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Abstract: We present results of experimental investigation of the chaotic
and quasi-periodic regime in the chirped-pulsed (dissipative soliton) Cr:ZnS
and Cr:ZnSe mid-IR oscillators with significant third-order dispersion. The
instability develops when the spectrum edge approaches resonance with
a linear wave either due to power increase or by dispersion adjustment.
In practice, this occurs when the spectrum edge reaches zero dispersion
wavelength. The analysis suggests a three-oscillator chaos model, which
is confirmed by numerical simulations. The regime is long-term stable
and can be easily overlooked in similar systems. We show that chaotic
regime is accompanied by a characteristic spectral shape and can be reliably
recognized by using wavelength-skewed filters and by second-harmonic or
two-photon absorption detectors.
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1. Introduction

Mode-locked oscillators operating in the all-normal (β2 > 0) dispersion regime (ANDi) have
established themselves as versatile sources of energy scalable chirped picosecond pulses, which
can be further compressed to well below hundred femtosecond duration. The main interest
in implementing such sources is the possibility to generate high-energy pulses directly from
an oscillator, avoiding complex and costly amplifier schemes. These chirped-pulse oscillators
(CPO) operate in the dissipative soliton (DS) regime, which is somewhat more complex than a
soliton-like compensation of self-phase modulation by anomalous dispersion as in conventional
femtosecond lasers. A minimum set of parameters that are required for the CPO regime to exist
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includes additionally a spectral bandwidth filter and a saturable (e.g. nonlinear-optical) absorber
[1, 2]. On top of that, the higher-order dispersion is often unavoidable in broadband systems.
As a result, the CPOs are described by a quite complicated multidimensional parameter space;
on practice one can often encounter increased amplitude or spectral noise, period multiplication
and modulational instability, noise-like and chaotic behaviour [3–9]. It is important therefore to
establish the physical mechanisms, properties, and find practical rules to help recognising such
regimes.

In this paper, we describe and characterize the observed chaotic regimes in the chirped-
pulse Cr:ZnS and Cr:ZnSe lasers [10, 11] and confirm our physical model with the numerical
simulations. We demonstrate that the chaotic mode-locking in a solid-state oscillator results
from a parametric resonance with dispersive waves, having different signature and mechanism
than observed in the fiber lasers [5–9].

2. Experimental setup and observations

The chaotic regime of a Cr:ZnSe mode-locked laser has been reported for the first time in 2009
[11]. The Kerr-Lens mode-locked (KLM) CPO with a bulk dispersion compensation by a YAG
plate exhibited significant third-order dispersion (TOD) originated from the active medium
itself, the bulk compensator, and the cavity mirrors.

More detailed experiment on the chaotic behavior was carried out recently with a KLM
Cr:ZnS laser (Fig. 1). The laser was pumped by a 5W polarized Er-fiber laser emitting at 1.61
μm. The astigmatically-compensated delta-cavity was characterized by 146 MHz repetition
rate and 1.7% outcoupling rate. The Brewster-mounted diffusion-doped Cr:ZnS crystal was
passively cooled by a copper heatsink. The laser was operated at average output powers of
35–70 mW resulting in the output pulse energies of 0.25–0.5 nJ (15–30 nJ intracavity energy),
though much higher output power could be achieved in this cavity both in femtosecond regime
[10] and in CPO regime [12]. A pair of Brewster-oriented YAG wedges provided continuous
tuning of the second-order dispersion (GDD) with the constant TOD at +8200 fs3. Substituting
the mirror M1 by a chirped mirror with subsequent compensation by the thickness of YAG
wedges resulted in negligible TOD [Fig. 1(c)] and forced the laser to operate in the regular
chirped pulsed regime. The pulse duration varied between 1.7–2.0 ps at spectrum widths of
110–140 cm-1, giving the time-bandwidth product of 6.5–8.5.

The detecting of chaotic and quasiperiodic regimes of a mode-locked laser is an issue. The
output pulse energy does not fluctuate in these regimes: the power noise on a fast photodiode
is at the same level, as with a regular chirped-pulse or femtosecond soliton regime. The laser
spectra recorded by a slow spectrometer (for example, FTIR device) are very stable and repro-
ducible, so monitoring of the laser spectrum and energy stability could not help in identifying
the chaotic behavior. Nevertheless, the spectral instability is indeed present, but occurs at the
frequencies in a hundreds-of-kilohertz range. It could however be detected by a fast photodetec-
tor with a skewed spectral filter [Fig. 1(b)] installed in front of it [Out1 in Fig. 1(a)], providing a
signal related to the instantaneous central wavelength of the pulse, or by a detector operating in
a two-photon absorption mode, thus sensitive to the pulse peak intensity. [The pulse spectrum
S(λ ) gets multiplied by a filter transmission curve T (λ ) and collected by a detector with spec-
tral sensitivity V (λ ) . The signal at detector V =

∫
S(λ ) ·T (λ )V (λ )dλ thus becomes spectrally

weighted. If the weighting function were linear V (λ )T (λ ) = a+ bλ then the signal (divided
by the full pulse energy measured at Out2) becomes exactly proportional to the pulse central
wavelength λ0 =

∫
λS(λ )dλ/

∫
S(λ )dλ with some baseline. While for our broadband spectra

the filter transmission curve [Fig. 1(b)] cannot be considered really linear, it nevertheless allows
retrieving the signal approximately equal to the central wavelength fluctuations up to the pulse
repetition frequency. The numerical simulation described in Sections 3 and 4 used the actual
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Fig. 1. (a) Schematic of the femtosecond Kerr-lens mode-locked Cr:ZnS laser: FL – focus-
ing lens, M1, M2, and M3 – high reflector mirrors (M1 could be substituted by a chirped
mirror), Cr:ZnS – active element, YAG wedges – dispersion compensation, OC – output
coupler, BS – beam splitter, SF – spectral filter, Out1 –laser output for controlling the
wavelength, Out2 - main laser output; (b) typical laser spectrum (red) and spectral filter
transmission (blue); (c) laser cavity round-trip GDD with bulk dispersion compensation
(red), and with chirped mirror dispersion compensation (grey).

transmission curve T (λ ) of the Fig. 1(b) to model the Out1 signal.] Particularly, the strong
noise in the pulse interferometric autocorrelation trace arises because of the short-term pulse
waveform fluctuation.

In our experiments the laser spectra were recorded by a Perkin-Elmer FTIR spectrometer
with 11 kHz detector bandwidth. Even the weak narrow-band features resulting from the intra-
cavity water vapor absorption [13] could be reliably resolved. The short-term fluctuation of the
laser central wavelength was controlled by the 15-MHz extended-InGaAs photodiode with a
spectral filter installed in front of it. The typical (averaged) laser spectrum and the transmission
of the spectral filter are presented in Fig. 1(b). Clear modulation of the laser central wavelength
with the frequencies well over 100 KHz was observed [Fig. 2(b)].

The interferometric autocorrelation traces of the laser pulses were recorded by a home-made
two-photon absorption-based autocorrelator. The typical autocorrelation traces in regular and
chaotic chirped regimes are plotted in Fig. 2(c), the characteristic noise can easily be recog-
nized. The modulation of the second harmonic signal recorded by the autocorrelator’s photode-
tector is plotted in Fig. 2(b). The modulation of the central wavelength and the modulation
of the second harmonic signal are not generally correlated with each other in time, but could
correlate in case of a quasiperiodic regime.

Having control on the detection of the chaotic regime, we were able to investigate the con-
ditions of its appearance. Switching from the regular chirped to chaotic and quasi-periodic
regimes was achieved by either increasing the intracavity pulse power or decreasing (positive)
by translating the wedges [Fig. 3(b)]. Increasing the power at constant dispersion [horizontal
line in Fig. 3(b)] results first in a small quasiperiodic modulation with a characteristic jigsaw
wavelength signal (dark red dots), followed by a true chaotic regime (red dots) and then again
by a quasiperiodic regime (violet dots) with wavelength and peak power signals phase-shifted
by about 90 degrees.
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Fig. 2. Chaotic regime in time domain. (a), (b) Signals from the Out1 channel (dark red,
related to the central wavelength) and second-harmonic intensity (green, related to pulse
peak power) of the Cr:ZnSe CPO laser in chaotic regime. (c) Interferometric autocorrela-
tion traces recorded with the fast detector in chaotic (dark red) and regular chirped (grey)
regimes. (d) Parametric diagram corresponding to the signals on graph (a) and (b) (grey
and black lines, respectively), showing uncorrelated truly chaotic behaviour.
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The red dots denote purely chaotic regime, violet dots denote quasiperiodic regime.
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3. Theoretical description and numerical modeling

In this section, we shall present a qualitative analytical model of a CPO and compare it with
a soliton laser operating in the anomalous dispersion regime. We shall study the impact of the
TOD using the numerical model.

3.1. Analytical description

The ultrashort pulse dynamics of mode-locked lasers can be described using the generalized
complex nonlinear cubic-quintic Ginzburg-Landau equation (CNGLE) [14]. In the framework
of this model, evolution of the slowly varying field amplitude A(z, t) along the propagation co-
ordinate z (cavity round-trip number in our case) can be described with the usual normalizations
[15] as

∂A(z, t)
∂ z

=

{

−σ +α
∂ 2

∂ t2 +
[
κ
(
1−ζ |A(z, t)|2) |A(z, t)|2]

}

A(z, t)

+ i

{
β2

2
∂ 2

∂ t2 − γ|A(z, t)|2
}

A(z, t)+
β3

6
∂ 3

∂ t3 A(z, t),

(1)

where t is a local time. Dissipative factors in this system are defined by the saturated net-loss co-
efficient σ , squared inverse gain bandwidth α , nonlinear gain coefficient κ , and nonlinear gain
saturation ζ . The latter two parameters approximate the self-amplitude modulation (SAM) of
the Kerr-lens mode-locking. Nondissipative factors are defined by the group-delay dispersion
(GDD) and the self-phase modulation (SPM) with the coefficients β2 and γ , respectively. The
last term in Eq. (1) accounts for the TOD [16]. Eq. (1) describes both, chirped-pulse (β2 > 0)
and conventional soliton (β2 < 0) lasers. In the latter case, setting α , κ , and ζ to zero pro-
duces the well-known nonlinear Schrödinger equation, but for a stable chirped-pulse operation
frequency filtering and SAM are required [1].

A steady-state solution of Eq. (1) should have a form A(t,z) = E(t)exp(−iqz), where the
soliton wave q is related to the carrier-envelope offset [17] as q mod 2π = φCEO = 2πνCEO/ frep.
The theory based on adiabatic approximation [2,15] predicts, that a chirped dissipative soliton
(CDS) of Eq. (1) with β2 > 0 and β3 = 0 has a wave number q = γP0, where P0 is the pulse
peak power (for the Schrödinger soliton q = γP0/2 [18]). Since β2 > 0 for the CDS, there
exist resonances with linear waves having the wave numbers k(ω) = β2ω2/2: k(±Δ) = q as
opposed to the Schrödinger soliton in the anomalous (β2 < 0) GDD regime (Fig. 4). Under
this condition, the CDS can be stable only if its spectrum is truncated at the frequencies ±Δ,
which define the CDS spectrum width. For such CDS we obtain q = γP0 = (β2/2)Δ2, which
is the analog of the Schrödinger soliton area theorem γP0 = |β2|/T 2

0 . The resonance condition
implies that the position of the spectrum edges can be controlled by changing the dispersion
and/or the pulse energy [(Fig. 4(a)].

The TOD contribution (β3 �= 0 in Eq. (1)) modifies the resonant condition: q = β2ω2/2+
β3ω3/6. As a result, an additional resonant frequency may appear. As was conjectured in [16,
19] approaching of third resonant frequency to the CDS spectrum is the source of chaotic
dynamics. The concept of parametric resonance defined by these resonant frequencies will be
the keystone for further consideration.

3.2. Numerical model

The numerical simulation of Eq. (1) followed the procedure described in [2], with the crystal
divided in 10 split-step slices, 218 grid points and 2.5 fs time resolution. The parameters used
in simulations are α = 16 fs2, κ = 0.04γ , ζ = 0.2γ , and γ = 10 MW−1, selected to match the
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(a) (b)

Fig. 4. (a) Resonance condition (black crosses) for the CDS defines the spectrum width 2Δ.
Changing the power and/or the dispersion (dashed lines) controls the spectrum width. Blue
lines show the experimental spectra [20] corresponding to different energies. (b) For the
conventional soliton laser (β2 < 0) a resonance is only possible with TOD, which generates
a dispersive wave [21], illustrated by an experiment [22].The high-frequency modulation
on the spectrum envelope in both graphs results from the intracavity water vapour [13, 23].

experimental conditions as close as possible. The gain saturation in the framework of Eq. (1)
was taken into account by the means of near-threshold expansion [2]: σ = δ (E/E∗ −1), where
E =

∫ |A(z, t ′)|2dt ′ is the intracavity pulse energy, E∗ is the energy stored in a cavity in the CW
regime (it is a control parameter), and δ = 0.03.

With the positive GDD, the model generated regular chirped pulses with nearly rectangular
spectra. By adding the TOD, we were able to numerically reproduce the chaotic regime, as
well as power and spectral dependence of the transition between regular and chaotic lasing. In
the chaotic regime, the pulse spectral shape, central wavelength, time-bandwidth product, pulse
duration, and chirp parameter do fluctuate without significant correlation on the time scale of
10–103 round-trips, while the pulse energy remains stable within 1%. This corresponds very
closely to the experimental observations, except the spectrum shape. However, averaging by
7000 round-trips (this value corresponds to the actual 11 kHz detector bandwidth of the FTIR
spectrometer) produced stable spectral shapes very similar to experimental spectra shown in
Fig. 3. The transition to the chaotic regime could be triggered either by pulse energy increase
and/or dispersion shift, like it was observed in the experiment. We are thus confident that the
present numerical model adequately describes the main source of the chaotic destabilization.
At the same time, the model showed broader parameter regions of true chaotic regime and
almost no quasiperiodic regions like in Fig. 3. We attribute this to the approximations taken in
the model: neglecting the higher-order dispersions, distributed dispersion and nonlinearity, etc.
Assuming a different sign of the TOD does not change the picture, except that the spectrum and
pulse waveform get mirrored, corresponding to time reversal.

4. Results and discussion

Mode-locked oscillators are known to demonstrate a variety of the dynamical scenarios includ-
ing chaotic [5, 24-27]. As was demonstrated, the nonlinear gain and loss can result per se in a
chaotic pulse dynamics [28]. In our work, a source of chaotic behavior is interpreted as a CDS
resonance with dispersive waves excited by TOD.
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Fig. 5. Time-frequency diagrams of the regular CDS regime with small TOD (a) and large
TOD (b). Pseudocolor diagrams show the amplitude of the smoothed Wigner distribution
[29] in logarithmic scale. The yellow curves at the bottom and to the right show the spec-
trum and time intensity, respectively. (c),(d): The corresponding round-trip phase delay
(dark red) and group delay (blue) curves for the linear waves. Gray arrows denote the edge
tails generated at the resonance positions R1 and R2.

To understand the impact of the TOD, it is instructive to consider the time-frequency dia-
grams of the CDS (Fig. 5). At relatively low TOD [Fig. 5(a)] the pulse corresponds to that of
the approximate model of Fig. 4: it consists of a linearly chirped central part and the two tails
at spectrum edges, which are very well localized in frequency at resonance positions R1 and
R2. The addition of the TOD only results in trapezoidal spectrum shape [Fig. 5(a) and spectrum
1 in Fig. 3] and slight asymmetry of the tails. Higher amount of TOD changes the spectrum
shape to near triangular [Fig. 5(b) and spectrum 2 in Fig. 3], corresponding to collapse of the
long-wavelength tail. More importantly, the dispersive wave resonance [third zero-crossing of
the phase delay curve in Fig. 5(d)] is now approaching the spectrum. Further TOD increase
brings the dispersive wave resonance (DW) position sufficiently close to the pulse [Fig. 6(c)],
so that the corresponding dispersive wave gets excited. Since DW position corresponds the
positive group delay, the dispersive wave would propagate slightly faster than the pulse, with
about a fraction of optical period (≈8 fs) per round-trip. Practically, it overlaps in time with
both, the tail corresponding to the R2 edge and the main part of the CDS. The interference
and nonlinear interaction of three waves results in complete change of the whole spectrum and
chaotic behavior (Fig. 6). The spectrum and waveform of the pulse [Fig. 6(a), yellow lines]
acquire strong modulation, which is rapidly changing (see Media 1). Yet the average spectrum,
accumulated over 7000 round-trips (corresponds to the detector time constant of 20 kHz) is
stable and reproduces the characteristic “boa constrictor digesting an elephant” asymmetric
shape with a long tail at one side ending with a small peak [spectrum 3 in Figs. 3 and 6(d)].
The experimentally accessible GDD curve crosses zero at a point where group delay reaches
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its minimum. Comparing Figs. 5(c), 5(d), and 6(c), we can note that transition to chaos also
approximately coincides with zero GDD position reaching the edge of the spectrum; this can
serve as a convenient practical rule in experimental work.
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Fig. 6. Chaotic CDS regime. (a) Time-frequency diagram of a typical single round-trip and
a corresponding round-trip phase and group delays (c). Spectra (b) of the 7000 round-trips
and their accumulated spectrum (d), corresponding to the actual detector time constant.
Media 1 provides the animated sequence of (a) and accumulation of (d) over the 7000
round-trips, as well as time dependencies of the pulse energy, SHG, wavelength, and r.m.s.
spectral width.

We thus conclude that our model adequately describes the experiment and that the TOD is in-
deed responsible for the onset of the chaotic instability: as the resonant wavelength approaches
the pulse spectrum, the corresponding dispersive wave merges with the pulse edge and becomes
strongly amplified. This merger can be a result of either dispersion change, as illustrated in Fig.
3, or pulse power increase with associated spectrum broadening. Both mechanisms have been
observed in the experiment and in the simulation. Since the dispersive wave now overlaps with
the pulse both spectrally and in time, their interference results in modulation, both in spectral
and time domain. Normally, this would result just in modulation, but strong nonlinear interac-
tion in the active medium causes the chaotic regime. As was shown above, the CDS is coupled
with the dispersive waves that defining the soliton spectrum truncation. Under these conditions,
CDS can exhibit a chaotic behavior even in the presence of only two resonant frequencies [30].
Such behavior was interpreted as an excitation of the internal CDS perturbation modes [31].
Contribution of a third resonant frequency (β3 �= 0) enhances the tendency to chaotic behavior,
which can be described as a nonlinear resonance of three coupled oscillators [32,33].

This is not the only possible mechanism for chaotic destabilization of the CPOs. In a num-
ber of recent works, fiber lasers operating in net-normal dispersion regimes have demonstrated
noise-like and multi-state behavior [5,6,8,9], that was attributed to saturation of the SAM. These
systems operated well in the positive dispersion with relatively small TOD, and produced com-
pletely different signatures, such as nearly symmetric spectra and bell-shaped autocorrelation
traces with a narrow coherence spike at the top, thus allowing clear distinguishing from the
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TOD-related chaotic state as discussed here.
To characterize the chaotic regime, we reconstruct the phase-space portrait for the experi-

mental CDS dynamics based on the standard lag-delayed procedure [Fig. 7(a)]. The lag-value
defined by the first zero of the peak power set correlation function [34] was 2.44 μs (∼350
round-trips), but as was pointed in [35] the most representative lag-value is smaller due to
contribution of nonlinear effects.
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Fig. 7. (a) Phase portrait of the experimental CDS peak power set for 210 nJ of intracavity
pulse energy. The 2 μs lag corresponds to 290 round-trips. The high-frequency detector
noise is removed by the Fourier-filtering. (b) Calculated instantaneous phase portrait of a
CDS. The wandering trajectory demonstrates the phase distortion and changes irregularly
between the round-trips. The regular helicoidal trajectory corresponds to the pulse tail at
the short-wavelength edge.

The analysis of phase-space embedding dimension was based on the “false neighbors”
method [34, 35, 36]. The representative dimensions of embedding phase-space demb in both
experiment and numerical simulations were found to be 2 < demb < 4. Fig. 7(a) demonstrates a
typical toroidal shape of the attracting manifold in the phase-space. Both facts are coherent with
the concept of chaos induced by the nonlinearly entangled three oscillators. Since the third res-
onant frequency caused by TOD affects nearest truncating frequency defining the CDS spectral
shape, the CDS behaves quasi-periodically or chaotically as a whole. This behavior is clearly
visible on the CDS phase portrait in Fig. 7(b), where the distortion of phase trajectory displays
a chaotic wandering of the CDS instant phase at the intrapulse femtosecond time scale.

5. Conclusion

In summary, using the example of chirped-pulse mode-locked Cr:ZnS and Cr:ZnS lasers we
have observed and established the nature of chaotic behaviour in solid-state CPOs, which occur
when the dispersive wave merges with the pulse. This occurs when the frequency, which pro-
vides a resonant interaction between the pulse and the dispersive wave, approaches the pulse
spectrum edge due to dispersion decrease and/or power increase. In practice, it is more con-
venient to watch out for the spectrum edge reaching the zero GDD wavelength, which is an
experimentally accessible parameter. The analysis based on the chaos theory demonstrates a
typical phase-space dimension around 3 and an attracting manifold of toroidal type. These facts
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confirm that the chaotization of CPO dynamics can be interpreted in the framework of three
nonlinear coupled oscillators model, where two resonant frequencies define the CDS spectral
width and the third frequency corresponds to the dispersive wave excited by the TOD.

In the chaotic and quasiperiodic regimes, spectral and temporal shapes rapidly fluctuate on
the scale of 10–1000 roundtrips, but are stable at time scales above 10000 roundtrips. The
fluctuations can be observed using fast detectors, but may remain unnoticed when standard
spectral devices are used. A typical signature of the chaotic regime is the characteristic shape
of the spectrum edge with a long tail ending with a peak. From a practical point of view, the
chaotic regime is stable on the long-term time scale and has smooth predictable spectrum,
making possible its use in such applications as high-resolution molecular spectroscopy.
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