
Combining the SHA and ELD3 techniques
to achieve energy-efficient data cache
accesses

Salahuddin Asjad

Master of Science in Computer Science

Supervisor: Magnus Själander, IDI

Department of Computer Science

Submission date: June 2017

Norwegian University of Science and Technology



 



Abstract

In recent years, CPU performance has become energy constrained. If performance is to
continue increasing, new methods for creating more energy efficient CPUs will have to be
explored. Current computing systems use complex CPUs that interface to the main mem-
ory through a hierarchy of caches. These performance-centric designs use a lot of power
and chip-area to minimize the gap between CPU and main memory speeds. Caches con-
tribute much of a systems’s energy consumption. Conventional set-associative level-one
data caches (L1 DCs) are performance-critical and are therefore optimized for speed. The
access latency is optimized by accessing all ways in parallel for load operations. However,
this results in a significant amount of wasted energy, since only data from one way is used.
To reduce energy, numerous cache architectures, such as way-prediction, way-shutdown
and highly-associative have been proposed. However, these optimizations in many cases
increase latency and complexity, which makes them unattractive for L1 caches.

This thesis cover the implementation and evaluation of a combination of techniques that
enables access to only the way where the data resides. The first technique is Speculative
Halt-Tag Access (SHA) and works by halting cache ways that cannot possibly contain the
requested data. The technique, Early Load Data Dependence Detection (ELD3) , has no
performance penalty and adds very little complexity to a conventional CPU core design.
The second technique works by sequentially accessing tag and data ways when there is no
data dependency with a subsequent instruction. These techniques have been implemented
both independently and in combination. The SHMAC framework is used to evaluate the
implementation by running a subset of MiBench benchmarks. The results show that on
average, 40% of energy dissipation is reduced for loads with small displacement when
using the SHA technique. By performing loads sequentially, the ELD3 technique is able
to reduce the overall enregy dissipation by 27%. When both techniques are combined, the
ELD3 technique is able to reduce the energy dissipation when the displacement is too large
for the SHA technique. This combination of techniques gives an overall energy reduction
of 43%.

i



ii



Sammendrag
De siste årene har prosessorytelsen blitt mer og mer energibegrenset. Dersom ytelsen
fortsetter å øke i tiden som kommer, må nye metoder til for å utvikle energieffektive pros-
essorsystemer. Dagens datamaskiner omfattes av avanserte prosessorer som kommunis-
erer med hovedminnet gjennom en rekke hurtigminner. Slike ytelsesfokuserte systemer
bruker mye strøm og chip-plass for å redusere ytelsen mellom prosessor og hovedminnet.
Energiforbuket fra hurtigminner står for betydelig mengde av det totale energiforbuket i
et system. Vanlige set-associative L1 hurtigminner er ytelseskritiske og er dermed kun
optimalisert for å oppnå best mulig ytelse. Dette blir blant annet gjort ved å aksessere
alle feltene parallelt når data skal leses fra hurtigminnet. Dette medfører til en betydelig
menge bortkastet energi, fordi den etterspurte dataen bare kan eksistere i en av feltene. Det
er blitt forslått flere ulike teknikker for å løse dette problemet, blant annet ved help av way-
predction, way-shutdown og highly-associative. Det som er felles for disse teknikkene, er
at de øker aksesstiden og kompleksistenen i hurtigminner, noe som gjør disse teknikkene
irrelevant for L1 cache.

I denne oppgaven vil to ulike teknikker bli implementert sammen, for å gjøre det mulig å
bare aksessere feltene hvor den etterspurte dataen kan eksistere. Den første teknikken går
ut på å filtrere bort feltene som ikke kan inneholde den etterspurte dataen i hurtigminnet.
Den andre teknikken går ut på aksessere tag-feltene og data-feltene sekvensielt, over to
klokkesykluser, dersom det ikke er dataavhengighet med en kommende instruksjon. Disse
teknikkene har blitt implementert i et rammeverk kalt SHMAC. I tillegg har en rekke
MiBench benchmark programmer blitt kjørt for å evaluere implementasjonen.

iii



iv



Preface

This report is submitted to the Norwegian University of Science and Technology in partial
fulfilment of the requirements for an MSc degree in computer science.

This work has been performed at the Department of Computer and Information Science,
NTNU, with Magnus Själander as the supervisor.

v



vi



Table of Contents

Summary i

Preface v

Table of Contents viii

List of Tables ix

List of Figures xii

Abbreviations xiii

1 Introduction 1

2 Background 5
2.1 The Memory Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Storage technologies . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Memory system hiearchy . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Dependencies in pipelined processors . . . . . . . . . . . . . . . . . . . 9
2.3 The Single-ISA Heterogeneous MAny-core Computer (SHMAC) . . . . . 10

2.3.1 The SHMAC Processor Tile . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Mesh configuration . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 The RISC-V ISA . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.4 Addressing mode . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.5 Chisel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Implementation 15
3.1 Speculative Halt-Tag Access (SHA) . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Implementation of the Halt-Tag Cache . . . . . . . . . . . . . . . 17
3.2 Early Load Data Dependence Detection (ELD3) . . . . . . . . . . . . . . 20

3.2.1 Implementation of data dependency bit (DDB) memory . . . . . 21

vii



3.3 SHA + ELD3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Methodology 27
4.0.1 L1 DC Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Results 31
5.1 Results for SHA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Results for ELD3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Results for SHA and ELD3 . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Related work 43
6.1 Way-Halting Cache (WHC) . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Data Filter Cache (DFC) . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 Partial Tag Comparison (PTC) . . . . . . . . . . . . . . . . . . . . . . . 44
6.4 Speculative Tag Access (STA) . . . . . . . . . . . . . . . . . . . . . . . 44
6.5 Way-Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Conclusion and Future Work 47
7.0.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Bibliography 49

viii



List of Tables

2.1 Characteristics of SRAM and DRAM memories . . . . . . . . . . . . . . 6

4.1 Standard cache configuration for L1 DC and L1 IC . . . . . . . . . . . . 27
4.2 Component energy for the different parts of an L1 data cache using SHA

technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Components accessed for each load case, and the total energy dissipation 29
4.4 Component energy for the different parts of an L1 data cache using ELD3

technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Ratio of small and large displacements. . . . . . . . . . . . . . . . . . . 31
5.2 Load distribution between SHA and ELD3 . . . . . . . . . . . . . . . . . 39

ix



x



List of Figures

1.1 Three-stage pipeline with the SHA technique . . . . . . . . . . . . . . . 3
1.2 Four-stage pipeline with the ELD technique . . . . . . . . . . . . . . . . 3

2.1 The memory wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Transistor integration capacity at a fixed power envelope . . . . . . . . . 7
2.3 A hiearchy with on-chip and off-chip memories . . . . . . . . . . . . . . 8
2.4 4-way set associative cache with separate tag and data arrays . . . . . . . 9
2.5 The high-level architecture of SHMAC . . . . . . . . . . . . . . . . . . . 10
2.6 Overview of the SHMAC processor tile . . . . . . . . . . . . . . . . . . 11
2.7 Overview of the 3-stage Z-scale core . . . . . . . . . . . . . . . . . . . . 12
2.8 High-level architecture of the SHMAC instance used in this project . . . . 13
2.9 RISC-V base instruction formats. . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Halt-tag address calculation . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Halt-tag cache line using 5 bit wide halt tag . . . . . . . . . . . . . . . . 17
3.3 Block diagram of the data cache . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Dual-port Block RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Z-Scale datapath with SHA logic implemented. . . . . . . . . . . . . . . 19
3.6 Three stages of RISC-V Z-Scale processor. . . . . . . . . . . . . . . . . 20
3.7 RISC-V Z-Scale pipeline with additional memory pipeline. . . . . . . . . 21
3.8 Data dependency bit (DDB) memory access . . . . . . . . . . . . . . . . 22
3.9 Z-Scale datapath with ELD3 logic implemented. . . . . . . . . . . . . . . 23
3.10 The impact of displacement when SHA and ELD3 are combined. . . . . . 24

5.1 L1 DC ways accessed depending on the bit-width of the halt tags . . . . . 32
5.2 Zero and one way access rate depending on bit-width of the halt-tag . . . 33
5.3 Difference in speculation accuracy when using valid bit for halt tag . . . . 34
5.4 Total SHA load energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.5 Loads operation that only access one L1 DC data way using ELD3 . . . . 36
5.6 Total L1 DC energy when using ELD3 relative to energy usage for baseline 37

xi



5.7 Load distribution between SHA and ELD3. . . . . . . . . . . . . . . . . 40
5.8 L1 DC energy for SHA+ELD3 . . . . . . . . . . . . . . . . . . . . . . . 41

xii



Abbreviations

AMAT = Average Memory Access Time
APB = Advanced Peripheral Bus
ASIC = Application Specific Integrated Circuit
CPU = Central Processing Unit
CPI = Cycles Per Instruction
DC = Data Cache
DDB = Data Dependency Bit
DRAM = Dynamic Random Access Memory
DSL = Domain-Specific Language
DTLB = Data Translation Lookaside Buffer
EECS = Energy Efficient Computing Systems
ELD3 = Early Load Data Dependence Detection
FIFO = First-In, First-Out
FPGA = Field-Programmable Gate Array
GCC = GNU Compiler Collection
HCL = Hardware Construction Language
HDL = Hardware Description Language
ILP = Instruction Level Parallelism
IPC = Instructions Per Cycle
IoT = Internet of Things
ISA = Instruction Set Architecture
LRU = Least Recently Used
PC = Program Counter
PTC = Partial Tag Comparison
RAM = Random Access Memory
RISC = Reduced Instruction Set Computing
SHA = Speculative Halt-Tag Access
SHMAC = Single-ISA Heterogeneous MAny-core Computer
SRAM = Synchronous Random Access Memory
STA = Speculative Tag Access
VHDL = VHSIC Hardware Description Language
VHSIC = Very High Speed Integrated Circuit
WHC = Way-Halting Cache
XOR = Exclusive OR

xiii



Chapter 1
Introduction

A few decades ago, computing was only done by large mainframes, used for banking
transactions, airline reservations, enterprise resource planning and in the industry. In the
early 1990s, personal computers (PC) made their way into the homes of regular people.
Since then, there has been huge development in the computing front. In the later years, the
embedded area was introduced with small computers, such as microcontrollers. Today,
embedded systems are in house appliances, wearables, electrical devices and industrial
devices, and many of these devices such as smartphones carry more computing power than
what was available in the early computers. The fact that computers have shrunk in size has
led to an increased use of embedded systems in a wider range of applications. Today many
of these systems are battery operated and often in places where recharging or replacing the
batteries is not possible. With the increased growth of the Internet of Things (IoT), the
need for energy efficient computing systems is more important than ever. This is why
the researchers and semiconductor industry are using a significant amount of resources in
increasing energy efficiency by developing embedded systems such that it consumes as
little power as possible.

For several decades, increased computing performance could be achieved by aggressively
exploiting more and more instruction level parallelism (ILP). The rate of advancements
was quick, due to rapid improvements in production technology. Moore’s law and Dennard
scaling worked together to increase the performance of CPUs while still maintaining a
reasonable power consumption.

Dennard scaling was based on the observation that the power consumption of a CPU could
be kept constant when adding more transistors, as long as the transistor’s threshold voltage
was reduced accordingly (Dennard et al., 1974). Unfortunately, sub-threshold leakage
increases exponentially when the threshold voltage is reduced (Taur and Nowak, 1997). A
reason for this is the short-channel effects, which became significant when the feature size
of semiconductors went below 100 nm (Oh et al., 2000). This has led to the end of Dennard
scaling (Esmaeilzadeh et al., 2011), but Moore’s law has kept on going. This phenomenon

1



Chapter 1. Introduction

has caused the size of transistors to scale down faster than their power consumption. Thus,
it is only possible to have a subset of the transistors active at any given time if the chip
is to stay within its power budget. Having transistors that cannot be used simultaneously
with other transistors, is known as the dark silicon effect (Esmaeilzadeh et al., 2011).

A heterogeneous computing architecture is one way of solving this challenge (Borkar and
Chien, 2011). In such an architecture, different types of cores are used for different ap-
plications where they are best suited for maximum energy efficiency. The less energy
efficient cores are switched off as long as that application is running. Accelerators can
also be added to a heterogeneous computer architecture. Accelerators are specialized units
optimized for performing a specific application very energy efficiently. If the application
is not running, the accelerator is switched off.

Even with a heterogeneous computing architecture, it is still important that each core is as
energy-efficient as possible (Själander et al., 2014). The usual techniques also apply to the
cores in a heterogeneous computing architecture. Caches for instance, are commonly used
to improve the speed and energy-efficiency of memory accesses. The fact that the memory
subsystem has become one of the largest contributor to overall energy consumption, beside
the processor, makes the implementation of caches even more important (Nevine AbouG-
hazaleh and Melhem, 2005).

Efficient level-one data cache (L1 DC) accesses are important as they occur frequently
and are performance critical. L1 DC caches are usually set-associative, which means that
a given line in memory only can be stored in a specific set in the L1 DC consisting of
multiple ways. This reduces the access time for the requested data compared to using
fully-associative cache where the data can be stored in any cache block inside L1 DC.
Conventional level-one caches perform accesses to both the tag and data ways in parallel
to avoid reducing the system performance. However, parallel access waste energy as all
ways in the cache are accessed in parallel even though the data can reside in at most one
of them. Several different access techniques have been proposed in order to reduce the
overall energy usage by limiting the number of ways that are accessed. However, the L1
DC is time-critical and by increasing the critical path, the CPU clock rate will decrease
and may increase the energy disspiation.

This project is exploring the energy efficiency of the L1 DC, by implementing the specu-
lative halt-tag access (SHA) and early-load data dependency detection (ELD3) techniques
in the SHMAC architecture. Both techniques are first implemented and evaluated indi-
vidually, before combining both techniques. The first technique, the speculative halt-tag
access (Moreau et al., 2016), can be performed when the displacement for address calcula-
tions is small. This approach is accessing the low-order tag bits for each way in the address
generation stage that act as a filter for which tag and data ways of the set-associative L1
DC to access in the memory stage. Should the speculation fail, the cache is accessed
conventionally during the memory stage with no impact on performance.

Figure 1.1 shows a high-level overview of a three-stage pipeline with the SHA technique.
In the execute stage the base address is read from the register file and used to access the
halt tag bits. A comparison of the base address and the relative address is done to check
if the speculation succeeds. If the speculation succeeds, the hit vector from the halt tag

2



comparision is used to access the tag and data ways in the memory stage. If the speculation
fail, the bits in the hit vector is set to ones, indicating that a conventional data access needs
to be performed in the memory stage where all tag and data way are accessed.

Instruction 
memory in

st
addrPC Register 

file

Sign 
extend

Halt-Tag 
Cache

A
L
U

=

Data 
memory

ways

rdataaddr

1111

DECODE / ADDR-GEN DATA-ACCESSFETCH

Figure 1.1: Three-stage pipeline with the SHA technique

The second technique is the early-load data dependency detection (ELD3), that can detect
if the load operation has a data dependency with a following instruction that will cause
pipeline stall. If there is a data dependency, the tags and data ways are accessed in parallel
to avoid stall cycles. If there is no data dependency between the load instruction and
the following instructions, the tag and data ways for the load operation are performed
sequentially, where all tags are accessed but only one data way in which the data resides is
accessed in the next cycle. Figure 1.2 shows a high-level overview of a four-stage pipeline
with the ELD3 technique. In the execute stage, a data dependency bit (DDB) memory,
consisting of dependency information for all load instructions in L1 IC is accessed. The
dependency bit from the DDB memory is used to decide if the load operation will be
perfomed sequentially with tag way access first, and data way access in the next cycle, or
if the load operation will be performed parallelly with both tag and data ways accessed
in the same cycle. As the instruction reaches writeback stage, a dependency information
check is performed in order to keep the DDB memory updated.

Instruction 
memory in

st

addrPC Register 
file

Sign 
extend

DDB
memory

A
L
U

Data 
memory

ways

rdataaddr
Tag 

memory

addr rdata

Load

DECODE / ADDR-GEN TAG-ACCESSFETCH DATA-ACCESS

Figure 1.2: Four-stage pipeline with the ELD technique

3



Chapter 1. Introduction

The remainder of this document is organized as follows: Section 2 gives an overview of
memories and their challenges, the SHMAC framwork and the RISC-V ISA. Section 3
describes the implementation of SHA and ELD3 techniques and both combined. Section 4
describes the evaluation methods used in this project, followed by an evaluation with re-
spect to performance and energy savings in Section 5. Section 6 reviews related work and
Section 7 concludes this document with suggestions for future work.

4



Chapter 2
Background

In this section, the relevant background theory needed to understand the work in this
project is presented. It gives the necessary knowledge to understand caches and the
SHMAC architecture.

2.1 The Memory Wall

The performance increase of computational logic has outpaced the performance increase
of memories for many years. Most of the reasons for this disparity are because of decisions
made in the early 1980s. One of the main reason was the division from the semiconduc-
tor industry into microprocessor and memory fields. This led to the fields heading into
different directions. While speed and performance was the main focus for CPUs, the ca-
pacity was the focus for memories (Carvalho, 2002). This resulted into a gap, as shown
in Figure 2.1, where the improvement rate for microprocessor performance was 60% per
year, while the access time to DRAM improved less than 10% per year (Carvalho, 2002).
This observation is known as the memory wall, and can be traced back to 1994 when
Dr. Wulf and Dr. McKee published a short paper about hitting the memory wall (Wulf
and McKee, 1994). The Equation 2.1 which calculates the total average access time for
a memory request, was used in the short paper to describe the reason for memory wall.
The access time was estimated by the cache performance (Tcache), the probability of a
cache hit (Pcache hit) and the performance of main memory (Tmem). In the paper, it was
assumed that the cache speed matched the speed of the CPU. The central argument of the
short paper was that diverging exponential increase in performance of CPUs and memory,
would drive drive the system performance to be completely memory-dominant.

Taverage = Tcache × Pcache hit + Tmem × (1− Pcache hit) (2.1)

5



Chapter 2. Background

In the last years, it turned out to be difficult for DRAM technology to follow the pace of the
processor scaling. As a consequence, the access time for main memory eventually became
dominant, thus the bottleneck in computer performance. The short paper only considered
challenges with access latency. In addition to the access latency, DRAM today also faces
challenges from the increased bandwidth and high energy consumption. Today memory
wall can be seen as latency, power, scalability, and bandwidth (Zhang, 2014).

Figure 2.1: The increasing difference between CPU speed and memory speed is known as the
memory wall (Borkar and Chien, 2011)

2.1.1 Storage technologies

Random-access memory (RAM) comes in two types: Static RAM (SRAM) and Dynamic
RAM (DRAM). SRAM stores each bit in a memory cell, where each cell is implemented
with a six-transistor circuit. An important attribute with the memory cell is that it can stay
indefinitely in either of two states. Due to this bistable attribute of the memory cell, it
will retain its value as long as it is kept powered. DRAM memories in the other hand is
very sensitive to any disturbance, and needs to be refreshed periodically to prevent data
loss. This leads to a significant decrease in performance as shown in table 2.1, because
the memory is not available for a normal read or write operation while the memory re-
fresh is performed. Because DRAM cells use fewer transistors than SRAM cells, DRAMs
have higher density, thus usually used for main memory and lower level caches where the
capacity is important.

Transistors per bit Relative access time Persistency Relative cost

SRAM 6 1x Yes 100x
DRAM 1 10x No 1x

Table 2.1: Characteristics of SRAM and DRAM memories

Figure 2.2 shows the trade-off between cache sizes and power dissipation for different
transistor budgets. The insight here is that there is a trade-off between the amount of

6



2.1 The Memory Wall

Figure 2.2: Transistor integration capacity at a fixed power envelope (Borkar and Chien, 2011)

computational logic and cache that can be integrated within a fixed power envelope. As
computational logic is more power intensive than cache, integrating a larger cache can be
used to keep the power dissipation low.

2.1.2 Memory system hiearchy

The performance of the CPU-memory interface is usually measured by two parameters:
the latency and the bandwidth. The latency is the time between the initial memory request
by the processor and the memory response, while the bandwidth the rate at which the data
transferring can be performed to or from the memory. In a best-case scenario there would
be zero latency and unlimited amount of bandwidth. Unfortunately, the memory gap re-
sults in high latencies between the processor and memory. Memory hiearchy provide one
way of decreasing the memory latencies and reducing the bandwidth requirements. A
memory hiearchy is a hiearchy of storage devices with different capabilities, costs and
access rates. There are well known tradeoffs on memory hiearchies between cost, system
performance and memory size. To provide the CPU with necessary data as quick as pos-
sible, the frequently used data is stored in the caches that are placed closer to the CPU.
These are small, but fast caches consisting of a subset of data stored in relativley slower
memory levels. Figure 2.3 shows a typical memory hiearchy structure existing in today’s
computers. L1 cache is usually placed on-chip and close to the CPU in order to expoloit
locality by keeping data likely to be used again as close as possible. If there is a cache
miss in L1 cache, the search request will begin for L2 cache, which is often larger than L1,
thus results in higher latency. With each cache miss, the search proceeds to the next level
memory until the requested data is found.

7



Chapter 2. Background

Early memory architectures used unified caches, known as Princeton architecture, where
both instructions and data were stored in the same cache (Ghoshal, 2011). Instructions
and data usually have different access patterns, and access different parts of memory. In
addition, the instructions and data have to compete for cache lines, which results in in-
creased cache trashing because instructions and data are conflicting. Therefore, in today’s
memory architectures the instructions and data are often stored into separate caches, where
instruction cache only stores instructions and data cache only stores data.

Functional units

Registers

Internal cache (L1)

External cache (L2)

Main memory

CPU

physical 
memory

expensive
fast

small

cheap
slow
large

Figure 2.3: A hiearchy with on-chip and off-chip memories

Associativity

In order to reduce the search time for a data requests, the caches often have a restricted
placement policy based on an entry’s locality. Cache hit is then detected through an asso-
ciative search of all tags, instead of searching through the entire cache. This is known as
the cache associativity, and there are three main methods:

• Direct-mapped cache: Entries can go to exactly one place in the cache.

• N-way set associative cache: Entries can go to one of N places in the cache.

• Fully associative cache: Entries can go to any place in the cache.

A lower associativity leads to a less complicated and faster cache, because the data can
only reside in less cache lines. However, it will increase the miss rate due to possible
increase of cache conflicts. Conversely, a cache with higher associativity will have fewer
conflict misses, but will also be slower and more complicated. This represents a trade-off,
which CPU designs will have to take into account. For example, the L1 cache has to be
fast, so it is advantageous to stick to a limited associativity. However, the L1 cache is
also usually quite small, and a higher associativity can increase the effective use of the
cache. In practice, most commercial CPUs have a 4-way or 8-way L1 cache. Increasing
the associativity beyond this level shows less benefit. Figure 2.4 shows a four-way set
associative virtually indexed, virtually tagged cache. The index bits from the memory

8



2.2 Dependencies in pipelined processors

address are used to locate to the corresponding set in the cache. The tag bits from memory
address are compared with tag arrays, while the offset bits from memory address is used
to get the correct word the data array.

Address Tag Index Offset

Tag OffsetIndex Tag Tag TagIndex Offset Index Offset Index Offset

Way Select-2 Data-2 Way Select-3 Data-3

Figure 2.4: 4-way set associative cache with separate tag and data arrays

It is the division of caches into sets that enables the speculative halt-tag access(SHA)
technique to selectively disable some of the ways without impacting the functionality of
the cache. Other techniques have also exploited this, and some of them will be discussed
in Section 6.

2.2 Dependencies in pipelined processors

• Structural dependency: When there is a resource conflict in the pipeline, where
more than one instruction tries to access the same resource.

• Control dependency: When there is a control instruction such as branch, call, jump
etc. The target address is not known before during execution.

• Data dependency: When an output of one instruction is required as an input for
one of the next instructions in the pipeline.

There are several approaches to deal with these dependencies. Structural hazards are often
common when unified caches are used, causing resource conflict when there is a instruc-
tion fetch and load or data operation in same cycle. Although separate instruction and
data caches are used in this project, structural hazard is one of the drawbacks of the ELD3

technique which will be discussed in Section 5.2. To avoid control dependencies, branch

9



Chapter 2. Background

predictors are often used to predict the outcome of a control instruction. Compile-time
scheme such as loop-unrolling is also used to reduce loop branches. Data hazards can sim-
ply be avoided by forwarding data from the memory stage as long as the data is received
from memory. Data forwarding is necessary for the ELD3 technique to operate correctly
as parallel accessed data needs to be forwarded from tag/data access stage in order to avoid
a stall cycle. This will be discussed in Section 3.2.

2.3 The Single-ISA Heterogeneous MAny-core Computer
(SHMAC)

In order to explore the challenges and possibilities of heterogeneous computing systems,
the EECS group at NTNU has initiated the Single-ISA Heterogeneous MAny-core Com-
puter (SHMAC) research project. SHMAC itself is an infrastructure created with the pur-
pose of investigating heterogeneous computing systems at all abstraction levels. Within
this framework, different heterogeneous processors can be instantiated from a collection
of processing tiles. These processing tiles may be very different in their implementations,
but the programming model is the same for all tiles. This common programming model is
achieved by implementing the same memory model and ISA for all tiles.

Figure 2.5: The high-level architecture of SHMAC

As stated above, SHMAC is a tile-based architecture. This means that the tiles are placed
in a grid, with connections to their nearest neighbors. These connections are ordered in a
mesh, and as such the connections go to neighboring tiles north, south, east and west of
the tile, but not diagonally. Additionally, tiles at the edge of the grid does not have any
outward-facing connections. The grid has to be rectangular, but not necessarily square.
An illustration of this can be seen in Figure 2.5.

10



2.3 The Single-ISA Heterogeneous MAny-core Computer (SHMAC)

The heterogeneous aspect of the SHMAC architecture is enabled by having different types
of tiles. These tiles have different functions, but they all have to implement the SHMAC
router interface as a minimum requirement. SHMAC currently has these types of tiles:

• Processor Tile: Contains a processor, caches and peripherals, and can optionally
also contain accelerators.

• Scratchpad Tile: Contains a memory, but no processor. This is a software-managed
on-chip memory, with an address space of 128 MB.

• Main Memory Tile: Contains a memory controller used for giving SHMAC access
to off-chip memory.

• APB Interface Tile: Contains an Advanced Peripherals Bus (APB) slave. This is
used for communication between SHMAC and the host machine, and gives the host
machine access to SHMAC’s memory space.

• Dummy Tile: Contains only the router, and does not do anything else. Because this
tile uses few resources, it is useful for making the grid rectangular on a resource-
constrained FPGA.

2.3.1 The SHMAC Processor Tile

Figure 2.6: Overview of the SHMAC processor tile

11



Chapter 2. Background

In addition to the router, the SHMAC processor tile contains a CPU core, instruction and
data caches, and tile peripherals. The tile peripherals include tile registers and tile memory,
and can optionally contain a scratchpad and an accelerator. The CPU core itself may also
implement an accelerator. This is illustrated in Figure 2.6.

The CPU core implemented in the SHMAC processor tile is a modified version of the
3-stage pipelined version of the RISC-V Sodor CPU, also known as the Z-Scale (Celio
and Love, 2014). In addition to the 3-stage pipeline, there are also a number of other
RISC-V integer pipelines like 1-stage, 2-stage and 5-stage pipeline processors. The 3-
stage Z-Scale pipeline differs from the others in the sense that it uses sequential memory.
Figure 2.7 shows the datapath for the Z-scale processor. The frontend consists of instruc-
tion fetch stage, while the backend consists of execute and memory/writeback stage. This
processor is implemented in Chisel, and supports the RV32IS instruction set architecture
(ISA), which is 32-bit integer RISC-V ISA with supervisor mode implemented, such that
the RISC-V proxy kernel (riscv-pk) can be executed. The modifications done to the CPU
core by the SHMAC project include, but is not limited to, support for external interrupts,
support for variable latency memory with back pressure, support for multiplier and divi-
sion instructions, support for load-reserved/store-conditional instructions and support for
the SHMAC specific store-forward instruction.

+4

ir[24:20]

pc+4

ta
ke

 b
r,

st
al

l

ir[31:20]

rs1

ALU

Decoder

Control
Signals

w
b_

se
l

PC

IR

ir[19:15]

ir[31:25],
ir[11:7]

jalr

rs2

br or jmp

Fetch Stage Execute Stage

PC

BType Sext

ir[31:12]

Op2Sel

AluFun

Reg
File

addr da
ta

Reg
File

rf_
w

en

wa

w
d

en
ALU

Writeback Stage

evec

rs2

bypasses

ctrl signals

csr addr

rs1
rs2

UType
ir[31:12]

csr_fcn

ctrl 

bubble

+

Branch & Jump
TargGen

JType Sign 
Extend

adder

ha
za

rd
 / 

XC
PT exception

xcpt

exception 
OR
eret

PC

-4

PC

CSRs
addr

wdatapc rdata

xcpt/eret

Branch
CondGen

br_eq?
br_lt?
br_ltu?

IType Sext

Front-end (FE)

NPC 
Stage

Memory
addr

wdata

rdata

wb
hazard

stall front-end 
(IF/Exe)

Back-end (BE)

ir[11:7]

SType Sext

val val

true
!take_br 

Memory da
taval resp

addr

pc

Op1Sel

(BE rdy)

ir[31:20]

imm_z

op

imm_u

(BE rdy)

(BE rdy)

ctrl_valid

CSRs hold control/
status registers and 

other uarch-
counters

wb addr

Figure 2.7: Overview of the 3-stage Z-scale core

12



2.3 The Single-ISA Heterogeneous MAny-core Computer (SHMAC)

2.3.2 Mesh configuration

In this project, heterogeneity and multicores have not been an area of focus. Therefore,
a minimal instantiation of the SHMAC architecture has been employed. This SHMAC
processor consists of a processor tile, a main memory tile, an APB interface tile, and a
dummy tile to fill the rectangle, thereby creating a 2×2 grid. Figure 2.8 shows a high-level
overview. A more detailed overview will be provided in Section 3.

APB

RAM

CPU

Figure 2.8: High-level architecture of the SHMAC instance used in this project

2.3.3 The RISC-V ISA

Previous iterations of the SHMAC project were based on the ARMv4t (ISA) (Lefsaker,
2014). This ISA is proprietary, which is problematic for a scientific research project. In
order to facilitate the heterogeneous computing in SHMAC, it would be beneficial to use
an ISA that is easily extensible. It was therefore decided to abandon ARMv4t in favor of
RISC-V.

The RISC-V ISA is an open instruction set architecture that is freely available to academia
and industry (Waterman et al., 2016). It was originally designed to support computer
architecture research and education.

RISC-V has several design features that makes it well suited for use in the SHMAC project,
in addition to being open. First, it has a small base integer ISA, that is entirely usable by
itself. Second, RISC-V is not specifically designed for a particular microarchitecture or
implementation technology. Third, it can be specialized and extended to a large degree.
These features make RISC-V a good fit for the heterogeneous computing of SHMAC.

2.3.4 Addressing mode

There are four core instruction formats (R/I/S/U) in the base RISC-V ISA, where all in-
struction formats are fixed 32 bits in length and must be aligned in a four-byte boundary
in memory. Figure 2.9 shows the four core instruction formats and the semantics of the
positions of the instruction formats. Instructions such as ADD, SUB and AND and other
register-register operations, are encoded in the R-type instruction format whereas register-
immediate operations such as ADDI, SLTI and load instructions are encoded in I-type

13



Chapter 2. Background

instruction format. Store operations are encoded in S-type. Like in many other ISAs, the
RISC-V ISA keeps the same position for source (rs1 and rs2) and destination (rd) registers
in all instruction formats at the expense of having to move immediate bits across formats.
Bearing in mind that decoding register specifiers often is on the critical paths in the im-
plementations, keeping the register specifiers at the same position makes the instruction
decoding simpler and faster.

opcoderdfunct3rs1rs2funct7
31 25 24 20 19 15 14 12 11 7 6 0

R-type

opcoderdfunct3rs1imm[11:0] I-type

opcodeimm[4:0]funct3rs1rs2imm[11:5] S-type

opcoderdimm[31:12] U-type

Figure 2.9: RISC-V base instruction formats.

2.3.5 Chisel

Hardware description languages (HDLs) are languages used for developing hardware.
Among the most commonly used are VHDL and Verilog. In this project, Chisel is used.

Chisel is a hadware construction language (HCL) developed at UC Berkeley (Bachrach
et al., 2012). Many HDL languages such as Verilog were designed first to be simulation
languages. Chisel is designed specifically for constructing actual hardware (Celio and
Love, 2014). It is embedded in the Scala programming language, and supports advanced
hardware design. Chisel aims to reduce the hardware development time by being a more
flexible alternative to VHDL and Verilog. Because Chisel is embedded in Scala, it provides
a high abstraction level for the hardware design, and supports many advanced program-
ming concepts, such as object orientation, functional programming, parameterized types,
and type inference. When compiled, Chisel can generate a C++-based software simulator
or Verilog code for synthesis on an FPGA or an ASIC.

14



Chapter 3
Implementation

The aim of this project was to implement the speculative halt-tag access (SHA) and early
load data dependency detection (ELD3) approach into the SHMAC architecture to evalu-
ate their effectiveness and potential to reduce the energy dissipation. Section 3.1 covers
the implementation of SHA. Section 3.2 covers the implementation of Early Load Data
Dependence Detection (ELD3), followed by Section 3.3 which covers the combined im-
plementation of SHA and ELD3.

3.1 Speculative Halt-Tag Access (SHA)

The speculative halt-tag access (SHA) technique is an approach to determine which tag
and data ways need to be accessed during the beginning of the memory stage. The idea
is to access the low-order bits of the tag in the address generation stage together with the
calculation of the relative address. It is then possible to exclude accesses to cache ways in
the memory stage that cannot possibly contain the requested data. This technique is based
on the observation that the address displacement is often small, and often only change the
offset of the relative memory address. This makes it possible to use the index of the base
address to get the halt tags in parallel with the relative address calculation that is used to
access the particular word in a cache line.

Figure 3.1 shows how a check is done to know if the address displacement is too large for
the SHA technique. We simply add the base address and displacement together, and then
compare the high-order bits of the result of the addition with the high-order bits of the
base address. If the address displacement is too large, the line index and tag are likely to
change during the relative address calculation, thus in these cases the halt tag should not
be accessed. When there is a deeper pipeline with a separate decode stage, the sign and

15



Chapter 3. Implementation

Base Address Displacement

+

Effective Address

=

[Tag & Index]

[Tag & Index]

Speculation outcome

Figure 3.1: Halt-tag address calculation

width of the displacement can be checked earlier by performing an AND and OR on the
higher bits.

Initially, the halt-tag cache is getting the base address from the datapath. Since the base
address can be a memory request to a location that may not be in the cache region, we
first need to check if the base address is pointing to a location within the cacheable region.
This is simply done by checking the upper level bits of the base address to determine if the
address is within the range. If the base address is not within the region, the halt-tag request
is disregarded, and we know that the memory request in the next clock cycle will need to
get the data directly from main memory. If the base address is within the cache region, the
index of the base address is first used to access the halt tags from all ways. We also check if
there is a write request to the same index position we are looking to get the halt tags from.
If that is the case, we need to forward the halt tags from the write port so we get the correct
halt tags. Another approach to get the correct halt tags would be to stall the pipeline to let
the halt tags be written to the cache before performing a halt-tag access to read the correct
halt tags from all ways. This would make the halt-tag cache simpler, because only a single
port would be used to do the reading and writing of the halt-tag cache. However, it would
not only decrease the overall performance due to the additional pipeline stalling, but it
might also increase the energy dissipation. When the halt tags have been accessed from
all ways, the halt-tag comparison is performed, where the halt tag from the base address is
compared with the stored halt tag of each way. If there is a halt-tag match between the halt
tag from the base address and the halt tag from a way, the bit corresponding to the way in
the response vector is set to 1 to indicate that there is a halt-tag match. When the halt tags
of all ways are compared, the response vector is sent to the datapath to be used in the next
clock cycle.

16



3.1 Speculative Halt-Tag Access (SHA)

3.1.1 Implementation of the Halt-Tag Cache

Figure 3.2 shows what a halt-tag cache line looks like. In this case the halt-tag width is
set to 5 bits. In Section 5 we show how the performance results vary when we change
the halt-tag width that is stored in the halt-tag cache. We also show how much impact the
stored valid bit has to speculation accuracy.

V Halt-tag
045

Figure 3.2: Halt-tag cache line using 5 bit wide halt tag

There are several possible ways to store the halt tags. However, we wanted to add a low
amount of complexity to maintain the halt tags whenever the data cache was updated.
Figure 3.3 shows how the halt-tag cache is implemented, together with the existing data
cache. Memory requests from the datapath are connected to the storage module, which
consists of the halt-tag cache and data cache. Instead of using a separate state machine
for the halt-tag cache, the state machine for the data cache from the CoreFSM module is
used to control the halt-tag cache. For example, if a cache line in the data cache is to be
invalidated, the halt tags for the corresponding cache line will also be invalidated in the
halt-tag cache by observing that the data cache is in the invalidate state. We also added
performance counters to the CoreFSM module to get statistics during execution.

Storage

Halt-tag
Cache

Data 
Cache

MSHR

MemResp

CoreFSM

MemReq

WriteBuf

Halt-tag 
req/resp

Core req

Mem resp 
(fwd)

Mem req 
(fwd)

Mem req

Mem resp

PerfCounters MergingWBCore resp

Figure 3.3: Block diagram of the data cache

We decided to implement a dual-port Block RAM with two independent ports that enable
shared access to a single memory space where the halt tags are stored. Port names, includ-

17



Chapter 3. Implementation

ing the control signals for the Block RAM, are shown in Figure 3.4. Port A provides read
and write access to the memory. This port is used when the data cache is modified and
the halt-tag cache needs to be updated with a write operation. Port B only provides read
access to the memory, which is used when there is a request from the processor.

a_dout

b_dout

Halt-tag
Cache

a_wr

a_addr

a_din

a_oe

b_addr

b_oe

Figure 3.4: Dual-port Block RAM

As mentioned in Section 2.3.1, the implemented CPU-core is a modified 3-stage pipeline
version of the RISC-V Sodor CPU, also called Z-Scale. Figure 3.5 shows the the datapath
of the Z-Scale processor with SHA implemented. The execute stage is modified with new
logic and functionality for SHA, and the resulting hit signals from the execute stage are
routed to the enable-inputs of the data cache. The rest of the datapath remains unchanged
from the original Z-Scale processor. The displacement checker decides whether or not a
halt-tag access should be performed. If the displacement is too large, the vector ’1111’ (in
the case of a 4-way set associative scheme), will propagate to the memory stage, which
means that a conventional data access will be performed, where all ways are accessed.
When the displacement is small, the control signal b oe of the halt-tag cache will be set,
meaning that it will perform a read access. The halt-tag cache will use the base address to
look for halt-tag matches and output a vector with a length equal to the number of ways.
The vector is then propagated to the memory stage to control which way to access.

18



3.1 Speculative Halt-Tag Access (SHA)

+4

PC

!take_brval val

true

PC

+

IR

JType 
Sign Extend

Displacement
 check

Decoder

BType 
Sign Extend

SType 
Sign Extend

UType 

IType 
Sign Extend

Register 
file

A
L
U

wb_addr

ALU

Instruction 
memory

resp

d
a
ta

addr

val

Halt-Tag 
Cache

Register 
file

 -4

CSRs

xcpt/eret

rdata

addr

wdata pc

rf_wen

op

xcpt

bubble

ctrl

evec

Data 
memory

ways

rdataaddr

wdata

jalr

br or jmp

pc +4

pc

take br,
 stall

ir[11:7]

ir[31:20]

ir[31:12]

ir[31:25]

ir[11:7]

ir[31:12]

ir[24:20]

ir[19:15]

a
d

d
r d

a
ta

w
d
a
ta

enwaddr

Branch & Jump

TargGen

ctrl

ctrl

imm_z 

imm_u

1111

csr_fcn

br_eq?
br_it?
br_ltu?

Branch
CondGen

Base
addr

rs2_data

rs2_data

rs1_data

PC

rs2_data

ctrl

ir

Figure 3.5: Z-Scale datapath with SHA logic implemented.

19



Chapter 3. Implementation

3.2 Early Load Data Dependence Detection (ELD3)

The speculative halt-tag access (SHA) technique eliminates accesses to cache ways that
cannot possibly contain the requested data when the address displacement is small. When
the address displacement is too large for the SHA technique, all four ways are accessed
in parallel during the load operation. To reduce the energy dissipation for load opera-
tions with too large displacement, another technique, early load data dependence detection
(ELD3), has been implemented into the SHMAC architecture, which will be presented in
this section.

The early load data dependence detection (ELD3) is an approach that can detect if the
load operation has a data dependency with a following instruction that will cause pipeline
stall. If there is a data dependency, the tag and data ways are accessed in parallel to avoid
stall cycles. If there is no data dependency between the load instruction and the following
instructions, the load operation is performed sequentially, where all tag ways are accessed
but only one data way in which the data resides is accessed in the next cycle.

Figure 3.6 shows the three stages of the RISC-V Z-Scale processor. In the instruction fetch
stage, the instruction cache is accessed to get the requested instruction word. During the
next stage, the decoding and arithmetic operation are performed, which means that it is
known before the beginning of the memory stage if it is a load instruction. The calculated
output from the arhitmetic operation is used as memory address to access the data cache
if it is a memory operation, before eventually writing back to the register file. When there
is a load or store operation, both tag and data ways are accessed parallelly in the same
cycle. Given that the data we are looking for during a load operation only can reside in
one of the ways, a significant amount of energy is wasted due to the parallel access to
avoid additional stalls.

Instruction 
cache

Register
file

A
L
U

Tag/Data
cache

Figure 3.6: Three stages of RISC-V Z-Scale processor.

In order to access tag and data ways over two consecutive cycles, an additional pipeline
must be implemented. Figure 3.7 shows the additional pipeline, such that the data accesses
can be performed over two clock cycles. If the data access is perfomed parallelly due to
data dependency, both tag and data ways are accessed in the first memory stage. If the data
access is performed sequentially, the tag ways are accessed in the first memory stage, while
a single data way is accessed in the second memory stage using the tag hit signal from the
tag access stage. Store operations to data caches are usually performed sequentially. That
is because the tag comparison must be performed and the tag hit signal must be known
before the data can be written to the correct data way. By adding the additional pipeline

20



3.2 Early Load Data Dependence Detection (ELD3)

to enable sequential load accesses, the store operations can begin earlier by accessing the
tags in the first memory stage instead of the second stage. The store operations still takes
two cycles for most SRAMs that are synchronous, because the write to the selected data
array can not be done before the tag hit signal is known, which means that the additional
pipeline will not reduce energy dissipation for store operation.

Instruction 
cache

Register
file

A
L
U

Tag/Data
cache

Data
cache

Figure 3.7: RISC-V Z-Scale pipeline with additional memory pipeline.

To implement the ELD3 technique, the information about data dependency between the
load instruction and the following instructions must be available at the time of the load
operation. In a conventional in-order pipelined processor, the information must the avail-
able before the end of the address generation stage in order to decide if the tag and data
ways will be accessed conventionally in parallel, or if an extra pipeline stage will be used
to access the tag and data ways sequentially over two clock cycles when there is no data
dependency. As mentioned in Section 2.3.3, the register specifiers always have the same
position for all instruction formats in RISC-V ISA. This means that in an in-order pipeline,
it is possible to compare the destination register of the load instruction with the source reg-
isters of the instructions that enter the pipeline after the load instruction to detect if there
is a data dependency between the load instruction and the following instructions. How-
ever only using this method will not solve the data dependency detection required for the
ELD3 technique.

In a five stage in-order pipeline processor, usually there exist at least one instruction de-
code stage which is used for decoding and operations such as register file read. When a
load instruction is in address generation stage, it is possibe to check for data dependency
between the load instruction and the instruction that immediately follows it. However it is
not directly possible to check for data dependency between the load instruction in address
generation stage and the second and third upcoming instructions. In a three stage pipeline
processor such as the RISC-V Z-Scale where the decoding is done together with the ad-
dress generation stage, it gets even more difficult to directly check for data dependency
between the load instruction in address generation stage and the upcoming instructions.

3.2.1 Implementation of data dependency bit (DDB) memory

In this project, a practical approach is used that provides early detection of a dependency
on a load for most of the executed load instructions. For each instruction word in the L1
instruction cache, an extra bit is used to indicate if the instruction is a load instruction and
if the instruction has a dependency with any of the following two instructions. When an
instruction is decoded early in the address generation stage, a check is performed to to

21



Chapter 3. Implementation

identify if it is a load operation. If it is a load operation, a check is performed to identify
if there is a dependency between the load operation and the two upcoming instructions.
If a dependency is detected, the bit corresponding to the load operation is set to indicate
that the load operation should be accessed in the same cycle to avoid additional stalls. If
no dependency is detected, the bit corresponding to the load operation is cleared, such
that the tag and data ways are accessed sequentially over two clock cycles the next time
the load operation is executed. The dependency bit corresponding to the load operations
will be helpful in the decision making regarding sequential or parallel data access as long
as the cache line with the load instruction is not evicted from the L1 instruction cache.
If a cache line is evicted from the L1 instruction cache, the bits corresponding to the load
instructions might be incorrect. However, the load operation will still be executed correctly
with the correct response from the data cache even when the dependency bit is incorrect.
If the dependency bit for the load operation in the evicted cache line was cleared, the
load operation in the new cache line will only cause an additional stall cycle if it has a
dependency. The dependency bit for the new load operation is updated after it is executed
the first time. This simplifies the implementation as an access for the entire cache line is
not required to update the dependency bits for the instructions.

There are several possible ways to implement the accessing of dependency bits. One way
is to access the dependency bits together with the words in the instruction cache. This
method only adds one extra bit per word in the instruction cache, thus results in low over-
head in terms of bits. Also, the dependency information is known in the instruction fetch
stage, which gives the futher stages an additional cycle to prepare for the load operation
even before entering the instruction decode stage. However, the dependency bits will need
to be updated independently of the instruction word which complicates the design of the
instruction cache. Furthermore when the bits are stored together with the words in instruc-
tion cache, the dependency bit for all instruction will need to be read, since the instruction
type is not known in the instruction fetch stage.

Way 0 Way 1

1 0
0

1

1 1

0 1
0

1

INST-FETCH INST-DECODE/ADDR-GEN

Instruction
memory

PC

MEM-ACCESS

Load 
operation

"Set Index &
Line Offset"

IC Hit Way

Figure 3.8: Data dependency bit (DDB) memory access

Instead, a more practical approach is to implement a data dependency bit (DDB) memory,
where the bits are stored apart from the instruction cache. The advantage of separating the
dependency bits is that the DDB memory is only accessed if a load instruction is detected

22



3.2 Early Load Data Dependence Detection (ELD3)

from the instruction decoder. The bitwidth of the DDB memory is equal to the number of
ways in the L1 IC. The height of the DDB memory equals the number of sets in one L1
IC way multiplied by the number of instruction words per cache line. Figure 3.8 shows
how the DDB memory is accessed. When a load operation is detected after decoding, the
DDB memory is accessed using the set and line index bits of the program counter. The
DDB memory outputs the dependency bits for each way of the given set and line index.
For instance, the output from the DDB memory in Figure 3.8 is two bits wide, since the
L1 IC is a two-way set associative cache. To get the correct dependency bit, the L1 IC
hit vector is used to select the correct output from the multiplexer. To determine if there
is a dependency between a load instruction and the upcoming instructions, a conventional
in-order pipeline data dependency detector is used.

Figure 3.9 shows the modified datapath with an additional pipeline such that sequential
access can be performed. With an additional pipeline, a few components have been moved
from the original 3-stage pipeline. The Control and Status Registers (CSRs) is placed
in the tag-access pipeline because the input data for CSRs are availbale in the tag-access
pipeline. The forwarding logic has also been modified, because it now needs to forward
data from both tag-access stage and data access stage.

+4

PC

!take_br

val val

true

PC

+

IR

JType 
Sign Extend

Decoder

BType 
Sign Extend

SType 
Sign Extend

UType 

IType 
Sign Extend

Register 
file

A
L
U

ALU

Instruction 
memory

resp

d
a
ta

addr

val

Register 
file

CSRs

xcpt/eret

rdata

addr

wdata PC

rf_wen

xcpt

ctrl

evec

br_eq?
br_it?
br_ltu?

Branch
CondGen

Data 
memory

ways

rdataaddr

wdata

jalr

br or jmp

pc +4

pc

take br,
 stall

wb_addr

ir[11:7]

ir[31:20]

ir[31:12]

ir[31:25]

ir[11:7]

ir[31:12]

ir[24:20]

ir[19:15]

a
d

d
r d

a
ta

w
d

a
ta

enwaddr

Branch & Jump

TargGen

ctrl

imm_z 

imm_u

op
csr_fcn

Tag 
memory

addr rdata

DDB
memoryLoad

PC

Serial/Parallel

IC Hit Way

hit way
ALU

rs2_data

rs1_data

rs2_data

PC

alu_out
ir[31:20]

exception

ctrl

bubble

ctrl

 -4
PC

rs2_data

ways

ctrl

PC

PC

Figure 3.9: Z-Scale datapath with ELD3 logic implemented.

23



Chapter 3. Implementation

3.3 SHA + ELD3

When SHA and ELD3 have been implemented separately, both implementations can be
combined into the same core. As mentioned in Section 3.1, the SHA technique will only be
beneficial when the displacement is small enough such that the base address index matches
with the relative memory address index. Figure 3.10 shows how SHA and ELD3are chosen
for each load instruction. 1:When the displacement is small, the halt tags are accessed
but the DDB memory is not accessed. The tag and data ways are accessed in parallel, but
SHA will halt the both tag and data ways using hit vector from halt tag access. 2:When the
displacement is too large for SHA, the halt tags are not accessed, but the DDB memory
is accessed. The outcome of DDB memory will decide the next step taken. 2a: If the
DDB memory returns a dependency bit which is cleared, then the tag and data ways are
sequentially accessed. 2b: Or if the DDB memory returns a dependency bit which is set,
the tag and data ways are accessed in parallel, such that the data can be forwarded to the
following instruction to avoid a stall cycle.

DDB
memory

A
L
U

Data 
memory

ways rdata

addr

Tag 
memory

addr

ways

Load

A
L
U

ways

rdataaddr

PC

Address

Serial/Parallel

=
Halt-Tag 
Cache

Base
address

Displacement

Base
address

Displacement

Tag/Data 
memory

addr rdata

DECODE ADDR-GEN DATA-ACCESS

ADDR-GEN TAG-ACCESS DATA-ACCESS

SRAM-ACCESS

S
m

a
ll 

d
is

p
la

ce
m

e
n

t

Serial

Parallel

True

False

Address

IC Hit Way

1

2

a

b

Tag/Data 
memory

Figure 3.10: The impact of displacement when SHA and ELD3 are combined.

24



3.3 SHA + ELD3

Both SHA and ELD3 are implemented as separated modules in Chisel. In order to com-
bine both techniques and integrate the techniques into the existing SHMAC core, inheri-
tance is used to extend classes of baseline model with SHA and ELD3 classes. Because
the implementation of ELD3 requires several modifications of the existing baseline core,
the ELD3 code is integrated into the baseline module. This is illustrated in Code 3.1,
where ELDCore consists of code for the baseline and ELD3. Furthermore, the code for
SHA technique exists in SHACore class which extends the ELDCore in order to combine
both techniques together with the baseline. As mentioned in the Section 2.3.5, Chisel is
used in this project, which is an embedded Domain-Specific Language (DSL) written in
Scala, which introduces many new features and ways to design hardware. Scala is a multi-
paradigm programming language in the sense that it supports both object-oriented and
functional paradigms. One powerful feature built into Scala is lazy val values, which are
lazy initialization pattern. When a val is declared as lazy, the definition is not executed be-
fore the first time the value is accessed. This is frequently used for shared values between
the ELD3 and SHA module in order to only evaluate the val once on the first access.

Code 3.1: Extending SHA and ELD3 with the baseline

class ELDCoreIO extends Bundle{
val imem = new FrontEndCpuIO().flip()
val tmem = new CachePortIo(conf.xprlen)
lazy val dmem = new CachePortIo(conf.xprlen)
val ctl = new CtrlSignals().asInput

}

class ELDCore(cpuid: Integer) extends Module{
lazy val io = new ELDCoreIO
// Implementation of ELD

}

class SHACoreIO extends ELDCoreIO{
override lazy val dmem = new CachePortIo(conf.xprlen)
val htag_mem = new HTagPortIo(conf.shmacConf.d_ways)

}

class SHACore(cpuid: Integer) extends ELDCore(cpuid){
override lazy val io = new SHACoreIO
// Implementation of SHA

}

25



Chapter 3. Implementation

26



Chapter 4
Methodology

The caches in the SHMAC processor tile can be extensively configured. In this project,
the configuration parameters for L1 DC and L1 IC have been modified for different cases
during the evaluation process. However, unless something else is mentioned, the cache
parameters are set to the values shown in Table 4.1

Data cache lines 2048
Words per line 4
Ways 4
Halt tag bitwidth 5
Tile memory words 512
Tile scratchpad words 32768

Table 4.1: Standard cache configuration for L1 DC and L1 IC

The effectiveness of the SHA and ELD3 implementations were evaluated using the MiBench
benchmark suite (Guthaus et al., 2001). The following tests, distributed across the test cat-
egories automotive, network and office, were used:

• Bitcount (automotive): This test counts the number of bits in an array of integers.
The test includes five methods, and among those is an optimized 1-bit per loop
counter.

• Dijkstra (network): This test constructs a graph, and then calculates the shortest
path between every pair of nodes using repeated applications of Dijkstra’s algorithm.

• Qsort (automotive): This test sorts an array of strings into ascending order using
the quick sort algorithm.

27



Chapter 4. Methodology

• Stringsearch (office): This test searches for given words in phrases using a case
insensitive comparison algorithm.

The MiBench applications were compiled using the RISC-V GCC toolchain, which con-
sists of GCC, Binutils, newlib and glibc ports. A similar proxy kernel as the riscv-pk was
used on SHMAC to service system calls. The tests were performed on a computer running
the SHMACsim simulator. No testing on hardware was performed.

The applications with relatively straightforward build processes were used, as the more
complex builds were troublesome to cross-compile and run on SHMAC. In addition test
applications, such as basicmath and susan, were not able to read the input files during
execution. In other cases, different library files were not found, which made it difficult to
compile the applications without doing changes to the test program code. Therefore, only
test applications that worked out-of-the-box without considerable changes were chosen.

The implementation of SHA, ELD3 and SHA+ELD3 were evaluated by running MiBench
application individually on SHMAC. This made it possible to compare the results between
the different implementations. In addition to the performance counters for the baseline im-
plementation, new performance counters were implemented for SHA and ELD3 in order
to evaluate the output results. These performance counters were used to evaluate the tech-
niques and the energy savings presented in Section 5.

In order to test some of the added components, a few testbenches were created. The DDB
memory for the ELD3 technique, in addition to the dependency checker and halt-tag cache
modules for the SHA technique, were tested with these testbenches where random values
were loaded and stored into specific addresses.

4.0.1 L1 DC Energy

The effect of SHA, ELD3 and SHA+ELD3 on energy dissipation has been evaluated. The
same energy evaluation method is used as in the STA paper (Bardizbanyan et al., 2013).
Using Equation 4.1 and 4.2, the final energy values for load and store operations are ob-
tained.

Eread = 4× Edata read + 3× Etag read + Eperipheral (4.1)

Ewrite = 1× Edata write + 3Etag read + Eperipheral (4.2)

Energy evaluation for SHA

The numbers for tag arrays, data arrays and peripherals are sourced from the paper on
SHA (Moreau et al., 2016), and displayed in Table 4.2. These numbers form the basis for
obtaining the energy dissipation values for load operations in a baseline L1 data cache and
in an L1 data cache with the SHA technique implemented, down to a per-way granularity.

28



Component Energy (pJ)

Read Halt 19.1
Write Halt 17.7
Read Tag 19.1
Write Tag 17.6
Read Data 26.5
Write Data 27.2
Peripheral 18.8

Table 4.2: Component energy for the different parts of an L1 data cache using SHA technique.
Energy values from Moreau et al. (2016)

The energy dissipation numbers from Table 4.2 were used in the paper on SHA to quan-
tify the reduction of the energy dissipation in an L1 data cache that implements the SHA
technique. Table 4.3 shows a selection of the different data load access cases that can
happen, and their associated energy dissipation. Only those cases that are relevant for the
implementation of SHA in this project are included. BL is a baseline load in a standard
L1 data cache, that does not implement the SHA technique. SHA0 is the case where the
displacement is too large, so the halt tags are not accessed, and the load is performed with-
out SHA. SHA2:X (gray rows) represents a successful speculative load, where X is the
number of matching halt tags. This number corresponds to the number of ways in the L1
data cache that has been halted. The final case for loads is SHA3, where the displacement
is low enough that a speculation is performed, but the speculation fails, so all ways have
to be accessed anyway.

Case Read Halt Read Tag Read Data Peripheral Energy (pJ)

BL 3 4 1 182.1

SHA0 0 4 4 1 201.2
SHA2:0 1 0 0 1 37.9
SHA2:1 1 1 1 1 83.5
SHA2:2 1 2 2 1 129.1
SHA2:3 1 3 3 1 174.7
SHA2:4 1 4 4 1 220.3
SHA3 1 4 4 1 220.3

Table 4.3: Components accessed for each load case, and the total energy dissipation. Adapted
from Moreau et al. (2016)

29



Chapter 4. Methodology

Energy evaluation of ELD3

Table 4.4 shows the energy for different components of the L1 DC when using the ELD3 tech-
nique. The load and store operations include energy dissipated in the L1 DC peripheral
circuit, which consists of the least recently used (LRU) replacement unit, the cache con-
troller and the remaining multiplexers. The energy for a four-way tag read is 57.3 pJ, while
the energy for a L1 DC four-way L1 DC data read is 106 pJ. When a sequential tag-data
access with the ELD3 is performed, the energy corresponding to three data arrays are not
considered. That is because only a single data way is accessed during a sequential load.
This results in a energy reduction of 79.5 pJ. If a cache miss is occured during a sequen-
tial load, no data way is accessed since the miss is detected earlier. In this case, there is
a energy reduction of 106 pJ because the energy is saved for all the data way. For each
load operation, the overhead of accessing the data dependency bit (DDB) memory is also
evaluated.

Component Energy (pJ)

L1 DC load 182.1
L1 DC store 103.3
L1 DC four-way tag read 57.3
L1 DC four-way data read 106.0
DDB memory read 8.6
DDB memory write 8.9

Table 4.4: Component energy for the different parts of an L1 data cache using ELD3 technique.
Energy values from Moreau et al. (2016)

30



Chapter 5
Results

In this section, all the results of the execution from the MiBench applications are presented.
The results are either shown in tabulated form or in a graph. Section 5.1 will cover the
results for only when SHA is implemented. Section 5.2 will cover the results from the
ELD3 implementation, before presenting the results from SHA+ELD3 in Section 5.3. Note
that both SHA and ELD3 are implemented as individual components, which makes it
possible to run them either individually or combined.

5.1 Results for SHA

Application Small displacement(%) Large displacement (%)

Bitcount 98.5 1.5
Dijkstra 38.3 61.7
Qsort 64.4 35.6
Stringsearch 35.9 64.1

Average 59.3 40.7

Table 5.1: Ratio of small and large displacements.

Table 5.1 shows the displacement ratio for load instructions when executing different
MiBench applications. There is a speculation success when the displacement is small,
and the halt tags are accessed from the halt-tag cache. The higher the speculation success
rate is, the more useful is the SHA technique to reduce energy dissipation. From the table
we can see that bitcount has the largest success rate of 98.5%, followed by qsort with a
success rate of 64.4%. Dijkstra and stringsearch have large amount of loads with too large

31



Chapter 5. Results

displacement of 61.7% and 64.1% respectively. Across all benchmarks, about 60% of the
loads have a small displacement, that the SHA technique can take advantage of.

Figure 5.1: L1 DC ways accessed depending on the bit-width of the halt tags

The halt-tag cache is set up with the flexibility to adjust the width of the halt tag. The
diplacement ratio shown in Table 5.1 does not affect the choice of halt-tag width. The
halt-tag bit-width can be defined from 1 bit up to the bit-width of the tag stored in the data
cache. However the halt-tag bit-width should be as small as possible in order to avoid the
extra energy overhead. Figure 5.1 shows the speculation accuracy when running different
MiBench applications and using widths between two and seven bits for the halt tag. We
can see that a larger bit-width performs speculation with higher accuracy than a smaller
bit-width. For instance, when 2 bit wide halt tag is used while running the qsort, 69% of the
loads with small displacement, results in only one L1 DC way accessed, compared to 89%
when using seven bit wide halt tag. The reason for the higher speculation accuracy when
using wider halt tags is that a decreasing number of ways are accessed as a larger halt tag is

32



5.1 Results for SHA

less likely to match with the tag. Also for bitcount and dijkstra, higher accuracy is shown
when using larger halt tag bit-width. For dijkstra, 96,2% of load operations with small
displacement results in one way access or zero way when there is a cache miss. Thus,
the SHA technique can be used to detect cache misses earlier and also avoid accessing
L1 DC ways as the requested data can not possibly reside in the L1 DC. This results in
considerable amount of energy savings. On average, up to 98% of load operations with
small displacement resulted in zero or one way accesses.

70

75

80

85

90

95

100

2 bit
s

3 bit
s

4 bit
s

5 bit
s

6 bit
s

7 bit
s

Halt-tag bitwidth

Z
er

o
w

ay
&

on
e

w
ay

ra
te

(%
)

Bitcount
Dijkstra

Stringsearch
Qsort

Average

Figure 5.2: Zero and one way access rate depending on bit-width of the halt-tag

The better the speculation accuracy is, the more tag and data arrays will halt, thus more
energy will be saved. However, we also need to keep in mind that a larger halt tag has less
energy benefits because the energy cost of accessing and storing the halt tags will increase.
From Figure 5.2 we can see that there is no gain in speculation accuracy when using a halt
tag larger than 5 bits, except for qsort which have a slightly better speculation accuraty
when using a 6 bit halt tag bitwidth. On average, 98% of loads with small displacement
results in zero or one way accesses. The optimal halt-tag bit-width may depend on the
application that is running. When a significant amount of tags have identical lower bits,
it might be beneficial to store wider halt tags in order to filter out the ways that does not
reside the requested data.

The L1 DC has also been evaluated with different cache configurations. When the halt tag
bitwidth was set to two bits, there was slight difference in speculation accuracy between
2-way and 4-way set associative L1 where 2-way L1 DC accessed less amount of ways

33



Chapter 5. Results

for loads. The reason behind this is that more ways need to be compared with the halt tag
when using four ways, and since only two bit halt tags were used for the tag comparison,
the speculation accuracy decreased. Also, when the number of cache lines were increased,
both 2-way and 4-way L1 DCs performed with better speculation accuracy. When 64 cache
lines was used with four words per line, about 14% of total ways were accessed when
using 2-way L1 DC compared to 12% when 2048 cache lines were used. It would also be
interesting to change the number of words per line when using the SHA technique, because
more words would share the same tag. Unfortunately, it was not possible to identify this in
SHMAC, as the code for creating the cache is developed in such way that only four words
per line can be used for L1 DCs.

Zero ways One way Two ways Three ways Four ways
0

20

40

60

80

100

L1
 D

C
 w

a
y
s 

a
cc

e
ss

e
d
 (

%
)

With valid bit
Without valid bit

Figure 5.3: Difference in speculation accuracy when using valid bit for halt tag

As shown previously in Figure 3.2, we also store a valid bit in addition to the halt tag.
Figure 5.3 shows the speculation accuracy when using a valid bit. We can see that there is
a difference in the speculation accuracy, where 82% of the loads for one way is accessed
when we check for validity of the halt tags, compared to 79% when we do not use a valid
bit. The real difference is shown for four-way accesses, where no four-way access is per-
formed when a valid bit is used. For instance, when we do not use a valid bit and the lower
bits of the tag consist of all zeroes, it will actually be a halt-tag match if the cache line
is empty. This incurs that unnecessary ways are accessed in the next cycle, that cannot
possibly contain the requested data. By using a valid bit we are able to exclude empty
cache lines when accessing the halt tags.

34



5.1 Results for SHA

Figure 5.4 shows that the SHA technique reduces the load energy for all applications. In
this case, the halt tag bit-width is set to 5 bits. The benchmark with least energy sav-
ings compared to the baseline cache are stringsearch and dijkstra with 19% energy saved,
whereas the benchmark with the most energy saved is bitcount with an energy dissipation
reduction of 58%. The main reason for the significant energy reduction is that the majority
of load instructions for bitcount and qsort have small displacement, meaning that the SHA
technique can reduce the energy dissipation for these instructions. For load instructions
with too large displacement for SHA, a conventional load operation is performed, with all
ways accessed, which gives the SHA technique no possibility to reduce the energy dissi-
pation. The average load energy saved is 40%, compared to the load energy baseline cache
without the SHA technique implemented.

The SHA technique has proven to be an effective approach to reduce the energy dissipa-
tion for more than half of the total loads across all applications. Given that there is no
performance penalty, because all ways are accessed in the next cycle in case of a specu-
lation misprediction, this technique is well suited to be implemented in a L1 DC where
performance is an important factor.

bitcount dijkstra qsort_small stringsearch average
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

L1
 D

C
 e

n
e
rg

y

Figure 5.4: Total SHA load energy

35



Chapter 5. Results

5.2 Results for ELD3

The SHA technique has shown to be very efficient for load operations when the displace-
ment is small. However, when the displacement is too large for the SHA technique,
all ways are accessed because the halt tags are not accessed in the address generation
stage. The ELD3 attempts to reduce the energy disspiation differently. The effect of the
ELD3 technique is depending on the number of data dependencies, rather than the dis-
placements. This Section presents the results only for the ELD3 implementation, while in
Section 5.3 the results for the SHA+ELD3 is presented.

bitcount dijkstra qsort_small stringsearch average
0.0

0.2

0.4

0.6

0.8

1.0

S
e
q
u
e
n
ti

a
l 
L1

 D
C

 l
o
a
d
 a

cc
e
ss

e
s

Figure 5.5: Loads operation that only access one L1 DC data way using ELD3

ELD3 is an effective technique for reducing the L1 DC energy dissipation by only ac-
cessing a single L1 DC data way when there is no data dependency with an upcoming
instruction. Figure 5.5 shows the amount of load operations to the L1 DC that are ac-
cessed sequentially due to the ELD3 technique. The application with highest ratio of
sequential loads is qsort with 86%. Most of the load operations for stringserach and bit-
count are also done sequentially. When running dijkstra, only 41% of the load operations
are done sequentially, meaning that for most load operations, a data dependency with a
following instruction is detected such that a pipeline stall would occur if the load opera-
tion was performed sequentially. On average, 67% load operations are done sequentially
which indicates that ELD3 can reduce energy disspiation for most load operations. The
energy estimation is presented at the end of this section. Initially when the application is

36



5.2 Results for ELD3

executed, all dependency bits inside the DDB memory are cleared, meaning that the load
operations are performed sequentially the very first time. The reason behind this is the
higher possiblity that the load operation can be performed sequentially.

When the load operation is performed sequentially, only one data way is accessed in the
next cycle if the data exist in the L1 DC. Likewise with SHA being able to detect a cache
miss earlier, the ELD3 technique is also able to detect a cache miss in the tag-access stage
when the load operation is performed sequentially. This is done by checking if the hit
vector bits for tag access are all zeros, indicating that there is no tag match. Note that
the cache miss is known at the same time when performing the load operation parallelly
with both tag and data ways accessed in same cycle, but a significant amount of energy is
wasted because the data ways are accessed even when there is cache miss.

bitcount dijkstra qsort_small stringsearch average
0.0

0.2

0.4

0.6

0.8

1.0

L1
 D

C
 e

n
e
rg

y
 u

si
n
g
 E

LD
3

Sequential load energy
Parallel load energy

DDB read energy
DDB write energy

Figure 5.6: Total L1 DC energy when using ELD3 relative to energy usage for baseline

Figure 5.6 shows the L1 DC energy disspiation for load operations. As previously shown
in Figure 5.5, most of load operations for qsort are sequentially performed where only one
data way is accessed, which reduces the energy dissipation significantly. We can see that
the energy dissipation for qsort is reduced by 31%. The ELD3 technique also reduces the
energy disspiation for bitcount and stringsearch by 26% and 25% respectively. Since, most
of the load operations for dijkstra are performed parallelly, the ELD3 technique is only able
to reduce the energy disspiation by 13%. We can also see from Figure 5.6 that there is an
overhead of checking the DDB memory for each load operation and for updating the DDB
memory during writeback. For each load operation, the energy overhead of checking the
DDB memory is 8.6 pJ, whereas the energy overhead for updating the DDB memory is
8.9%. Since the DDB memory is accessed on each load operation, this overhead applies for
both parallel and sequential loads. This means that the total energy disspiation can increase
when using the ELD3 technique if the amount of parallel load operation is dominant. On
average, 25.7% of the overall energy disspiation is reduced compared to the baseline.

37



Chapter 5. Results

By having two pipelines for L1 DC accesses, there is an increased possibility for structural
hazards as mentioned in Section 2.2. Structural hazards occur when there is a resource con-
flict where more than one instruction tries to access the same resource. This occurs when
there are two consecutive load operations, where the first load is sequentially performed,
and the second instruction has a data dependency, thus needs to access both tag and data
ways in parallel. This cause a stall cycle such that the sequential load is completed before
beginning with the parallel load operation. On average 3.9% of loads cause a stall cycle
due to this kind of structural hazard, where qsort is the biggest sufferer with 5.8% of loads
causing a stall cycle.

38



5.3 Results for SHA and ELD3

5.3 Results for SHA and ELD3

The results for SHA and ELD3 techniques running separately have shown that both tech-
niques are effective in reducing the energy disspiation for L1 DC when it is possible.
However, for both techniques running separately, there are load operations where it is
not possible to do way halting (too large displacement) when using SHA or sequential
loads (data dependency) when using ELD3. Since SHA and ELD3 techniques can capture
different categories of loads, a combined SHA+ELD3 can increase the number of loads
that lead to data accesses with reduced energy dissipation. In this section, the results for
SHA+ELD3 will be presented.

When the displacement is small, the SHA technique is always selected. This is is mainly
because about 60% of all load operations on average have small displacement such that
SHA can be used to reduce the energy disspiation. In addition, entire tags are accessed
to create the hit vector of tag comparison when using ELD3, compared to only accessing
halt-tags when using SHA. Also, the SHA technique ensure that there is no performance
penalty when there is a speculation failure. Only an overhead of the halt-tag access will
incure. Whereas for ELD3, a performance penalty occurs when wrong dependency infor-
mation is stored inside DDB memory and the load operation is sequentially accessed. We
can see from Table 5.2 that SHA+ELD3 suits well for dijkstra, qsort and stringsearch as
these applications have considerable amount of loads with too large displacment for the
SHA technique.

Application SHA loads (%) ELD3 loads loads (%)

Bitcount 98.5 1.5
Dijkstra 38.3 61.7
Qsort 64.4 35.6
Stringsearch 35.9 64.1

Average 59.3 40.7

Table 5.2: Load distribution between SHA and ELD3

Figure 5.7 shows the load distribution between SHA and ELD3. We can see that SHA
is very efficient for bitcount where over 98% of loads have small displacement. Since
the dependency bit is not accessed for loads with small displacements, the DDB memory
will not incure any energy overhead due to DDB memory read or update. For dijkstra,
the ELD3 is able to capture 24% of loads with large displacement. However, due to data
dependencies, the majority of loads with large displacement are parallelly accessed. For
qsort and stringsearch, 29% and 57% of the loads with large displacement are sequentially
accessed. On average, the ELD3 technique is able to reduce energy dissipation for 27% of
total loads.

Because the majority of loads are performed by the SHA technique, the overall impact of
the ELD3 techniuqe reduces in SHA+ELD3 compared to when only ELD3 is used. Look-
ing at Figure 5.5 again, we can see that the ELD3 techniuqe is able to perform sequential
loads for most loads when running bitcount. However, when the SHA+ELD3 technique

39



Chapter 5. Results

is used, the impact of the ELD3 technique is minimal for bitcount, because most of the
load instructions have small displacement. This means that there is an overlap for loads
where both SHA and ELD3 can be applied. In best case, the ELD3 technique would be
able to reduce energy disspiation for all loads with large displacement instead of the loads
where it overlaps with the SHA technique. Since the DDB memory is not read before
the displacement speculation for SHA is performed, the DDB memory is not adding any
overhead by reading the dependency bit for instructions where SHA will be used.

bitcount dijkstra qsort stringsearch average
0

20

40

60

80

100

Lo
a
d
s 

(%
)

SHA_0

SHA_1

SHA_2 & SHA_3 & SHA_4

ELD sequential

ELD parallel

Figure 5.7: Load distribution between SHA and ELD3.

40



5.3 Results for SHA and ELD3

Figure 5.8 shows the L1 DC energy disspiation for load operations when SHA+ELD3 is
running. For bitcount, SHA is able to capture almost all loads, which reduces the overall
energy disspiation by 58%. And because the ELD3 technique is used only for a small
number of loads for bitcount, the DDB memory overhead is minimal. For dijkstra, the
ELD3 technique is able to use some of the loads with large displacement and access these
loads sequentially. However, most of the loads are still parallelly accessed due to large
displacment and high amount of data dependency, which results in an overall energy re-
duction of 35%. For qsort and stringserach, the ELD3 technique is able perform sequential
loads for most of the loads with large displacement. The overall energy reduction for qsort
and stringsearch are 54% and 49% respectively. On average, the overall energy disspiation
for is reduced by 49%.

bitcount dijkstra qsort stringsearch average
0.0

0.2

0.4

0.6

0.8

1.0

SHA_0

SHA_1

SHA_2 & SHA_3 & SHA_4

ELD sequential load

ELD parallel load
DDB read
DDB write

Figure 5.8: L1 DC energy for SHA+ELD3

41



Chapter 5. Results

42



Chapter 6
Related work

In this Section, some of the relevant work to the SHA and ELD3 technique will be pre-
sented. The relative merits of the techniques will also be compared.

6.1 Way-Halting Cache (WHC)

The idea of halting one or more ways in a cache is not unknown. The WHC technique
was proposed to accomplish just that, by performing a fully associative halt-tag check in
parallel with the decoding of the L1 data cache index Zhang et al. (2005). However, an im-
plementation of this technique may be impractical. To reduce word line lengths, memories
are often banked, and the data and tags are stored separately. Since the halt-tag memory
is fully associative, it would either need to route its signals to all the different banks and
memories, or be duplicated for each bank. Respectively, this would either introduce de-
lays or a higher use of energy and area. Another impracticality of this technique is that it
would require a custom SRAM implementation, which is not easily available and would
be costly. The SHA technique, on the other hand, does not require a custom SRAM im-
plementation, as the halt tags are accessed in the address generation stage. This means
that the tags and data that need to be accessed is already determined by the memory access
stage.

6.2 Data Filter Cache (DFC)

Data Filter Cache is based on the idea that a small cache at the top of the memory hiearchy
can help with reducing the number of accesses to the L1 cache. The advantage with DFCs
is that the it reduces energy since the dynamic energy to access the DFC is mucc less

43



Chapter 6. Related work

than the L1 cache. However, conventional DFCs have high miss rate, which increases
the execution time. Instead, a more energy efficient way is to implement a practical
DFC that can be accessed early in the pipeline and then transfer a line over multiple cy-
cles(Alen Bardizbanyan, 2013). A speculative access of DFC is performed in the address
generation stage when the displacement is not too large. On a speculation success, the
value is obtained one clock cycle earlier, and on a speculation failure the L1 DC can be
accessed in the next cycle. This results in improved performance and eliminates accesses
to DTLB and L1 DC on DFC load hits. This technique share the same core idea as SHA,
that speculation access can help in eliminating L1 DC accesses, thus reduces the energy
dissipation.

6.3 Partial Tag Comparison (PTC)

Another technique is the PTC, where the tags and data of the L1 data cache would be
accessed after the partial tag comparison is completed Min et al. (2004). Because the
partial tags are compared after the index is decoded, the signals would have to be connected
to all banks and memories, which is the same issue as the WHC technique has. Similarly,
the PTC technique would also be dependent on a custom SRAM implementation, which
the SHA technique does not need.

6.4 Speculative Tag Access (STA)

The STA technique works by accessing the L1 data cache tags during the address gen-
eration stage Bardizbanyan et al. (2013). If there is a hit in the cache (the speculation
succeeded), the data in the L1 data cache will be accessed in the memory access stage.
While all tags will still be accessed in parallel, the STA technique reduces the number of
accessed data arrays. This will however only positively impact the read energy, but not the
store energy, as a store will only access a single data array anyway.

Because the STA technique need to access the data translation lookaside buffer (DTLB) in
both the address generation and the memory access stage, the input signals to the DTLB
has to be routed from both these stages. This increases the complexity compared to a
conventional L1 data cache. In addition, forwarding logic is used to produce the input
from the address generation stage. This could be a source of increased delay, and may
even put the DTLB on the critical path. The SHA technique avoids putting the DTLB
on the critical path by accessing the halt tags in the address generation stage, and only
accessing the DTLB in the memory access stage.

44



6.5 Way-Prediction

6.5 Way-Prediction

Way-prediction is a technique that is used to predict the matching way of a cache access,
and then only access that way Powell et al. (2001). This reduces the energy needed for the
cache accesses. Way-prediction is dependent on a good prediction source for the predic-
tions, and this prediction source has to be available early in the pipeline. The prediction
source can be the load instruction program counter (PC), for instance, or an approximate
address formed by XORing the load’s source register with the load offset. Different pre-
diction sources have different trade-offs between early availability in the pipeline and pre-
diction accuracy. The PC-based prediction is available very early, but the XOR-based
prediction is more accurate.

The way-prediction technique can retain the performance of a parallel cache access, while
achieving an energy-delay of a sequential cache access. Relative to the SHA technique, the
way-prediction technique accesses only one way if the prediction succeeds, but all ways
if the prediction fails. The SHA technique on the other hand, speculatively determines
which ways not to access, and may thereby avoid accessing any number of ways when the
speculation succeeds.

45



Chapter 6. Related work

46



Chapter 7
Conclusion and Future Work

Improving the energy-efficiency of computing is an important area of research, and there
is potential for reducing the energy dissipation in caches. In this thesis, it is shown how
accesses to a set-associative L1 DC can be made significantly more energy efficient by
implementing two techniques. Speculative Halt-Tag Access (SHA) technique represents
a practical way-halting approach to eliminate ways that cannot possibly contain the re-
quested data. SHA can be performed when the displacement for address calculations is
small, by accessing the low-order tag bits for each way in the address generation stage
that act as a filter for which tag and data ways of the set-associative L1 DC to access. The
use of SHA does not incur any performance penalties, thus suits well for L1 DCs where
performance is important. The approach gives an average combined zero-way and one-
way access rate of at least 83% with a two bit halt tag for loads with small displacement.
This indicates that the SHA technique can work well, even with halt tags as small as two
bits. When the halt tag bitwidth is set to 5 bits, up to 99% of load operations with small
displacement results in zero or one way accesses as larger halt tag is less likely to match
with the tag. On average, the overall energy disspiation is reduced by 40% for load op-
erations with small displacement. The second technique, Early Load Data Dependence
Detection (ELD3) , represents an effective approach with low overhead, that can detect
if the load operation has a data dependency with a following instruction that will cause
pipeline a stall. This can efficiently be done by storing the dependency information of L1
IC instruction in a Data Dependency Bit (DDB) memory. The DDB memory can then be
accessed in the address generation stage when load instruction is detected. If there is no
data dependency, the tags and data ways are accessed in sequential such that only one data
way is accessed. The ELD3 technique gives an overall energy reduction of 26%.

It is also shown in this thesis, how accesses to L1 DC can be significantly more energy-
efficient by combining both techniques. When a load operation is detected in the address
generation stage, the SHA technique is used if the displacement is small. If the displace-
ment is too large for the SHA technique, the ELD3 technique is used to access tag and

47



Chapter 7. Conclusion and Future Work

data ways sequentially if there is no data dependency with the upcoming intructions. This
combination of techniques gives an overall energy reduction of 43%.

7.0.1 Future Work

There are several ways in which this work may be extended or improved. Some of the
suggestions are presented below.

Reduce the size of Data Dependency Bit (DDB) memory

The DDB memory is used to store dependency information for instructions in L1 IC as
described in Section 3.2.1. The size of the DDB memory is depending on the size of L1
IC, since one bit is assigned for each word inside the cache. This means that the DDB
memory can get considerable large when large L1 IC is used. One way of reducing the
size of DDB memory, is by applying one bit for multiple words in L1 IC. For example
can two words share the same dependency bit, and then have a dependency update policy
for when the dependency bit will be updated if the dependency information is not correct
for the corresponding instruction. This can be done by having a small separate memory
beside the DDB memory, where one bit corresponds to one set in DDB memory.

Efficient accesses to the scratchpad memory

As the SHMAC processor tile also can consist of other memories on the processor tile
such as the scrachpad memory, it can be possible to performed energy efficient memory
accesses for these memories in addition to the L1 DC. An analysis should be done of how
frequently these memories are accessed, in order to decide if the implementation of SHA
and ELD3 can reduce the energy dissipation.

48



Bibliography

Alen Bardizbanyan, Magnus Sjalander, D. W. P. L.-E., 2013. Designing a Practical Data
Filter Cacheto Improve Both Energy Efficiency and Performance. In: ACM Transac-
tions on Architecture and Code Optimization (TACO). ACM.

Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avižienis, R., Wawrzynek, J.,
Asanović, K., June 2012. Chisel: Constructing Hardware in a Scala Embedded Lan-
guage. In: Design Automation Conference.

Bardizbanyan, A., Själander, M., Whalley, D., Larsson-Edefors, P., 2013. Speculative Tag
Access for Reduced Energy Dissipation in Set-Associative L1 Data Caches. In: 2013
IEEE 31st International Conference on Computer Design (ICCD). IEEE, pp. 302–308.

Borkar, S., Chien, A. A., 2011. The Future of Microprocessors. Communications of the
ACM 54 (5), 67–77.

Carvalho, C., January 2002. The Gap between Processor and Memory Speeds. Tech. rep.,
Departamento de Informática, Universidade do Minho.

Celio, C., Love, E., May 2014. About The Sodor Processor Collection. https://
github.com/ucb-bar/riscv-sodor, visited 2016-11-29.

Dennard, R. H., Gaensslen, F. H., Rideout, V. L., Bassous, E., LeBlanc, A. R., 1974. De-
sign of Ion-Implanted MOSFET’s with Very Small Physical Dimensions. IEEE Journal
of Solid-State Circuits 9 (5), 256–268.

Esmaeilzadeh, H., Blem, E., Amant, R. S., Sankaralingam, K., Burger, D., 2011. Dark
Silicon and the End of Multicore Scaling. In: Computer Architecture (ISCA), 2011
38th Annual International Symposium on. IEEE, pp. 365–376.

Ghoshal, S., 2011. Computer Architecture and Organization: From 8085 to core2Duo
& beyond. In: Computer Architecture and Organization: From 8085 to core2Duo &
beyond. Pearson Education India, p. 207.

49

https://github.com/ucb-bar/riscv-sodor
https://github.com/ucb-bar/riscv-sodor


Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge, T., Brown, R. B.,
2001. MiBench: A Free, Commercially Representative Embedded Benchmark Suite.
In: Workload Characterization, 2001. WWC-4. 2001 IEEE International Workshop on.
IEEE, pp. 3–14.

Lefsaker, S., December 2014. Prototyping a RISC-V based SHMAC with Chisel.
https://github.com/sondrele/Chisel-SHMAC/blob/master/doc/
project-report.pdf.

Min, R., Xu, Z., Hu, Y., Jone, W.-B., 2004. Partial Tag Comparison: A New Technology
for Power-Efficient Set-Associative Cache Designs. In: VLSI Design, 2004. Proceed-
ings. 17th International Conference on. IEEE, pp. 183–188.

Moreau, D., Bardizbanyan, A., Själander, M., Whalley, D., Larsson-Edefors, P., March
2016. Practical Way Halting by Speculatively Accessing Halt Tags. In: Proceedings of
the IEEE International Conference on Design, Automation, and Test in Europe (DATE).

Nevine AbouGhazaleh, Bruce Childers, D. M., Melhem, R., December 2005. Energy Con-
servation in Memory Hierarchies using Power-Aware Cached-DRAM. Tech. rep., De-
partment of Computer Science, University of Pittsburgh.

Oh, S.-H., Monroe, D., Hergenrother, J., 2000. Analytic Description of Short-Channel
Effects in Fully-Depleted Double-Gate and Cylindrical, Surrounding-Gate MOSFETs.
IEEE electron device letters 21 (9), 445–447.

Powell, M. D., Agarwal, A., Vijaykumar, T., Falsafi, B., Roy, K., 2001. Reducing Set-
Associative Cache Energy via Way-Prediction and Selective Direct-Mapping. In: Pro-
ceedings of the 34th annual ACM/IEEE international symposium on Microarchitecture.
IEEE Computer Society, pp. 54–65.

Själander, M., Martonosi, M., Kaxiras, S., December 2014. Power-Efficient Computer
Architectures: Recent Advances. Synthesis Lectures on Computer Architecture.

Taur, Y., Nowak, E. J., 1997. CMOS Devices Below 0.1/spl mu/m: How High Will Per-
formance Go? In: Electron Devices Meeting, 1997. IEDM’97. Technical Digest., Inter-
national. IEEE, pp. 215–218.

Waterman, A., Lee, Y., Patterson, D. A., Asanović, K., May 2016. The RISC-V Instruction
Set Manual, Volume I: User-Level ISA, Version 2.1. Tech. Rep. UCB/EECS-2016-118,
EECS Department, University of California, Berkeley.
URL http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/
EECS-2016-118.html

Wulf, W. A., McKee, S. A., December 1994. Hitting the Memory Wall: Implications of
the Obvious. Tech. rep., Department of Computer Science, University of Virginia.

Zhang, C., Vahid, F., Yang, J., Najjar, W., 2005. A Way-Halting Cache for Low-Energy
High-Performance Systems. ACM Transactions on Architecture and Code Optimization
(TACO) 2 (1), 34–54.

50

https://github.com/sondrele/Chisel-SHMAC/blob/master/doc/project-report.pdf
https://github.com/sondrele/Chisel-SHMAC/blob/master/doc/project-report.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html


Zhang, T., May 2014. A study of DRAM optimization to break the memory wall. Tech.
rep., The Pennsylvania State University.

51



52


	Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	The Memory Wall
	Storage technologies
	Memory system hiearchy

	Dependencies in pipelined processors
	The Single-ISA Heterogeneous MAny-core Computer (SHMAC)
	The SHMAC Processor Tile
	Mesh configuration
	The RISC-V ISA
	Addressing mode
	Chisel


	Implementation
	Speculative Halt-Tag Access (SHA)
	Implementation of the Halt-Tag Cache

	Early Load Data Dependence Detection (ELD3)
	Implementation of data dependency bit (DDB) memory

	SHA + ELD3

	Methodology
	L1 DC Energy

	Results
	Results for SHA
	Results for ELD3
	Results for SHA and ELD3

	Related work
	Way-Halting Cache (WHC)
	Data Filter Cache (DFC)
	Partial Tag Comparison (PTC)
	Speculative Tag Access (STA)
	Way-Prediction

	Conclusion and Future Work
	Future Work

	Bibliography

