity

avoidance.

Motion control laws

The motion control laws calculate the prescribed joint torques and generalized thruster

forces and moments on the USM, based on the reference signals from the motion plan-940

ning module. The latter may, for instance, be given by a simple proportional control

law for the velocity of the USM base:

τc = k
(

V b
0b,d−V b

0b

)
, (132)

where τc is the vector of generalized thruster forces and moments, k is the proportional

gain factor, and

V b
0b =

vb
0b

ωb
0b

 ∈ R6, (133)

where vb
0b and ωb

0b are the body-fixed linear and angular velocities of the base of the

USM, respectively. In Sverdrup-Thygeson et al. (2017a) this control law is applied in

3D simulations in an underwater environment, where it is combined with both kine-945

matic and dynamic control.

Thrust allocation

Thrust allocation is the process of distributing the commanded generalized forces and

moments between the thrusters. For a typical underwater vehicle, each thruster has a

fixed position and orientation relative to the body-fixed reference frame. The thrusters950

are usually mounted in pairs and aligned with the axes of rotation, such that they affect

only the axes that need to be controlled. However, this is not the case for the USM.

When the shape of the USM changes, the position and orientation of the thrusters with

respect to the base of the USM also change. The thrust allocation algorithm must

therefore take into account that the thruster configuration matrix is a function of the955
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joint angles. In addition, the complex multi-body dynamics of the USM indicates that

the USM should be fully actuated at all times, in order to control the overall motion

of the USM base in 6 DOF. Mathematically, this means that the thruster configuration

matrix must have row rank equal to six for all attainable joint configurations. If the

USM should exhibit an underactuated thruster configuration, the USM may experience960

undesirable rotational motion.

If the USM has more thrusters than required to satisfy the given control task, it is

referred to as an overactuated system. In this case, the solution to the thrust alloca-

tion problem is not unique, i.e. there are infinitely many ways to distribute the thrust

forces and yet obtain the same generalized forces and moments. In Sverdrup-Thygeson965

et al. (2016a) and Sverdrup-Thygeson et al. (2017a) thrust allocation algorithms are

discussed, and the following alternatives are proposed as optimization criteria:

• Minimize some measure of the combined thruster efforts.

• Minimize the single largest thrust force.

• Minimize the thrust force fluctuations, i.e. the time-derivative of the thrust forces.970

8. Subsea inspection and intervention - towards industrial use

The beneficial properties of the USM make it an interesting robot for subsea oper-

ations. For several decades, the traditional remotely operated vehicle (ROV) has been

the workhorse used for any kind of subsea operation. Currently, the industry is facing

an important shift towards more economical and more efficient operations on subsea975

installations, and the use of conventional ROVs deployed from surface support vessels

is, in many situations, considered too expensive. The number of subsea installations for

oil and gas production are increasing. Existing subsea infrastructure is aging, requir-

ing more preventive maintenance, at the same time as the needs for routine inspections

increase as the number of new subsea installations continue to grow. Consequently,980

the industry has recognized the need for smaller, less costly, and more specialized ve-

hicles that can perform various autonomous and semi-autonomous tasks at subsea oil
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Figure 22: The features of the USM. Courtesy of Eelume.

and gas installations (Gilmour et al. (2012)). In particular, small, lightweight AUVs

with hovering and precise maneuvering capabilities gain increased attention.

The USM combines several beneficial features of survey AUVs, work class ROVs985

and observation ROVs and AUVs into one tool, cf. Fig. 22; It shares the same advan-

tageous hydrodynamic properties as the survey AUV, making it suitable for long range

transportation. The flexible and slender body can access and operate in restricted areas

of subsea structures, achieving excellent access capabilities compared to small obser-

vation ROVs/AUVs. Furthermore, the vehicle itself is a dexterous robotic arm which990

can operate tools and carry out intervention tasks, operating as a floating base robotic

manipulator.

The combined features of the USM make it an excellent choice for a subsea resident

robot, which will be permanently installed on the seabed, being ready 24/7 for planned

and on-demand inspection and intervention operations. This solution will dramatically995

save costs by reducing the use of expensive surface vessels which are needed to support

such operations today. Eelume AS (Eelume (2015)) is a company sourced from the

Norwegian University of Science and Technology (NTNU) and has teamed up with

Kongsberg Maritime and Statoil to develop this robot for industrial use.

Eelume vehicles can be installed on both existing and new fields where typical1000

jobs include; visual inspection, cleaning, and operating valves and chokes. These jobs

account for a large part of the total subsea inspection and intervention spend. The
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Figure 23: The Eelume robot hovering underwater. Courtesy of Eelume.

first prototype, Fig. 23, was tested in the deep waters of the Trondheim fjord and at

the PREZIOSO Linjebygg Subsea Test Center in Trondheim, in December 2016. The

purpose of the testing was to verify and demonstrate the features of Eelume’s snake-1005

like underwater robot in a deep-water, marine environment. Eelume confirmed that the

vehicle has superior maneuverability, is a stable sensor and actuator platform, and has

easy access to constrained areas not accessible by conventional underwater vehicles.

The next prototype is currently under development and will be tested down to 500 m in

2017, also demonstrating the intervention capabilities. While the robot is developed as1010

a subsea resident robot for the oil and gas industry, it is also a highly applicable tool for

subsea operations within marine biology, archaeology, aquaculture, and port security.

9. Conclusions

This paper has reviewed a selection of recent work by the author’s research group

on modeling, analysis, and control of snake robots. The kinematics and dynamics of1015

snake robots moving in 2D on land and underwater have been presented. Based on

these models, it was shown that if the friction or drag force coefficients of snake robots

are larger in the sideways direction than in the longitudinal direction of the robot links,

the snake robot achieves forward propulsion by continuously changing its body shape
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to induce either ground friction forces or hydrodynamic drag forces that propel the1020

robot forward. This is achieved when the snake robot follows an undulatory gait pat-

tern. The nature of undulatory locomotion allowed us to develop simpler mathematical

models, which capture the essential behavior of snake robots during undulatory loco-

motion, and which are well-suited for analysis and control design.

Based on these models, we derived the relationship between the gait parameters1025

and the forward velocity, such that we can choose the gait parameters to achieve the

desired forward velocity and also make an informed trade-off between forward veloc-

ity and power consumption. We then developed path following controllers for snake

robots. For snake robots moving on land, a line-of-sight (LOS) guidance control law

was proposed and shown to exponentially stabilize the desired straight line path un-1030

der a given condition on the look-ahead distance parameter. For snake robots moving

underwater, ocean currents of unknown direction and magnitude need to be handled,

and an integral line-of-sight (ILOS) guidance control law was proposed and shown to

exponentially stabilize the desired straight line path under given conditions on the look-

ahead distance and integral gain parameters. For some applications, it is desirable also1035

to control the forward velocity of the robot. Instead of using tuning of the gait pattern

parameters based on the relationship between these parameters and the velocity, which

constitute open-loop control of the velocity, we then included feedback control of the

forward velocity in the control law, solving the maneuvering control problem. Maneu-

vering control laws, based on biologically inspired virtual holonomic constraints, were1040

proposed for snake robots moving both on land and underwater.

The paper furthermore presented the underwater swimming manipulator (USM),

which is essentially a crossover between an autonomous underwater vehicle (AUV)

and an underwater snake robot (USR). The USM is a multi-body articulated structure,

but unlike conventional USRs, the USM is equipped with additional thrusters, thus1045

enabling it to operate as a floating base robotic manipulator. The USM combines the

slender, multi-articulated and thus flexible body of snakes with the efficient propulsion

provided by thrusters. The thrusters give the robot hovering capabilities in addition to

faster propulsion, while the snake-like body provides the robot with beneficial hydro-

dynamic properties for long-distance transportation, and exceptional access to narrow1050
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areas. Furthermore, equipping the robot with sensors and tools, the multi-articulated

body constitute a dexterous robot manipulator arm that can perform inspection and

intervention operations subsea.

The beneficial properties of the USM make it an interesting robot for subsea op-

erations. It shares the same beneficial hydrodynamic properties as the survey AUV,1055

making it suitable for long range transportation. The flexible and slender body can

access and operate in restricted areas of subsea structures, achieving excellent access

capabilities compared to small observation ROVs/AUVs. Furthermore, the vehicle it-

self is a dexterous robotic arm which can operate tools and carry out intervention tasks,

operating as a floating base robotic manipulator. The combined features of the USM1060

make it an excellent choice for a subsea resident robot, which will be permanently in-

stalled on the seabed, being ready 24/7 for planned and on-demand inspection and in-

tervention operations. This solution will dramatically save costs by reducing the use of

expensive surface vessels, which are needed to support such operations today. Eelume

AS is a company sourced from the Norwegian University of Science and Technology1065

(NTNU) and has teamed up with Kongsberg Maritime and Statoil to develop this robot

for industrial use, and the Eelume robot was successfully tested in the Trondheim Fjord

December 2016.
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