
Vectorized Benchmarks for the Berkeley
Dwarfs

Christian De Frene

Master of Science in Computer Science

Supervisor: Magnus Jahre, IDI
Co-supervisor: Juan Manuel Cebrian Gonzalez, Barcelona Supercomputing Center,

Spain

Department of Computer Science

Submission date: July 2017

Norwegian University of Science and Technology

Problem description

Vectorized Benchmarks for the Berkeley Dwarfs
Benchmarking is the standard method for conducting scientific experiments in computer
science. Researchers decide on a selection of benchmarks which are a representative of
applications of interest. These benchmarks are studied in detail to uncover generalized
insights that can then be applied to real computer systems. It is critical that the selected
benchmarks cover a wide range of software applications to ensure that the uncovered
insights have high validity.

Cebrian et al. (ISPASS 2014) observed that vectorized benchmarks change key
architectural trade-offs compared to scalar implementations. For this reason, they pro-
posed ParVec which consists of vectorized versions of a subset of the well-known PARSEC
benchmarks. Unfortunately, ParVec and PARSEC only partly cover the classes of widely
deployed parallel programs (as exemplified by the Berkeley Dwarfs). This is the main
motivation for the SIMDwarfs effort which aims to provide the research community with
a set of SIMD-enabled applications and kernels that cover the Berkeley Dwarfs.

The student will contribute to the SIMDwarfs effort by adding vectorized bench-
mark implementations for selected Berkeley Dwarfs. The missing dwarfs are “N-Body
Methods”, “Dynamic Programming”, “Backtrack and Branch-and-Bound”, “Graphical
Models” and “Finite State Machines”. For each added benchmark, the student should
evaluate its performance and scalability as well as identify potential architectural bot-
tlenecks. When possible, the student should improve the benchmark implementation to
reduce the impact of the identified bottleneck.

Advisor: Magnus Jahre, IDI
Co-advisor: Juan Manuel Cebrián González, Barcelona Supercomputing Center (BSC)

i

Abstract

In order to guide development of new hardware that meet ever increasing needs, re-
searchers and system designers need high quality performance evaluation tools. In com-
puter science, benchmarking has emerged as one of the most important methods for this
purpose. Multiple benchmarks that collectively evaluate a system for a wide range of
characteristics in a specific area of interest are compiled into benchmark suites. The
purpose is to increase the chances that insight of high validity can be leveraged, i.e. the
insight is of high enough accuracy to be applied to real computer systems. The Berkeley
dwarfs taxonomy, which are 13 computational patterns in widespread use in the fields of
science and engineering, can be used for this purpose.

From the start of the 21st century, as conventional instruction-level parallelism has
failed to provide further microprocessor performance increases, the industry has been
looking for ways to exploit other types of parallelism as well. One of these is data-
level parallelism, found in the single input multiple data (SIMD) computer organization.
Research shows that using vectorization can offer more benefits, e.g. increased energy
efficiency. However, while SIMD is seeing increased adoption today, [Cebrian, Jahre,
et al. 2014] noticed that SIMD-aware benchmarking tools are not as widely available,
which they argue can cause SIMD designers to under/over estimate the impact of their
contributions. For this reason, they proposed SIMDwarfs, aiming to offer the research
community with a SIMD-aware benchmark suite covering all 13 Berkeley dwarfs.

In this thesis we have contributed to SIMDwarfs by analyzing four retrieved, vector-
ized benchmark implementations from three uncovered dwarfs: nbody from n-body meth-
ods, nqueens from backtrack and branch-and-bound, and NW and SWat from dynamic
programming. All implementations were evaluated using non-vectorized configurations
and configurations utilizing SSE and AVX SIMD extensions. The results indicated that
while vectorization offered improved performance, the hardware used for the evaluations
limited further performance increases. With these implementations added, SIMDwarfs
now cover 10 of 13 dwarfs.

ii

Sammendrag

For å veilede utviklingen av ny maskinvare som møter stadig økende behov, trenger
forskere og systemdesignere høyverdige ytelsesevalueringsverktøy. I datavitenskapen har
benchmarking tr̊add frem som en av de viktigste metodene til dette form̊alet. Flere bench-
marks som sammenlagt evaluerer et system for et bredt spekter av egenskaper i et bestemt
omr̊ade av interesse, blir samlet inn i benchmark-suiter. Hensikten er å øke sjansene for at
innsikt av høy validitet kan utnyttes, dvs. innsikt er av høy nok nøyaktighet til å kunne
brukes p̊a ekte datasystemer. Berkeleys dvergetaksonomi, som er 13 beregningsmønstre i
utbredt bruk innen vitenskap og industri, kan brukes til dette form̊alet.

Fra begynnelsen av det 21. århundre, da konvensjonell instruksjonsniv̊a parallel-
lisme har sluttet å gi ytterligere ytelseøkninger for mikroprosessorer, har industrien vært
p̊a utkikk etter m̊ater å utnytte andre typer parallellisme. En av disse er data-niv̊a paral-
lellisme, funnet i single input multiple data (SIMD) datamaskinorganisasjonen. Forskn-
ing viser at bruk av vektorisering kan tilby flere fordeler, f.eks. økt energieffektivitet.
Imidlertid, mens SIMD ser økt utbredelse i dag, merket [Cebrian, Jahre, et al. 2014]
at SIMD-bevisste benchmarkingverktøy ikke er allment tilgjengelige. Dette hevder de
kan føre til at SIMD-designere under- eller overestimerer virkningen av deres bidrag. Av
denne grunn foreslo de SIMDwarfs, med sikte p̊a å tilby forskningsmiljøet en SIMD-bevisst
benchmark-suite som dekker alle 13 Berkeley-dvergene.

I denne oppgaven har vi bidratt til SIMDwarfs ved å analysere fire funnede, vek-
toriserte benchmarkimplementeringer fra tre udekkede dverger: nbody fra n-body meth-
ods, nqueens fra backtrack and branch-and-bound, og NW og SWat fra dynamic program-
ming. Alle implementeringer ble evaluert ved hjelp av ikke-vektoriserte konfigurasjoner
og konfigurasjoner ved bruk av SSE- og AVX SIMD-utvidelser. Resultatene viste at mens
vektorisering tilbød forbedret ytelse, hindrer maskinvaren som brukes til evalueringene,
ytterligere ytelsesforbedringer. Med disse implementasjonene lagt til, dekker SIMDwarfs
n̊a 10 av 13 dverger.

iii

Preface

This is the outcome of my master thesis in Computer Science at NTNU. It is a continu-
ation of my specialization project that I worked on during fall 2016.

Acknowledgements

I would like to thank my two advisors, Magnus Jahre and Juan Manuel Cebrián González,
for all their valuable insight and helpful suggestions on the theoretical and technical
aspects of both this thesis and the specialization project that led up to it.

iv

Table of contents

Problem Description i

Abstract (English) ii

Abstract (Norwegian) iii

Preface iv

Acknowledgements iv

Table of Contents vi

List of Figures viii

List of Tables ix

List of Listings x

Abbreviations xi

1 Introduction 1
1.1 Motivation . 1
1.2 Dwarf Coverage Table . 3
1.3 Research Tasks . 6
1.4 Contribution . 6
1.5 Thesis Outline . 6

2 Background 8
2.1 SIMD and Vectorization . 8

2.1.1 SIMD advantages and disadvantages 8
2.1.2 Applications of SIMD . 9
2.1.3 Auto-vectorization . 13
2.1.4 SIMD in heterogeneous systems . 13

2.2 Benchmarking . 13
2.2.1 Benchmark Requirements . 14
2.2.2 Suitable Evaluation Characteristics 14

2.3 Other Benchmark Suites . 16
2.3.1 Suites used by SIMDwarfs . 16
2.3.2 Miscellaneous suites . 17

3 Methodology 19
3.1 Profiling . 19
3.2 Wrapper Library . 20
3.3 ParVec Framework . 23
3.4 Benchmark Evaluation . 24

v

3.4.1 Input parameters . 24
3.4.2 Experimental setup . 24
3.4.3 Evaluation data . 24

4 Benchmark Analysis: N-body 27
4.1 Algorithm and Vectorization . 27
4.2 Results and Discussion . 28

4.2.1 Runtime, Cycle and Instruction Count 29
4.2.2 Stalls . 30
4.2.3 Cache Performance . 31

4.3 Potential for Further Performance Improvement 32

5 Benchmark Analysis: N-queens 34
5.1 Algorithm and Vectorization . 35
5.2 Results and Discussion . 36

5.2.1 Runtime, Cycle and Instruction Count 36
5.2.2 Stalls . 38
5.2.3 Cache Performance . 39

5.3 Potential for Further Performance Improvement 40

6 Benchmark Analysis: NW and SWat 41
6.1 Algorithm and Vectorization . 41
6.2 NW: Results and Discussion . 42

6.2.1 Runtime, Cycle and Instruction Count 42
6.2.2 Stalls . 44
6.2.3 Cache Performance . 45

6.3 SWat: Results and Discussion . 45
6.3.1 Runtime, Cycle and Instruction Count 46
6.3.2 Stalls . 47
6.3.3 Cache Performance . 48

6.4 Potential for Further Performance Improvement 49

7 Conclusion and Future Work 50
7.1 Future Work: Towards Complete Coverage 50

7.1.1 Combinational Logic . 50
7.1.2 Graphical Models . 51
7.1.3 Finite State Machines . 51

7.2 The Future of SIMD Extensions . 51

Bibliography 53

Appendices 58

A Figures for Small and Large Inputs 60
1.1 N-body . 60
1.2 N-Queens . 64
1.3 Needleman-Wunsch . 68
1.4 Smith-Waterman . 72

vi

List of Figures

1.1 A comparison of the SIMD and MIMD organizations 1
1.2 Relative Performance Per Cycle . 2
1.3 The Five ’Categories of Vectorization’ . 4
1.4 Chapter Dependencies In This Thesis . 7

2.1 Scalar vs. Vectorized Operations . 9
2.2 Vector Operation Using One Lane and Four Lanes 11
2.3 Comparison of a typical CPU and GPU organization 12
2.4 Arithmetic Intensity . 16

3.1 Verification process of SIMDwarfs benchmarks 19

4.1 2D N-Body Simulation . 27
4.2 N-Body Running Times for Three Input Sizes 29
4.3 N-Body Execution Cycles . 29
4.4 N-Body Top-Down Cycle Breakdown . 29
4.5 N-Body Instructions Per Stage . 29
4.6 N-Body Normalized Stalled Cycles . 31
4.7 N-Body Normalized Stalls Per Stage . 31
4.8 N-Body Dispatch Stalls Breakdown . 31
4.9 N-Body Execution Activity Breakdown 31
4.10 N-Body L1 Accesses . 32
4.11 N-Body L1 Miss Rate . 32
4.12 N-Body L2 and L3 Accesses . 32
4.13 N-Body L2 and L3 Miss Rates . 32

5.1 8-Queens Solution . 34
5.2 Computation Tree After Partial Breadth-First Search 36
5.3 N-Queens Running Times for Three Input Sizes 37
5.4 N-Queens Execution Cycles . 37
5.5 N-Queens Top-Down Cycle Breakdown . 37
5.6 N-Queens Instructions Per Stage . 37
5.7 N-Queens Normalized Stalled Cycles . 38
5.8 N-Queens Normalized Stalls Per Stage . 38
5.9 N-Queens Dispatch Stalls Breakdown . 38
5.10 N-Queens Execution Activity Breakdown 38
5.11 N-Queens L1 Accesses . 39
5.12 N-Queens L1 Miss Rate . 39
5.13 N-Queens L2 and L3 Accesses . 39
5.14 N-Queens L2 and L3 Miss Rates . 39

6.1 Sequence Alignment . 41
6.2 NW Running Times for Three Inputs . 43

vii

6.3 NW Execution Cycles . 43
6.4 NW Top-Down Cycle Breakdown . 43
6.5 NW Instructions Per Stage . 43
6.6 NW Normalized Stalled Cycles . 44
6.7 NW Normalized Stalls Per Stage . 44
6.8 NW Dispatch Stalls Breakdown . 44
6.9 NW Execution Activity Breakdown . 44
6.10 NW L1 Accesses . 45
6.11 NW L1 Miss Rate . 45
6.12 NW L2 and L3 Accesses . 45
6.13 NW L2 and L3 Miss Rates . 45
6.14 SWat Running Times for Three Inputs . 46
6.15 SWat Execution Cycles . 46
6.16 SWat Top-Down Cycle Breakdown . 46
6.17 SWat Instructions Per Stage . 46
6.18 SWat Normalized Stalled Cycles . 47
6.19 SWat Normalized Stalls Per Stage . 47
6.20 SWat Dispatch Stalls Breakdown . 47
6.21 SWat Execution Activity Breakdown . 47
6.22 SWat L1 Accesses . 48
6.23 SWat L1 Miss Rate . 48
6.24 SWat L2 and L3 Accesses . 48
6.25 SWat L2 and L3 Miss Rates . 48

viii

List of Tables

1.1 Berkeley Dwarfs Table . 5

2.1 Other Benchmark Suites’ Dwarf Coverage 18

3.1 Input Parameters For the Evaluated Benchmarks 24

4.1 Runtime for Original and Improved Nbody Application 28

5.1 N-Queens Solutions up to N=22 . 34

ix

List of Listings

1 Code Using Intel’s AVX Intrinsics . 21
2 ParVec Wrapper Library Contents . 22
3 Code Using the ParVec Wrapper Library 22
4 Using the Parsecmgmt Script . 23

x

Abbreviations

API Application Programming Interface. A set of methods enabling communication
between software components.

AVX Advanced Vector eXtensions. 256-bit vector extensions for the x86 architecture.
CPU Central Processing Unit. The main processor in a traditional microprocessor.
DLP Data-Level Parallelism. Parallelism achieved by performing the same operation

on independent data.
GCC GNU Compiler Collection.

GPGPU General-Purpose Graphics Processing Unit. Running conventional microproces-
sor applications on a GPU.

GPU Graphics Processing Unit. An external or integrated processor specialized for
graphics operations.

HPC High-Performance Computing. Performing advanced computations efficiently,
reliably and quickly.

ICC Intel C++ Compiler.
ILP Instruction-Level Parallelism. Parallelism achieved by performing multiple in-

structions independently.
ISA Instruction Set Architecture. The set of instructions for a certain computer

architecture.
KNL Knights Landing. Code name for Intel’s second generation Xeon Phi products.

MIMD Multiple Input Multiple Data. Computer organization used in a typical multi-
processor.

MMX MultiMedia eXtensions. 64-bit vector extensions for the x86 architecture.
MIC Many Integrated Core. Architecture from Intel aimed at supercomputing.
MVL Maximum Vector Length.
NW Needleman-Wunsch. Algorithm for global sequence alignment.

ROB Re-Order buffer. Helps perform out-of-order execution.
RS Reservation Station. Enables fast access to newly computed data values.
SB Store buffer. Allows the processor to speculate on store operations.

SCL Scalar.
SIMD Single Input Multiple Data. Computer organization used for GPUs and vector

processors.
SSE Streaming SIMD Extensions. 128-bit vector extensions for the x86 architecture.
SVE Scalable Vector Extension. Novel SIMD extensions technology from ARM for

their architectures.
SWAR SIMD Within A Register. Packing processor words with multiple data values

that can be operated on in parallel.
SWat Smith-Waterman. Algorithm for local sequence alignment.
UOP Micro-Operation. Detailed, low-level instruction derived from the processors

input, the macro-operation.

xi

xii

Chapter 1: Introduction

1.1 Motivation

Flynn’s taxonomy [Flynn 1972] defines four types of computer organizations based on
their utilization of streams, i.e. instruction or data sequences that are operated on by
the processor. The four organizations are single input single data (SISD), single input
multiple data (SIMD), multiple input, single data (MISD) and multiple input multiple
data (MIMD). Time has rendered both the SISD (uniprocessor) and MISD organizations
obsolete, in favor of the more efficient, parallel organizations of SIMD and MIMD. An
illustration of the workings of these two is shown in Figure 1.1. SIMD exploits data-level
parallelism (DLP), defined by [David A. Patterson et al. 2014, sec. 6.3] as parallelism
achieved by performing the same operation on independent data. MIMD has the ability
to perform multiple, independent operations on separate data.

Figure 1.1: A comparison of the SIMD and MIMD organizations

From the 1970’s until the early 1990’s, SIMD was widely deployed in supercomputers
[Stringer 2016]. Various factors, including the rapid performance increase of commodity
microprocessors in the 1980’s, coupled with the advent of massive parallelism and dis-
tributed memory, high energy demands of large supercomputers, as well as lower prices,
contributed to a shift in the industry from SIMD, using a few, powerful processors, to
MIMD, using a higher number of less powerful processors that overall achieved higher
performance [National Research Council and others 2005]. This move is still visible to-

1

CHAPTER 1. INTRODUCTION

Figure 1.2: Combined CPU Benchmark Results and Clock Frequencies of
Intel Hardware. Source: [Stallings 2013, sec. 18.1]

day, with MIMD being found in most conventional general purpose microprocessors. In
addition, [David A. Patterson et al. 2014] suggest that techniques such as instruction-level
parallelism (ILP), which has helped deliver steady performance increases, has tradition-
ally disinterested the industry outside of high-performance computing (HPC) to explore
other computer organizations.

However, starting from the 2000’s, using only ILP has not been able to further
increase microprocessor performance. This is shown in Figure 1.2 which graphs the extent
to which performance improvement is due to increased exploitation of ILP. Furthermore,
Dennard scaling, which state that MOSFET power usage scale downward as we shrink
the area, was discredited around 2006 due to current leakage and excess heat buildup
severely limiting chip utilization [Esmaeilzadeh et al. 2011]. This has caused the industry
to favor energy efficiency in contrast to performance for microprocessors, and an increasing
number of system architects are starting to embrace SIMD because, as [Cebrian, Jahre,
et al. 2014] explain, SIMD capabilities are a key component to maximize performance per
watt in highly computational intensive applications.

The increased interest in SIMD products and technologies, such as graphics pro-
cessing units (GPUs), have driven a rapid performance increase that now makes certain
SIMD-type processors able to significantly outperform general purpose processors for some
tasks [Lee et al. 2010]. This has also led to new developments in existing technologies
that enable (limited) SIMD processing on MIMD-type microprocessors, new application
programming interfaces (APIs) for GPUs that make them able to perform general pur-
pose computations (GPGPUs), as well as the emergence of heterogeneous systems that
try to combine the benefits or SIMD and MIMD, e.g Intel’s Xeon Phi products.

One of the most important methods for performance evaluation of computing systems
is benchmarking. A benchmark is a program chosen to measure performance and resource
utilization in specific area of interest, and can provide insight that can be leveraged
by scientists to aid the design of new and improved systems [Bienia 2011]. Multiple

2

CHAPTER 1. INTRODUCTION

benchmarks are compiled into benchmark suites to evaluate various characteristics and
behaviors of a system. However, despite the rising popularity of SIMD, fully SIMD-
enabled benchmarking tools have been mysteriously absent. [Cebrian, Jahre, et al. 2014]
argue that SIMD applications exhibit different behavior than what can be leveraged from
existing benchmarking tools, making it hard for the computer architecture community to
propose novel techniques. For this reason, they developed the ParVec benchmark suite
[Cebrian, Jahre, et al. 2015] by extending a subset of the benchmarks from the PARSEC
benchmark suite [PARSEC n.d.] with SIMD capabilities.

Wishing to guide the development of hardware, software, and programming models
that efficiently utilize parallelism, a group of computer scientists at Berkeley identified 13
computational patterns, called dwarfs, especially important within the fields of science and
engineering [Asanovic et al. 2006]. This is a great foundation for a benchmark suite: by
covering all dwarfs in this taxonomy, i.e. having at least 13 benchmarks each exhibiting a
separate computational pattern, our benchmarking data offers a greater chance to provide
us with insight of high validity. That is, the data provides a level of accuracy high enough
to be applied to the real world.

Since ParVec does not provide complete coverage of the Berkeley dwarfs, Cebrian
et al. decided to initiate the SIMDwarfs project1 with the following goal: provide the
research community with a set of SIMD-enabled applications and kernels that cover all
13 Berkeley Dwarfs. Previously, we have contributed to SIMDwarfs by performing a
literature survey of benchmarks covered by the missing dwarfs. The subsequent sections
of this chapter summarize what work was done previously, and how we continued the
work over the course of this thesis. More information on SIMD, benchmarking and the
Berkeley dwarfs can be found in Chapter 2.

1.2 Dwarf Coverage Table

Leading up to this thesis, we carried out a specialization project [De Frène 2016] whose
aim was to survey benchmarks covered by dwarfs that we did not have any vectorized
benchmark implementations for. The selected benchmarks originated from other, well-
known benchmark suites that only partly cover all 13 dwarfs, further discussed in Sec-
tion 2.3. One of the outcomes of this project was a table that presents each dwarf and
what benchmarks are covered by it. Each analyzed benchmark was assigned a ’category
of vectorization’, ranging from 1 to 5. This number was based on what efforts had been
made by others regarding vectorized implementations and literature, thus illustrating the
perceived ease or difficulty of adding this benchmark to SIMDwarfs. The analysis focused
only on vectorization, and not other types of parallelism that may be present.

A revised version of the table can be found in Table 1.1. Specifically, two revisions
have been made: (1) we have included some new benchmarks, and (2) we have updated
the categories of some existing ones. The first revision is based on discovering that
new benchmarks had been added to the benchmark suites that inspired SIMDwarfs. We
decided to include them in the table, but have not assigned them a category since we
have not surveyed them yet. The second revision is based on upgrading the benchmarks
that was analyzed in this thesis, and downgrading some benchmarks that was incorrectly
considered implemented. These revisions have been marked in the table with a ? and a
†, respectively, with a → showing if the change resulted in an adjustment of the highest

1no documents available yet

3

CHAPTER 1. INTRODUCTION

• Category 1: No software has been found

• Category 2: Software exists, including original implementation,
but without any vectorization

• Category 3: Vectorized software exists using manual, automatic
or user-directed* vectorization

• Category 4: Vectorized software exists, and uses a wrapper
library for vectorization

• Category 5: Vectorized implementation added to SIMDwarfs

* using tools such as OpenMP and Cilk Plus

Figure 1.3: The Five ’Categories of Vectorization’

category for one of the dwarfs. We have also rephrased the wording of category 3 to
better reflect the multiple ways vectorization can be found in a program. The updated
’categories of vectorization’ can be found in Figure 1.3.

4

CHAPTER 1. INTRODUCTION

Table 1.1: The Berkeley Dwarfs and the benchmarks envisioned for
SIMDwarfs. Categories have been updated for some benchmarks based on

the new information obtained from this thesis.

Dwarf Description Category Benchmarks

Dense Linear Algebra Classic vector and matrix opera-
tions where data is stored in array
format

5 LU Decomposition, Kmeans, BlackScholes,
Dense Matrix Multiplication, Streamcluster,
Reduction⊕, x264⊕

3 Vector Operation†
2 Bodytrack†, Strassen†, K-Nearest Neighbors†,

Facesim†⊕, Ferret⊕
Gaussian Elimination?

Sparse Linear Algebra Operations on matrices where
most elements are zero

5 Fluidanimate⊕

3 SPMV†
2 Facesim†⊕

Spectral Methods Data operations in the spectral
(frequency) domain

5 Fluidanimate⊕, FFT

GPUDWT?

N-Body Methods Calculations that depend on in-
teractions between (multiple) dis-
crete points

3 → 5 N-Body†

2 LavaMD, GEM

Structured Grids Operations on regular, multidi-
mensional grids

5 Leukocyte, Heart Wall, HotSpot, SRAD1, SRAD2,
Particle Filter, Vips, 2D Convolution

2 Myocyte†, 3D Stencil†
Hotspot3D?

Unstructured Grids Modelling objects with irregular
geometric definitions

5 Histogram, Canneal

4 Back Propagation

2 CFD Solver

1 Unstructured 3D Stencil†
MapReduce (previously Monte
Carlo)

Repeated, independent executions
of a function, aggregating results
at the end

5 Swaptions, Raytrace, Histogram, Reduction⊕

AMCD?

Combinational Logic Operations exploiting bit-level
parallelism to achieve high
throughput

5 → 3 CRC†

Graph Traversal Traversing objects and examining
characteristics

5 BFS, B+Tree, Merge Sort

3 Quick Sort†
2 Freqmine⊕
1 Fibonacci†

MUMmerGPU?, Hybrid Sort?

Dynamic Programming Computing solutions by solving
sub-problems

3 → 5 NW†, Swat†

2 Pathfinder

Backtrack and Branch-and-
Bound

Dividing the search space into
regions and then discarding un-
suited ones

3 → 5 NQueens†

2 Astar

Graphical Models Graph data operations, where
nodes are variables and edges are
conditional probabilities

3 HMM

Finite State Machines Operations on an interconnected
set of states

3 x264⊕, Dedup

2 Freqmine⊕, Ferret⊕, TDM

Huffman?

⊕ Benchmark with different phases, covering multiple dwarfs

† Benchmark that changed category compared to previous table version

? Benchmark newly added and not surveyed

5

CHAPTER 1. INTRODUCTION

1.3 Research Tasks

The aim of this thesis is to perform analysis of the vectorized benchmark implementations
we found during the survey, and then add them to SIMDwarfs. We have formulated the
following tasks in order to carry this out:

Select one retrieved benchmark implementation from the uncov-
ered dwarfs.

T1 (Mandatory) Detail how vectorization is applied

T2 (Mandatory) Determine benchmark performance and scalability

T3 (Mandatory) Identify potential architectural bottlenecks
T3.1 (Optional) Detail strategies to reduce the impact of the identified bottleneck
T3.2 (Optional) Improve the implementation based on the mitigation strategy
T3.3 (Optional) Determine improved benchmark performance and vector scalability

T4 (Mandatory) Upload analyzed benchmark to the SIMDwarfs github repository

Repeat as long as we have time left.

From the specialization project, we have previously selected the nbody benchmark from
the N-body methods dwarf, and performed a performance and scalability evaluation. We
noticed a possible bottleneck, and laid out a mitigation strategy involving approximating
a calculation (more on this in Chapter 4). Following the tasks in this thesis, we have thus
completed T2, T3 and T3.1, and are ready to perform T1 and then proceed on to T3.2
and T3.3.

1.4 Contribution

The main contribution of this thesis is adding vectorized implementations covering three
previously uncovered dwarfs to SIMDwarfs: n-body methods, backtrack and branch-and-
bound, and dynamic programming. Four implementations, nbody, nqueens, NW and SWat

have been analyzed for performance and scalability for three configurations: without
vectorization, and vectorized using the SSE and AVX SIMD extensions. nbody has also
been improved by approximating a high-latency operation. The implementations were
ported to the ParVec wrapper library and stored in the SIMDwarfs github repository,
which means the code will be reusable for any new ISA that is added to the wrapper in
the future.

1.5 Thesis Outline

Chapter 1 introduces the motivation behind this thesis, the need for SIMD-aware bench-
marking tools. It also presents work we did on this topic previously, as well as defining
research tasks and contributions of this thesis.
Chapter 2 goes in depth on SIMD and vectorization, benchmarking and what charac-
teristics to evaluate for, as well as presenting other benchmarking suites that inspired
SIMDwarfs.

6

CHAPTER 1. INTRODUCTION

Chapter 3 presents the process we have followed in order to evaluate the benchmarks,
what hardware and software was used, and what data we obtained.
Chapter 4, 5 and 6 introduces each benchmark that was evaluated, outlines how vec-
torization is applied, and discusses the results from the evaluation.
Chapter 7 concludes this thesis, presents what efforts remain in order for SIMDwarfs to
achieve full dwarf coverage, and presents some emerging SIMD technologies.

Figure 1.4: Chapter dependencies in this thesis. Chapter 1, 2 and 7 can be
read without much knowledge of other chapters. Chapter 3 presents the
data that is discussed in the following chapters, and Chapter 4 includes
some graph axis details that have not been repeated in chapter 5 and 6.

7

Chapter 2: Background

This chapter presents the underlying material the work in this thesis is based on. We start
by explaining the features of SIMD and vectorization, and their impact. Then we detail
requirements for computer benchmarking in order to help system designers in their work.
Moving on, we discuss what types of general characteristics are important to evaluate
for, such as the Berkeley dwarfs, and then present some SIMD-specific characteristics.
Finally, we present some alternative, but lacking, benchmark suites that have been used
as an inspiration for SIMDwarfs.

2.1 SIMD and Vectorization

Efficient exploitation of DLP relies on the data streams being identically structured. One
solution is structuring data inside similarly sized vectors, exposing DLP and allowing us
to operate on multiple data elements simultaneously. This idea is illustrated in Figure 2.1.
In a scalar architecture, used in a conventional uniprocessor, one computation outputs
one processed data element. While there are multiple ways to increase the throughput
rate, this operational pattern stays the same. By exploiting DLP using vectorization, a
suitable processing element is able to perform the same computation on N individual data
elements inside the vector at the same time, also called the vector length or SIMD width.
We will detail various hardware that supports vector processing later on.

[David A. Patterson et al. 2014] corroborate that SIMD works best when the code
contains arrays in for loops. Using a for loop that operates on multiple arrays allows us
to unroll the loop and specify operations for each individual array. Thus, given that the
arrays contain identically structured data without data dependencies, exploiting DLP can
be done effectively. However, there are several factors that can limit SIMD performance.
Patterson et al. proceed to state that SIMD is weakest when the code contains case or
switch statements where different operations must be performed. They explain that this
can cause some execution units to end up containing wrong data, meaning they must
be disabled in order for the units with proper data to continue. [Smith et al. 2000]
argue that for higher degrees of vectorization, you should vectorize the loops containing
these conditional operations, and suggest that performing operations under a mask can
help alleviate this issue. Other factors, such as data structure conversions and using
slow, horizontal operations (operations on data elements inside the same vector) can also
negatively impact the SIMD efficiency.

2.1.1 SIMD advantages and disadvantages

Research shows that SIMD offers multiple advantages. From Figure 2.1 we observe that
while both computations require one add operation, the vectorized computation has a
throughput rate equal to its SIMD width, compared to the scalar computation’s through-
put rate of 1. This is a substantial advantage of SIMD, as a lower instruction count
reduces both cache and pipeline pressure compared to scalar operations [Cebrian, Jahre,
et al. 2014].

Moreover, SIMD can offer higher energy efficiency than scalar architectures when

8

CHAPTER 2. BACKGROUND

Figure 2.1: Scalar vs. vectorized operations. Source: [Pozzi et al. 2012]

DLP is present. [David A. Patterson et al. 2014, sec. 6.3] mention three characteristics
of using vectors that can help save energy: (1) a reduced instruction count means fewer
fetch and decode operations, (2) the cost of the latency to main memory is reduced
due to fetching whole vectors at a time, and (3) it requires less data hazard checks,
since checks are performed for whole vectors and not for each individual data element.
[Cebrian, Natvig, et al. 2012] show that applications running on Intel processors dissipate
roughly the same average power independently of how many bits were used from the SIMD
registers, meaning that there exists an energy saving potential. Furthermore, estimates
by [Hennessy et al. 2012, sec. 4.1], assuming an expected biyearly increase of two cores
per chip and a doubling of SIMD width every four years, show that towards 2023 the
potential speedup from SIMD parallelism is twice that of MIMD parallelism. Based on
these results, they argue that SIMD parallelism is at least as important to understand as
MIMD parallelism.

Lastly, [Pozzi et al. 2012] state that programming in SIMD allows software developers
to achieve parallelism while still thinking sequentially, something that is harder to do
when programming in MIMD. This can speed up development times since non-sequential
programming requires programmers to adopt a different mindset, which can often be
time-consuming.

However, there are some prominent limitations to SIMD. Firstly, it can be arduous
to exploit DLP in some algorithms, meaning that SIMD would not be beneficial here.
Due to the large amounts of data processed, memory bandwidth needs to be increased,
which can lead to greater chip power dissipation when underutilized. There also exists
some low-level optimization challenges, e.g. relating to data alignment, that needs to be
rectified by hardware manufacturers.

2.1.2 Applications of SIMD

Three applications of SIMD have traditionally had the most impact, as covered by [Hen-
nessy et al. 2012]: vector architectures using large vectors that could be operated on in

9

CHAPTER 2. BACKGROUND

a non-contiguous fashion, SIMD extensions enabling selected vector operations on short,
special vector registers, and GPUs which are mainly used as accelerators for graphics
intensive applications.

Vector architectures

Vector architectures is an early example of SIMD utilization, and quickly became the
cornerstone of supercomputing [National Research Council and others 2005]. The first
machines supporting a vector architecture started appearing in 1972. This design pri-
marily consists of vector registers, memory that holds the vectors, and fully pipelined
vector functional units to process them. Vectors are fixed to a certain size, called the
maximum vector length (MVL), but a vector register can hold multiple vectors [Pozzi
et al. 2012]. Other critical components are registers for scalar values and a combined
scalar/vector load/store unit that could operate non-contiguously, meaning that strided
accesses were possible. One of the most well-known machines using a vector architec-
ture is the Cray-1 supercomputer from 1975, consisting of eight 4096-bit vector registers
and eight 64-bit scalar registers. This computer delivered large amounts of computing
power at a price competitive with the most economical computing systems of the day,
costing approximately the same as an Apple II [National Research Council and others
2005].

However, the large data processing requirements caused machines with vector archi-
tectures to feature large containers to store the memory banks in near vicinity to a few,
but powerful, custom made vector processors. This ultimately led to the architecture’s
downfall. Starting from the 1980’s, an influx of cheap and increasingly powerful single-chip
microprocessors started to influence the market. This same period also saw improvements
to massive parallelism technologies, meaning that it became possible to combine the pro-
cessing capabilities of thousands of commodity microprocessors that were much easier to
scale and both cheaper to buy and operate compared to vector machines. These multi-
issue configurations was able to exploit ILP as a substitute for DLP [Koopman 1998],
resulting in substantial performance increases. [David A. Patterson et al. 2014] explain
that it therefore generally has been few reasons to face the risks of embracing another
architecture style such as SIMD.

SIMD extensions

A more complex approach to SIMD that nonetheless has proved more popular is SIMD
within a register (SWAR), found in the SIMD extensions included on many modern
processors. Also called subword parallelism, this technique consists of modifying the CPU
to perform select, optimized SIMD operations on relatively short, fixed-sized registers.
This is done by a vector unit found inside the processor, exploiting the fact that the
processor word size is large enough include multiple data elements that can be processed
simultaneously. Support for this unit is added as extensions to the instruction set, which
decides what operations are possible. The more prominent utilizations today are the
MMX, SSE and AVX extensions developed by Intel for the x86 architecture, and the
advanced SIMD extensions (NEON) developed by ARM for their products. Originally
called multimedia extensions, these extensions started being included in microprocessors
in the late 1990’s as a way to increase graphics processing capabilities before external or
integrated GPUs became commonplace.

SWAR is more intricate, and offer less flexibility than a vector architecture: data

10

CHAPTER 2. BACKGROUND

Figure 2.2: Computing the Vector Operation A+B=C Using One Lane
(Left) and Four Lanes (Right). Source: [David A. Patterson et al. 2014,

sec. 6.3]

usually need to be loaded as contiguous, whole registers at a time, and there are also fewer
operations available. Furthermore, each SWAR opcode need to strictly specify both data
type, number of data operands and vector operation, in contrast to vector architectures
which had one vector instruction and vector registers that configured automatically based
on the data types loaded into it. In the recent years, SWAR developers have tried to
incorporate some of these features by adding new operations supporting multiple data
type and SIMD width configurations.

Despite the increased complexity compared to operating on a vector architecture,
SIMD extensions have become popular in the industry. [Hennessy et al. 2012, sec. 4.3]
cite five reasons why, including low cost of implementation and small memory bandwidth
requirements in contrast to vector architectures. This interest have caused both register
size and quantity to steadily increase each time a new technology has been brought to
market: MMX (1997) uses eight 64-bit registers, SSE (1999) utilizes 8 128-bit registers,
AVX (2011) can make use of 16 256-bit registers, and the newest AVX-512 (2016) supports
up to 32 512-bit registers. Utilizing all registers in the latter two requires a 64-bit system;
32-bit systems support a maximum of 8 registers, regardless of configuration. The latest
update to NEON (2015) adds support for 32 128-bit registers, up from 32 64-bit registers
previously (2009). [Hennessy et al. 2012, sec. 4.1] state that for computers using the
x86 architecture, they expect the register sizes to double every four years. According
to [Cebrian, Jahre, et al. 2014], there is a potential for overall speedup directly caused
by increasing the SIMD width, known as VL-time performance. Other improvements
include the incorporation of multiple pipelined vector functional units, also called vector
lanes. This concept can be seen in Figure 2.2: by structuring the vectors horizontally, in
contrast to vertically, we can compute multiple data elements simultaneously, reducing
execution time as well as load/store operations. However, as [Hennessy et al. 2012, sec.
4.1] explain: programmers must be sure to align all the data in memory to the width
of the lanes on which the code is run to prevent the compiler from generating scalar

11

CHAPTER 2. BACKGROUND

Figure 2.3: Comparison of a typical CPU and GPU organization. Source:
[CPU/GPU architecture comparison n.d.]

instructions for otherwise vectorizable code.

GPUs

A prominent application of SIMD in the recent years is GPUs. Driven by the big rise
in graphical intensive programs such as video games, this product has emerged separate
from microprocessor developments and has been motivated by different goals. Today, com-
modity GPUs are mainly used as accelerators for offloading graphics processing from the
CPU. For this reason, most CPUs are designed to be general purpose, while most GPUs
are designed to be specialized. GPUs have a focus on throughput rather than latency,
manifested in the form of increased computational and memory bandwidth, and favors
multithreading rather than employing a multilevel cache hierarchy [David A. Patterson
et al. 2014, sec. 6.6]. The result is a processor with better multithreading capabilities
across a higher number of processors than what is found in a traditional MIMD CPUs,
as shown in Figure 2.3. In a way, GPUs resemble vector processors. Every processor core
employ multiple, parallel functional units that process SIMD instructions simultaneously,
called SIMD lanes, and structure the data in vectors, though other terms are used, e.g.
warps on Nvidia products. In addition, they employ multithreading which can comple-
ment SIMD: multithreading allows parallelizing work over multiple cores, while SIMD
allows parallelizing work within a single core [Microsoft n.d.].

Evaluations show that GPUs significantly outperform CPUs for certain tasks. [Lee
et al. 2010] investigated claims that this GPU speedup could reach over 100 times that
of the CPU by running 14 kernels on an Nvidia GTX280 GPU and an Intel Core i7
960 CPU. They found that the GPU had a modest, average performance advantage of
2.5x, and suggests that using differing hardware and software, e.g. a mobile CPU with un-
optimized code vs. a high-performance GPU with optimized code, can contribute to these
abnormally large speedups. Regardless, they argue that software optimizations on the
respective platforms are critical to fully utilize compute and bandwidth resources for both
CPUs and GPUs, and state that in the absence of such optimizations, CPU implementa-
tions are sub-optimal in performance and can be orders of magnitude off their attainable

12

CHAPTER 2. BACKGROUND

performance. By using careful multithreading, reorganizing memory access patterns, and
applying SIMD optimizations, they found the performance on both CPUs and GPUs is
mainly limited by memory bandwidth. Being more bandwidth-focused than CPUs, GPUs
have started being employed in the industry for performance purposes.

2.1.3 Auto-vectorization

An active research topic in modern compilers is auto-vectorization. As the vectorization
capabilities of compilers have advanced, tools that aim to insert vector instructions where
it seems practical have emerged. However, while writing manual vector code is a time
consuming and error-prone task, auto-vectorization technologies found in modern com-
pilers are not yet able to match the level of vectorization provided. [Maleki et al. 2011]
showed this by analyzing the auto-vectorization abilities of the GCC, ICC, and XLC
compilers on both synthetic and real applications, and show that 45-71% of the synthetic
loops, and only 13-18% of the real application loops were automatically vectorized. It
was also found that manual vectorization provided a mean speedup of 2.1x compared to
auto-vectorization. In this thesis we have used applications that have been vectorized
manually, as this allows us to have better control of which operation are used where, and
ensures that SIMD performance is independent of your choice of compiler. Thus, we will
not focus further on the aspect of auto-vectorization.

2.1.4 SIMD in heterogeneous systems

A system utilizing components that specialize on certain tasks is known as a hetereoge-
neous system. Lately, new heterogeneous systems for high performance computing have
appeared that try to incorporate SIMD. One example of these products is general purpose
GPUs (GP-GPUs), that use special APIs, e.g. OpenCL and CUDA, to program GPUs
to perform computations traditionally done by the CPU.

Another novel heterogeneous technology is Intel’ Xeon Phi products for high per-
formance computing. At the center of the system architecture, called many integrated
core (MIC), is a Xeon Phi co-processor. This enables manycore processing, a new class
of multiprocessing that aim to offer higher degrees of parallelism than what was previ-
ously possible. The latest generation of Xeon Phi, codenamed Knights Landing (KNL),
released in 2016, consists of 72 cores each containing two 512-bit vector units, and is the
first product that support AVX-512 SIMD extensions. Intel state that it is capable of
handling a wider variety of tasks than traditional accelerators such as GPUs, as well as
computing them faster [Intel n.d.(a)].

[Hennessy et al. 2012, sec. 4.1] estimate that combined MIMD and SIMD will yield
the highest parallel speedup in 2023, at more than one order of magnitude higher than
what individual SIMD and MIMD is able to achieve.

2.2 Benchmarking

To design better systems that meet ever increasing needs, system designers and computer
scientists use benchmarking, which has become the standard method of performing ex-
periments in computer science [Bienia 2011]. The benchmark results then are studied in
detail to uncover generalized insights that can then be applied to real computer systems.
A benchmark can take many forms, although [Hennessy et al. 2012, sec. 1.8] argue that

13

CHAPTER 2. BACKGROUND

only real-world applications can deliver results of high validity. Other variations, such as
kernels (small, key pieces of real applications), toy programs and synthetic benchmarks
(applications made to simulate the behavior of a real-world program) are all discredited
by researchers, as they make it easy to optimize the hardware and software for these
specific operations and thus gain an unfairly high score.

2.2.1 Benchmark Requirements

[Weicker 1990] define four requirements of a good benchmark: (1) it is written in a high-
level language for portability, (2) it is representative for some kind of programming style,
(3) it can be measured easily, and (4) it has wide distribution. Hennessy et al. explain how
using compiler flags and source code modifications could be misused, and why they should
be considered carefully. They also argue how a guiding principle of reporting performance
measurements should be reproducibility, i.e. how other researchers can duplicate the
results.

It is critical that the selected benchmarks cover a wide range of software applications,
or workloads, with various behaviors as to ensure that the uncovered insights have high
validity. For this reason, benchmarks of interest are compiled into benchmark suites. [Bi-
enia 2011] define five requirements that should be satisfied in a multithreaded benchmark
suite. The first requirement is that the applications should be parallelized, proving that
you need to tailor your benchmark suite to an area of interest. The rest are general rules
that can be applied to all benchmark suites in general: (2) it should utilize new types of
applications that have emerged because of faster hardware, (3) it should contain diverse
applications running on a variety of platforms and with different usage models, (4) it
should apply state-of-the-art algorithms, and (5) it should be used by researchers.

2.2.2 Suitable Evaluation Characteristics

Fully SIMD-aware benchmarking tools have not yet seen wide adoption. By continuing
to use benchmarks that provide sub-optimal data and fail to adapt to changes in the
industry, system designers can end up doing themselves a disservice. [Cebrian, Jahre, et
al. 2014] argue that if benchmarks do not cover the most common architectural features,
architects may end up under/over estimating the impact of their contributions. While
one issue of designing a SIMD-aware benchmarking tool is that the benchmarks support
SIMD, the real challenge lies in determining what features, i.e. characteristics, to evaluate
for.

System-specific characteristics

[Rabaey et al. 2008] present the problems caused by developing new hardware and software
based on extrapolations of existing applications and old data. They argue by doing so, the
application community might miscalculate or misinterpret the capabilities of the hardware
and software platforms of the future and be lured into dead-ends. A better solution might
be formulating new benchmarks that better reflect emerging workloads. Four emergent
application areas are presented, as an attempt to fuel development of these ’workloads of
the future.’ The areas are (1) high-performance computing tasks in scientific fields such as
climate research and particle physics, (2) societal IT systems, e.g. relating to automotive
or avionic safety and traffic-flow management, (3) personalized, low latency feedback by

14

CHAPTER 2. BACKGROUND

societal IT systems and (4) perceptual processing, e.g. voice and virtual reality interfaces
that feel natural to the user.

[Dubey 2005] present the Intel Recognition, Mining, Synthesis (RMS) classification, a
set of three fundamental processing capabilities Intel deemed necessary for their tera-scale
computing platform. The classifications describe how computing systems should recognize
mathematical models in data sets using machine learning, mine the data model in order
to extract the relevant data, and then synthesize the mined data to draw conclusions
that necessarily cannot be found in the model. This classification formed the basis of the
PARSEC benchmark suite, which ParVec is a variation of.

A more thorough work on this subject, which was used as the basis of SIMDwarfs,
is the Berkeley dwarfs taxonomy. This research stretches back to 2004, when [Colella
2004] defined the seven dwarfs of high-performance computing, which were numerical
methods important for science and engineering. A dwarf was defined as a an algorithmic
method that captures a pattern of computation and communication, specified at a high
level of abstraction to so that it can cover a broad range of applications as possible.
[Asanovic et al. 2006] based themselves on this taxonomy, and added six more dwarfs
by studying three emerging application domains: machine learning, database software,
and computer graphics and games. They state that the point of this project is not to
identify the low hanging fruit that are highly parallel, but to identify the kernels that
are the core computation and communication for important applications in the upcoming
decade, independent of the amount of parallelism. The outcome was 13 dwarfs that they
hope will guide the development of hardware, software, and programming models that
efficiently utilize parallelism. Section 2.3 detail other benchmark suites, in addition to
SIMDwarfs, that include benchmarks covering some of the dwarfs.

Application-specific characteristics

[S. Williams et al. 2009] define the roofline model, a visual tool to compares floating-point
and memory performance, and arithmetic/operational intensity (AI). The AI specifies the
ratio of floating-point operations per byte of memory accessed, as shown in Figure 2.4. A
few example kernels are mapped out on this scale, showing for which of them the intensity
scales with problem size (right), and for which the intensity is independent of problem
size (left). We recognize many of these kernels as Berkeley dwarfs or as benchmarks
considered for SIMDwarfs. This tool can be used to determine which of them are most
computationally expensive, which in turn can be used to determine their suitability in a
benchmark suite. The roofline model can be used to determine if benchmark performance
is compute-bound, meaning that processor efficiency will need to be improved in order to
increase performance, or memory-bound, meaning that the memory subsystem will need
to be improved.

[Blem et al. 2011] argue that to sustain the increasing performance developments
in GPU processing, architects must continue to address the performance of challenging
workloads, instead of using benchmarks that perform well on GPUs. They contribute
to this mission by providing and evaluating a list of ’challenge benchmarks’ that strain
the hardware, and map the key performance limitations. The benchmarks come from
existing benchmark suites such as GPGPU-Sim, Rodinia and PARSEC. Benchmarks such
as N-queens and Needleman-Wunsch, which have been analyzed in this thesis, as well as
benchmarks considered for SIMDwarfs, was deemed sufficiently challenging for GPUs.
The authors expect that these results apply to other many-core technologies and vector
extensions like Intel’s AVX.

15

CHAPTER 2. BACKGROUND

Figure 2.4: Roofline model, arithmetic intensity. Source: [Hennessy
et al. 2012, sec. 4.3]

2.3 Other Benchmark Suites

In order to select benchmarks for SIMDwarfs that are covered by one or more Berkeley
dwarfs, we have drawn inspiration from other, widely adopted benchmark suites. This
section focus on four suites, which have supplied the largest amount of potential bench-
marks for SIMDwarfs. While all incorporates the dwarf taxonomy to some extent, no one
benchmark suite covers all 13 dwarfs. There are also minimal to non-existent SIMD sup-
port, meaning the suites all are far from fully SIMD-aware. This section briefly explains
their primary purpose and the number of dwarfs covered, with Table 2.1 showing which
suites cover which dwarfs. Finally, we mention some miscellaneous suites that have also
been considered.

2.3.1 Suites used by SIMDwarfs

The Princeton Application Repository for Shared-Memory Computers (PARSEC) bench-
mark suite [PARSEC n.d.] was released in 2007 in response to the emergence of chip
multiprocessors. It was developed as a joint effort between researchers at Princeton and
at Intel. The latest version contains 13 parallelized implementations written in C/C++
(10 applications and 3 kernels) covering 8 dwarfs, and has been designed according to the
five requirements for benchmark suites defined by [Bienia 2011] in Section 2.2.

[Rodinia n.d.] is intended as a benchmarking tool for heterogeneous systems, aiming
to provide insight on accelerators, which no benchmark suite had done before. Released
in 2010, it contains benchmarks designed with OpenMP, OpenCL and CUDA. The latest
version contains 23 applications, covering 8 dwarfs.

[OpenDwarfs n.d.(a)] provides a benchmark suite consisting of different dwarfs, where
the target architectures are multi-/many-core and GPU systems. Benchmarks are realized
in OpenCL, and the suite was first made available in 2012. The latest version contains
14 applications covering 12 dwarfs.

The Mont-blanc benchmark suite [Rajovic, Rico, Vipond, et al. 2013] has been made
to benchmark the Mont-blanc prototype [Rajovic, Rico, Mantovani, et al. 2016, an HPC
system built with commodity hardware. The suite contains 11 applications covering 8

16

CHAPTER 2. BACKGROUND

dwarfs, designed with OpenMP and OpenCL.

2.3.2 Miscellaneous suites

Additional benchmark suites covering a wide range of disciplines were surveyed. SPLASH-
2, SPEC OMP2001 and NAS Parallel Benchmarks (NPB) contain parallel workloads, but
with a focus on HPC. SPEC CPU2006 use a wide range of real workloads focusing on
processor, memory subsystem and compiler. SPEC CPU2017 is an updated version of
CPU2006 including additions such as OpenMP support and energy metrics. Linpack
measures floating-point performance, Parboil focus on throughput, and SHOC is used for
stress testing and measuring performance of heterogeneous systems. SPEC MPI2007 focus
on message passing interface (MPI) parallel applications running on various hardware and
software architectures.

We also looked at suites covering specific fields: ALPBench contains parallelized
multimedia workloads, and supports vectorization with SSE. BioParallel includes bioin-
formatic workloads, NU-MineBench measures data mining performance and PhysicsBench
is used for computer game physics simulations.

Finally, we looked at the Recursive Benchmark Suite [Ren et al. 2015], which includes
recursive, task-parallel benchmarks that have been transformed in order to exploit DLP.
Eight applications are included, ranging from microbenchmarks to kernels, that all have
been manually vectorized with SSE and AVX-512 intrinsics. This suite includes the n-
queens benchmark, which is analyzed in Chapter 5.

17

CHAPTER 2. BACKGROUND

Table 2.1: Other Benchmark Suites’ Dwarf Coverage

Dwarf Rodinia PARSEC OpenDwarfs Mont-blanc

Dense Linear
Algebra

LU Decomposition,
Kmeans,

Streamcluster,
K-Nearest
Neighbors,
Gaussian

Elimination

Streamcluster,
BlackScholes,

Bodytrack, x264,
Facesim, Ferret

Kmeans, LU
Decomposition

Dense Matrix
Multiplication,

Vector Operation,
Reduction

Sparse Linear
Algebra

Fluidanimate,
Facesim

SPMV SPMV

Spectral
Methods

GPUDWT Fluidanimate FFT FFT

N-Body
Methods

LavaMD GEM N-Body

Structured
Grids

Leukocyte, Heart
Wall, HotSpot,

SRAD1, SRAD2,
Particle Filter,

Myocyte,
Hotspot3D

Vips SRAD 3D Stencil, 2D
Convolution

Unstructured
Grids

CFD Solver, Back
Propagation

Canneal CFD Solver Histogram

MapReduce
(previously

Monte Carlo)

Swaptions,
Raytrace

Histogram,
Reduction, AMCD

Combinational
Logic

CRC

Graph Traversal MUMmerGPU,
BFS, B+Tree,
Hybrid Sort

Freqmine BFS Merge Sort

Dynamic
Programming

NW, Pathfinder NW, Swat

Backtrack and
Branch-and-

Bound

NQueens

Graphical
Models

HMM

Finite State
Machines

Huffman x264, Dedup,
Freqmine, Ferret

TDM

18

Chapter 3: Methodology

Figure 3.1: Verification process of SIMDwarfs benchmarks

Four benchmarks were selected for evaluation and analysis: A particle simulator (nbody)
covered by the N-body methods dwarf, a combinatorial chess problem (nqueens) covered
by the Backtrack and Branch-and-bound dwarf, and two sequence alignment algorithms
(NW and SW) covered by the Dynamic programming dwarf.

The verification process for evaluated SIMDwarfs benchmarks is shown in Figure 3.1.
Initially, the selected benchmarks are profiled using CodeXL [GPUOpen n.d.]. This is
done to determine whether there exist any hotspots in the applications where vectorization
can easily be applied. Next, the hotspots are vectorized using the wrapper library and
included math libraries. Then, the vectorized benchmark is analyzed and tested to ensure
it functions correctly. If not, we iterate by performing the same process until the results
are satisfactory. In this thesis, we have performed one iteration for each benchmark.
Since we are using applications that have already been manually vectorized, the time
spent during the vectorization stage can be greatly reduced.

This chapter details the different stages in the verification process. First, we present
the insight from the profiling the applications. Next, the ParVec framework and wrap-
per library that was used to evaluate SIMD performance across multiple configurations.
Then, the input parameter details for each benchmark are described. Finally, we detail
specifications of hardware and software that was utilized for the evaluations and provide
a summary of the obtained graphs that was used for our data analysis.

3.1 Profiling

CodeXL is a collection of tools that can be used to for CPUs and GPUs. It supports time-
based sampling, which can expose hotspots in the application where the processor spends
large amounts of time, indicating if there are parts in the code that can benefit from
vectorization. We performed our profiling using the SSE configuration, as our computer
running CodeXL did not support AVX2, which was required for some applications.

For nbody we found that one function, ComputeAccelVec, accounted for 98% of
the hotspot samples. This was expected, as it is here the vectorization is applied. For
nqueens, two functions, nqueens expand bf and nqueens block comprised of 87% and 12%

19

CHAPTER 3. METHODOLOGY

of the hotspot samples, respectively. The first is the function that generates vectorized
work, and the second is the function that processes it. This indicates that the application
spends more time creating work than executing it. NW and SWat are included in the same
program. Profiling showed that searchDatabase was 85% of the samples for SW, while
for SWat, opalSearchDatabase accounted for 81%. Both of these functions are broad with
regards to how vectorization is applied, but the results tell us that the two modes utilize
different parts of the program.

Based on the hotspot analysis, we translated the benchmarks to the wrapper library
and added them as packages in the ParVec framework.

3.2 Wrapper Library

To apply the vectorization, all benchmarks are modified to support the ParVec wrapper
library. This is a C/C++ library which contains intrinsics for SIMD extensions from
multiple ISAs. [Intel 2007] define intrinsics as assembly-coded functions that allow you to
use C++ function calls and variables in place of assembly instructions. This is useful to
C/C++ programmers, who gain direct access to hardware-specific instructions, commonly
related to vectorization and parallelization, without having to use assembly. Intrinsics
implementing SIMD operations are available for many popular instruction sets, including
the x86 SIMD extensions developed by Intel and the NEON extensions from ARM.

The ParVec wrapper library works by defining a common preprocessor macro for
equivalent intrinsics across all supported instruction sets, and then translating them to
ISA-specific intrinsics at compile-time. Since the translation is performed by the prepro-
cessor, the compiler will still be able to optimize the intrinsics in the code, and thus this
mechanism does not add any additional overhead compared to using the intrinsic them-
selves. [Intel 2007] notes that expanding an intrinsic is done inline, thus eliminating func-
tion call overhead altogether. As different compiler can have different auto-vectorization
capabilities, applying the vectorization manually allows us more control and more over-
sight as to what operations are performed. Thus, the purpose of using a wrapper library
is to ensure that vectorization is applied consistently across all evaluated benchmarks,
independently of what compiler you are using. It also enables us to reuse the same vec-
torized codebase for multiple target architectures simply by changing the value of the -c
flag when running the parsecmgmt script. Furthermore, should we add support for a new
instruction set, the same codebase will work for this configuration as well.

Currently, the library contains intrinsics for Intel’s SSE (all versions), AVX, AVX2
and AVX-512 SIMD extensions for both single and double-precision values, as well as
the single-precision variant of ARM’s NEON SIMD extensions. Other releases, such as
ARMv8-A (double-precision NEON) and ARM scalable vector extensions (SVE), are not
yet supported. The first is straightforward to add support for, as it consists of additions
to the previous intrinsics supporting longer vectors and data types. The latter is more
challenging, as no intrinsics are currently available, and there is limited compiler support.
Furthermore, the code structure is different, i.e. loop iterations are based on while loops,
not for loops. Thus, we need to refactor the SIMDwarfs codebase in order to support
it.

20

CHAPTER 3. METHODOLOGY

An example of how to use the ParVec wrapper library is shown below. Listing 1
displays code for calculating the following inverse square root formula, implemented using
Intel AVX intrinsics.

1√
distxV ec2 + distyV ec2

These intrinsics come from the immintrin.h file that is bundled with our compiler. Note
that mm256 at the start of the intrinsic means to output a 256-bit vector, and the ps
at end means that the data is to be packed inside the vector as single-precision (32-
bit) floating point values, according to Intel’s terminologies. The m256 specifies the
data type, saying that the sqrtRecipDistVec variable holds a 256-bit vector containing
single-precision data.

1 #include <immintrin.h>

2 __m256 sqrtRecipDistVec = _mm256_div_ps(_mm256_set1_ps(1.0),

_mm256_sqrt_ps(_mm256_add_ps(_mm256_mul_ps(distxVec,distxVec),

_mm256_mul_ps(distyVec,distyVec))));

↪→

↪→

Listing 1: Code Using Intel’s AVX Intrinsics

We port vectorized applications to the ParVec wrapper library by replacing all in-
trinsic functions and data types with their library equivalent. An example of how the
wrapper library structures the different intrinsics can be viewed in Listing 2. It should be
noted that this is an overly simple example, omitting many details for the sake of brevity.
The real wrapper library has over 2000 lines of code containing many control structures
and workarounds to ensure a high level of portability between the supported architec-
tures and various configurations. More details on the wrapper library are available from
[Cebrian, Jahre, et al. 2015].

The final, ported code can be viewed in Listing 3, where the wrapper library is
imported through the file simd defines.h. Note that the code also has been transformed
from single-precision to precision-agnostic, meaning that we can compile it for both single
or double precision, should the wrapper support it.

21

CHAPTER 3. METHODOLOGY

1 #if defined (PARSEC_USE_SSE) || defined (PARSEC_USE_AVX)

2 #include <immintrin.h> // ALL SSE and AVX

3 #endif

4

5 #ifdef PARSEC_USE_SSE

6 #define _MM_TYPE __m128

7 #define _MM_DIV _mm_div_ps

8 #define _MM_SET(A) _mm_set1_ps(A)

9 #define _MM_SQRT _mm_sqrt_ps

10 #define _MM_ADD _mm_add_ps

11 #define _MM_MUL _mm_mul_ps

12 #endif // PARSEC_USE_SSE

13

14 #ifdef PARSEC_USE_AVX

15 #define _MM_TYPE __m256

16 #define _MM_DIV _mm256_div_ps

17 #define _MM_SET(A) _mm256_set1_ps(A)

18 #define _MM_SQRT _mm256_sqrt_ps

19 #define _MM_ADD _mm256_add_ps

20 #define _MM_MUL _mm256_mul_ps

21 #endif // PARSEC_USE_AVX

22

23 #ifdef PARSEC_USE_NEON

24 #include <arm_neon.h> // ALL NEON instructions

25 #define _MM_TYPE float32x4_t

26 #define _MM_DIV vdivq_f32

27 #define _MM_SET(A) vdupq_n_f32(A)

28 #define _MM_SQRT vsqrtq_f32

29 #define _MM_ADD vaddq_f32

30 #define _MM_MUL vmulq_f32

31 #endif // PARSEC_USE_NEON

Listing 2: ParVec Wrapper Library Contents

1 #include "simd_defines.h"

2 _MM_TYPE sqrtRecipDistVec = _MM_DIV(_MM_SET(1.0),

_MM_SQRT(_MM_ADD(_MM_MUL(distxVec,distxVec),

_MM_MUL(distyVec,distyVec))));

↪→

↪→

Listing 3: Code Using the ParVec Wrapper Library

22

CHAPTER 3. METHODOLOGY

3.3 ParVec Framework

The analysis of the benchmark applications has been performed using the ParVec bench-
marking framework, which is the same one used for the PARSEC benchmark suite [PAR-
SEC n.d.]. As well as being a powerful overall tool for building, running and evaluating
benchmarks, we have access to the useful hooks feature, which is used to trigger the
measurement tools in the framework. By specifying ’regions of interest’ in the code, we
can define the critical sections of the program that we want the framework to measure,
and omit other, unimportant sections, e.g. those relating to initialization, cleanup and
input/output. To enable metrics that give us relevant insight of the SIMD utilization,
we use hooks in combination with the performance counter tool PAPI [ICL n.d.], which
enable us to record specific CPU events, e.g. execution cycles and cache utilization. For
our analysis, we record 54 events across 16 event groups, which are collections of events
that are presented together.

./parsecmgmt -a {build,run} -p parsec.simd.{nbody,nqueens,swat} -c

gcc-{,sse,avx,avx2}-hooks -i sim{small,medium,large}↪→

Listing 4: Using the Parsecmgmt Script

Performing tasks with the framework is done using the parsecmgmt script. By
specifying different flags, or options, we can perform all our required operations. [Bienia
2009] shows the full list of supported options. To obtain the results in this thesis, we have
run the script using the options shown in Listing 4. The -a chooses the action we want to
perform, in this case building or running a benchmark executable file. The -p selects the
appropriate benchmark package, which is a directory that contains the source code and
support libraries, plus a makefile that explains how the framework should compile and
build the executable. It also stores all previously compiled executables so they can be re-
used later on. The -c specifies which benchmark configuration we want, be it vectorized
or not. This option tells the framework to load the appropriate support libraries for
that specific instruction set, which compiler to use, and whether to enable hooks or not.
Finally, the -i determines which input we want to run the benchmark with. This option
itself only supports a select few .runconf files, which are located inside each benchmark
package. Inside these files we specify the command line arguments to select our desired
input parameters for that specific benchmark application. For this thesis we have utilized
the three input sizes, further discussed in Section 3.4.

23

CHAPTER 3. METHODOLOGY

3.4 Benchmark Evaluation

3.4.1 Input parameters

The benchmarks were evaluated for three input sizes (small, medium and large) as to
check if they were input sensitive. Input parameter details are shown in Table 3.1. nbody
and nqueens only take integer values as input. NW and SWat need a query and database
sequence to compare, further explained in Chapter 6. We selected sequences from the
’Swiss-Prot’, downloaded from the Universal Protein Resource (UniProt) knowledgebase
[UniProt n.d.], which contain manually reviewed sequences of many sizes.

Table 3.1: Input Parameters For the Evaluated Benchmarks

Benchmark Small Medium Large

nbody
2000 timesteps

250 bodies 500 bodies 750 bodies

nqueens
Block size: 15

N=11 N=13 N=15

NW
Query : Arbitrary sequence from Swiss-Prot with 325 residues

Database:
First 1000 sequences

from Swiss-Prot

Database:
First 5000 sequences

from Swiss-Prot

Database:
First 10,000 sequences

from Swiss-Prot

SWat
Query : Arbitrary sequence from Swiss-Prot with 60 residues

Database:
First 1000 sequences

from Swiss-Prot

Database:
First 5000 sequences

from Swiss-Prot

Database:
First 10,000 sequences

from Swiss-Prot

3.4.2 Experimental setup

All benchmarks have been analyzed by running scalar, SSE and AVX configurations, built
using GCC version 6.2 with the -O2 flag. The evaluations were performed on a system with
an Intel Xeon E5-2640v3 @ 3.4GHz (Haswell) CPU and 130 GB RAM, running Ubuntu
16.04.2 with Linux kernel 4.4.0-78. It supports all versions of SSE as well as AVX and
AVX2. PAPI version 5.5 was used to provide performance counters, and the program
cpuset was used to shield the evaluations from other processes on the machine. We ran
each configuration 100 times per input size for each of the 16 event groups.

3.4.3 Evaluation data

A script was used to extract the results data and graph it using pychart. When generat-
ing the graphs, a 0.3 trimmed mean was calculated to remove any outliers. These figures
provide us with various insight on how the applications performed on our system, and
most are available with both absolute and normalized values. For the data analysis, we
have selected these graphs that present us with the most relevant insight:

• Runtime: Running time across all configurations and input sizes, which tells us if overall
runtime is affected by varying vector and input sizes.

24

CHAPTER 3. METHODOLOGY

• Execution Cycles: Total execution cycles, and the number of cycles that were stalled,
for each stage in the instruction pipeline. We can observe if a certain stage raise the
number of stalls and if the three configurations function correctly by requiring less cycles
than the previous one. Also available in normalized format, showing the ratio of stalls to
running cycles for each pipeline stage.

• Top-down Cycle Breakdown: A breakdown of what happened in each execution cycle.
This is based on the top-down model, presented by [Yasin 2014] as a practical method to
quickly identify true bottlenecks in out-of-order processors. Based on CPU events, the
model segments execution cycles into four basic categories: retiring, meaning the cycle
finished as expected; bad, meaning the cycle stalled due to a failed speculation; frontend,
meaning a stall occurred during the fetch or decode stages, and backend, meaning a
stall occurred during the issue, execution or writeback stages. From these categories,
an analysis hierarchy is available, whose purpose is to help locate specific performance
bottlenecks fast and reliably.

• Instructions Per Stage: A count of the total instructions per configuration and the
number that retired (finished successfully). We can also view how many micro-operations
(UOPS) that were issued, executed and retired. UOPs are detailed, low-level instructions
derived from the macro-operations sent to the processor. Since SIMD applications require
fewer operations as the vector length increase, we can expect both the macro- and micro-
instruction count to decrease accordingly. Some graphs can show the number of retired
UOPs to be higher than the issued or executed ones; this is due to a phenomenom called
UOP fusion, explained below.

• Normalized Stalled Cycles: The ratio of stalled to running execution cycles when
there are pending cache accesses to L1, L2, and all levels, respectively. This data can tell
us if any stalls were caused by cache misses at that specific level.

• Dispatch Stall Breakdown: A breakdown of stall causes during dispatch, a stage in
the out-of-order pipeline that deals with specifying what operations should be performed.
Based on the CPU events, four causes are given: reservation station (RS), store buffer
(SB), reorder buffer (ROB), or stalls elsewhere in the system. A high number of the three
first can tell us that the stalls are caused by a lack of hardware resources. Other stalls
tell us other parts of the system caused the stalls, e.g. a lack of physical vector registers.

• Execution Activity Breakdown: The ratio of stalled to running execution cycles in
general, as well the ratio of stalled to running cycles when there were pending L1D misses
and pending L2 misses, respectively. This shows the correlation between the total stall
rate and stall rate when there were cache misses pending, which can be used to determine
if it was the cache misses that caused the stall.

• L1 Accesses: The total number of cache accesses reading from L1D, writing to L1D, and
reading from L1I. We can view how many accesses were hits, and how many were misses,
as to determine cache performance. Also available in normalized format, showing the ratio
of hits to misses for each cache. It should be noted that the Intel processor we have used
performs UOP fusion, an optimization technique present because the instructions need
to be translated from a CISC system format to a RISC internal format. The technique
works by placing the translated instructions in L1I, but addressing them virtually. While
faster and offering more benefits than accessing them from the L1I cache, it poses some
challenges to our use of performance counters: the processor accesses the L1I cache once
per instruction, which is a compulsory miss to fetch it, and afterwards move the translated
UOPs to the virtual UOP cache and access them there, which is not counted. The result
is that the few L1I accesses we register will all be misses. More information on UOP

25

CHAPTER 3. METHODOLOGY

fusion is available from [Fog 2017a].
• L2 and L3 Accesses: The total number of cache accesses reading from L2, writing to

L2, and reading and writing to and from L3. These graphs also show how many accesses
were hits and how many were misses, and are available with normalized values as well.

26

Chapter 4: Benchmark Analysis:
N-body

The nbody benchmark considers the development of a system of n bodies in a 2D space,
based on the gravitational forces each body exerts on the other bodies in the system
[Koby n.d.]. The forces act according to Newton’s universal law of gravitation:

F = G
m1m2

r2

The law states that an equal force attracts two objects based on a gravitational constant,
the combined mass of the objects, and the distance between them. Once we know the
forces, we can use Newton’s second law to calculate the acceleration of each body in the
system, which can be used to determine their velocity and position. N-body simulations,
illustrated in Figure 4.1, are used to track the evolution of velocities and positions in
such a system, given a number of bodies and time steps. Such a simulation can be
applied to bodies of varying size, ranging from celestial bodies in space to atoms in a gas
cloud.

Figure 4.1: 2D N-body simulation. Source: [N-body simulation n.d.]

4.1 Algorithm and Vectorization

Without optimizations, an N-body algorithm have to compute the forces of N bodies for
the rest of the bodies in the system, resulting in a quadratic time complexity of O(N2).
Thus, doubling N quadruples the asymptotic time complexity. However, as the forces
between two bodies is the same, the amount of actual computations can be reduced to

27

CHAPTER 4. BENCHMARK ANALYSIS: N-BODY

N2

2 . Approximations exist that recursively sum the forces of nearby bodies for use in the
remaining computations.

Our vectorized nbody application, provided by [Davies n.d.], apply no such approx-
imation techniques. The acceleration computation is done by structuring the individual
body parameters into arrays and looping through them. This computation has been
vectorized manually, using SSE or AVX intrinsics to compute 2 or 4 accelerations simul-
taneously if using double-precision (double data types), or 4 or 8 if using single-precision
(float data types). In our previous project, we analyzed the application and found a
bottleneck caused by two intrinsics with high latencies, namely a divide (div) and square
root (sqrt) operation that is used to calculate the inverse square root required for the
force computation. Together, they require a combined latency of 26-36 cycles for SSE
and 47-64 cycles for AVX, while running on our evaluation system (Haswell). Davies
report that these two operations account for 67% of the acceleration computation’s total
cycles.

We proposed a mitigation strategy involving approximating this function for this
thesis. In a first approach we utilized the inverse square root (invsqrt) intrinsic, which
is included in Intel’s Short Vector Math Library (SVML). A comparison between the
original intrinsic (1/sqrt) and invsqrt resulted in no significant change in runtime. This
suggests that they are both performed in a similar way. An alternative to this approach
is to use the reciprocal (rcp) intrinsic in combination with the sqrt intrinsic. This also
gave no significant speedup, and did not include a double-precision variant.

The third approach we tried was using a reciprocal square root approximation, the
rsqrt intrinsic, which is only available for single-precision. On a haswell system, this op-
eration requires only 5 cycles latency for SSE and 7 cycles latency for AVX. We performed
10 runs with the original and our improved implementation for scalar, SSE and AVX con-
figurations using single-precision, and calculated the mean runtime. The results, viewed
in Table 4.1, show that the rsqrt approximation gives roughly 25% speedup for SSE and
roughly 20% speedup for AVX compared to the original application. This implementation
was used for the evaluation.

Table 4.1: Runtime (seconds) for original and improved nbody application
(500 bodies, 2000 timesteps. 10 runs mean, single-precision)

Implementation SSE AVX
Original (1/sqrt) 0.6107760 0.5773927
Improved (rsqrt) 0.4544663 0.4576816

4.2 Results and Discussion

The data shows that we achieve significant speedup from scalar by using the SSE config-
uration, but that hardware resources limit the AVX configuration from improving upon
this. The data indicates this application is not input sensitive, as shown by the additional
graphs in Section 1.1.

The likely culprit of the bottleneck is a high amount of backend stalls (issue, execu-
tion and writeback), where the issue stage is the one out of these three where the stalls
are most prominent. There are almost 100% RS stalls during dispatch for all configura-
tions, suggesting that the RS included with our hardware is not capable enough to handle

28

CHAPTER 4. BENCHMARK ANALYSIS: N-BODY

this type of computation efficiently. [Shimpi 2012] show that our system includes 56 RS
entries. There are relatively low cache miss rates across all levels, indicating that this
application is not memory bound, i.e. we can not improve the algorithm’s performance
by improving the memory subsystem.

The data is analyzed and discussed in greater detail below.

4.2.1 Runtime, Cycle and Instruction Count

Figure 4.2: N-body running times for
three input sizes (log scale)

Fetch Decode Dispatch Issue Execute Retire

1.0e+04

1.0e+05

1.0e+06

1.0e+07

1.0e+08

1.0e+09

1.0e+10

E
xe

cu
tio

n
C

yc
le

s

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 4.3: N-body execution cycles
(medium input, log scale)

Vectorization

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

T
op

-D
ow

n
C

yc
le

 B
re

ak
do

w
n

Retiring Bad Frontend Backend

SCL SSE AVX

Figure 4.4: N-body top-down cycle
breakdown (medium input)

Total UOPs_Iss UOPs_Exe UOPs_Ret Retired

0.0e+00
2.0e+09
4.0e+09
6.0e+09
8.0e+09
1.0e+10
1.2e+10
1.4e+10
1.6e+10
1.8e+10
2.0e+10
2.2e+10
2.4e+10

In
st

ru
ct

io
ns

 U
O

P
s

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 4.5: N-body instructions per
stage (medium input)

Figure 4.2 graphs the runtime in seconds for the three configurations over three input
sizes. We see from the similar slopes of the three curves that that configurations scale
very well between the different inputs. There’s also a substantial speedup from scalar
to SSE, but a minuscule speedup between SSE and AVX. There seems to be some stalls
between the SSE and AVX configurations.

The low reduction between SSE and AVX goes for execution cycles as well. Figure 4.3
shows the total execution cycles required for each stage in the pipeline, grouped and
compared for each of the three configurations. The x-axis presents each pipeline stage
in sequential order, with a histogram post for each configuration. The y-axis notes how

29

CHAPTER 4. BENCHMARK ANALYSIS: N-BODY

many execution cycles were performed by this configuration at this particular stage, and
also shows how many of these cycles were stalled. We notice that the number of cycles
scale from scalar to SSE, but that the SSE and AVX configurations have a similar cycle
count. A cause might be stalls for AVX that is increasing the cycle count, or failure to
utilize the increased vector length.

Figure 4.4 shows a cycle breakdown utilizing the top-down model. The x-axis desig-
nates each configuration, and the y-axis shows the distribution of the four main categories.
We see more retiring instructions for SSE than AVX, which might explain the same run-
time and execution cycles. For both the scalar and AVX configurations, backend stalls
are dominating. Using the top-down model, we observe that these stalls are caused by ei-
ther waiting for the memory subsystem to complete, or a combination of high instruction
latencies and poor utilization of hardware resources.

The total number of instructions and micro-operations (UOPs) are shown in Fig-
ure 4.5. The x-axis shows the three implementations over five stages. The leftmost and
rightmost stages show the total number of issued and retired instructions, respectively.
The three middle stages show us how many micro-operations the processor issues, ex-
ecutes and retires. The y-axis shows how many instructions were counted. We notice
that the SSE configuration reduces instruction count with almost 90% compared to the
scalar one. This might indicate that there are some other optimizations done to the SSE
configuration that allows it to further reduce its instruction count other than using data-
parallel operations. Another possibility can be that it is the scalar configurations that
does not scale at the same rate as the vectorized configurations. The AVX configuration
requires about half the instructions of the SSE, which seems to scale correctly.

4.2.2 Stalls

From Figure 4.6 we can view the share of stalls when there were pending cache accesses.
On the x-axis we have all requests that are pending to enter the L1, L2, and all cache
levels (L1 through L3), respectively, with bars for each configuration. The y-axis shows
the share of cycles that was ultimately stalled. We observe that there are almost no stalls
while waiting for L1 and L2 data, which means that any stalls are probably not caused
by L1 and L2 cache misses, but must be coming from somewhere else. The high rate of
stalls in Any Pending is likely due to the the high amount of compulsory misses in L1I
caused by UOP fusion.

We will now try to figure out if stalls are constant or if they rise during a particular
stage. Figure 4.7 shows the rate of stalled and running cycles for each operational pipeline
stage. On the x-axis, we have each pipeline stage with a bar for each configuration. The
y-axis shows the percentage of the total running and stalled cycles at that stage. We
notice that there is a heavy rate of stalls during the dispatch, issue and retire stages.
However, the SSE configuration has consistently fewer stalls than the other two; another
way to view it is that the AVX configuration has more stalls than what we should expect
from the vector length. The latter seems to be the more probable, given that the top-
down showed a higher amount of backend stalls for this configuration compared to the
SSE one.

Next, we take a look at the dispatch stall breakdown, shown in Figure 4.8. On the
x-axis we have each configuration, and on the y-axis we have the share of what the stalls
are caused by. Its clear that RS stalls is the culprit for all configurations, which means
there are issues with the hardware that are causing the stalls. On our system, the RS

30

CHAPTER 4. BENCHMARK ANALYSIS: N-BODY

L1_Pending L2_Pending Any_Pending

00

20

40

60

80

100

N
or

m
. S

ta
lle

d
C

yc
le

s
(%

)

ResorceStalled OtherStalled

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 4.6: N-body normalized
stalled cycles (medium input)

Fetch Decode Dispatch Issue Execute Retire

00
10
20
30
40
50
60
70
80
90

100

N
or

m
. C

yc
le

s
(%

)

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 4.7: N-body normalized stalls
per stage (medium input)

Vectorization

00

20

40

60

80

100

D
is

pa
tc

h
S

ta
ll

B
re

ak
do

w
n

(%
)

RS_Stalls
ROB_Stalls

SB_Stalls
Other_Stalls

SCL SSE AVX

Figure 4.8: N-body dispatch stalls
breakdown (medium input)

Stalled L1D_Pending L2_Pending

00

20

40

60

80

100
E

xe
c.

 A
ct

. B
re

ak
do

w
n

(%
)

Stalled-AtResource
Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 4.9: N-body execution
activity breakdown (medium input)

supports 56 entries, which might be too small for this type of computation [Shimpi 2012,
page 8].

Figure 4.9 graphs the rate of stalls when there were pending misses in the L1 and L2
cache levels. The x-axis show the rate of stalled/running cycles, together with the stall
rate while there were pending accesses to the L1 and L2 cache levels, respectively. The
y-axis show the percentage of the execution cycles that was stalled. We observe again, as
we did in Figure 4.6, that any cache misses from accessing L1 and L2 are not the cause
for the stalls.

4.2.3 Cache Performance

The L1 cache performance is shown in Figure 4.10 and Figure 4.11. On the x-axis, we
have bars for each configuration in while reading from the L1 data cache, writing to the
L1 data cache, and reading from the L1 instruction cache, respectively. On the y-axis, the
figures show the number of or ratio of hits and misses to the total cache accesses for that
configuration. We observe no issues with the L1 cache for all configurations: the miss
rate is very low and should not cause any issues. The exception is L1I, but as we detailed
in Section 3.4.3, this is caused by UOP fusion that is performed by the system.

Figure 4.12 and Figure 4.13 show the same data as the two previous graphs, but

31

CHAPTER 4. BENCHMARK ANALYSIS: N-BODY

L1D_Read L1D_Write L1I_Read

00
01
10

100
1000

10000
100000

1000000
10000000

100000000
1000000000

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 4.10: N-body L1 accesses
(medium input, log scale)

L1D_Read L1D_Write L1I_Read

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 4.11: N-body L1 miss rate
(medium input)

L2_Read L2_Write L3

10

100

1000

10000

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 4.12: N-body L2 and L3
accesses (medium input, log scale)

L2_Read L2_Write L3

00

20

40

60

80

100
M

is
s

R
at

e
(%

)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 4.13: N-body L2 and L3 miss
rates (medium input)

for the L2 and L3 cache levels instead. For L3 we do not show separate read and write
graphs. Here, the miss rates are also low, although a bit higher than L1. Nevertheless,
this should not cause big issues unless the L2/L3 cache miss latencies are high. The
cache performance across all levels seem to indicate that this application is not memory-
bound.

4.3 Potential for Further Performance Improvement

Compared to the single-precision performance of the original application, the improved
nbody application performs better for the vectorized configurations: there are more retir-
ing instructions, and the stalled cycles are significantly reduced. The AVX configuration
is now also able to outperform the SSE configuration.

As the application most likely is CPU-bound, a clear next move would be to perform
an experiment on newer hardware. According to [Tomás 2014], the Intel Skylake archi-
tecture has increased its number of RS entries to 97, which might decrease the amount
of RS stalls and enable further speedup.

The critical operation in our particle computation, the vectorized reciprocal square
root (rsqrt), exhibit far lower latencies on newer Intel architectures. [Intel n.d.(b)] show
that on our Haswell system, SSE require 5 cycles latency for a throughput of 1, and AVX

32

CHAPTER 4. BENCHMARK ANALYSIS: N-BODY

requires 7 cycles latency for a throughput of 2. On the newer Skylake architecture, both
configurations have been improved and now require 4 cycles latency for a throughput of 1.
The AVX-512 SIMD extensions include a reciprocal square root intrinsic for both single-
and double-precision values. rsqrt14 calculates the inverse square root and truncates
at 14 digits. According to Fog 2017b, running the single-precision operation on KNL
requires 7 cycles latency for a throughput of 3. No latency/throughput is given for the
double-precision. These instructions are available in the AVX-512F variation, supported
on the Skylake-X/Cannonlake architectures for desktops and laptops, Skylake EP/EX for
servers, and KNL. Another inverse square root intrinsic, rsqrt28 (truncates at 28 digits),
supports single- and double-precision values and is included in the AVX-512ER variation
currently only available on KNL. [Intel n.d.(b)] show that the single-precision requires 8
cycles latency for a throughput of 3, and the double-presicion requires 7 cycles latency
for a throughput of 2.

33

Chapter 5: Benchmark Analysis:
N-queens

The ’n-queens’ problem is a famous toy problem in chess which involves finding permu-
tations in which an n number of queens can be placed on an n*n chess board, such that
no queen is vulnerable to an attack from any of the others. In practice, this means that
no other queen can be placed on the same row, column, or diagonal as the last placed
queen. One solution to this problem for n=8 is shown in Figure 5.1.

The problem dates back to 1848 when it consisted of placing 8 queens on a stan-
dard 8*8 chess board. It was then called the ’8-queens problem’, and was studied by
mathematicians such as Carl Friedrich Gauss [Bell et al. 2009]. Starting from 1869, the
problem was generalized as the ’n-queens problem’, and solutions for smaller values of n
was found by working them out by hand. After the advent of modern computers, the
n-queens problem has been rekindled by the ability to compute solutions for values of n
higher than what is feasible to solve by hand. The problem is interesting from a com-
putational viewpoint as there does not exist a closed-form solution, meaning that some
computation is always necessary to find the solutions. The highest value of n where all
solutions have been found is 27, an accomplishment that took over a year to compute on
highly optimized hardware [Q27 n.d.]. There are also real-world scenarios that can be
modeled as an n-queens problem, illustrating this application’s usefulness other than as
recreational mathematics [Bell et al. 2009].

Figure 5.1: 8-queens solution.
Source: [Chessboard drawing n.d.]

Table 5.1: N-Queens Solutions up
to N=22

N Solutions N Solutions
1 1 12 14,200
2 0 13 73,712
3 0 14 365,596
4 2 15 2,279,184
5 10 16 14,772,512
6 4 17 95,815,104
7 40 18 666,090,624
8 92 19 4,968,057,848
9 352 20 39,029,188,884
10 724 21 314,666,222,712
11 2,680 22 2,691,008,701,644

34

CHAPTER 5. BENCHMARK ANALYSIS: N-QUEENS

5.1 Algorithm and Vectorization

While it is fairly trivial to place all queens arbitrarily such that the constraints are satis-
fied, the real challenge lies in identifying all solutions. However, using exhaustive search
algorithms that permutes the whole board by placing a new queen after a valid placement
has been found, the computations will quickly end up requiring vast amounts of time. For
example, with n=8 there are only 92 solutions, but

(
64
8

)
= 4,426,165,368 possible place-

ments. The exponential rise in solutions relative to problem size, shown in Table 5.1,
makes this a highly computationally expensive task for large values of n. For this reason,
various optimizations exist, e.g. rotating and reflecting a solution to produce additional
ones. It is also possible to find solutions explicitly instead of using exhaustive search,
which means the problem is solvable in polynomial time for all n’s. [Bernhardsson 1991].
Nevertheless, it is critical to carefully study how the solver performs the computation,
as both help improve performance and portability to other systems. In addition to the
solutions for n=27, which is over 2.3× 1017, the Q27 project yielded valuable insight that
can be used for performance tuning, engineering and benchmarking purposes for similar
systems [Q27 n.d.].

A typical n-queens solver application falls under the ’backtrack and branch-and-
bound’ dwarf, since it benefits from both of these methods: Solver applications tend to
utilize heuristic search algorithms that reduce the available search space, e.g. depth-first
search, and then backtracks to previously valid placements should the move be incorrect,
discarding the unsuited regions in the search space while doing so. The computation is
often performed recursively using a computation tree to structure the tasks.

[Ren et al. 2015] investigated how SIMD can be used to speed up the n-queens com-
putation. They studied the recursive, task-parallel nature of the application, which was
shown to limit SIMD utilization significantly because of varying rates of data input and
high latencies of load/store operations. Based on this insight, they made transformations
to the code that improve the data parallelism by creating a blocked recursive algorithm,
collecting multiple tasks into a common data block that makes vectorization easier. They
also made other transformations by optimizing how the stack operates, inserting vector
intrinsics manually to improve branching performance, and using two novel techniques
called re-expansion and stream compaction. Re-expansion is a scheduling policy system
that fills and operates on the data blocks using a combination of breadth-first and depth-
first search: the former to generate work until the block is full, and the latter to then
execute work efficiently on the SIMD units. Figure 5.2 shows a computation tree after
a partial breadth-first search. Dark nodes have already been explored, gray triangles are
the rest of the tree, while the numbered nodes are threads that have been spawned to
perform the current computations. To maximize thread utilization while facing leftwards,
threads 2 and 3 execute work using depth-first search, while re-expansion allows threads
1 and 4 to toggle back to breadth-first search and generate more work in parallel. This
technique enables their program to achieve high SIMD utilization at lower block sizes,
allowing them to minimize cache bottlenecks usually associated with using large block
sizes. For n-queens, the evaluation shows that their program achieves almost perfect
SIMD utilization while still having a low rate of cache misses. Stream compaction is a
block management scheme that structures similar types of tasks into the same blocks,
improving SIMD utilization by reducing the need of CPU masking operations. However,
the evaluation shows only a marginal performance improvement for n-queens, and stream
compaction has thus been excluded from further analysis.

35

CHAPTER 5. BENCHMARK ANALYSIS: N-QUEENS

Figure 5.2: Computation tree after partial breadth-first search. Source:
[Ren et al. 2015]

We selected the nqueens application with re-expansion for evaluation. As well as a
scalar version, it supports vectorization using SSE intrinsics. From comments in the code
we learned that an AVX version was not made available at the time of implementation
(2013), since it required hardware that had not been released yet. We have thus been
able to analyze the program for both SSE and AVX configurations, as well as the scalar
version that was used as a baseline. Ren et al. report that the data block size that
achieved highest SIMD utilization for nqueens with re-expansion was 215. We considered
another block size, 218, for AVX, since it gave a slightly faster runtime during an initial
performance evaluation of several block sizes. However, further evaluation showed that it
performed worse in all aspects compared to 215. We have thus utilized the recommended
block size for all our evaluation.

5.2 Results and Discussion

The nqueens application scales well between scalar and SSE, but fails to achieve a similar
scale rate between SSE and AVX. The difference in input, shown in Section 1.2, indicates
that this application is not input sensitive.

Both vectorized configurations have a significant amount of backend stalls; we can
pinpoint some of these stalls to misses in the L1 cache. In addition, all configurations suffer
from RS stalls during dispatch, suggesting that our hardware resources, which include a 56
entry RS, are not capable enough to handle this type of computation efficiently. Another
explanation might be that the current implementation is not optimized for AVX, since it
was not officially supported.

The data is analyzed and discussed in greater detail below.

5.2.1 Runtime, Cycle and Instruction Count

Figure 5.3 shows the runtime in seconds for the three configurations. From the similar
slopes of the three curves we can infer that the runtime scales well between the different

36

CHAPTER 5. BENCHMARK ANALYSIS: N-QUEENS

Figure 5.3: N-queens running times
for three input sizes (log scale)

Fetch Decode Dispatch Issue Execute Retire

1.0e+04

1.0e+05

1.0e+06

1.0e+07

1.0e+08

1.0e+09

E
xe

cu
tio

n
C

yc
le

s

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 5.4: N-queens execution
cycles (medium input, log scale)

Vectorization

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

T
op

-D
ow

n
C

yc
le

 B
re

ak
do

w
n

Retiring Bad Frontend Backend

SCL SSE AVX

Figure 5.5: N-queens top-down cycle
breakdown (medium input)

Total UOPs_Iss UOPs_Exe UOPs_Ret Retired

0.0e+00

1.0e+10

2.0e+10

3.0e+10

4.0e+10

In
st

ru
ct

io
ns

 U
O

P
s

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 5.6: N-queens instructions
per stage (medium input)

inputs. We also observe that the SSE configuration offers a substantial speedup over the
scalar one, but that the AVX configuration is not able to offer similar speedup. A reason
might be that there are stalls that limits it.

Figure 5.4 shows the total execution cycles required for each stage in the pipeline.
We can see there are fewer decreased cycles between SSE and AVX than there are between
scalar and SSE. We also observe that there is a noticeable amount of stalls during the
dispatch, issue and retire stages. There is an almost equal number of stalled cycles for
both the vectorized configurations, even though AVX requires less cycles in total. This
might mean that there are some issues with the SSE configuration that becomes more
prominent when using AVX.

Figure 5.5 shows a breakdown of the total instruction cycles for all three configu-
rations using the top-down model. We gather that the vectorized configurations have
about the same rate of backend stalling and retiring cycles, with AVX having a slightly
higher rate of bad speculations. We see that the scalar configuration have more frontend
stalls than the vectorized ones, which is logical since it needs to spend more time load-
ing instructions. The vectorized configurations trade these stalls for backend ones. This
probably means that they process more data than the memory and processor can keep

37

CHAPTER 5. BENCHMARK ANALYSIS: N-QUEENS

up with.
The total number of instructions and micro-operations (UOPs) are shown in Fig-

ure 5.6. We observe that there is a sizable reduction of instructions from scalar to SSE,
and roughly half of these instructions again are required for the AVX configuration. The
amount of reduced SSE instructions seems to large to be explained only by the increased
vector length. Between SSE and AVX, the reduction indicates that the vectorization
seems to be working as expected.

5.2.2 Stalls

L1_Pending L2_Pending Any_Pending

00
10
20
30
40
50
60
70
80
90

100

N
or

m
. S

ta
lle

d
C

yc
le

s
(%

)

ResorceStalled OtherStalled

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 5.7: N-queens normalized
stalled cycles (medium input)

Fetch Decode Dispatch Issue Execute Retire

00

20

40

60

80

100

N
or

m
. C

yc
le

s
(%

)

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 5.8: N-queens normalized
stalls per stage (medium input)

Vectorization

00

20

40

60

80

100

D
is

pa
tc

h
S

ta
ll

B
re

ak
do

w
n

(%
)

RS_Stalls
ROB_Stalls

SB_Stalls
Other_Stalls

SCL SSE AVX

Figure 5.9: N-queens dispatch stalls
breakdown (medium input)

Stalled L1D_Pending L2_Pending

00

20

40

60

80

100

E
xe

c.
 A

ct
. B

re
ak

do
w

n
(%

)

Stalled-AtResource
Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 5.10: N-queens execution
activity breakdown (medium input)

From Figure 5.7 we can view the share of stalls when there were pending cache accesses.
We see that about half the stalls for the vectorized configurations that occur with pending
cache misses on all levels, happen when there are pending misses in L1. Pending L2 cache
misses does not seem to contribute to these stalls. This suggests that the vectorized
configurations have poorer cache performance than the scalar one, especially for L1. An
explanation might be that they execute too fast for the data to reach the cache.

Figure 5.8 shows the rate of stalled and running cycles for each pipeline stage. As
in Figure 5.4, we see that the share of stalls are highest in the dispatch, issue and retire
stages, which reach up to 40% of the total cycles for the SSE and AVX configurations. It
can be observed that the stall rate falls during the execution stage, which can infer that
there is not an issue with the execution units being used inefficiently. This leaves poor

38

CHAPTER 5. BENCHMARK ANALYSIS: N-QUEENS

memory performance as a feasible explanation.
The stall breakdown in the dispatch stage is shown in Figure 5.9. We notice that

the largest share of stalls for all configurations are RS stalls, which might be caused by a
lack of computational resources. [Shimpi 2012, page 8] show that the RS in our system
supports 56 entries; the RS stall share seems to indicate that this number is too small for
this type of computation. For the vectorized configurations, we notice that RS stalls are
gradually traded for SB stalls and other stalls. This trend becomes more prominent as
we increase vector length. SB stalls are caused by the memory subsystem not being able
to store the generated amount of data in time. The increasing amounts of these stalls
indicates that the vectorized configurations execute too fast and has to wait in order to
store the data back in memory.

Figure 5.10 graphs the rate of stalls when there were pending misses in the L1 and
L2 cache levels. For the vectorized configurations, we notice a prominent rate of stalled
cycles when there were pending misses in L1D. This can be used to further support the
claim that the vectorized applications have poor L1 cache performance. From Figure 5.9
we notice that for the vectorized configurations, the stalled cycles when there were L1D
pending misses match with the increase of SB and other stalls.

5.2.3 Cache Performance

L1D_Read L1D_Write L1I_Read

00
01
10

100
1000

10000
100000

1000000
10000000

100000000
1000000000

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 5.11: N-queens L1 accesses
(medium input, log scale)

L1D_Read L1D_Write L1I_Read

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 5.12: N-queens L1 miss rate
(medium input)

L2_Read L2_Write L3

100

1000

10000

100000

1000000

10000000

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 5.13: N-queens L2 and L3
accesses (medium input, log scale)

L2_Read L2_Write L3

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 5.14: N-queens L2 and L3 miss
rates (medium input)

The L1 cache performance is shown in Figure 5.11 and Figure 5.12. We observe that the
miss rate in L1 for the vectorized configurations is around 10%. This should not be able

39

CHAPTER 5. BENCHMARK ANALYSIS: N-QUEENS

to explain the increased stalls unless the cache miss latency of L1 is monumentally high,
which it is not. [Shimpi 2012, page 9] show that on our system, L1 latency is 4 cycles,
while L2 latency is 11 cycles. For L1I we have a 100% miss rate, which can be explained
by UOP fusion.

Figure 5.13 and Figure 5.14 show the same data as the two previous graphs, but for
the L2 and L3 cache levels instead. We observe minuscule miss rates across all configu-
rations.

5.3 Potential for Further Performance Improvement

There seems to be two main explanations for the bottlenecks experienced during the
evaluation: either the hardware resources are not sufficient enough to perform the com-
putations efficiently, or there is a need for algorithm optimizations.

The first, like in nbody, can be remedied by running experiments on newer hard-
ware, e.g. Skylake which has increased its RS size to 97 entries. In addition, the in-
structions used for SSE and AVX show very little variance in latency and throughput:
most intrinsics have latencies of one cycle, which have not been further reduced on newer
architectures.

The non-linear reduction in instructions seem to indicate that the algorithm needs
some reworking to benefit from AVX, which also suffer from higher rates of bad spec-
ulations. What might sound reasonable in order to mitigate this problem is increasing
the block size, which will fit more values and thus increase AVX performance. However,
this will most likely be counterproductive and can result in performance degradation if we
increase it past a certain point. [Ren et al. 2015] explain: ”Larger block sizes lead to more
work that can be vectorized, increasing SIMD utilization. However, large blocks suffer
from poor locality, increasing cache misses. To achieve good performance, therefore, we
want to achieve good SIMD utilization with the smallest possible block size.”

40

Chapter 6: Benchmark Anlysis:
Needleman-Wunsch and
Smith-Waterman

Sequence alignment is a field in bioinformatics for aligning and comparing sequences of
biological data or residues, e.g. nucleic acids or proteins. Its purpose is to uncover regions
of similarity, which may point to a relationship between the two sequences. This, in turn,
can be used as the basis in the development of new bio-medical products.

The alignment process is not as simple as shifting one sequence until you find a
segment with the most matches. An efficient alignment algorithm also has to consider
similarities between the nucleic acids or proteins, and be able to insert gaps if one of
the sequences have some extra information in between an otherwise matching region. It
is also worth noting that an alignment is only one of many possibilities, and that the
calculated one therefore may not be optimal [Al-Karadaghi n.d.].

Figure 6.1: Sequence Alignment. Source: Sequence alignment illustration
n.d.

We typically choose between global or local alignment algorithms, or a hybrid of the
two. Global alignment means that we consider the two full sequences and try to find the
longest matching sequence between the two. This is most efficient when the sequences
are similar in size and structure. The Needleman-Wunsch (NW) algorithm is an example
of a global sequence alignment algorithm. Local alignment consider regions of interest,
often called a query sequence, and aligns them to similar regions inside a longer sequence,
called the database sequence. A short query sequence and a longer database sequence
generally gives the best results, and it is preferable that the two sequences are of relative
similarity. The Smith-Waterman (SWat) algorithm, a variation of NW, is an algorithm
used for local sequence alignment.

6.1 Algorithm and Vectorization

Both SWat and NW represent the two sequences as axes in a scoring matrix, and utilize
dynamic programming techniques by computing a score between matrix element pairs

41

CHAPTER 6. BENCHMARK ANALYSIS: NW AND SWAT

and storing the direction to travel between them. The scores are determined by a scoring
system which decides how many points each comparison should be awarded. Later, the
optimal aligned sequence is calculated as an optimal path between two points in the
matrix based on these scores and directions. Both algorithms are frequently used in the
industry since they will find or at least determine if the optimal alignment is available,
given that the optimal scoring system is used [Roberts n.d.].

Research shows that SIMD can be used to offer significant speedups to both the NW
and SWat algorithms. [Fakirah et al. 2015] evaluated a GPU implementation of NW and
reported great speedup. [Rognes and Seeberg 2000] present a novel approach to vector-
izing SWat using MMX and SSE instructions, where they store 8 subsequent residues in
the 64 bit MMX vectors, and are thus able to perform 8 concurrent operations in parallel,
gaining notable speedup. [Farrar 2006] use a ’striped’ approach, meaning that the paral-
lelization is performed at different parts of the query sequence to reduce data dependency
latencies. The result is 16 simultaneous operations using SSE instructions. [Rognes 2011]
improve on this implementation by presenting SWIPE, which is able to compare a query
residue to 16 different database residues in parallel using SSE3 instructions.

For this thesis, we have analyzed Opal [Šošić n.d.], a project which extends SWIPE
with support for both SSE4.1 and AVX2, as well as supporting three other alignment
modes in addition to Swat, including NW. By using AVX, we are able to process twice
the number of residues, i.e. 32, in parallel. The application does not include a scalar
version. Thus, to get a baseline performance, we halved the available vector length width
in the SSE version’s load/store instructions, so that the rest of the operations in practice
only utilized 64 of the available 128 bits in the vector.

6.2 NW: Results and Discussion

The results show that all configurations suffer from large backend stalls. While the scalar
and AVX configurations behave as expected, the SSE experiences a bottleneck that slows
down overall performance. The results from other input sizes, shown in Section 1.3, in-
dicate that this application is not input sensitive. The backend stalls seem to originate
from register spilling, i.e. running out of physical registers, which hits the SSE configu-
ration harder than it does for AVX. While both utilizing 16 registers, AVX require fewer
because it fits twice the data inside the same vector, compared to SSE. We see relatively
few misses in L1, and some slight ones for L2 and L3. The cache misses do not indicate
to cause any stalls, but rather that the program processes data faster than the cache can
handle. Thus, it seems this application is not memory bound.

The data is analyzed and discussed in greater detail below.

6.2.1 Runtime, Cycle and Instruction Count

Figure 6.2 shows the runtime in seconds for the three configurations. We observe from
the similar slopes of the three curves that this application scales in runtime for the dif-
ferent inputs. The SSE configuration provides a reasonable speedup from the scalar one.
However, the AVX configuration offers an even greater speedup than that. A possible
explanation is that the AVX configuration is highly optimized, or there are stalls in the
SSE configuration that slows it down.

Figure 6.3 shows the total execution cycles required for each stage in the pipeline.
We notice the same trend in the amounts of cycles as was found for runtime, which is that

42

CHAPTER 6. BENCHMARK ANALYSIS: NW AND SWAT

Figure 6.2: NW running times for
three inputs (log scale)

Fetch Decode Dispatch Issue Execute Retire

1.0e+04

1.0e+05

1.0e+06

1.0e+07

1.0e+08

1.0e+09

E
xe

cu
tio

n
C

yc
le

s

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 6.3: NW execution cycles
(medium input, log scale)

Vectorization

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

T
op

-D
ow

n
C

yc
le

 B
re

ak
do

w
n

Retiring Bad Frontend Backend

SCL SSE AVX

Figure 6.4: NW top-down cycle
breakdown (medium input)

Total UOPs_Iss UOPs_Exe UOPs_Ret Retired

0.0e+00
2.0e+08
4.0e+08
6.0e+08
8.0e+08
1.0e+09
1.2e+09
1.4e+09
1.6e+09
1.8e+09
2.0e+09
2.2e+09
2.4e+09
2.6e+09

In
st

ru
ct

io
ns

 U
O

P
s

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 6.5: NW instructions per
stage (medium input)

AVX offers a greater reduction from SSE than what SSE manages from scalar. We also
notice that there is a substantial amount of stalls during the dispatch, issue and retire
stages. The stalls drop during execution for AVX, but not for SSE; this suggests that
SSE struggles utilizing the execution units efficiently, while AVX does not.

Figure 6.4 shows a breakdown of the total instruction cycles for all three configura-
tions using the top-down model. We observe that the cycles for all configurations either
retires or stalls during backend. While AVX offers slightly more retired cycles than scalar,
SSE manages only to retire about half of these due to increased backend stalls. From the
top-down model, the cause of the SSE bottleneck is likely that it waits for the memory
subsystem to complete, or that there is a combination of high instruction latencies and
poor utilization of hardware resources.

The total number of instructions and micro-operations (UOPs) are shown in Fig-
ure 6.5. The instructions seem to scale as we would expect from the increased vector
length.

43

CHAPTER 6. BENCHMARK ANALYSIS: NW AND SWAT

L1_Pending L2_Pending Any_Pending

00

20

40

60

80

100

N
or

m
. S

ta
lle

d
C

yc
le

s
(%

)

ResorceStalled OtherStalled

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 6.6: NW normalized stalled
cycles (medium input)

Fetch Decode Dispatch Issue Execute Retire

00
10
20
30
40
50
60
70
80
90

100

N
or

m
. C

yc
le

s
(%

)

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 6.7: NW normalized stalls
per stage (medium input)

Vectorization

00
10
20
30
40
50
60
70
80
90

100

D
is

pa
tc

h
S

ta
ll

B
re

ak
do

w
n

(%
)

RS_Stalls
ROB_Stalls

SB_Stalls
Other_Stalls

SCL SSE AVX

Figure 6.8: NW dispatch stalls
breakdown (medium input)

Stalled L1D_Pending L2_Pending

00

20

40

60

80

100

E
xe

c.
 A

ct
. B

re
ak

do
w

n
(%

)

Stalled-AtResource
Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 6.9: NW execution activity
breakdown (medium input)

6.2.2 Stalls

From Figure 6.6 we can view the share of stalls when there were pending cache accesses.
None of the stalls that appear when there are pending misses are present when there
are pending misses in L1 and L2, except for some slight ones in the AVX configuration.
The high rate of stalls in Any Pending can likely be explained by the compulsory misses
happening due to UOP fusion.

Figure 6.7 shows the rate of stalled and running cycles for each pipeline stage. As
in Figure 6.3, we see that the share of stalls are highest in the dispatch, issue and retire
stages, and the SSE configuration has a consistently higher stall rate than the other two.
We also observe that there is a minuscule stall rate for the AVX configuration during
execution, which indicates that it has been optimized to run efficiently.

The stall breakdown in the dispatch stage is shown in Figure 6.8. We observe that
there are a large amount of other stalls across all configurations, which means that there
is a lack of free execution units or physical registers. The second largest stall share for
the scalar configuration is ROB stalls, which means there are some stalls while speculat-
ing. The second largest for the vectorized configurations is RS stalls, meaning there are
stalls while renaming registers. The stall distribution is fairly similar for the vectorized
configurations, so an explanation for the performance gap might be that it is more costly
to perform these stalls for SSE. There is also the issue of register spilling: both SSE and
AVX include 16 registers when running on a 64-bit system, but as the AVX registers store
double the amount of data, this configuration requires less physical registers in total. This

44

CHAPTER 6. BENCHMARK ANALYSIS: NW AND SWAT

means any issues due to lack of registers will be more prominent for SSE.
Figure 6.9 graphs the rate of stalls when there were pending misses in the L1 and L2

cache levels. There seem to be no stalls caused by misses in L1D or L2, suggesting that
the SSE stalls must be caused by a lack of hardware resources instead.

6.2.3 Cache Performance

L1D_Read L1D_Write L1I_Read

00
01
10

100
1000

10000
100000

1000000
10000000

100000000

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 6.10: NW L1 accesses (medium
input, log scale)

L1D_Read L1D_Write L1I_Read

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 6.11: NW L1 miss rate
(medium input)

L2_Read L2_Write L3

0.0e+00

1.0e+04

2.0e+04

3.0e+04

4.0e+04

5.0e+04

6.0e+04

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 6.12: NW L2 and L3 accesses
(medium input, log scale)

L2_Read L2_Write L3

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 6.13: NW L2 and L3 miss rates
(medium input)

The L1 cache performance is shown in Figure 6.10 and Figure 6.11. We observe that only
minuscule miss rates for L1D, implying that this cache level functions efficiently. For L1I
we have a 100% miss rate, which can be explained by UOP fusion.

Figure 6.12 and Figure 6.13 show the same data as the two previous graphs, but
for the L2 and L3 cache levels instead. We notice rising miss rates in the L2 level as we
increase vector length, as well as some slight, constant miss rates for L3. This can likely
be explained by the configurations processing data faster than it manages to reach the
cache. It also seems to pose no issues to overall efficiency, as the AVX configuration, with
the highest miss rate, is the by far fastest configuration.

6.3 SWat: Results and Discussion

The results for SWat show that the application is behaving excellently. The runtime seems
to scale linearly between the input sizes and configurations. Most cycles are retiring, but

45

CHAPTER 6. BENCHMARK ANALYSIS: NW AND SWAT

there are some significant frontend and backend stalls, the latter which are more prominent
for the SSE configuration. The stalls seem to be caused by register spilling, as was the
case with NW. However, the effects seem to not be as severe this time. Cache performance
is overall good, with low miss rates that does not indicate any connection to the stalls.
This application does not seem to be memory bound as well.

The data is analyzed and discussed in greater detail below.

6.3.1 Runtime, Cycle and Instruction Count

Figure 6.14: SWat running times for
three inputs (log scale)

Fetch Decode Dispatch Issue Execute Retire

1.0e+04

1.0e+05

1.0e+06

1.0e+07

1.0e+08

1.0e+09

E
xe

cu
tio

n
C

yc
le

s

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 6.15: SWat execution cycles
(medium input, log scale)

Vectorization

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

T
op

-D
ow

n
C

yc
le

 B
re

ak
do

w
n

Retiring Bad Frontend Backend

SCL SSE AVX

Figure 6.16: SWat top-down cycle
breakdown (medium input)

Total UOPs_Iss UOPs_Exe UOPs_Ret Retired

0.0e+00

2.0e+09

4.0e+09

6.0e+09

8.0e+09

1.0e+10

In
st

ru
ct

io
ns

 U
O

P
s

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 6.17: SWat instructions per
stage (medium input)

The runtime in Figure 6.14 graphs the runtime in seconds for the three configurations.
We observe that the runtime scales very well between the different inputs and vector
sizes.

The same goes for execution cycles. Figure 6.15 shows the total execution cycles
required for each stage in the pipeline. We notice a similar rate of decrease in execution
cycles as we double the vector width. This data shows the different configurations are
behaving as expected. However, there are substantially higher amounts of stalls in the
SSE configuration than for AVX. We can also observe that the amounts of stalls in all
configurations are significantly lower than for those in NW.

46

CHAPTER 6. BENCHMARK ANALYSIS: NW AND SWAT

Figure 6.16 shows a breakdown of the total instruction cycles using the top-down
model. From the data we can gather that most cycles finish successfully, although there
are some backend stalls and bad speculations present. The worst performing configuration
is SSE, which has three times the backend stalls as the other two. A likely reason might
be register spilling, which was a possible explanation for the similar behavior in NW.

The total number of instructions and micro-operations (UOPs) are shown in Fig-
ure 6.17. We observe that the number of instructions decrease substantially between
scalar and SSE, and then roughly halve between SSE and AVX. Overall, the instruction
count seems to scale as we increase vector length.

6.3.2 Stalls

L1_Pending L2_Pending Any_Pending

00

20

40

60

80

100

N
or

m
. S

ta
lle

d
C

yc
le

s
(%

)

ResorceStalled OtherStalled

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 6.18: SWat normalized
stalled cycles (medium input)

Fetch Decode Dispatch Issue Execute Retire

00

20

40

60

80

100
N

or
m

. C
yc

le
s

(%
)

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 6.19: SWat normalized stalls
per stage (medium input)

Vectorization

00
10
20
30
40
50
60
70
80
90

100

D
is

pa
tc

h
S

ta
ll

B
re

ak
do

w
n

(%
)

RS_Stalls
ROB_Stalls

SB_Stalls
Other_Stalls

SCL SSE AVX

Figure 6.20: SWat dispatch stalls
breakdown (medium input)

Stalled L1D_Pending L2_Pending

00

20

40

60

80

100

E
xe

c.
 A

ct
. B

re
ak

do
w

n
(%

)

Stalled-AtResource
Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 6.21: SWat execution activity
breakdown (medium input)

From Figure 6.18 we can view the rate of stalls when there were pending cache accesses.
We can see that no stalls in the L1 and L2 cache levels for the scalar and SSE configurations
are caused by cache misses, but a small share of the AVX stalls are. Previously, we saw
that AVX both had significantly fewer total and stalled execution cycles than the other
configurations, so it is likely that any stalls here will more easily surface.

Next, we investigate whether the stalls are constant or if they rise during a particular
stage, by looking at Figure 6.19. We know that the stalls start to propagate from the
dispatch stage and outwards, but fall substantially during execution. It can be observed
that the SSE configuration has the highest rate of stalls in all stages, while scalar and

47

CHAPTER 6. BENCHMARK ANALYSIS: NW AND SWAT

AVX have about the same stall rate in these stages. This application has slightly higher
rate of stalled cycles for the AVX configuration than what was present in NW. Nevertheless,
the SWat stall rate reaches slightly above 30%, while for NW it reached over 60%.

The stall breakdown in the dispatch stage is shown in Figure 6.20. We see that
there is a slight increase in other stalls for the SSE configuration compared to the other
two. As was the case for NW, other stalls indicate that there are a lack of physical or
execution units. However, the SSE stalls surpass the amount from NW. If there are similar
bottlenecks present in both applications, we can infer that the SSE stalls in SWat are also
caused by register spilling, but cause further issues for SWat.

Figure 6.21 compares the total stalled execution cycles to the cycles that included
pending misses to L1D or L2. We notice that the few stalls present in the AVX configu-
ration can be explained by L1 misses, likely due to it processing data faster than the L1
can handle. However, as SSE does not exhibit any L1 misses, it implies it is not a source
of performance degradation. It seems the SSE stalls are caused by something else.

6.3.3 Cache Performance

L1D_Read L1D_Write L1I_Read

00
01
10

100
1000

10000
100000

1000000
10000000

100000000
1000000000

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 6.22: SWat L1 accesses
(medium input, log scale)

L1D_Read L1D_Write L1I_Read

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits
S

C
L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X
Figure 6.23: SWat L1 miss rate

(medium input)

L2_Read L2_Write L3

100

1000

10000

100000

1000000

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 6.24: SWat L2 and L3 accesses
(medium input, log scale)

L2_Read L2_Write L3

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure 6.25: SWat L2 and L3 miss
rates (medium input)

The L1 cache performance is shown in Figure 6.22 and Figure 6.23. We observe from these
two figures that we have a relatively small amount of cache misses in the data cache. The
misses in the instruction cache is likely caused by UOP fusion. The AVX configuration
exhibits 100 times the number of data cache misses than the other two configurations;
however, they seem to be out of the critical path of the application since the running

48

CHAPTER 6. BENCHMARK ANALYSIS: NW AND SWAT

times perform as expected. That is, despite the higher miss rate, data is still provided in
time.

Figure 6.24 and Figure 6.25 show the same data as the two previous graphs, but for
the L2 and L3 cache levels instead. We can see that the AVX has an 100 times increase
in L2 accesses, which is expected given this is the same rate of increased misses in L1.
Other than that, the accesses are quite similar across all configurations. While the AVX
configuration has more L2 accesses, it has approximately the same misses as the other
two, resulting in minuscule miss rates.

6.4 Potential for Further Performance Improvement

Overall, the performance of these two benchmarks is more than acceptable. For further
speedup, it would seem that the only practical solution is to rework the algorithm in
order to mitigate the register spilling issues. This can be done by either using a compiler
with better register allocation, or writing our own register allocation routine directly in
assembly and bypassing the built-in compiler function so we can control exactly which
registers are used when.

49

Chapter 7: Conclusion and Future
Work

The lack of a SIMD-aware benchmarking tool that fully covers the Berkeley dwarfs tax-
onomy led Cebrian et al. to initiate SIMDwarfs. In this thesis, we have contributed
to this project by analyzing the performance and scalability of four SIMD capable ap-
plications, nbody, nqueens, NW, and SWat, covering three previously uncovered dwarfs.
We have ported all applications to the ParVec wrapper library, enabling us to evaluate
configurations using SSE and AVX SIMD extensions, as well as a scalar configuration for
baseline.

All mandatory research tasks have been carried out. T1, which was to detail how
vectorization is applied, has been covered in the first sections of the benchmark analysis
chapters. T2, determine benchmark performance and scalability, was carried out by the
data analysis, which show that all applications experience stalls due to lack of hardware
resources, i.e. they are CPU-bound. Architectural bottlenecks were located (T3): nbody
and nqueens have high amounts of RS stalls, implying the 56 entries on our evaluation
system (Haswell) is not large enough to support this type of computation efficiently,
especially for AVX. NW and SWat perform well, but show significant amounts of ’other’
stalls likely explained by register spilling, i.e. the compiler runs out of logical registers.
This is more noticeable in the SSE configuration, as the vectors hold less data than AVX.
Since these mitigation strategies (T3.1) involve upgrading the hardware capabilities or
reworking the algorithm used, T3.2 and T3.3 are out of reach for this thesis. Finally, T4
has been been performed as the vectorized applications can all be found in the SIMDwarfs
(private) github repo.

7.1 Future Work: Towards Complete Coverage

With the three additional dwarfs covered through this thesis, SIMDwarfs now covers
10 out of 13 dwarfs. The three dwarfs that remain until we achieve full coverage is
combinational logic, graphical models and finite state machines. Due to time constraints,
we have not analyzed these in detail. In order to aid future SIMDwarfs developments, this
section combines what was found during the previous literature survey and new insight
that was gained during this thesis.

7.1.1 Combinational Logic

One benchmark, CRC, is considered for this dwarf. This is a Cyclic reundancy check
application, which is used for code error detection. The benchmark included in [OpenD-
warfs n.d.(b)] works by computing a CRC32 value using the ”slice-by-8” algorithm which
performs XOR operations on 64 bits of data at a time [Kounavis et al. 2005]. SSE 4.2
includes intrinsics for calculating CRC32 values in hardware, but no AVX equivalent is
currently available. [Suresh n.d.] provides an application that utilizes these SSE intrinsics
to significantly speed up computations. This dwarf was only recently discovered not to
be covered, and has therefore not been further analyzed.

50

CHAPTER 7. CONCLUSION AND FUTURE WORK

7.1.2 Graphical Models

One benchmark, HMM, is considered for this dwarf as well. The benchmark included in
[OpenDwarfs n.d.(c)] is an implementation of the Baum-Welch algorithm, which is used
to find the unknown parameters of a hidden markov model. HMMlib from [Sand n.d.]
includes support for SSE SIMD extensions. The authors found that using their library on
modern processors provided significant speedups for most Baum-Welch implementations.
[Huo et al. n.d.] provide a vectorized hmm implementation using AVX2 intrinsics. They
report a 5.70X speedup over baseline for a single threaded Baum-Welch algorithm using
AVX. We did not manage to run these applications due to problems getting support
libraries installed on our system, and thus no further analysis has been performed.

7.1.3 Finite State Machines

From the multiple benchmarks that are considered for this dwarf, we managed to find
two that included a vectorized implementation. The first is x264, a video compression
application based on the H.264/AVC video encoder. A vectorized implementation, using
SSE SIMD extensions, is provided by [Cisco n.d.]. The second is dedup, a ’deduplication’
data compression tool. A vectorized implementation also using SSE SIMD extensions is
provided by [Ghosh n.d.]. Due to some trouble getting required support libraries installed
on our system, we have not further analyzed either of these applications.

7.2 The Future of SIMD Extensions

Intel is currently adding support for AVX-512, which are 512-bit extensions to the AVX
SIMD extensions, to its newest architectures. AVX-512 includes multiple subsets, which
will be supported on different, specialized hardware, although basic operations from the
AVX-512F (foundation) subset requires support on all hardware. In addition to increased
vector length, it supports up to 32 vector registers on 64-bit systems. There are also
further improvements, e.g. new mask registers that supports strided accesses and condi-
tional operations, and a new encoding format (EVEX) that supports up to four operands
[Wikipedia 2017]. The new SIMD extensions are currently supported on the KNL (2016)
and Skylake-X (2017) architectures, as well as the upcoming Intel architectures for desk-
tops and servers, codenamed Cannonlake and Skylake Xeon Purley, and a new Xeon Phi
product codenamed Knights Mill, all expected to be released in 2017. No other manu-
facturer using the x86 architecture have yet announced support for AVX-512. [Fog 2013]
notes that there is room for further vector expansions up to 1024 bits, which indicates
that such a technology can emerge in the future.

Scalable vector extension (SVE), a collaboration between Fujitsu and ARM, was
announced in 2016. This SIMD extension technology was designed to complement ARM’s
previous NEON extensions in order to further improve vectorization of HPC scientific
workloads. Feature-wise, SVE resembles a vector architecture. It introduces multiple
improvements over NEON, including increased flexibility with regards to vector length,
ranging from 128 to 2048 bits, support for gather-scatter operations and a programming
model that adapts to the available vector length, as well as improved auto-vectorazation
capabilities. The full list of improvements is found in [Stephens 2016]. The instruction
set was released publicly in 2017.

There have also been made efforts to speed up web browsing by utilizing SIMD, e.g.

51

CHAPTER 7. CONCLUSION AND FUTURE WORK

the Dart programming language [McCutchan 2013]. They claim a significant speedup
in Javascript performance for activities such as 3D graphics, image/audio processing
and numeric computations, compared to not using SIMD hardware acceleration. A 3D
animation written in Dart and running in a web browser was able to go from 34 to 126
animated figures while keeping a frame rate of 60 frames per second, by turning on support
for SIMD [Lund et al. 2013, 49m52s].

As SIMD-aware bencharking tools such as SIMDwarfs become available, who knows
what the future of SIMD will hold?

52

Bibliography

Books

Patterson, David A. and Hennessy, John L. (2014). Computer Organization and Design:
The Hardware/Software Interface. 5th ed. Elsevier. isbn: 9780124077263.

Stallings, William (2013). Computer Organization and Architecture. 9th ed. Pearson. isbn:
9780132936330.

National Research Council and others (2005). Getting up to speed: The future of super-
computing. National Academies Press.

Hennessy, John L. and Patterson, David A. (2012). Computer Architecture: A Quantitative
Approach. 5th ed. Elsevier. isbn: 9780123838728.

Theses and Dissertations

Bienia, Christian (2011). “Benchmarking modern multiprocessors”. PhD thesis. Princeton
University.

Articles

Flynn, Michael J (1972). “Some computer organizations and their effectiveness”. In: IEEE
transactions on computers 100.9, pp. 948–960.

Lee, Victor W et al. (2010). “Debunking the 100X GPU vs. CPU myth: an evaluation of
throughput computing on CPU and GPU”. In: ACM SIGARCH Computer Architecture
News 38.3, pp. 451–460.

Cebrian, Juan M, Jahre, Magnus, and Natvig, Lasse (2015). “ParVec: vectorizing the
PARSEC benchmark suite”. In: Computing. Archives for Informatics and Numerical
Computation 97.11, p. 1077.

Smith, James E, Faanes, Greg, and Sugumar, Rabin (2000). “Vector instruction set sup-
port for conditional operations”. In: 28.2.

Weicker, Reinhold P (1990). “An overview of common benchmarks”. In: Computer 23.12,
pp. 65–75.

Rabaey, Jan M et al. (2008). “Workloads of the Future”. In: IEEE Design & Test of
Computers 25.4.

Dubey, Pradeep (2005). “Recognition, mining and synthesis moves computers to the era
of tera”. In: Technology@ Intel Magazine 9.2, pp. 1–10.

Williams, Samuel, Waterman, Andrew, and Patterson, David (2009). “Roofline: an in-
sightful visual performance model for multicore architectures”. In: Communications of
the ACM 52.4, pp. 65–76.

Blem, Emily, Sinclair, Matthew, and Sankaralingam, Karthikeyan (2011). “Challenge
benchmarks that must be conquered to sustain the GPU revolution”. In: CELL 1024.8,
p. 228.

53

BIBLIOGRAPHY

Bell, Jordan and Stevens, Brett (2009). “A survey of known results and research areas for
n-queens”. In: Discrete Mathematics 309.1, pp. 1–31.

Bernhardsson, Bo (1991). “Explicit solutions to the N-queens problem for all N”. In: ACM
SIGART Bulletin 2.2, p. 7.

Rognes, Torbjørn and Seeberg, Erling (2000). “Six-fold speed-up of Smith–Waterman
sequence database searches using parallel processing on common microprocessors”. In:
Bioinformatics 16.8, pp. 699–706.

Farrar, Michael (2006). “Striped Smith–Waterman speeds database searches six times
over other SIMD implementations”. In: Bioinformatics 23.2, pp. 156–161.

Rognes, Torbjørn (2011). “Faster Smith-Waterman database searches with inter-sequence
SIMD parallelisation”. In: BMC bioinformatics 12.1, p. 221.

Proceedings

Cebrian, Juan M, Jahre, Magnus, and Natvig, Lasse (2014). “Optimized hardware for
suboptimal software: The case for SIMD-aware benchmarks”. In: Performance Analysis
of Systems and Software (ISPASS), 2014 IEEE International Symposium on. IEEE,
pp. 66–75.

Esmaeilzadeh, Hadi et al. (2011). “Dark silicon and the end of multicore scaling”. In:
ACM SIGARCH Computer Architecture News. Vol. 39. 3. ACM, pp. 365–376.

Cebrian, Juan M, Natvig, Lasse, and Meyer, Jan Christian (2012). “Improving energy
efficiency through parallelization and vectorization on intel core i5 and i7 processors”.
In: High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC
Companion: IEEE, pp. 675–684.

Maleki, Saeed et al. (2011). “An evaluation of vectorizing compilers”. In: Parallel Ar-
chitectures and Compilation Techniques (PACT), 2011 International Conference on.
IEEE, pp. 372–382.

Rajovic, Nikola, Rico, Alejandro, Vipond, James, et al. (2013). “Experiences with mobile
processors for energy efficient HPC”. In: Proceedings of the Conference on Design,
Automation and Test in Europe. EDA Consortium, pp. 464–468.

Rajovic, Nikola, Rico, Alejandro, Mantovani, Filippo, et al. (2016). “The mont-blanc pro-
totype: an alternative approach for HPC systems”. In: High Performance Computing,
Networking, Storage and Analysis, SC16: International Conference for. IEEE, pp. 444–
455.

Ren, Bin et al. (2015). “Efficient execution of recursive programs on commodity vector
hardware”. In: ACM SIGPLAN Notices. Vol. 50. 6. ACM, pp. 509–520.

Yasin, Ahmad (2014). “A top-down method for performance analysis and counters ar-
chitecture”. In: Performance Analysis of Systems and Software (ISPASS), 2014 IEEE
International Symposium on. IEEE, pp. 35–44.

Fakirah, Maged et al. (2015). “Accelerating needleman-wunsch global alignment algorithm
with gpus”. In: Computer Systems and Applications (AICCSA), 2015 IEEE/ACS 12th
International Conference of. IEEE, pp. 1–5.

Kounavis, Michael E and Berry, Frank L (2005). “A systematic approach to building high
performance software-based CRC generators”. In: Computers and Communications,
2005. ISCC 2005. Proceedings. 10th IEEE Symposium on. IEEE, pp. 855–862.

54

BIBLIOGRAPHY

Technical Reports

Asanovic, Krste et al. (2006). The landscape of parallel computing research: A view from
berkeley. Tech. rep. Technical Report UCB/EECS-2006-183, EECS Department, Uni-
versity of California, Berkeley.

Fog, Agner (2017a). The microarchitecture of Intel, AMD and VIA CPUs: An optimiza-
tion guide for assembly programmers and compiler makers. Tech. rep. Technical Uni-
versity of Denmark.

– (2017b). Instruction tables: Lists of instruction latencies, throughputs and micro-operation
breakdowns for Intel, AMD and VIA CPUs. Tech. rep. Technical University of Denmark.

Unpublished Documents

De Frène, Christian (2016). “Towards a Vectorized Benchmark Suite Covering the Berke-
ley Dwarfs”. Specialization project at NTNU.

Colella, Phil (2004). “Defining Software Requirements for Scientific Computing”. Presen-
tation.

Online Documents and Resources

Stringer, Lynd (2016). Vectors: How the Old Became New Again in Supercomputing. Ac-
cessed: 2017-07-07. url: https://www.hpcwire.com/2016/09/26/vectors-old-
became-new-supercomputing/.

PARSEC (n.d.). The PARSEC Benchmark Suite. Accessed: 2017-07-10. url: http://
parsec.cs.princeton.edu.

Pozzi, Laura and Silvano, Cristina (2012). Data-Level Parallelism in SIMD and Vector
Architectures. Accessed: 2017-06-19. url: http://home.deib.polimi.it/silvano/
FilePDF/AAC/Lesson13A-SIMD-vector.pdf.

Koopman, Philip (1998). Vector architecture. Carnegie Mellon University. url: https:
//www.ece.cmu.edu/~ece548/handouts/16v_arch.pdf.

Microsoft (n.d.). SIMD (Single instruction, multiple data). Accessed: 2017-07-05. url:
http://microsoft.github.io/dotnet-features/features.html#8-9.

Intel (n.d.[a]). Competitive Performance Summary with Intel® Xeon Phi™ Product Fam-
ily. Accessed: 2017-07-09. url: https://www.intel.com/content/www/us/en/

benchmarks/server/xeon-phi/xeon-phi-competitive-performance.html.
Rodinia (n.d.). Rodinia : Accelerating Compute-Intensive Applications with Accelerators.

Accessed: 2017-07-10. url: https : / / www . cs . virginia . edu / ~skadron / wiki /

rodinia/index.php/Rodinia:Accelerating_Compute-Intensive_Applications_

with_Accelerators.
OpenDwarfs (n.d.[a]). OpenDwarfs. Accessed: 2017-07-10. url: https://github.com/
vtsynergy/OpenDwarfs.

GPUOpen (n.d.). CodeXL. url: http://gpuopen.com/compute-product/codexl/.
Intel (2007). Intel C++ Intrinsic Reference. url: https://software.intel.com/sites/
default/files/a6/22/18072-347603.pdf.

ICL (n.d.). PAPI. url: http://icl.cs.utk.edu/papi/index.html.
Bienia, Christian (2009). Manpage of PARSECMGMT. url: http://parsec.cs.princeton.
edu/doc/man/man1/parsecmgmt.1.html.

55

https://www.hpcwire.com/2016/09/26/vectors-old-became-new-supercomputing/
https://www.hpcwire.com/2016/09/26/vectors-old-became-new-supercomputing/
http://parsec.cs.princeton.edu
http://parsec.cs.princeton.edu
http://home.deib.polimi.it/silvano/FilePDF/AAC/Lesson13A-SIMD-vector.pdf
http://home.deib.polimi.it/silvano/FilePDF/AAC/Lesson13A-SIMD-vector.pdf
https://www.ece.cmu.edu/~ece548/handouts/16v_arch.pdf
https://www.ece.cmu.edu/~ece548/handouts/16v_arch.pdf
http://microsoft.github.io/dotnet-features/features.html#8-9
https://www.intel.com/content/www/us/en/benchmarks/server/xeon-phi/xeon-phi-competitive-performance.html
https://www.intel.com/content/www/us/en/benchmarks/server/xeon-phi/xeon-phi-competitive-performance.html
https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:Accelerating_Compute-Intensive_Applications_with_Accelerators
https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:Accelerating_Compute-Intensive_Applications_with_Accelerators
https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:Accelerating_Compute-Intensive_Applications_with_Accelerators
https://github.com/vtsynergy/OpenDwarfs
https://github.com/vtsynergy/OpenDwarfs
http://gpuopen.com/compute-product/codexl/
https://software.intel.com/sites/default/files/a6/22/18072-347603.pdf
https://software.intel.com/sites/default/files/a6/22/18072-347603.pdf
http://icl.cs.utk.edu/papi/index.html
http://parsec.cs.princeton.edu/doc/man/man1/parsecmgmt.1.html
http://parsec.cs.princeton.edu/doc/man/man1/parsecmgmt.1.html

BIBLIOGRAPHY

UniProt (n.d.). UniProt Knowledgebase. url: http://www.uniprot.org/uniprot/.
Koby, Tim (n.d.). N-body Simulations. Accessed: 2017-07-24. url: http://physics.

princeton.edu/~fpretori/Nbody/intro.htm.
Davies, Josh (n.d.). 2d n-body solver, with OpenMP, MPI, AVX. Accessed: 2017-07-24.
url: https://github.com/jodavies/nbody.

Shimpi, Anand Lal (2012). Intel’s Haswell Architecture Analyzed: Building a New PC and
a New Intel. Accessed: 2017-07-20. url: http://www.anandtech.com/show/6355/
intels-haswell-architecture.

Tomás, Pedro (2014). Accessed: 2017-07-22. url: https://fenix.tecnico.ulisboa.
pt / downloadFile / 1689468335556986 / Lesson % 2013 % 20 - %20Modern % 20Intel %

20Processors.pdf.
Intel (n.d.[b]). Intel Intrinsics Guide. Accessed: 2017-07-22. url: https://software.
intel.com/sites/landingpage/IntrinsicsGuide/.

Q27 (n.d.). 27-Queens Puzzle: Massively Parellel Enumeration and Solution Counting.
Accessed: 2017-06-21. url: https://github.com/preusser/q27.

Al-Karadaghi, Salam (n.d.). Sequence Alignment and Analysis. Accessed: 2017-06-19. url:
http://www.proteinstructures.com/Sequence/Sequence/sequence-alignment.

html.
Roberts, Eric (n.d.). Smith-Waterman Algorithm. Accessed: 2017-06-19. url: https:

//cs.stanford.edu/people/eroberts/courses/soco/projects/computers-and-

the-hgp/smith_waterman.html.
Šošić, Martin (n.d.). Opal: SIMD C/C++ library for massive optimal sequence alignment.

Accessed: 2017-07-24. url: https://github.com/Martinsos/opal.
OpenDwarfs (n.d.[b]). Cyclic Redundancy Check. Accessed: 2017-07-23. url: https://
github.com/vtsynergy/OpenDwarfs/tree/master/combinational-logic/crc.

Suresh, Anand (n.d.). SSE4-CRC32. Accessed: 2017-07-23. url: https://github.com/
anandsuresh/sse4_crc32.

OpenDwarfs (n.d.[c]). Baum-Welch Algorithm. Accessed: 2017-07-23. url: https : / /

github.com/vtsynergy/OpenDwarfs/tree/master/graphical-models/hmm.
Sand, Andreas (n.d.). HMMlib. Accessed: 2017-07-23. url: https : / / github . com /

muldvang/thesis-code.
Huo, Yuchen and Guo, Danhao (n.d.). parahmm: Parallel Implementation of HMM on

Multicore Platform. Accessed: 2017-07-23. url: https://github.com/firebb/parahmm.
Cisco (n.d.). OpenH264. Accessed: 2017-07-23. url: https : / / github . com / cisco /

openh264.
Ghosh, Moinak (n.d.). Pcompress. Accessed: 2017-07-23. url: https://github.com/
moinakg/pcompress.

Wikipedia (2017). AVX-512. Accessed: 2017-07-23. url: https://en.wikipedia.org/
wiki/AVX-512.

Fog, Agner (2013). Future instruction set: AVX-512. Accessed: 2017-07-23. url: http:
//www.agner.org/optimize/blog/read.php?i=288.

Stephens, Nigel (2016). Technology Update: The Scalable Vector Extension (SVE) for
the ARMv8-A architecture. Accessed: 2017-07-23. url: https://community.arm.

com/processors/b/blog/posts/technology- update- the- scalable- vector-

extension-sve-for-the-armv8-a-architecture.
McCutchan, John (2013). Using SIMD in Dart. Accessed: 2017-07-17. url: https://
www.dartlang.org/articles/dart-vm/simd.

56

http://www.uniprot.org/uniprot/
http://physics.princeton.edu/~fpretori/Nbody/intro.htm
http://physics.princeton.edu/~fpretori/Nbody/intro.htm
https://github.com/jodavies/nbody
http://www.anandtech.com/show/6355/intels-haswell-architecture
http://www.anandtech.com/show/6355/intels-haswell-architecture
https://fenix.tecnico.ulisboa.pt/downloadFile/1689468335556986/Lesson%2013%20-%20Modern%20Intel%20Processors.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/1689468335556986/Lesson%2013%20-%20Modern%20Intel%20Processors.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/1689468335556986/Lesson%2013%20-%20Modern%20Intel%20Processors.pdf
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://github.com/preusser/q27
http://www.proteinstructures.com/Sequence/Sequence/sequence-alignment.html
http://www.proteinstructures.com/Sequence/Sequence/sequence-alignment.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/computers-and-the-hgp/smith_waterman.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/computers-and-the-hgp/smith_waterman.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/computers-and-the-hgp/smith_waterman.html
https://github.com/Martinsos/opal
https://github.com/vtsynergy/OpenDwarfs/tree/master/combinational-logic/crc
https://github.com/vtsynergy/OpenDwarfs/tree/master/combinational-logic/crc
https://github.com/anandsuresh/sse4_crc32
https://github.com/anandsuresh/sse4_crc32
https://github.com/vtsynergy/OpenDwarfs/tree/master/graphical-models/hmm
https://github.com/vtsynergy/OpenDwarfs/tree/master/graphical-models/hmm
https://github.com/muldvang/thesis-code
https://github.com/muldvang/thesis-code
https://github.com/firebb/parahmm
https://github.com/cisco/openh264
https://github.com/cisco/openh264
https://github.com/moinakg/pcompress
https://github.com/moinakg/pcompress
https://en.wikipedia.org/wiki/AVX-512
https://en.wikipedia.org/wiki/AVX-512
http://www.agner.org/optimize/blog/read.php?i=288
http://www.agner.org/optimize/blog/read.php?i=288
https://community.arm.com/processors/b/blog/posts/technology-update-the-scalable-vector-extension-sve-for-the-armv8-a-architecture
https://community.arm.com/processors/b/blog/posts/technology-update-the-scalable-vector-extension-sve-for-the-armv8-a-architecture
https://community.arm.com/processors/b/blog/posts/technology-update-the-scalable-vector-extension-sve-for-the-armv8-a-architecture
https://www.dartlang.org/articles/dart-vm/simd
https://www.dartlang.org/articles/dart-vm/simd

BIBLIOGRAPHY

Lund, Kasper and Bak, Lars (2013). Web Languages and VMs: Fast Code is Always in
Fashion. (V8, Dart) - Google I/O 2013. Video presentation. url: https://youtu.be/
huawCRlo9H4.

Image Sources

CPU/GPU architecture comparison (n.d.). url: http://blog.goldenhelix.com/wp-
content/uploads/2010/10/cpu_vs_gpu.png.

N-body simulation (n.d.). url: https://upload.wikimedia.org/wikipedia/commons/
3/37/Barnes-Hut_N-body_simulation_without_overlay.png.

Chessboard drawing (n.d.). url: http://3.bp.blogspot.com/-LHJpIxH7BCY/TWEJc6koEhI/
AAAAAAAAABM/2NIirDzATTI/w1200-h630-p-k-no-nu/8+vezir.png.

Sequence alignment illustration (n.d.). url: http://www.genomecompiler.com/wp-

content/uploads/2015/12/Sequence-Alignment.png.

57

https://youtu.be/huawCRlo9H4
https://youtu.be/huawCRlo9H4
http://blog.goldenhelix.com/wp-content/uploads/2010/10/cpu_vs_gpu.png
http://blog.goldenhelix.com/wp-content/uploads/2010/10/cpu_vs_gpu.png
https://upload.wikimedia.org/wikipedia/commons/3/37/Barnes-Hut_N-body_simulation_without_overlay.png
https://upload.wikimedia.org/wikipedia/commons/3/37/Barnes-Hut_N-body_simulation_without_overlay.png
http://3.bp.blogspot.com/-LHJpIxH7BCY/TWEJc6koEhI/AAAAAAAAABM/2NIirDzATTI/w1200-h630-p-k-no-nu/8+vezir.png
http://3.bp.blogspot.com/-LHJpIxH7BCY/TWEJc6koEhI/AAAAAAAAABM/2NIirDzATTI/w1200-h630-p-k-no-nu/8+vezir.png
http://www.genomecompiler.com/wp-content/uploads/2015/12/Sequence-Alignment.png
http://www.genomecompiler.com/wp-content/uploads/2015/12/Sequence-Alignment.png

Appendices

58

Appendix A: Figures for Small and
Large Inputs

Throughout the thesis, evaluation data has been presented for the medium input size.
This appendix presents figures from the small and large input sizes for comparison.

1.1 N-body

Fetch Decode Dispatch Issue Execute Retire

1.0e+03

1.0e+04

1.0e+05

1.0e+06

1.0e+07

1.0e+08

1.0e+09

E
xe

cu
tio

n
C

yc
le

s

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.1: N-body execution cycles
(small input, log scale)

Fetch Decode Dispatch Issue Execute Retire

1.0e+04

1.0e+05

1.0e+06

1.0e+07

1.0e+08

1.0e+09

1.0e+10
E

xe
cu

tio
n

C
yc

le
s

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.2: N-body execution cycles
(large input, log scale)

Vectorization

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

T
op

-D
ow

n
C

yc
le

 B
re

ak
do

w
n

Retiring Bad Frontend Backend

SCL SSE AVX

Figure A.3: N-body top-down cycle
breakdown (small input)

Vectorization

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

T
op

-D
ow

n
C

yc
le

 B
re

ak
do

w
n

Retiring Bad Frontend Backend

SCL SSE AVX

Figure A.4: N-body top-down cycle
breakdown (large input)

Total UOPs_Iss UOPs_Exe UOPs_Ret Retired

0.0e+00

1.0e+09

2.0e+09

3.0e+09

4.0e+09

5.0e+09

6.0e+09

In
st

ru
ct

io
ns

 U
O

P
s

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.5: N-body instructions per
stage (small input)

Total UOPs_Iss UOPs_Exe UOPs_Ret Retired

0.0e+00

1.0e+10

2.0e+10

3.0e+10

4.0e+10

5.0e+10

In
st

ru
ct

io
ns

 U
O

P
s

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.6: N-body instructions per
stage (large input)

60

APPENDIX A. FIGURES FOR SMALL AND LARGE INPUTS

L1_Pending L2_Pending Any_Pending

00

20

40

60

80

100

N
or

m
. S

ta
lle

d
C

yc
le

s
(%

)

ResorceStalled OtherStalled

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.7: N-body normalized
stalled cycles (small input)

L1_Pending L2_Pending Any_Pending

00

20

40

60

80

100

N
or

m
. S

ta
lle

d
C

yc
le

s
(%

)

ResorceStalled OtherStalled

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.8: N-body normalized
stalled cycles (large input)

Fetch Decode Dispatch Issue Execute Retire

00
10
20
30
40
50
60
70
80
90

100

N
or

m
. C

yc
le

s
(%

)

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.9: N-body normalized
stalls per stage (small input)

Fetch Decode Dispatch Issue Execute Retire

00
10
20
30
40
50
60
70
80
90

100

N
or

m
. C

yc
le

s
(%

)

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.10: N-body normalized
stalls per stage (large input)

Vectorization

00

20

40

60

80

100

D
is

pa
tc

h
S

ta
ll

B
re

ak
do

w
n

(%
)

RS_Stalls
ROB_Stalls

SB_Stalls
Other_Stalls

SCL SSE AVX

Figure A.11: N-body dispatch stalls
breakdown (small input)

Vectorization

00

20

40

60

80

100

D
is

pa
tc

h
S

ta
ll

B
re

ak
do

w
n

(%
)

RS_Stalls
ROB_Stalls

SB_Stalls
Other_Stalls

SCL SSE AVX

Figure A.12: N-body dispatch stalls
breakdown (large input)

61

APPENDIX A. FIGURES FOR SMALL AND LARGE INPUTS

Stalled L1D_Pending L2_Pending

00

20

40

60

80

100

E
xe

c.
 A

ct
. B

re
ak

do
w

n
(%

)

Stalled-AtResource
Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.13: N-body execution
activity breakdown (small input)

Stalled L1D_Pending L2_Pending

00

20

40

60

80

100

E
xe

c.
 A

ct
. B

re
ak

do
w

n
(%

)

Stalled-AtResource
Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.14: N-body execution
activity breakdown (large input)

L1D_Read L1D_Write L1I_Read

00
01
10

100
1000

10000
100000

1000000
10000000

100000000

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.15: N-body L1 accesses
(small input, log scale)

L1D_Read L1D_Write L1I_Read

00
01
10

100
1000

10000
100000

1000000
10000000

100000000
1000000000

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.16: N-body L1 accesses
(large input, log scale)

L1D_Read L1D_Write L1I_Read

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.17: N-body L1 miss rate
(small input)

L1D_Read L1D_Write L1I_Read

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.18: N-body L1 miss rate
(large input)

62

APPENDIX A. FIGURES FOR SMALL AND LARGE INPUTS

L2_Read L2_Write L3

0.0e+00

1.0e+03

2.0e+03

3.0e+03

4.0e+03

5.0e+03

6.0e+03

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.19: N-body L2 and L3
accesses (small input, log scale)

L2_Read L2_Write L3

10

100

1000

10000

100000

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.20: N-body L2 and L3
accesses (large input, log scale)

L2_Read L2_Write L3

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.21: N-body L2 and L3 miss
rates (small input)

L2_Read L2_Write L3

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.22: N-body L2 and L3 miss
rates (large input)

63

APPENDIX A. FIGURES FOR SMALL AND LARGE INPUTS

1.2 N-Queens

Fetch Decode Dispatch Issue Execute Retire

1.0e+04

1.0e+05

1.0e+06

1.0e+07

1.0e+08

E
xe

cu
tio

n
C

yc
le

s

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.23: N-queens execution
cycles (small input, log scale)

Fetch Decode Dispatch Issue Execute Retire

1.0e+06

1.0e+07

1.0e+08

1.0e+09

1.0e+10

1.0e+11

E
xe

cu
tio

n
C

yc
le

s

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.24: N-queens execution
cycles (large input, log scale)

Vectorization

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

T
op

-D
ow

n
C

yc
le

 B
re

ak
do

w
n

Retiring Bad Frontend Backend

SCL SSE AVX

Figure A.25: N-queens top-down
cycle breakdown (small input)

Vectorization

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

T
op

-D
ow

n
C

yc
le

 B
re

ak
do

w
n

Retiring Bad Frontend Backend

SCL SSE AVX

Figure A.26: N-queens top-down
cycle breakdown (large input)

Total UOPs_Iss UOPs_Exe UOPs_Ret Retired

0.0e+00

2.0e+08

4.0e+08

6.0e+08

8.0e+08

1.0e+09

In
st

ru
ct

io
ns

 U
O

P
s

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.27: N-queens instructions
per stage (small input)

Total UOPs_Iss UOPs_Exe UOPs_Ret Retired

0.0e+00
2.0e+11
4.0e+11
6.0e+11
8.0e+11
1.0e+12
1.2e+12
1.4e+12
1.6e+12
1.8e+12

In
st

ru
ct

io
ns

 U
O

P
s

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.28: N-queens instructions
per stage (large input)

64

APPENDIX A. FIGURES FOR SMALL AND LARGE INPUTS

L1_Pending L2_Pending Any_Pending

00
10
20
30
40
50
60
70
80
90

100

N
or

m
. S

ta
lle

d
C

yc
le

s
(%

)

ResorceStalled OtherStalled

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.29: N-queens normalized
stalled cycles (small input)

L1_Pending L2_Pending Any_Pending

00

20

40

60

80

100

N
or

m
. S

ta
lle

d
C

yc
le

s
(%

)

ResorceStalled OtherStalled

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.30: N-queens normalized
stalled cycles (large input)

Fetch Decode Dispatch Issue Execute Retire

00
10
20
30
40
50
60
70
80
90

100

N
or

m
. C

yc
le

s
(%

)

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.31: N-queens normalized
stalls per stage (small input)

Fetch Decode Dispatch Issue Execute Retire

00

20

40

60

80

100

N
or

m
. C

yc
le

s
(%

)

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.32: N-queens normalized
stalls per stage (large input)

Vectorization

00

20

40

60

80

100

D
is

pa
tc

h
S

ta
ll

B
re

ak
do

w
n

(%
)

RS_Stalls
ROB_Stalls

SB_Stalls
Other_Stalls

SCL SSE AVX

Figure A.33: N-queens dispatch
stalls breakdown (small input)

Vectorization

00

20

40

60

80

100

D
is

pa
tc

h
S

ta
ll

B
re

ak
do

w
n

(%
)

RS_Stalls
ROB_Stalls

SB_Stalls
Other_Stalls

SCL SSE AVX

Figure A.34: N-queens dispatch
stalls breakdown (large input)

65

APPENDIX A. FIGURES FOR SMALL AND LARGE INPUTS

Stalled L1D_Pending L2_Pending

00

20

40

60

80

100

E
xe

c.
 A

ct
. B

re
ak

do
w

n
(%

)

Stalled-AtResource
Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.35: N-queens execution
activity breakdown (small input)

Stalled L1D_Pending L2_Pending

00

20

40

60

80

100

E
xe

c.
 A

ct
. B

re
ak

do
w

n
(%

)

Stalled-AtResource
Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.36: N-queens execution
activity breakdown (large input)

L1D_Read L1D_Write L1I_Read

00
01
10

100
1000

10000
100000

1000000
10000000

100000000

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.37: N-queens L1 accesses
(small input, log scale)

L1D_Read L1D_Write L1I_Read

00
01
10

100
1000

10000
100000

1000000
10000000

100000000
1000000000

10000000000
100000000000

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.38: N-queens L1 accesses
(large input, log scale)

L1D_Read L1D_Write L1I_Read

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.39: N-queens L1 miss rate
(small input)

L1D_Read L1D_Write L1I_Read

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.40: N-queens L1 miss rate
(large input)

66

APPENDIX A. FIGURES FOR SMALL AND LARGE INPUTS

L2_Read L2_Write L3

100

1000

10000

100000

1000000

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.41: N-queens L2 and L3
accesses (small input, log scale)

L2_Read L2_Write L3

100

1000

10000

100000

1000000

10000000

100000000

1000000000

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.42: N-queens L2 and L3
accesses (large input, log scale)

L2_Read L2_Write L3

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.43: N-queens L2 and L3 miss
rates (small input)

L2_Read L2_Write L3

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.44: N-queens L2 and L3 miss
rates (large input)

67

APPENDIX A. FIGURES FOR SMALL AND LARGE INPUTS

1.3 Needleman-Wunsch

Fetch Decode Dispatch Issue Execute Retire

1.0e+04

1.0e+05

1.0e+06

1.0e+07

1.0e+08

E
xe

cu
tio

n
C

yc
le

s

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.45: NW execution cycles
(small input, log scale)

Fetch Decode Dispatch Issue Execute Retire

1.0e+04

1.0e+05

1.0e+06

1.0e+07

1.0e+08

1.0e+09

E
xe

cu
tio

n
C

yc
le

s

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.46: NW execution cycles
(large input, log scale)

Vectorization

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

T
op

-D
ow

n
C

yc
le

 B
re

ak
do

w
n

Retiring Bad Frontend Backend

SCL SSE AVX

Figure A.47: NW top-down cycle
breakdown (small input)

Vectorization

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

T
op

-D
ow

n
C

yc
le

 B
re

ak
do

w
n

Retiring Bad Frontend Backend

SCL SSE AVX

Figure A.48: NW top-down cycle
breakdown (large input)

Total UOPs_Iss UOPs_Exe UOPs_Ret Retired

0.0e+00

1.0e+08

2.0e+08

3.0e+08

4.0e+08

In
st

ru
ct

io
ns

 U
O

P
s

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.49: NW instructions per
stage (small input)

Total UOPs_Iss UOPs_Exe UOPs_Ret Retired

0.0e+00

1.0e+09

2.0e+09

3.0e+09

4.0e+09

5.0e+09

In
st

ru
ct

io
ns

 U
O

P
s

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.50: NW instructions per
stage (large input)

68

APPENDIX A. FIGURES FOR SMALL AND LARGE INPUTS

L1_Pending L2_Pending Any_Pending

00

20

40

60

80

100

N
or

m
. S

ta
lle

d
C

yc
le

s
(%

)

ResorceStalled OtherStalled

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.51: NW normalized stalled
cycles (small input)

L1_Pending L2_Pending Any_Pending

00

20

40

60

80

100

N
or

m
. S

ta
lle

d
C

yc
le

s
(%

)

ResorceStalled OtherStalled

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.52: NW normalized stalled
cycles (large input)

Fetch Decode Dispatch Issue Execute Retire

00
10
20
30
40
50
60
70
80
90

100

N
or

m
. C

yc
le

s
(%

)

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.53: NW normalized stalls
per stage (small input)

Fetch Decode Dispatch Issue Execute Retire

00
10
20
30
40
50
60
70
80
90

100

N
or

m
. C

yc
le

s
(%

)

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.54: NW normalized stalls
per stage (large input)

Vectorization

00
10
20
30
40
50
60
70
80
90

100

D
is

pa
tc

h
S

ta
ll

B
re

ak
do

w
n

(%
)

RS_Stalls
ROB_Stalls

SB_Stalls
Other_Stalls

SCL SSE AVX

Figure A.55: NW dispatch stalls
breakdown (small input)

Vectorization

00
10
20
30
40
50
60
70
80
90

100

D
is

pa
tc

h
S

ta
ll

B
re

ak
do

w
n

(%
)

RS_Stalls
ROB_Stalls

SB_Stalls
Other_Stalls

SCL SSE AVX

Figure A.56: NW dispatch stalls
breakdown (large input)

69

APPENDIX A. FIGURES FOR SMALL AND LARGE INPUTS

Stalled L1D_Pending L2_Pending

00

20

40

60

80

100

E
xe

c.
 A

ct
. B

re
ak

do
w

n
(%

)

Stalled-AtResource
Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.57: NW execution activity
breakdown (small input)

Stalled L1D_Pending L2_Pending

00

20

40

60

80

100

E
xe

c.
 A

ct
. B

re
ak

do
w

n
(%

)

Stalled-AtResource
Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.58: NW execution activity
breakdown (large input)

L1D_Read L1D_Write L1I_Read

00
01
10

100
1000

10000
100000

1000000
10000000

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.59: NW L1 accesses (small
input, log scale)

L1D_Read L1D_Write L1I_Read

00
01
10

100
1000

10000
100000

1000000
10000000

100000000
1000000000

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.60: NW L1 accesses (large
input, log scale)

L1D_Read L1D_Write L1I_Read

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.61: NW L1 miss rate (small
input)

L1D_Read L1D_Write L1I_Read

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.62: NW L1 miss rate (large
input)

70

APPENDIX A. FIGURES FOR SMALL AND LARGE INPUTS

L2_Read L2_Write L3

0.0e+00

2.0e+03

4.0e+03

6.0e+03

8.0e+03

1.0e+04

1.2e+04

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.63: NW L2 and L3 accesses
(small input, log scale)

L2_Read L2_Write L3

0.0e+00

2.0e+04

4.0e+04

6.0e+04

8.0e+04

1.0e+05

1.2e+05

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.64: NW L2 and L3 accesses
(large input, log scale)

L2_Read L2_Write L3

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.65: NW L2 and L3 miss
rates (small input)

L2_Read L2_Write L3

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.66: NW L2 and L3 miss
rates (large input)

71

APPENDIX A. FIGURES FOR SMALL AND LARGE INPUTS

1.4 Smith-Waterman

Fetch Decode Dispatch Issue Execute Retire

1.0e+04

1.0e+05

1.0e+06

1.0e+07

1.0e+08

E
xe

cu
tio

n
C

yc
le

s

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.67: SWat execution cycles
(small input, log scale)

Fetch Decode Dispatch Issue Execute Retire

1.0e+04

1.0e+05

1.0e+06

1.0e+07

1.0e+08

1.0e+09

E
xe

cu
tio

n
C

yc
le

s

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.68: SWat execution cycles
(large input, log scale)

Vectorization

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

T
op

-D
ow

n
C

yc
le

 B
re

ak
do

w
n

Retiring Bad Frontend Backend

SCL SSE AVX

Figure A.69: SWat top-down cycle
breakdown (small input)

Vectorization

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

T
op

-D
ow

n
C

yc
le

 B
re

ak
do

w
n

Retiring Bad Frontend Backend

SCL SSE AVX

Figure A.70: SWat top-down cycle
breakdown (large input)

Total UOPs_Iss UOPs_Exe UOPs_Ret Retired

0.0e+00

2.0e+08

4.0e+08

6.0e+08

8.0e+08

1.0e+09

1.2e+09

1.4e+09

1.6e+09

In
st

ru
ct

io
ns

 U
O

P
s

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.71: SWat instructions per
stage (small input)

Total UOPs_Iss UOPs_Exe UOPs_Ret Retired

0.0e+00
2.0e+09
4.0e+09
6.0e+09
8.0e+09
1.0e+10
1.2e+10
1.4e+10
1.6e+10
1.8e+10
2.0e+10

In
st

ru
ct

io
ns

 U
O

P
s

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.72: SWat instructions per
stage (large input)

72

APPENDIX A. FIGURES FOR SMALL AND LARGE INPUTS

L1_Pending L2_Pending Any_Pending

00

20

40

60

80

100

N
or

m
. S

ta
lle

d
C

yc
le

s
(%

)

ResorceStalled OtherStalled

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.73: SWat normalized
stalled cycles (small input)

L1_Pending L2_Pending Any_Pending

00

20

40

60

80

100

N
or

m
. S

ta
lle

d
C

yc
le

s
(%

)

ResorceStalled OtherStalled

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.74: SWat normalized
stalled cycles (large input)

Fetch Decode Dispatch Issue Execute Retire

00

20

40

60

80

100

N
or

m
. C

yc
le

s
(%

)

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.75: SWat normalized stalls
per stage (small input)

Fetch Decode Dispatch Issue Execute Retire

00

20

40

60

80

100

N
or

m
. C

yc
le

s
(%

)

Stalled_at_Stage Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.76: SWat normalized stalls
per stage (large input)

Vectorization

00
10
20
30
40
50
60
70
80
90

100

D
is

pa
tc

h
S

ta
ll

B
re

ak
do

w
n

(%
)

RS_Stalls
ROB_Stalls

SB_Stalls
Other_Stalls

SCL SSE AVX

Figure A.77: SWat dispatch stalls
breakdown (small input)

Vectorization

00
10
20
30
40
50
60
70
80
90

100

D
is

pa
tc

h
S

ta
ll

B
re

ak
do

w
n

(%
)

RS_Stalls
ROB_Stalls

SB_Stalls
Other_Stalls

SCL SSE AVX

Figure A.78: SWat dispatch stalls
breakdown (large input)

73

APPENDIX A. FIGURES FOR SMALL AND LARGE INPUTS

Stalled L1D_Pending L2_Pending

00

20

40

60

80

100

E
xe

c.
 A

ct
. B

re
ak

do
w

n
(%

)

Stalled-AtResource
Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.79: SWat execution
activity breakdown (small input)

Stalled L1D_Pending L2_Pending

00

20

40

60

80

100

E
xe

c.
 A

ct
. B

re
ak

do
w

n
(%

)

Stalled-AtResource
Running

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.80: SWat execution
activity breakdown (large input)

L1D_Read L1D_Write L1I_Read

00
01
10

100
1000

10000
100000

1000000
10000000

100000000

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.81: SWat L1 accesses
(small input, log scale)

L1D_Read L1D_Write L1I_Read

00
01
10

100
1000

10000
100000

1000000
10000000

100000000
1000000000

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.82: SWat L1 accesses
(large input, log scale)

L1D_Read L1D_Write L1I_Read

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.83: SWat L1 miss rate
(small input)

L1D_Read L1D_Write L1I_Read

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.84: SWat L1 miss rate
(large input)

74

APPENDIX A. FIGURES FOR SMALL AND LARGE INPUTS

L2_Read L2_Write L3

0.0e+00
2.0e+04
4.0e+04
6.0e+04
8.0e+04
1.0e+05
1.2e+05
1.4e+05
1.6e+05
1.8e+05

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.85: SWat L2 and L3
accesses (small input, log scale)

L2_Read L2_Write L3

100

1000

10000

100000

1000000

C
ac

he
 A

cc
es

se
s

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.86: SWat L2 and L3
accesses (large input, log scale)

L2_Read L2_Write L3

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.87: SWat L2 and L3 miss
rates (small input)

L2_Read L2_Write L3

00

20

40

60

80

100

M
is

s
R

at
e

(%
)

Misses Hits

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

S
C

L

S
S

E

A
V

X

Figure A.88: SWat L2 and L3 miss
rates (large input)

75

	Problem Description
	Abstract (English)
	Abstract (Norwegian)
	Preface
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Abbreviations
	Introduction
	Motivation
	Dwarf Coverage Table
	Research Tasks
	Contribution
	Thesis Outline

	Background
	SIMD and Vectorization
	SIMD advantages and disadvantages
	Applications of SIMD
	Auto-vectorization
	SIMD in heterogeneous systems

	Benchmarking
	Benchmark Requirements
	Suitable Evaluation Characteristics

	Other Benchmark Suites
	Suites used by SIMDwarfs
	Miscellaneous suites

	Methodology
	Profiling
	Wrapper Library
	ParVec Framework
	Benchmark Evaluation
	Input parameters
	Experimental setup
	Evaluation data

	Benchmark Analysis: N-body
	Algorithm and Vectorization
	Results and Discussion
	Runtime, Cycle and Instruction Count
	Stalls
	Cache Performance

	Potential for Further Performance Improvement

	Benchmark Analysis: N-queens
	Algorithm and Vectorization
	Results and Discussion
	Runtime, Cycle and Instruction Count
	Stalls
	Cache Performance

	Potential for Further Performance Improvement

	Benchmark Analysis: NW and SWat
	Algorithm and Vectorization
	NW: Results and Discussion
	Runtime, Cycle and Instruction Count
	Stalls
	Cache Performance

	SWat: Results and Discussion
	Runtime, Cycle and Instruction Count
	Stalls
	Cache Performance

	Potential for Further Performance Improvement

	Conclusion and Future Work
	Future Work: Towards Complete Coverage
	Combinational Logic
	Graphical Models
	Finite State Machines

	The Future of SIMD Extensions

	Bibliography
	Appendices
	Figures for Small and Large Inputs
	N-body
	N-Queens
	Needleman-Wunsch
	Smith-Waterman

