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Abstract 23 

Knowledge about the underlying genetic architecture of phenotypic traits is needed to 24 

understand and predict their evolutionary dynamics. The number of causal loci, magnitude of their 25 

effects and location in the genome is however still largely unknown. Here we use genome-wide 26 

SNP data from two large-scale datasets on house sparrows and collared flycatchers to examine the 27 

genetic architecture of different morphological traits (tarsus length, wing length, body mass, bill 28 

depth, bill length, total and visible badge size and white wing patches). Genomic heritabilities were 29 

estimated using relatedness calculated from SNPs. The proportion of variance captured by the SNPs 30 

(SNP-based heritability) was lower in house sparrows compared to collared flycatchers, as expected 31 

given marker density (6,348 SNPs in house sparrows versus 38,689 SNPs in collared flycatchers).  32 

Indeed, after down-sampling to similar SNP density and sample size this estimate was no longer 33 

markedly different between species. Chromosome partitioning analyses demonstrated that the 34 

proportion of variance explained by each chromosome was significantly positively related to the 35 

chromosome size for some traits, and, generally, that larger chromosomes tended to explain 36 

proportionally more variation than smaller chromosomes. Finally, we found two genome-wide 37 

significant associations with very small effect sizes. One SNP on chromosome 20 was associated 38 

with bill length in house sparrows and explained 1.2% of phenotypic variation (VP) and one SNP on 39 

chromosome 4 was associated with tarsus length in collared flycatchers (3% of VP). Although we 40 

cannot exclude the possibility of undetected large-effect QTL, our results indicate a polygenic basis 41 

for morphological traits. 42 

 43 

Introduction  44 

Information about the genetic architecture of phenotypic traits is fundamental to our 45 

understanding of how these traits evolve. By revealing the number and effect size of the loci 46 
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controlling heritable traits we can improve predictions about trait evolution in natural populations 47 

(Barton & Keightley 2002) and better understand the potential of populations to adapt to 48 

environmental change. For example, the HMGA2 gene in Galápagos finches explains a substantial 49 

portion of variation in beak morphology, and was associated with marked character displacement 50 

during a severe, acute drought (Lamichhaney et al. 2016). While there has been an increasing 51 

number of studies aiming at identifying genes underlying phenotypic variation in natural 52 

populations (reviewed in Slate et al. 2010; Schielzeth & Husby 2014), the genetic architecture (i.e. 53 

the number of genes, their effect sizes and location in the genome) of most morphological traits still 54 

remains unknown. 55 

A first step in understanding the genetic architecture is to establish if the trait is heritable, 56 

something that traditionally has been done using quantitative genetic methods such as parent-57 

offspring regressions, sib analyses or the ‘animal model’(Lynch & Walsh 1998). These models all 58 

use the expected genetic relatedness among individuals to estimate heritability. However, advances 59 

in high-density genotyping have made it possible to use genome-wide marker data to estimate 60 

realized genetic relatedness between individuals and therefore the ‘genomic heritability’ 61 

(Aulchenko et al. 2007; Yang et al. 2010; Zaitlen et al. 2013; Rönnegård et al. 2016). Genome-62 

wide marker data from a large number of individuals can also be used to estimate the proportion of 63 

variation in the trait that is tagged by SNP arrays, the so called SNP-based heritability (Yang et al. 64 

2010, 2011b). All these approaches have limitations. For example, pedigree-based heritability 65 

estimates (h2
ped) require information from known relatives and heritability values may be biased due 66 

to shared environmental factors among relatives. At the same time, SNP-based estimates have been 67 

less successful in capturing the full extent of known trait genetic variance. As a result, there is often 68 

a gap between heritability estimated from pedigree approaches and heritability estimated obtained 69 

by considering significant SNPs from genome-wide association studies (GWAS), which is referred 70 

to as the “missing heritability” (Manolio et al. 2009).  71 
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The ‘missing heritability’ phenomenon is partly a result of very stringent criteria for 72 

determining that a SNP contributes significantly to the trait variance. All SNPs considered jointly 73 

explain a much higher proportion of the variance than individually significant SNPs considered 74 

jointly (Yang et al. 2010). However, this method requires only unrelated individuals to be used, 75 

substantially reducing sample size. To alleviate this, Zaitlen et al. (2013) developed a method to 76 

estimate both the proportion of trait variance explained by genotyped SNPs (SNP-based heritability 77 

– h2
g) and the ‘total narrow-sense heritability’ (h2

gkin), which is equivalent to the traditional pedigree 78 

based heritability (Zaitlen et al. 2013).  79 

Given high enough marker density, kinship coefficients can also be estimated on a more 80 

regional scale instead of genome-wide. For example, Yang et al. (2011a) proposed partitioning 81 

genetic variance of traits onto chromosomes. This method can provide novel insights into the 82 

genetic architecture of traits because it is expected that under a polygenic model, chromosome size 83 

should scale positively with the amount of genetic variation explained by that chromosome. 84 

Chromosomes that contribute a disproportionate amount of variation given their size can therefore 85 

indicate the presence of large-effect loci on that chromosome or, alternatively, a cluster of loci of 86 

small effect (Schielzeth & Husby 2014). 87 

Ultimately, we are interested in understanding how evolutionary forces act on complex 88 

traits. Genome-wide association methods have been extensively used in human and livestock 89 

studies to detect causal loci (e.g. Goddard & Hayes 2009; Yang et al. 2010) and the decreasing cost 90 

of genotyping many individuals at thousands of loci means that GWAS are increasingly applied in 91 

studies of non-model organisms (e.g. Johnston et al. 2014; Barson et al. 2015; Husby et al. 2015; 92 

Santure et al. 2015). Some of these studies have been successful in identifying large-effect loci 93 

(Johnston et al. 2014; Barson et al. 2015) while others have failed to identify genome wide 94 

significant variants (Santure et al. 2013). Even in cases where significant variants have been 95 
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detected, they only explain a relatively small proportion of the phenotypic variance (e.g. Bérénos et 96 

al. 2015; Husby et al. 2015). 97 

Traditionally GWAS do not utilize repeated measurements of the same individuals, but 98 

many long-term ecological studies follow individuals throughout their lifetime and re-measure 99 

phenotypic traits over ontogeny. This adds additional information that could be used in GWAS, and 100 

Rönnegård et al. (2016) recently developed a method to incorporate such repeated measures in a 101 

GWAS framework. Adding repeated measures can lead to increased power if there are large annual 102 

variations in the expression of the trait or unbalanced records per individual. As many GWAS of 103 

natural populations suffer from a lack of power as a result of low sample size (e.g. Kardos et al. 104 

2016), incorporating repeated measures can therefore be a useful way to increase power to detect 105 

QTLs (Rönnegård et al. 2016). 106 

In this study we take advantage of genomic resources that have recently become available 107 

for house sparrows (Passer domesticus; Hagen et al. 2013) and collared flycatchers (Ficedula 108 

albicollis; Ellegren et al. 2012), two well studied model passerine species in evolutionary biology 109 

and ecology (Anderson 2006; Qvarnström et al. 2010). Of relevance to the present study, Hagen et 110 

al. (2013) designed a custom Illumina 10K SNP array for house sparrows and Kawakami et al. 111 

(2014) a custom Illumina 50K SNP array for collared flycatchers. These arrays have an average 112 

marker density of one SNP per 100,000 bp for house sparrows (Hagen et al. 2013) and one SNP per 113 

22,000 bp for collared flycatchers. These genomic resources, together with the phenotypic data 114 

collected offer the opportunity to examine the genetic architecture of phenotypic traits. 115 

House sparrows and collared flycatchers group in different phylogenetic clades within 116 

Passeriformes, Passeridae and Muscicapidae respectively, that diverged approximately 50 million 117 

years ago (Jarvis et al. 2014). Comparing the genetic architecture of different phenotypic traits in 118 

these two species gives the opportunity to identify patterns of genetic architecture of phenotypic 119 
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traits within passerines. Here we first aimed at estimating genomic heritabilities of morphological 120 

traits using both genome wide and chromosome specific approaches (see Table 1). Second, we used 121 

a recently developed method (Zaitlen et al. 2013) to estimate the proportion of genetic variance 122 

captured by the SNP arrays. To identify SNPs associated with the traits studied we carried out 123 

GWAS using both repeated phenotypic measures (GWAS rep) and mean phenotypic values 124 

(GWAS mean). Finally, we examined whether the genetic architecture is concordant across similar 125 

traits in the two species and across different approaches. 126 

 127 

Methods 128 

Study populations and phenotypic data 129 

Phenotypic data from house sparrows were collected as part of a long-term individual based study 130 

on four islands in northern Norway: Aldra (66°25′N, 13°04′E), Hestmannøy (66°33′N, 12°50′E), 131 

Leka (65°06′N, 11°38′E) and Vega (65°40′N, 11°55′E) that has been running since 1993 (e.g. 132 

(Jensen et al. 2008). Five phenotypic characters were measured in adults of both sexes (Figure 1): 133 

tarsus length, wing length, body mass, bill depth and bill length. In addition, both total badge size 134 

and visible badge size (see Fig 1) were measured in adult males as there is evidence of different 135 

mechanisms for the expression of these two traits, and they may act as different signals (Veiga 136 

1996). Total badge size was measured as the square root of the area covered by black feathers and 137 

feathers with black bases and gray tips on the throat and chest, while visible badge size was 138 

measured as the square root of the area covered by completely black feathers, i.e. excluding the 139 

feathers with gray tips (Jensen et al. 2008). Phenotypic measurements were corrected for 140 

fieldworker variation by adding the mean difference between T.H.R. measurement and a 141 

fieldworker measurement when this was significant (p < 0.05) as judged by a paired t-tests (see 142 

Kvalnes 2016). When using one value per individual (“mean phenotypic values”), any variation in 143 



 

7 
 

trait size due to age and season was accounted for by adjusting trait size to February-measures at the 144 

age of one year. This was done by first fitting a general linear mixed effects model (using the lme4 145 

package in R, Bates et al. 2015) for each trait and sex separately, with age, age2 and month as 146 

explanatory variables, and an individual random intercept and slope to separate out any between-147 

individual variation in the relationship with age. The predicted values from this model were used to 148 

adjust each measurement of a trait through the life of an individual to its predicted value in 149 

February at age one. Then, the mean of all adjusted measurements was used as an individual’s mean 150 

trait value (Kvalnes 2016). We used this adjusted measurement as the mean trait estimate in all of 151 

the following analyses. The effects of sex, hatch year and hatch island were accounted for in the 152 

models below (heritability estimation, chromosome partitioning and GWAS) when these factors 153 

were significantly associated with the trait being analyzed (adjusted R2 and p-values in Table S1). 154 

For the repeated measurements, we did not adjust trait measurements for age and season prior to the 155 

analyses, but accounted for the effects of sex, hatch year, hatch island, month and age of the 156 

individual at the time of measurement directly in the GWAS (adjusted R2 and p-values in Table S2).  157 

Phenotypic data on collared flycatchers were collected from a nestbox population on the 158 

Swedish island of Öland (57°10’N, 16°58E), which has been monitored since 2002 (Qvarnström et 159 

al. 2010). Individuals were caught and ringed while breeding, or ringed as nestlings. For all adults, 160 

tarsus length, body mass, wing length and the size of white wing patches were measured. The white 161 

on the wing was measured using sliding calipers as the sum of the amount of white on primary 162 

feathers (2 – 7). The effects of sex and study area were included in the models below (heritability 163 

estimation, chromosome partitioning and GWAS). Sex was included as a fixed effect in the mean 164 

models of body mass, wing length and white patches on the wings, while study area was included in 165 

the model of body mass and white patches on the wings (adjusted R2 and p-values in Tables S3, 166 

S4). For repeated measures models, sex was included as a covariate for body mass, wing length and 167 

white patches on the wings, and study area was included in models of tarsus, wing length and white 168 
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on the wings. A description of the phenotypic data and number of records available for the analyses 169 

of house sparrows and collared flycatchers is reported in Table 2. 170 

  171 

Genotyping 172 

For both species a small blood sample was taken from the brachial vein of each individual 173 

and stored in ethanol, Queens lysis buffer or FTA cards for subsequent DNA extraction. In total, we 174 

genotyped 1,898 house sparrows with a 10K SNP array (Hagen et al. 2013) and 825 adult collared 175 

flycatchers on a 50K SNP array (Kawakami et al. 2014). We excluded markers with a call rate less 176 

than 95%, minor allele frequency (MAF) of less than 0.01 and a p-value for rejection of Hardy-177 

Weinberg equilibrium (HWE) of less than 0.001. We also excluded one of a pair of individuals 178 

where the identity by state (IBS) was greater than 0.9 (removing accidental duplicated samples e.g. 179 

due to pipetting the same sample twice and avoiding bias errors introduced by these overrepresented 180 

genotypes). For this quality control step we used the function check.marker() in GenABEL 181 

(Aulchenko et al. 2007). For house sparrows, the quality control for HWE was conducted 182 

independently for each population and markers that failed this test in all populations were excluded 183 

(i.e. when a marker was not at HWE in all populations it was excluded). After quality control 6,348 184 

SNPs were available for analysis in 1,851 house sparrows and 38,689 SNPs for 825 collared 185 

flycatchers. 186 

 187 

Genetic variance and heritability estimation 188 

Three different software were used to estimate genetic variance and heritability (Table 1). 189 

We first estimated genomic heritability of the phenotypic traits using the R package RepeatABEL, 190 

using the function “rGLS” (Rönnegård et al. 2016), which allows the use of repeated measurements 191 
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of phenotypic traits when estimating genetic variance. We refer to the genomic heritability 192 

estimates from this approach as h2
kin (rep). For comparison with other studies (Robinson et al. 2013; 193 

Santure et al. 2013) we also estimated heritability using the mean phenotype for each individual in 194 

the R package GenABEL, using the function “polygenic” (Aulchenko et al. 2007). We refer to this 195 

estimate as h2
kin (mean). Finally, we used the software GCTA to estimate the genetic variance using 196 

mean phenotypic values. In addition, GCTA was used to estimate the proportion of variance tagged 197 

by the SNP arrays (see below). In each of these methods, when appropriate (Tables S1 and S2), we 198 

included various fixed effects. Ideally some of the fixed effects would be included as random 199 

effects (hatch year, hatch island) but this was not possible because not all software allow more than 200 

one or two random effects (which are typically the relatedness matrices). 201 

In addition to estimating genome wide genetic variance we also used a recent method to 202 

estimate how much of the genetic variance was captured by the SNP arrays (h2
g). Unlike the method 203 

by (Yang <i>et al.</i> 2010) which needs unrelated individuals, Zaitlen et al. (2013) use two 204 

genetic relationship matrices (GRMs) in a restricted maximum likelihood (REML) analysis to 205 

calculate both SNP-based heritability (h2
g) and a pedigree equivalent heritability (h2

gkin) using all 206 

individuals. This method has been implemented in the software GCTA (Yang et al. 2011a).  207 

The variance explained by all autosomal SNPs was estimated using the mixed effects 208 

linear model y = Xβ + ۵܏		࢔۵࢛܏ + + ε, where y is a vector of phenotypes, β is a vector of fixed 209 

effects (e.g. sex, hatch island, hatch year) with its incidence matrix X, ۵܏	is a matrix of aggregate 210 

effects of all autosomal SNPs for all individuals, and ࢔۵࢛܏ is a matrix of aggregate effects of all 211 

autosomal SNPs where unrelated individuals have off-diagonals that are < 0.05 set to 0 to 212 

distinguish them from related individuals. This model therefore uses mean phenotypic values and 213 

estimates additive genetic effects tagged by the genotyped SNPs (‘SNP-based heritability’ – h2
g) 214 

and the pedigree equivalent heritability using information about genetic relationships of kin inferred 215 

from the marker data (‘total narrow-sense heritability’ – h2
gkin). The estimated total narrow-sense 216 
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heritability (h2
gkin) can therefore be compared to h2

kin (mean) estimates from GenABEL (Zaitlen et 217 

al. 2013). Prediction errors due to imperfect LD were adjusted using the --grm-adj 0 function when 218 

estimating genetic relationships (for similar approach see Bérénos et al. 2015). 219 

As sample size and marker density differs between species (1,898 house sparrows 220 

genotyped on 6,348 SNPs versus 825 collared flycatchers genotyped on 38,689 SNPs), this makes it 221 

difficult to compare heritability estimates. We therefore randomly down sampled the number of 222 

SNPs (in the collared flycatcher) and number of individuals (in the house sparrows) across the 223 

dataset such that both sample size and marker density were the same in both species. Heritabilities 224 

were then estimated using the four approaches described above and in Table 1. 225 

 226 

Partitioning of genetic variance between chromosomes 227 

To partition genetic variance among chromosomes, we used the GCTA software (Yang et 228 

al. 2011a) to compute chromosome specific GRMs for the autosomes. The genetic variance 229 

attributable to each chromosome was estimated by fitting the GRMs of all chromosomes 230 

simultaneously in the model: y = Xβ + ∑ ௠܋܏
௖ୀଵ 		+ ε, where ܋܏	is a vector of genetic effects 231 

attributable to each chromosome with ሺ܋܏ሻ = ࢉۯ	 ∗ 	ોࢉ૛ (ࢉۯ is the GRM from the SNPs on each 232 

chromosome and ોࢉ૛ is the chromosome variance). The maximum number of chromosomes fitted 233 

differed between house sparrows (m= 29) and collared flycatchers (m=33). If the models did not 234 

converge (for all traits except body mass in house sparrows and for wing length in collared 235 

flycatchers), the chromosomes with the smallest number of SNP markers were iteratively excluded 236 

until the model converged. A maximum of 8 chromosomes were excluded for house sparrows and 237 

10 chromosomes for collared flycatchers (Table S5 and S7).  238 
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To address convergence problems we first fitted separate models for each chromosome 239 

with the GRM of the focal chromosome and a GRM for all other chromosomes combined:  240 

y = Xβ + ∑ ௠ܔ܉܋ܗ܎܏
௖ୀଵ 		+ ∑ ௠ܜܛ܍ܚ܏

௖ୀଵ 		ε, where ሺܔ܉܋ܗ܎܏ሻ = ࢒ࢇࢉ࢕ࢌۯ	 ∗ 	ો࢒ࢇࢉ࢕ࢌ૛ , and Afocal the GRM of the 241 

focal chromosome. ሺܜܛ܍ܚ܏ሻ = ࢚࢙ࢋ࢘ۯ	 ∗ 	ો࢚࢙࢘ࢋ૛  estimate the variation explained by all other 242 

chromosomes but the focal chromosome. However, this did not solve the convergence issues. We 243 

therefore also tried to estimate a single GRM using marker data from all micro-chromosomes 244 

jointly. This should estimate the variance due to all micro-chromosomes together. Unfortunately, 245 

this also did not completely solve the problem, and we still had some traits where the models did 246 

not converge (Table S6). These convergence problems are likely because of the low number of 247 

markers on some chromosomes (the microchromosomes). 248 

We estimated the proportion of variance explained by the Z chromosome in collared 249 

flycatchers compared to the proportion explained by all autosomes considered together (Table S8). 250 

Note that we do not have comparable information in house sparrows (markers on the Z 251 

chromosome were not included here because they have not been mapped to the genome and a 252 

linkage map for the Z chromosome is not available yet), and so we did not consider this further. 253 

To estimate the relationship between chromosome size and the amount of variation it 254 

explained for each trait, we used linear regression models in R (R Core Team 2015). Chromosome 255 

sizes for both house sparrows and collared flycatchers were taken from the reference genome 256 

assemblies (house sparrows; NCBI accession number 17653, collared flycatchers; NCBI accession 257 

number 11872)  258 

 259 

GWAS 260 
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Data on both house sparrows and collared flycatchers have been collected as part of long 261 

term individual based monitoring projects. This allowed us to take repeated measures of individuals 262 

and to take this nested data structure into account when testing for associations between SNPs and 263 

the phenotypic traits using the function “rGLS” in the R package RepeatABEL (Rönnegård et al. 264 

2016). RepeatABEL allows a mixed model with both a repeated measures effect as well as 265 

relatedness between individuals to be included as random effects. For comparison, we also used 266 

individual mean measurements of phenotypic traits using the function “grammar” in the R package 267 

GenABEL (Aulchenko et al. 2007). Reported p-values are based on Wald tests and are corrected for 268 

population stratification (structure and relatedness) and the repeated sampling of the same 269 

individuals when using the repeated measures GWAS (Rönnegård et al. 2016). The genome-wide 270 

significance threshold was determined using a Bonferroni correction by dividing the significance 271 

value (p = 0.05) by the number of markers (Lander & Kruglyak 1995) resulting in p = 7.80 x 10-6 272 

for house sparrows and p = 1.29 x 10-6 for collared flycatchers. This is a conservative p-value as it 273 

assumes that all markers are independent. We also report the additive genetic variance explained by 274 

each of the five SNPs with the smallest p-values, estimated as Vୗ୒୔ =  where p and q are the 275	ଶ,ܽݍ݌2

frequencies of the major and minor allele frequencies, respectively, and a is the additive SNP effect 276 

(Falconer & Mackay 1996). The heritability of each of these SNPs (h2
SNP) was then estimated as 277 

VSNP/VP (where VP is the phenotypic variance estimate obtained from the GWAS). 278 

 279 

Results 280 

Genomic heritability 281 

Heritability estimated using repeated phenotypic measures (h2
kin (rep)) ranged from 0.136 282 

for total badge size to 0.415 for tarsus length in house sparrows, and from 0.149 for white wing 283 

patches to 0.289 for tarsus length in collared flycatchers (Table 2). In general, when using mean 284 
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phenotypic values heritability estimates (h2
kin (mean)) tended to be higher for both species across all 285 

traits, ranging from 0.228 for total badge size to 0.495 for bill length in house sparrows, and from 286 

0.267 for white wing patches to 0.576 for tarsus length in collared flycatchers (Table 2). 287 

When jointly estimating the SNP-based heritability (h2
g) and total narrow-sense heritability 288 

(h2
gkin) using the Zaitlen et al. (2013) method we found that SNP-based heritability ranged from 289 

zero for wing length to 0.185 for body mass in house sparrows, and from 0.080 for body mass to 290 

0.538 for wing length in collared flycatchers. For most traits, the total narrow-sense heritability 291 

estimates from the Zaitlen et al. (2013) method (Table 3) were similar to the h2
kin(mean) values 292 

from GenABEL (Table 2).  293 

In general SNP-based heritabilities were higher for collared flycatchers compared to the 294 

house sparrows. To examine this in more detail we thinned both data sets down to 825 individuals 295 

and 6,348 SNPs. In house sparrows the reduction of sample size caused an inflation for many h2 296 

estimates and an increase in standard errors, whereas a reduction in marker density in collared 297 

flycatchers had little effect (Tables 4 and 5).  298 

 299 

Chromosome partitioning 300 

We found a significant linear relationship between the proportion of variance explained by 301 

each chromosome and chromosome size for tarsus length, body mass, bill length and visible badge 302 

size in house sparrows (Figure 2), but not for wing length, bill depth and total badge size (Figure 2, 303 

Table S5). The variance explained by each chromosome ranged from zero to 0.092 across all traits 304 

(Table S5). Chromosome 2, which is the largest chromosome in house sparrows, did not explain 305 

much of the variation for most traits, except for visible badge size. On the other hand, chromosome 306 

1 (the second largest chromosome) explained a high proportion of the variance in most 307 

morphological traits (tarsus length, wing length, bill depth, bill length and total badge) except for 308 
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body mass and visible badge size. Interestingly, a relatively small chromosome (14) explained a 309 

large proportion of the variation for wing length (Figure 2, Table S5).  310 

Some models failed to convergence when including all chromosomes and estimating the 311 

variance using all micro-chromosomes together did not solve convergence issues (e.g. wing length). 312 

These values were similar to estimates when fitting the GRMs of all chromosomes simultaneously 313 

in the model (Tables S5 and S6). Fitting separate models with the GRM for a focal chromosome 314 

against the rest also did not solve convergence problems (see Methods). Some of the chromosome 315 

specific estimates should therefore be treated with caution.  316 

For collared flycatchers, the relationship between the proportion of variance explained by 317 

each chromosome and chromosome size was significant for tarsus length (r=0.656), but not for 318 

wing length (r=0.269), body mass (r=0.144) or white wing patch (r=-0.041; Figure 3, Table S7). 319 

The proportion of variance explained by a single chromosome ranged from zero to 0.150 across all 320 

traits. As with house sparrows, chromosome 2 did not explain substantial variation in any trait, 321 

while chromosome 1 contributed substantially to both tarsus and wing length. Chromosome 4 also 322 

contributed substantially to tarsus length (Table S7), which reflects the presence of a significant 323 

marker for tarsus length on chromosome 4 (see below).  324 

 325 

GWAS  326 

After correcting for multiple testing, one SNP (11485) on chromosome 20 was 327 

significantly associated with bill length in house sparrows when using mean phenotypic values, and 328 

explained 2% of the phenotypic variation (Table S11, Figure S3). This SNP also had the lowest p-329 

value when using repeated measures, although it was no longer significant after Bonferroni 330 

correction (Table S9, Figure S1). In general, each one of the top five SNPs (ranked by p-value) 331 

explained only a small proportion of the phenotypic variation and these values were similar between 332 
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the two approaches. The total amount of variation explained by the top five SNPs ranged from 3% 333 

for wing length to 5.8% for total badge using the repeated measures, and from 3.3% for wing length 334 

to 10.9% for total badge using the mean values (Tables S9 and S11). The ranking of the top five 335 

SNP associations was often similar between the two approaches, although they were not always 336 

shared (Tables S9 and S11). 337 

As for house sparrows, the results from the two GWAS in collared flycatchers were also 338 

concordant. In neither approach did we find significant associations between SNP markers and any 339 

phenotypic traits with the exception of tarsus length (SNP N00199:174262 on chromosome 4); this 340 

SNP explained a small amount of the variation (3% using repeated measures and 4% using mean 341 

values). Across all the traits measured, allelic variation at the top five SNPs was responsible for 342 

between 3.3-11.4% of the phenotypic variation (Tables S9 and S12, Figure S2 and S4).  343 

 344 

Discussion 345 

 Understanding the genetic architecture of traits in wild populations can better 346 

elucidate the mechanisms responsible for trait evolution, including the expected rate of evolutionary 347 

change (Barton & Keightley 2002). In this study, we used large-scale genotype data from custom 348 

SNP arrays from two passerine species to examine the genetic architecture of morphological traits. 349 

Using genomic data we demonstrate that these traits are heritable (Tables 2 and 3) and chromosome 350 

partitioning revealed that for many traits the proportion of variance explained by a chromosome 351 

scaled with its size, suggesting a polygenic basis (Figures 2 and 3). This interpretation was further 352 

supported by the GWAS that did not detect any large effect loci (Tables S9-S12). Overall, our 353 

results add further support for a polygenic basis in morphological, sexually selected and life-history 354 

traits as earlier documented for example in great tit (Santure et al. 2013, 2015), Soay sheep 355 

(Bérénos et al. 2015) and collared flycatcher (Husby et al. 2015; Kardos et al. 2016). 356 
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The different approaches used here to estimate heritability gave similar values to that seen 357 

in previous studies using pedigree approaches in both species (Gustafsson 1986; Jensen et al. 2003, 358 

2008). As documented in a previous pedigree study (e.g. Åkesson et al. 2008), the use of repeated 359 

measures resulted in somewhat lower estimates of heritability, and this was also the case for 360 

genomic heritability in the GWAS context (Rönnegård et al. 2016). Our results support this finding 361 

(Table 2), which is a result of reduced residual variance in the mean trait models. Our estimates of 362 

heritability were generally lower than the average heritability estimates for morphological traits in 363 

wild systems (Postma 2014), which seems consistent with previous reports that genomic 364 

heritabilities tend to be lower than heritabilities estimated from pedigree based animal models 365 

(Zaitlen et al. 2013; de los Campos et al. 2015).  366 

A relatively new measure is the SNP-based heritability, which estimates how much of the 367 

variation in a trait is tagged by the SNP array used after accounting for the variance explained by 368 

similarity between relatives. Studies in humans have demonstrated that the SNP-based heritability is 369 

generally lower than the pedigree heritability (Yang et al. 2010), suggesting that not all causal sites 370 

are tagged by the SNP arrays used. We used a recent approach developed by Zaitlen et al. (2013) to 371 

simultaneously estimate the SNP-based heritability (h2
g) and the total narrow-sense heritability 372 

(h2
gkin). In general, and as expected, the SNP-based heritability tended to be lower than the total 373 

narrow-sense heritability (Tables 3 and 5). This could be because of a relatively low density of 374 

SNPs, compared to relatively many related individuals. Thus, we might estimate a higher 375 

heritability by using genomic relatedness to assess resemblance between relatives than by assessing 376 

the phenotypic variance explained by tagged SNPs. The SNP-based heritability in house sparrows 377 

was generally lower than in collared flycatchers (zero to 0.185 versus 0.080 to 0.538 respectively), 378 

which was not unexpected given that marker density is higher for collared flycatchers than house 379 

sparrows. These differences in SNP-based heritability may also be the result of house sparrows 380 

being more related than collared flycatchers as a consequence of their life history characteristics. 381 
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 We therefore thinned the collared flycatcher dataset to have 6,348 SNPs and the house 382 

sparrow dataset to have 835 individuals. Interestingly, both h2
gkin and h2(mean) showed there was an 383 

upward bias in the heritability estimates in house sparrows compared to the full data set (Tables 4 384 

and 5). This indicates that there may be an inflation of heritability estimates and effect sizes at 385 

lower biological sample sizes. We did not see a similar effect in flycatchers, where we thinned the 386 

number of markers. This could be because the number of markers in the full data set was already 387 

relatively low, particularly for the LD structure typical in passerines (Kawakami et al. 2014; Kardos 388 

et al. 2016). 389 

The Zaitlen et al. (2013) method has not yet, to our knowledge, been used in other studies 390 

of natural populations. Surprisingly, the proportion of the heritability explained by the SNPs in our 391 

study is similar or higher to that seen in humans (Yang et al. 2010). However, these datasets have 392 

substantial differences in terms of SNP density, sample sizes, level of relatedness between 393 

individuals and chromosome architecture. As we have demonstrated by thinning the sparrow data 394 

set to fewer individuals, there may be an inflation of the amount of phenotypic variation explained 395 

by kinship-based methods when fewer individuals are included in an analysis. Simulations are 396 

needed for a robust comparison and to understand the effects of these differences in the dataset 397 

when estimating SNP-based heritabilities. 398 

For some traits, chromosome partitioning analyses demonstrated a significant positive 399 

association between the amount of variation explained by a chromosome and the size of that 400 

chromosome, as would be expected if the trait was polygenic (Figures 2 and 3). However, we did 401 

not find significant correlation between chromosome size and proportion of variance explained for 402 

wing length, bill depth and total badge in house sparrows, or wing length, body mass and white 403 

wing patches in collared flycatchers, although some larger chromosomes explained substantial 404 

amounts of the overall variation (Figures 2 and 3). Similar morphological traits have been identified 405 

as polygenic in other species; for example wing length, weight, tarsus length, clutch size and egg 406 
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weight in great tits (Robinson et al. 2013, Santure et al. 2015) and jaw size and body mass in Soay 407 

sheep (Bérénos et al. 2015). Additionally, Schielzeth et al. (2012a) used a QTL linkage mapping 408 

approach to find six genomic regions linked to variation in wing length in a captive population of 409 

zebra finches. All putative regions showed similar effect sizes (3.9–8.3%) and together explained 410 

only about half of the heritability in wing length. The many candidate genes within the QTL regions 411 

further suggest a polygenic basis for wing length in zebra finches. In total, it seems that these 412 

morphological traits in passerines could generally be polygenic.  413 

One may still argue that our results are not totally consistent with previous findings. 414 

However, it is important to keep in mind that the larger chromosomes tended to explain substantial 415 

variance also in traits that did not show significant correlation between chromosome size and 416 

proportion of variance explained (Tables S5-S7), as expected under a polygenic model. Moreover, 417 

estimating relatedness on the micro-chromosomes is difficult because we have very few markers on 418 

these, which makes estimation difficult (and potentially unreliable), as indicated by the problems 419 

with model convergence. An additional consideration is that it is not clear that chromosomes that 420 

contribute disproportionately to trait variation given their size should harbor large effect QTLs 421 

because it is equally plausible that many small effect loci cluster on that chromosome. As pointed 422 

out by Schielzeth & Husby (2014), such clustering of many loci of small effect on a single 423 

chromosome is not uncommon and can involve association with biologically relevant pathways for 424 

a specific trait. Some caution is therefore warranted when making predictions about the genetic 425 

architecture of traits from regressions of chromosome size on proportion variance explained. 426 

Finally, we did not find any significant single large effect-size markers for these traits on the 427 

chromosomes that explained a disproportional part of the variance. Taken together, most evidence 428 

therefore points in the direction of a polygenic basis also for these traits. 429 

We only detected two SNP markers that met the genome-wide significant threshold: one 430 

SNP on chromosome 20 for bill morphology in house sparrows that explained 1.9% of the 431 
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phenotypic variation and one SNP on chromosome 4 in the collared flycatcher for tarsus length 432 

explaining 3% of the variation. SNP 11485 on chromosome 20 associated with bill length in house 433 

sparrows might be related to a previously detected QTL on chromosome 20 for beak morphology in 434 

zebra finches (Knief et al. 2012). In the zebra finch this QTL was found to be located at 0.86–14.17 435 

Mb and the position of the SNP in our study is 7.6 Mb. We are not aware of any previous studies on 436 

tarsus length that show an association in the region on chromosome 4 where the QTL for tarsus 437 

length in the collared flycatcher was located. 438 

Another interesting finding in our study was the presence of two shared SNPs for different 439 

traits in house sparrows. SNP 15053 was among the top five SNPs associated with both total badge 440 

and visible badge size when using repeated values (Table S9), and SNP 11485 was among the top 441 

five SNPs associated with bill depth and bill length when using mean values (Table S11). Shared 442 

loci among traits will result in a genetic correlation between these traits (i.e., total badge vs. visible 443 

badge size and bill depth vs. bill length) and these are traits that have previously been found to be 444 

genetically correlated in this species (Jensen et al. 2008).  445 

In summary, we genotyped a large number of individual house sparrows and collared 446 

flycatchers on custom genome-wide SNP arrays and examined the genetic architecture of a number 447 

of phenotypic traits. By estimating and using kinship matrices based on genome-wide SNP data we 448 

demonstrated that all traits showed substantial amount of genetic variance, in line with results from 449 

previous pedigree-based approaches. When applying a novel method to estimate the proportion of 450 

variance in the traits captured by the genotyped SNPs (SNP-based heritability, h2
g), our estimates 451 

were somewhat larger than expected considering the sample size and number of SNPs used. The 452 

SNP-based heritability was lower than the total narrow-sense heritability in both species suggesting 453 

that not all causal sites are tagged by the SNP arrays used. Chromosome partitioning as well as 454 

GWAS showed several lines of evidence suggesting that the investigated traits are polygenic. This 455 

was indicated by a positive correlation between chromosome size and amount of variance explained 456 
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for most traits, a lack of any large effect QTLs, and the small amount of total variation explained by 457 

the top SNPs in the GWAS. Our results are in line with other recent studies showing a polygenic 458 

basis to phenotypic traits in natural populations.  459 

Finally, one major conclusion to make from this work is that genomic techniques, even 460 

with low marker densities, can be useful to provide a better understanding of short-term 461 

evolutionary change of phenotypic traits in natural populations. We are currently transitioning to 462 

studies at the level of entire genomes but low-density SNP arrays can be very useful tools. In 463 

particular, these SNP arrays are a cost-efficient resource for addressing questions that require large 464 

sample sizes from natural populations. 465 
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Tables: 602 

 603 

Table 1 Information about the different approaches used for estimating heritabilities (abbreviation, 604 

name, description with specific characteristics and underlying methodology and software used). 605 

h2
kin(mean) and h2

gkin use the same data and statistical method and should give near identical 606 

estimates (see Methods). 607 

 608 

Abbreviation Name Description Software References 

h2
kin (rep) 

Genomic heritability - 
using repeated 
measures 

Genomic heritability 
estimated using genetic 
relatedness and using 
repeated measurements of 
phenotypic traits 
 

R package 
RepeatABEL Rönnegård et al. 2016

h2
kin (mean) Genomic heritability - 

using mean values 

Genomic heritability 
estimated using genetic 
relatedness using the mean 
phenotype for each 
individual 
 

R package 
GenABEL Aulchenko et al. 2007

h2
g SNP-based heritability 

Proportion of additive 
genetic effects captured by 
the genotyped SNPs using 
unrelated individuals 
 

GCTA Yang et al. 2011a; 
Zaitlen et al. 2013 

h2
gkin 

Total narrow-sense 
heritability 

Genomic heritability 
estimated using genetic 
relatedness inferred from 
marker data (mean 
phenotype for each 
individual) 
 

GCTA  Yang et al. 2011a; 
Zaitlen et al. 2013 

  609 
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Table 2 Descriptive information on number of individuals (Ni) and number of records (Nr) of each 610 

trait with respective phenotypic mean and standard deviation (SD); heritability estimates with 611 

respective standard errors (SE), total phenotypic variance (VP) and total additive genetic variance 612 

(VA) for phenotypic traits of two passerines estimated using genomic heritabilities with repeated 613 

measures (h2
kin (rep)) and genomic heritabilities with mean values (h2

kin (mean)). All estimates are 614 

contingent on the fixed effects included in the analyses (see methods for the fixed effects included).  615 

     Repeated measures   Mean values  

House sparrow Ni Nr Mean SD 
h2

kin 

(rep) 
SE 

VP VA  h2
kin 

(mean) 
SE 

VP VA 

Tarsus length 1443 3201 19.58 0.851 0.415 0.042 0.724 0.302  0.399 0.041 0.711 0.284

Wing length 1446 3210 79.92 2.032 0.388 0.037 4.865 1.888  0.481 0.040 3.927 1.889

Body mass 1448 3335 31.46 1.983 0.300 0.035 4.758 1.427  0.374 0.041 3.825 1.431

Bill depth 1442 3316 8.11 0.282 0.319 0.036 0.090 0.035  0.459 0.040 0.068 0.031

Bill length 1443 3314 13.74 0.542 0.390 0.037 0.340 0.108  0.495 0.039 0.253 0.125

Total badge size 721 1621 19.97 0.861 0.136 0.042 1.027 0.140  0.228 0.063 0.752 0.171

Visible badge size 720 1624 15.59 1.387 0.139 0.043 2.511 0.349  0.253 0.065 0.908 0.230

Collared flycatcher              

Tarsus length 798 1923 19.45 0.67 0.289 0.07 0.48 0.14  0.576 0.079 0.45 0.260

Wing length 800 1981 82.32 2.09 0.242 0.06 4.02 0.97  0.544 0.080 4.41 2.40 

Body mass 794 1978 14.19 1.43 0.203 0.06 0.89 0.18  0.338 0.087 2.06 0.70 

White wing patches 799 1974 32.93 16.87 0.149 0.05 195.6 29.2  0.267 0.083 284.6 75.97

 616 

  617 
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Table 3 Descriptive information on heritability values with respective standard errors (SE), total 618 

phenotypic variance (VP) and total additive genetic variance (VA) for phenotypic traits of two 619 

passerines estimated using the Zaitlen et al. (2013) approach: SNP-based (h2
g) and total narrow-620 

sense heritability (h2
gkin). Note that h2

gkin is the sum of h2
g + h2

kin (proportion of phenotypic variance 621 

not explained by the SNPs, not reported here). 622 

  SNP-based heritability  Total narrow-sense heritability 

House sparrow VP h2
g SE VA  h2

gkin SE VA 

Tarsus length 0.700 0.052 0.078 0.037  0.399 0.073 0.279 

Wing length1 2.408 0.000 0.051 0.000  0.114 0.065 0.275 

Body mass 3.767 0.185 0.082 0.697  0.270 0.077 1.017 

Bill depth 0.066 0.045 0.072 0.003  0.168 0.080 0.011 

Bill length 0.240 0.119 0.081 0.028  0.147 0.074 0.035 

Total badge 0.736 0.120 0.151 0.088  0.148 0.148 0.109 

Visible badge 0.894 0.031 0.114 0.028  0.058 0.115 0.052 

Collared flycatcher         

Tarsus length 0.464 0.45 0.17 0.209  0.651 0.080 0.302 

Wing length 3.39 0.538 0.178 1.82  0.538 0.083 1.824 

Body mass 0.649 0.080 0.181 0.052  0.310 0.082 0.201 

White wing patches 141.19 0.083 0.162 11.70  0.185 0.094 26.12 
1 one variance component was constrained from the second iteration. When using the --reml-no-constrain option, the variance was 623 
negative. 624 

  625 
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Table 4 Descriptive information (for between species comparison) on number of individuals (Ni) 626 

and number of records (Nr) of each trait with respective phenotypic mean, standard deviation (SD) 627 

and total phenotypic variance (VP); heritability estimates with respective standard errors (SE) and 628 

total additive genetic variance (VA) for phenotypic traits of two passerines estimated using GWAS 629 

with repeated measures (h2
kin (rep)) and GWAS with mean values (h2

kin (mean)). These analyses use a 630 

thinned data set for both species such that marker density and sample size are identical (n= 825 631 

individuals, n = 6,348 SNPs). Note that sample size for badge size traits in house sparrow are 632 

smaller (only present in males). 633 

 634 

     Repeated measures   Mean values  

House sparrow Ni Nr Mean SD 
h2

kin 

(rep) 
SE 

VP VA  h2
kin 

(mean) 
SE 

VP VA 

Tarsus length 816 1560 19.63 0.84 0.484 0.066 0.720 0.348  0.459 0.065 0.711 0.330

Wing length 816 1564 80.18 2.25 0.376 0.057 3.962 1.490  0.505 0.064 3.927 2.001

Body mass 815 1612 31.61 2.21 0.287 0.056 4.198 1.205  0.410 0.066 3.825 1.721

Bill depth 816 1605 8.15 0.30 0.257 0.055 0.068 0.017  0.375 0.066 0.068 0.026

Bill length 816 1603 13.78 0.60 0.368 0.059 0.257 0.095  0.503 0.064 0.253 0.129

Total badge size 393 746 20.07 0.99 0.132 0.072 0.752 0.099  0.262 0.112 0.752 0.197

Visible badge size 390 747 15.88 1.56 0.099 0.066 0.952 0.094  0.099 0.097 0.908 0.094

Collared flycatcher              

Tarsus length 819 1923 19.45 0.67 0.284 0.06 0.48 0.14  0.466 0.07 0.45 0.20 

Wing length 822 1981 82.32 2.09 0.233 0.06 4.02 1.60  0.397 0.07 4.41 1.75 

Body mass 815 1978 14.19 1.43 0.203 0.05 0.89 0.26  0.290 0.08 2.06 0.60 

White wing patches 820 1974 32.93 16.9 0.140 0.05 195.6 46.4  0.237 0.07 284.6 67.5 

  635 
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Table 5 Descriptive information (for between species comparison) on heritability values with 636 

respective standard errors (SE), total phenotypic variance (VP) and total additive genetic variance 637 

(VA) for phenotypic traits of two passerines estimated using the Zaitlen et al. (2013) approach: 638 

SNP-based (h2
g) and total narrow-sense heritability (h2

gkin). These analyses use a thinned data set for 639 

both species such that marker density and sample size are identical (n= 825 individuals, n = 6,348 640 

SNPs). Note that sample size for badge size traits in house sparrow are smaller (only present in 641 

males).  642 

  SNP-based heritability Total narrow-sense 

heritability 

House sparrow VP h2
g SE VA h2

gkin SE VA 

Tarsus length1 0.722 0.000 0.136 0.000 0.412 0.140 0.297 

Wing length2 2.320 0.000 0.149 0.000 0.282 0.144 0.654 

Body mass 4.051 0.358 0.163 1.451 0.358 0.145 1.450 

Bill depth 0.065 0.342 0.165 0.022 0.342 0.145 0.022 

Bill length 0.245 0.103 0.141 0.025 0.205 0.128 0.050 

Total badge 0.763 0.149 0.311 0.114 0.257 0.305 0.196 

Visible badge 0.970 0.000 0.314 0.000 0.258 0.291 0.250 

Collared flycatcher        

Tarsus length 0.465 0.232 0.117 0.108 0.620 0.083 0.288 

Wing length 3.38 0.417 0.122 1.411 0.529 0.083 1.791 

Body mass 0.649 0.163 0.126 0.106 0.307 0.081 0.199 

White wing patches 141.22 0.048 0.126 6.77 0.186 0.093 26.27 
 1 one variance component was constrained from the second iteration. 2 one variance component was constrained from the first 644 
iteration. 645 
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 647 

 648 

Figures: 649 

 650 

Figure 1 Schematics of phenotypic measurements in house sparrows (BL: bill length, BD: bill 651 

depth, TB: total badge, VB: visible badge, WL: wing length and TL: tarsus length) and collared 652 

flycatchers (TL: tarsus length, WL: wing length, WWP: white wing patches). Photos by H. Jensen 653 

(male house sparrow) and A. Husby (male collared flycatcher). 654 
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 656 

Figure 2 Scatterplot of the relationship between chromosome size (Mb) and the variance explained 657 

by each chromosome for seven phenotypic traits of house sparrows (Pearson correlation: p < 0.05 658 

for tarsus length, body mass, bill length and visible badge; p > 0.05 for wing length, bill depth and 659 

total badge).  660 
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 662 

Figure 3 Scatterplot of the relationship between chromosome size (Mb) and the variance explained 663 

by each chromosome for tarsus length (p < 0.01), wing length (p = 0.215), mass (p = 0.431) and 664 

white wing patches (p = 0.824) for collared flycatchers.  665 
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