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Abstract

An epidemic spreading model known as the SIS (Susceptible-Infected-Susceptible) model
with diffusion on complex networks is studied, with emphasis on the long-term behavior
(the stationary state) of the number of infected particles. Both analytical (mean-field)
and simulation results for both discrete and continuous time are presented. This model
has been studied previously by Colizza et al. (Nat. Phys. 3:276-282, 2007). They found
that the model has a phase transition at a critical density, which is dependent on network
topology. Our simulation results show that the analytical results presented by Colizza
et al. are correct. We suggest that their simulations deviate from the analytical results
because of excessively high reaction rates. The analytical results for the stationary state
are generalized using a series expansion in the node degree k, which agrees with simulation
results. A new and presumably more realistic reaction type is also introduced. The critical
density’s dependence on diffusion and reaction rates is calculated both analytically (using
a series expansion and a Jacobian matrix) and by simulation, and these coincide. Finally,
we present a model for opinion formation and spreading on a complex network, which
shows some interesting behavior.



Sammendrag

Vi undersøker en modell for epidemi-spredning kjent som SIS-modellen (Susceptible-
Infected-Susceptible) med diffusjon p̊a komplekse nettverk, med fokus p̊a den langsik-
tige oppførselen (den stasjonære tilstanden) til antallet infiserte partikler. B̊ade analytiske
(middelfelt) og simuleringsresultater med b̊ade diskret og kontinuerlig tid blir presen-
tert. Denne modellen har blitt studert tidligere av Colizza et al. (Nat. Phys. 3:276-282,
2007). De fant at modellen har en faseovergang ved en kritisk tetthet som er avhengig
av nettverksstrukturen. V̊are simuleringsresultater viser at de analytiske resultatene som
Colizza et al. presenterte er riktige. Vi antyder at deres simuleringer avviker fra de an-
alytiske uttrykkene p̊a grunn av for høye reaksjonshastigheter. De analytiske resultatene
for stasjonærtilstanden blir generalisert ved å rekkeutvikle i node-rangen k, og disse resul-
tatene stemmer med simuleringer. Vi introduserer ogs̊a en ny og formodentlig mer realistisk
reaksjonstype. Den kritiske tetthetens avhengighet av diffusjons- og reaksjonshastighetene
blir beregnet b̊ade analytisk (med rekkeutvikling og Jacobi-matrise) og ved simulering, og
disse stemmer overens. Til slutt presenterer vi en modell for meningsdannelse og -spredning
p̊a komplekse nettverk, som viser seg å ha en interessant oppførsel.
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Chapter 1

Introduction

We live in a complex world. Although we have a good understanding of the smallest
constituents of the universe, like protons and electrons, a thorough understanding of more
intricate systems may be harder to obtain. Our understanding of elementary particles is
of little use when we for instance try to understand the working principles of a group of
people, which is composed of billions upon billions of electrons and protons. To deal with
such intricate systems or networks, we need some kind of simplification.

So what is a network? Simply speaking, a network consists of objects with some
connections between them. In many contexts, ”network” will be synonymous with ”sys-
tem”. In the real world, you can find numerous examples of networks or systems. You,
your friends and your friends’ friends make up a network of friendships, relationships and
acquaintances. The web pages in the World Wide Web and their hyperlinks make up
a network, while the routers of the Internet and their communcation make up another.
None of these are easy to fully understand: There is more to a system than just the sum
of its parts, just as a network is more complex than a collection of individual objects. Or,
as expressed by Craig Reynolds, ”a flock is not a big bird” [1]. The interactions between
the objects make networks both interesting and challenging.

Already in the 1930s, social networks were studied extensively by sociologists. They
discovered how important the structure of such networks was to their function. The way
friends interact, for example, would have a great effect on how a rumour or a disease
would spread between them. If you were sick and met lots of friends every day, you would
naturally expose more people to the disease than if you had no friends and never left your
home. An obstacle in the study of social networks, however, was to obtain reliable data
about these networks.

When computers and more extensive network data became available later in the 20th
century, the study of networks took a new turn. Instead of studying just small networks,
one could now consider networks with thousands or even millions of objects. Computer
networks, such as the Internet, was studied, and one realized how the structure could have
an impact on the spread of computer viruses or the vulnerability to targeted attacks.

One of the important applications of the study of networks is what’s known as epidemic
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CHAPTER 1. INTRODUCTION

modeling. This concerns the way a disease, a virus or something similar spreads in a
network. As mentioned previously, the way in which people or computers interact is
clearly crucial to such spreading.

The goal of this project was to study a type of epidemic modeling on networks that
resemble those found in the real world. Previously work has already been done to find the
long-term limit (stationary state) in such systems. The stationary state can give useful
information about whether an infection will spread or die out. I intend to investigate these
results in more detail and try to generalize and compare them. I will also present a model
for opinion formation and spreading on networks, which in principle is quite similar to the
epidemic model.
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Chapter 2

Theory

The following theory section, giving an introduction to modeling of networks and reaction-
diffusion, is largely taken from my project thesis [2].

To study the properties of real networks, we need to make a model to represent their
most important properties. As mentioned in the introduction, a network consists of objects
with some connections. To incorporate these two elements, we use what is known in
mathematics as a graph.

In a graph, the objects are called nodes or vertices, while the connections between
them are called links or edges. The links may be directed, which means that a link from
node u to node v does not necessarily imply a link from v to u. Undirected links, on the
other hand, can be traversed in both directions. Links may also have a weight assigned to
them, in order to indicate e.g. the cost of using each link or the link’s capacity. In graph
theory, the word ”network” is used for directed, weighted graphs, but we will use it as a
synonym for a graph. An example of a small, undirected, unweighted network is given in
Fig. 2.1.

Each node has a degree, k, defined as its number of connections to other nodes. In
Fig. 2.1, the degrees vary from 1 to 4. The degree distribution, p(k), is important for the
network’s properties. Large variations in the nodes’ degrees contributes to the complexity
that a network often has. Although the mean degree ⟨k⟩ is low, the maximum degree kmax

can be quite high. Real-world networks are often heterogeneous, i.e. they have large degree
variations. This as opposed to a homogeneous system with nodes in a regular lattice, with
only links to nearest neighbors. For instance, in a regular square 2D lattice, all nodes not
on the edges have degree 4, and in this respect they are equivalent, hence the network is
homogeneous.

Another often used quantity is the shortest path between two nodes, or geodesic path.
The geodesic path between two nodes is the shortest distance between them by traversing
the network. In a network where all links have a unit weight, the shortest path length is
equal to the lowest number of links you have to use to travel from one node to the other.
An important property of many networks is that the average distance between nodes
increases slowly when increasing the number of nodes. This is known as the small-world
effect. Networks are said to show the small-world effect if the average distance between
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CHAPTER 2. THEORY

Figure 2.1: An example of a network with 20 nodes. The number next to each node is its
degree k.

two nodes scales logarithmically, or slower, for a fixed mean degree ⟨k⟩.

2.1 Types of networks

2.1.1 Erdös-Rényi networks

Erdös and Rényi [3] proposed a simple model for networks, which shows the important
small-world effect. The model takes a number of vertices V and connects each pair with
a probability p. In other words, each possible link between two nodes is equally probable.
These networks have a binomial distribution of degrees, which approaches a Poisson dis-
tribution when n→∞ holding the mean degree ⟨k⟩ = p(V − 1) constant. Therefore, these
networks or graphs are also known as Poisson random graphs. Although this model shows
the small-world effect, an important property of real networks, the degree distribution is
not similar to that of most real networks.

2.1.2 Scale-free networks

A large variety of real networks have shown to be scale-free. More precisely, the degree
distribution scales as p(k) ∼ k−γ where γ > 0 is some exponent, or in other words p(k) is a
power law. Two degree distributions of real networks are shown in Fig. 2.2. A summary
of this and other properties of different real networks can be found in e.g. recent reviews
by Albert and Barabási [4] or Newman [5].
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(a) (b)

Figure 2.2: Cumulative degree distributions of (a) the Internet (γ = 2.5) [6] and (b) a
scientific citation network (γ = 3.0) [7]. (Figure by Newman [5])

2.2 Reaction-diffusion

A network may be used as a model for a real system in which particles interact. These
particles may be network packages exchanged between computers in a computer network,
a rumour spreading in a friendship network etc. The transportation and reactions of these
particles may be quite interesting in the complex networks that you often find in real
life. In epidemic modeling, a network is used to model the spread of a disease. People
are modeled as two types of particles: susceptible (S) or infected/infectious (I). This is
also known as the SIS model. One may also include a third type, recovered/resistent (R),
which makes a SIR model. A SIS model will be studied in this thesis.

In a reaction-diffusion (RD) process on a complex network, particles react at and
diffuse between the nodes. In this thesis, the studied reactions are

A +B → 2B , (2.1a)
B → A . (2.1b)

Interpreted in an epidemic scenario, the A particles are un-infected or susceptible,
while B particles are infected/infectious. The first reaction (2.1a) represents the infection
of susceptible particles, while the second reaction (2.1b) represents the recovery (”healing”)
of infected particles. In other words, reaction (2.1a) will decrease the number of A particles
while reaction (2.1b) will increase the number of A particles. These equations also ensure
that the total number of particles on the network is conserved at all times.

The starting point for this project was an article by Colizza et al. [8], where the reac-
tions (2.1) were studied. These authors presented analytical expressions for the stationary
state of such a system, and experimental (simulation) results were used to confirm these.
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The results showed that there exists a phase transition at a critical total particle density.
Below this critical density, the number of B particles vanishes with time, and becomes
zero for the stationary state.

Colizza et al. [8] introduces two types of reactions for equation (2.1a). The first, type
I, lets each B at a given node interact with all A’s at that node, each interaction having a
probability β for a reaction to take place. In a type II reaction, each B is only interacting
with a limited number of A’s. Colizza et al. found the two types (not surprisingly) to
give rise to different behaviour, where type I reactions are the ones affected by network
structure. Equation (2.1b) is modeled by letting each B be converted to an A with a
probability µ.

If one let the nodes represent cities and particles represent people, the two reaction
types can be interpreted as different social contexts. Type I reactions can be viewed as
a case where ”everyone knows everyone”, as in a small town. Type II reactions may be
a case where each person only interacts with a limited number of other people, not the
whole city. This inspires us to define a new reaction type, type M (mixed), which is a
combination of the two. Type M will (below) be defined to be similar to type I for small
particle densities, that is ”everyone knows everyone” in small towns. For large particle
densities, type M is similar to type II, which limits the number of interactions. In this
way, type M models the way in which people interact on both small and large city scales.
Type M reactions are introduced for the first time in this thesis, and was not discussed in
my project thesis [2].

Let NA(i, t) and NB(i, t) denote the number of particles of type A and B, respectively,
at node i at time t. Instead of having an integer number of A and B particles, we let
NA(i, t) and NB(i, t) be continuous. This may be viewed as letting the number of particles
be (virtually) infinite. Since the total number of particles is conserved, it is implied that
∂tNA(i, t) = −∂tNB(i, t) with i = 1,2, ..., V , where ∂t is the time derivative.

If the first reaction, (2.1a), is type I, the number of possible interactions between A and
B particles is NA(i, t)NB(i, t), and each interaction ends in a reaction with probability
β. Thus ∂tNA(i, t) = −βNA(i, t)NB(i, t) for type I reactions. If the first reaction is
type II, the number of interactions is rescaled with a factor 1/N(i, t), where N(i, t) =
NA(i, t) +NB(i, t) is the total number of particles at node i at time t. Thus ∂tNA(i, t) =
−βNA(i, t)NB(i, t)/N(i, t) for type II reactions. In the second reaction, (2.1b), each B
turns into an A with probability µ, and thus ∂tNA(i, t) = µNB(i, t). Together, the two
reactions (2.1) give rise to the following equation for NA(i, t) and NB(i, t):

∂tNA(i, t) = −∂tNB(i, t) = µNB(i, t) − βNA(i, t)NB(i, t), (2.2)

for type I reactions and

∂tNA(i, t) = −∂tNB(i, t) = µNB(i, t) − βNA(i, t)NB(i, t)
N(i, t) , (2.3)

for type II reactions.
Type M reactions are defined as
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∂tNA(i, t) = −∂tNB(i, t) = µNB(i, t) − βNA(i, t)NB(i, t)
N× +N(i, t) , (2.4)

where N× is a crossover density which describes the transition between type I and II. For
N(i, t) ≪ N×, we see that type M is approximately equal to type I (apart from a factor
1/N×). For N(i, t) ≫ N×, type M is approximately equal to type II.

These equations do not include the effects of diffusion, which redistributes the particles
between the nodes and obviously is necessary for the complex behaviour of reaction-
diffusion on networks. The diffusion process is implemented by letting each particle move
to a neighboring node using one of the links. The probability of using a given link is 1

k
where k is the degree of the present node (in an unweighted network). In this way, all
links are equally probable. By specifying diffusion constants DA and DB for A and B
particles respectively, one can adjust the probability that a particle will diffuse. DA = 1
implies that all A particles diffuse, DA = 0 implies no diffusion of A particles, and values
in between indicates that only a fraction of the A particles diffuse.
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Chapter 3

Implementation

This chapter is largely taken from my project thesis [2], but updated with new knowledge
and changes. It describes some of the details of implementing and generating networks
(or graphs, rather) and implementing reaction-diffusion.

3.1 Creating networks

To create a network given a certain degree distribution, we use the Molloy-Reed algo-
rithm [9], shown in algorithm 1. This algorithm creates random links between the nodes
according to the node degrees ki, where ki is the degree of node i. There are restrictions as
to what degree distributions are possible, which are discussed in [9]. It works by making
a list of nodes where each node i is listed ki times, and then removing two random nodes
from the list and making a link between them. In this way, each node i is connected to
other nodes ki times, thus getting a degree ki.

The network with its links is stored in an adjacency matrix A, which specifies which
nodes are adjacent to each other, i.e. are connected by a link. It is defined so that Aij = 1
if there is a link from j to i, zero otherwise. In this thesis, all links are un-directed,
i.e. Aij = Aji and the adjacency matrix is therefore symmetric in this case. As the mean
degree ⟨k⟩ of a node in the scale-free networks is far lower than the number of nodes V ,
⟨k⟩ ≪ V , this matrix is preferably stored as a sparse matrix.

In this thesis, most networks are scale-free. For a network with V nodes, we let the
node degrees k satisfy 2 ≤ k <

√
V , which is the same restriction as Colizza et al. [8] have

used. Each node is then simply given a degree k with probability p(k) ∼ k−γ . p(k) is
normalized so that ∑

√
V

k=2 p(k) = 1.

3.2 Reaction-diffusion

Colizza et al. [8] implemented the reaction-diffusion process as a sequential process. For
each time step, they perform first a reaction step at each individual node, then diffusion
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Algorithm 1: Molloy-Reed algorithm to generate networks with given degree se-
quence

Data: node degrees ki
Result: links
create list V with ki copies of node i for every node;
while V is not empty do

pick two random nodes u and v from V ;
if no link between u and v then

make link between u and v;
remove u and v from V ;

end
end

between the nodes. They also have a discrete number of particles and simulate the reaction-
diffusion stochastically with the Monte-Carlo algorithm. This implementation is presented
in algorithm 4. To be able to compare our results with those of Colizza et al., one of our
implementations was identical to theirs.

Our main implementation, however, was a discrete time simulation. The differen-
tial equations were discretized with a forward difference scheme, by letting ∂tNA(i, t) =
NA(i, t+1)−NA(i, t) and ∂tNB(i, t) = NB(i, t+1)−NB(i, t). The particle numbers NA(i, t)
and NB(i, t) were continuous numbers, contrary to Colizza’s integer particle numbers. The
advantage with this implementation is that it is far less computationally demanding and
gives more accurate results than the stochastic implementation.

We implemented the process both as a sequential and as a simultaneous process, with
reaction and diffusion occuring simultaneously. As recently pointed out by Saldaña [10],
the equations resulting from the sequential implementation does not have a well-defined
continuous-time limit. Therefore a simultaneous implentation was also made. These two
approaches are not equivalent in general, and the differences between the two approaches
will be discussed in chapter 4. In total, one can combine this to four implementations, as
shown in Table 3.1.

Table 3.1: Implementations of reaction-diffusion
Simultaneous Sequential

Stochastic Not implemented Colizza & Lund
Deterministic/Discretized diff. eq. Lund Lund

The reactions (2.1) are implemented by using Eq. (2.2) (type I), Eq. (2.3) (type II)
or Eq. (2.4) (type M). The diffusion process was implemented using a transfer matrix T,
which ”transfers” diffusing particles to neighboring nodes. T is based on the adjacency
matrix A, and its elements are given by Tij = Aij

∑iAij
[11]. This will give each link from a

given node j the probability 1
kj

, since ∑iAij = kj . We let NA(t) be a column vector,
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NA(t) =
⎛
⎜⎜⎜
⎝

NA(1, t)
NA(2, t)

⋮
NA(V, t)

⎞
⎟⎟⎟
⎠
, (3.1)

where NA(i, t), we recall, is the number of A particles at node i at time t, and similarly
for NB(t). We can then perform a diffusion step by calculating the matrix products

NA(t + 1) = TNA(t), (3.2a)
NB(t + 1) = TNB(t). (3.2b)

With discretized differential equations, the whole process, for type I reactions and se-
quential reaction and diffusion, was implemented as shown in algorithm 2, and similarly
for type II and M reactions. Algorithm 3 shows the implementation for type I reactions
and simultaneous reaction and diffusion. Finally, algorithm 4 shows the stochastic imple-
mentation as done by Colizza et al. [8] (and replicated by us), for type I reactions.

Algorithm 2: Implementation of the SIS model with diffusion on a network, type
I, sequential/discrete-time

Data: T, NA(0), NB(0), tend

Result: NA(tend), NB(tend)
t = 0;
while t < tend do

t = t + 1;
Reaction:
∆A = µNB(t − 1) − βNA(t − 1)NB(t − 1);
NA(t) =NA(t − 1) +∆A;
NB(t) =NB(t − 1) −∆A;
Diffusion:
NA(t) =DATNA(t) + (1 −DA)NA(t);
NB(t) =DBTNB(t) + (1 −DB)NB(t);

end
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Algorithm 3: Implementation of the SIS model with diffusion on a network, type
I, simultaneous/continuous-time

Data: T, NA(0), NB(0), tend

Result: NA(tend), NB(tend)
t = 0;
while t < tend do

t = t + 1;
NA(t) = (1−DA)NA(t−1)+DATNA(t−1)+µNA(t−1)−βNA(t−1)NB(t−1);
NB(t) = (1−DB)NB(t−1)+DBTNB(t−1)−µNA(t−1)+βNA(t−1)NB(t−1);

end

Algorithm 4: Implementation of the SIS model with diffusion on a network, type
I, sequential/discrete-time, stochastic

Data: T, NA(0), NB(0), tend

Result: NA(tend), NB(tend)
t = 0;
while t < tend do

t = t + 1;
Reaction:
foreach node i in network do

foreach of the NA(i, t) A particles do
React A+B → 2B with prob. pA+B→2B = (1 − (1 − β)NB(i,t));

end
foreach of the NB(i, t) B particles do

React B → A with prob. pB→A = µ;
end

end
Diffusion:
foreach node i in network do

foreach of the NA(i, t) A particles do
Diffuse with prob. DA with equal probability for each neighbor;

end
foreach of the NB(i, t) B particles do

Diffuse with prob. DB with equal probability for each neighbor;
end

end
end
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Results and discussion

We will now present both analytical and simulation results for the stationary state of the
reaction-diffusion system. More specifically, we will look at the nodal particle density of
B particles in the stationary state, i.e. the average number of B particles per node in the
network.

As mentioned in the implementation section, Colizza et al. [8] implemented the reaction-
diffusion process as a sequential process. Their analytical approach is based on this imple-
mentation, and as pointed out by Saldaña [10], the continuous-time limit of this two-step
process is not well defined. This will be described in detail in the following chapter.
Herein, we will present both the approach from Ref. [8], and a continuous-time approach
(as suggested by Saldaña [10]).

Let NA(t) and NB(t) be the total number of A and B particles in the network at time
t, respectively, and the total particle number we denote by N = NA(t)+NB(t). The nodal
density of particles, i.e. the average number of particles on each node, is defined as

ρ = N
V
, (4.1)

where V is the number of nodes in the underlying network. Colizza et al. use a mean-field
approximation where all nodes with the same degree k are considered to be equivalent.
Moreover, let NA,k and NB,k denote the total number of A and B particles, respectively,
on nodes of degree k, Vk denote the number of nodes of degree k, and let

ρA,k(t) =
NA,k(t)
Vk

, (4.2a)

ρB,k(t) =
NB,k(t)
Vk

, (4.2b)

be the average number of A and B particles, respectively, on nodes of degree k. Similarly,
one has
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ρA(t) =∑
k

p(k)ρA,k(t) =
NA(t)
V

≥ 0 , (4.3a)

ρB(t) =∑
k

p(k)ρB,k(t) =
NB(t)
V

≥ 0 , (4.3b)

where p(k) is the network’s degree distribution, and ρ = ρA(t) + ρB(t). Since the total
number of particles in the network is conserved, ρ is constant in time.

4.1 Discrete-time reaction-diffusion

In the following subsection we will reproduce the discussion of Colizza et al. that was
presented in their Nature Physics article [8]. As mentioned previously, they model the
reaction-diffusion process with successive reaction and diffusion, as a process with two
steps. Their equations for diffusion are

NA,k(t + 1) = NA,k(t) −DANA,k(t) + kVk∑
k′
p(k′∣k)DA

k′
ρA,k′(t) , (4.4a)

NB,k(t + 1) = NB,k(t) −DBNB,k(t) + kVk∑
k′
p(k′∣k)DB

k′
ρB,k′(t) , (4.4b)

where DA, DB ∈ [0,1] are the probabilities that an A or B particle, respectively, will
diffuse. In a physical interpretation of Eq. (4.4), the first term is the number of particles
already present at the node at time t, the second term is the diffusion of a fraction DA

or DB of particles away from the nodes (of degree k), and the last term is the diffusion
of particles into the nodes. p(k′∣k) in Eqs. (4.4) denotes the probability that a node
of degree k′ links to a node of degree k. If an uncorrelated network is assumed, then
p(k′∣k) = p(k′)k′/⟨k′⟩ [12]. Dividing Eq. (4.4) by Vk gives

ρA,k(t + 1) = ρA,k(t) −DAρA,k(t) +
DAk

⟨k⟩ ∑k′
p(k′)ρA,k′(t) , (4.5a)

ρB,k(t + 1) = ρB,k(t) −DBρB,k(t) +
DBk

⟨k⟩ ∑k′
p(k′)ρB,k′(t) . (4.5b)

Before each diffusion step, there is a reaction taking place at each node. This will
change the ratio of A and B particles at each node. Based on Eq. (2.2), (2.3) and (2.4),
the reaction at nodes of degree k gives the following equations:

NA,k(t) = NA,k(t − 1) + µNB,k(t − 1) − VkβΓk(t − 1) ,
NB,k(t) = NB,k(t − 1) − µNB,k(t − 1) + VkβΓk(t − 1) ,
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or, divided by Vk:

ρA,k(t) = ρA,k(t − 1) + µρB,k(t − 1) − βΓk(t − 1) , (4.6a)
ρB,k(t) = (1 − µ)ρB,k(t − 1) + βΓk(t − 1) , (4.6b)

where Colizza et al. have introduced Γk(t), the reaction kernel, which depends on the
type of reaction. The average reaction kernel is denoted Γ = ∑k p(k)Γk.

For the different reaction types that we will consider, the reaction kernel reads

Γk =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρA,kρB,k , for type I,
ρA,kρB,k/ρk , for type II,
ρA,kρB,k/(ρk + ρ×) , for type M.

where ρ× ≡ N×. N×, we recall, is a density describing where type M goes from ”type I-like”
to ”type II-like”.

To combine reaction and diffusion (although this step is not apparent in Ref. [8]), we
insert the right-hand sides from Eqs. (4.6) as ρA,k(t) and ρB,k(t), respectively, in Eqs. (4.5),
to obtain

ρA,k(t + 1) = (1 −DA) [ρA,k(t − 1) + µρB,k(t − 1) − βΓk(t − 1)]

+ DAk

⟨k⟩ ∑k′
p(k′) [ρA,k′(t − 1) + µρB,k′(t − 1) − βΓk′(t − 1)] , (4.7a)

ρB,k(t + 1) = (1 −DB) [(1 − µ)ρB,k(t − 1) + βΓk(t − 1)]

+ DBk

⟨k⟩ ∑k′
p(k′) [(1 − µ)ρB,k′(t − 1) + βΓk′(t − 1)] . (4.7b)

We now transform equations (4.7) to a coupled set of differential equations and do the
summation over k′, to get

∂tρA,k(t) = −ρA,k(t) + (1 −DA) [ρA,k(t) + µρB,k(t) − βΓk(t)]

+ DAk

⟨k⟩ [ρA(t) + µρB(t) − βΓ(t)] , (4.8a)

∂tρB,k(t) = −ρB,k(t) + (1 −DB) [(1 − µ)ρB,k(t) + βΓk(t)]

+ DBk

⟨k⟩ [(1 − µ)ρB(t) + βΓ(t)] , (4.8b)

which are the equations presented in the supplementary information to Ref. [8]. In this
transformation, Colizza et al. apparently let ∂tρA,k = ρA,k(t + 2) − ρA,k(t) (and similar for
ρB,k), which is not in agreement with the ordinary definition of a derivative: ∂xf(x) =
limh→0

f(x+h)−f(x)
h . This is the crucial point where the approach of Colizza et al. deviates
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from the approach suggested by Saldaña [10]. The differences will be discussed in further
detail in section 4.2.

We now want to find the stationary state of these equations, i.e. where the solutions
satisfy ∂tρB,k = ∂tρA,k = 0. A trivial solution is ρB = 0 and ρA = ρ, but this is of little
interest to us here. To find a nontrivial solution, we use Eqs. (4.8) and get

ρA,k = (1 −DA) [ρA,k + µρB,k − βΓk] +
DAk

⟨k⟩
[ρA + µρB − βΓ] , (4.9a)

ρB,k = (1 −DB) [(1 − µ)ρB,k + βΓk] +
DBk

⟨k⟩
[(1 − µ)ρB + βΓ] , (4.9b)

where barred symbols (e.g. ρA,k) indicate the stationary state of each quantity. Colizza
et al. [8] then multiply equation (4.9a) by p(k) and sum over k to obtain

ρB = β
µ

Γ. (4.10)

Equations (4.9) are then simplified to

ρA,k = (1 −DA) [ρA,k + µρB,k − βΓk] +
DAk

⟨k⟩ ρA, (4.11a)

ρB,k = (1 −DB) [(1 − µ)ρB,k + βΓk] +
DBk

⟨k⟩ ρB . (4.11b)

These equations are presented in Ref. [8]. Solving explicitly for ρA,k and ρB,k is done
by Colizza et al. for the cases when DB = 1 and DA ∈ {0,1}, and we will reproduce their
findings below for these special cases.

4.1.1 Special cases: DB = 1 and DA ∈ {0,1}
The following results for type I and II are mainly based on my project thesis [2], which
in turn are similar to the calculations in the supplementary information to Ref. [8]. The
results for the introduced type M, however, are new in this thesis.

Case 1: Non-diffusing A particles (DA = 0, DB = 1)

In this case, the general result (valid for all reaction types) is given by equation (4.11a),
which yields

ρB,k =
β

µ
Γk . (4.12)

From equation (4.11b) we also find that

ρB,k =
k

⟨k⟩ρB (4.13)
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in this case. The diffusion of B particles thus leads to the density ρB,k being proportional
to the node degree k, which would also be the case with only diffusion [11].

� For type I reactions, we use equation (4.12) and the definition of the reaction kernel,
Γk = ρA,kρB,k, and get

ρA = ρA,k =
µ

β
, (4.14a)

ρB = ρ − µ
β
. (4.14b)

Since ρB ≥ 0, these equations only apply when ρ ≥ µ/β. Below this critical value,
ρB = 0, and above it, ρB > 0. We therefore have a phase transition at the critical
density

ρc =
µ

β
.

We can also note that the density of A particles is independent of degree, i.e. there
is an equal number of A particles on every node.

� For type II reactions, equation (4.12) and Γk = ρA,kρB,k/ρk gives us

ρA,k =
β

µ
(ρA,k + ρB,k) . (4.15)

Multiplying by p(k) and summing over k yields the stationary densities

ρA = µ
β
ρ , (4.16a)

ρB = ρ(1 − µ
β
) . (4.16b)

In this case, we have a phase transition when varying µ/β, and the transition occurs
at µ/β = 1. For µ/β > 1, ρB = 0, and when µ/β < 1, ρB is non-vanishing.

To find an expression for ρA,k, we insert the expression for ρB,k from Eq. (4.13) into
Eq. (4.15) to get

ρA,k =
k

⟨k⟩
µ

β
ρ .

Surprisingly, even without diffusion, the A particle density is linearly dependent on
the degree k. This dependence can only be a result of the diffusion of B particles,
since only diffusion depends on the nodes’ degrees.

21



CHAPTER 4. RESULTS AND DISCUSSION

� For type M reactions, equation (4.12) and Γk = ρA,kρB,k/(ρ× + ρk) gives us

ρB,k =
β

µ

ρA,kρB,k

ρ× + ρA,k + ρB,k
.

Dividing by ρB,k and multiplying by the divisor yields

ρ× + ρA,k + ρB,k =
β

µ
ρA,k . (4.17)

By multiplying by the degree distribution p(k) and summing over k, we obtain an
expression for ρA:

ρA = µ
β
(ρ× + ρ) ,

ρB = ρ(1 − µ
β
) − µ

β
ρ× . (4.18)

The phase transition in this case occurs at the critical density

ρc =
µ

β − µρ× ,

and ρB is non-vanishing whenever ρ > ρc. If we let ρ× → 0, we retrieve the results we
got for type II, as expected. When ρ× →∞, while holding ρ×/β constant, the results
are equal to those for type I, apart from the factor ρ×.

Case 2: Diffusing A particles (DA = 1, DB = 1)

In this case, equations (4.11) give us a general result for all reaction types;

ρA,k =
k

⟨k⟩ρA , (4.19a)

ρB,k =
k

⟨k⟩ρB . (4.19b)

We see that the densities ρA,k and ρB,k are linear in k, which is also the case when having
only diffusion on the network (without any reactions) [11].

� In the case of type I reactions, these two equations combined with Eq. (4.10) and
the definition of Γ gives us ρB:

ρB = β
µ

Γ = β
µ
∑
k

p(k)ρA,kρB,k =
β⟨k2⟩
µ⟨k⟩2 ρBρA

Dividing by ρB, we finally get
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ρA = µ⟨k⟩
2

β⟨k2⟩ , (4.20a)

ρB = ρ − µ⟨k⟩
2

β⟨k2⟩ . (4.20b)

This time the phase transition occurs at the critical density

ρc =
µ⟨k⟩2
β⟨k2⟩ .

The dependence on the mean degree and mean square degree means the phase tran-
sition is affected by the network topology. If we consider for example a regular 2D
lattice, every node has 4 neighbours, i.e. a degree of 4, thus giving ⟨k⟩2 = ⟨k2⟩ = 16.
For a scale-free network, however, there is a considerable heterogeneity in the de-
grees, and the second moment ⟨k2⟩ may be far larger than ⟨k⟩2 (or even diverge).
Thus, a scale-free network will have a lower critical density (for type I) and be more
efficient at spreading an infection than a lattice.

� For type II reactions, we also use Eqs. (4.10) and (4.19) and get

ρB = β
µ

Γ = β
µ
∑
k

p(k)
ρA,kρB,k

ρk
= β
µ
∑
k

p(k)kρAρB⟨k⟩ρ = β
µ

ρBρA
ρ

.

Dividing by ρB, we finally get

ρA = µ
β
ρ , (4.21a)

ρB = ρ(1 − µ
β
) , (4.21b)

which is the same as in the case with nondiffusing A particles. Since in both this
case and the previous one, ρA,k = k/⟨k⟩ρA, this result would be to expect.

� For type M reactions, Eqs. (4.10) and (4.19) give us

ρB = β
µ
∑
k

p(k)
ρAρB

k2

⟨k⟩2

ρ× + ρ k
⟨k⟩

.

Rearranging this equation, using ρ = ρA + ρB, gives

ρB = ρ − µ
β
⟨k⟩ (∑

k

p(k) k2

⟨k⟩ρ× + kρ
)
−1

. (4.22)

Although it is not possible to express ρB explicitly as a function of moments (⟨k⟩,
⟨k2⟩ etc.), the formula can be confirmed with simulations when having an actual
degree distribution p(k).
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Summary

The results for the stationary states with DB = 1 can be summarized as follows:

� For type I (as presented by Colizza et al. [8]), the stationary state is

ρB =
⎧⎪⎪⎨⎪⎪⎩

ρ − ρc , if ρ > ρc,
0 , if ρ ≤ ρc,

where the critical density is dependent on DA;

ρc =
⎧⎪⎪⎨⎪⎪⎩

µ
β , if DA = 0,
µ⟨k⟩2

β⟨k2⟩
, if DA = 1.

� For type II (also presented by Colizza et al. [8]), the stationary state (for DA ∈ {0,1})
is

ρB =
⎧⎪⎪⎨⎪⎪⎩

ρ (1 − µ
β) , if µ < β,

0 , if µ ≥ β.

� For the new mixed type introduced by us, type M, the result for DA = 0 is

ρB =
⎧⎪⎪⎨⎪⎪⎩

ρ − ρc , if ρ > ρc,
0 , if ρ ≤ ρc,

where the critical density is
ρc =

µ

β − µρ× .

For DA = 1, the stationary state for type M is

ρB = max
⎧⎪⎪⎨⎪⎪⎩

0, ρ − µ
β
⟨k⟩ (∑

k

p(k) k2

⟨k⟩ρ× + kρ
)
−1⎫⎪⎪⎬⎪⎪⎭

.

To better illustrate the differences between the stationary states of type I, II and M,
we plot the above expressions in Fig. 4.1. The figure shows ρB/ρ = NB/N , i.e. the fraction
of B particles in the stationary state. The expressions are plotted both as functions of
ρ (Fig. 4.1(a)) and β/µ (Fig. 4.1(b)). We observe that, for type I and M, non-diffusing
A particles inhibits the infection and alters the phase transition, although the diffusion
of the infected B particles is the same. This illustrates that diffusion is important for
concentrating the A and B particles at high degree nodes, hence increasing the infection
rate (i.e. the reaction kernel).

The existence of a phase transition means that there is an abrupt change in the long-
term behaviour of the system at this transition. By changing only the total particle density
ρ, one can get very different results. Below the phase transition, there will never be a long-
term infectious state in the network. Above it, an infection can spread and persist with
a non-zero fraction of B particles. This happens even though the equations for reaction
and diffusion are exactly the same for the two regimes.
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(a) β/µ = 2 (b) ρ = 2

Figure 4.1: Analytical expressions for stationary states of type I, II and M (ρ× = 1) with
diffusing B particles (DB = 1), from Eqs. (4.14), (4.16), (4.18), (4.20), (4.21) and (4.22).
Solid lines are type I, dashed lines are type II and dash-dot lines are type M. Circles
indicate DA = 0, cross (+) indicates DA = 1. The network is scale-free with V = 1000
nodes and γ = 2.5.

Simulation results

We will now confront these mean-field analytical results with simulation results. In their
Nature Physics paper [8], Colizza, Vespignani and Pastor-Satorras also present simulation
results for the special cases presented above. In my project thesis [2], I performed similar
simulations and compared the results. As mentioned in section 3.2, Colizza et al. imple-
ments the process stochastically, with integer particle number, while we implemented it
with a forward difference of the differential equations. Since the two implementations are
based on the same equations, the simulation results should be equal, apart from stochas-
tical noise.

First we consider type I reactions. As mentioned earlier, there is a phase transition at
the critical nodal particle density ρc = µ

β (DA = 0) or ρc = µ
β
⟨k⟩2

⟨k2⟩
(DA = 1). The simulation

results presented by Colizza et al. [8] also show this important phase transition, with more
or less accuracy. Their results together with those of my project thesis [2] are shown
in Fig. 4.2. In this figure we plot ρB/ρ = NB/N , i.e. the fraction of B particles in the
stationary state.

As shown in Fig. 4.2(b), our simulation results closely match the analytical mean-field
predictions, which should serve as a confirmation that our simulations are correct. For
Colizza’s results, however, it turns out that there are quite large deviations between the
analytical predicitions and the simulation results (see Fig. 4.2(a)). The positions of the
phase transitions are not accurate, and neither is the results for densities far from the the
phase transition. For the largest network (V = 105), for example, the density of B particles
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(a) Colizza (stochastic, µ and β unkown). Simu-
lation results read directly from figure in Ref. [8],
analytical results superimposed by us.

(b) Lund [2] (deterministic, µ = 0.02, β = 0.01)

Figure 4.2: Comparison of (a) Colizza’s [8] and (b) Lund’s [2] simulation results for type
I reactions, with µ/β = 2 and DB = 1. Lines indicate analytical results (Eqs. (4.14) and
(4.20)), symbols are simulation results. Each symbol with properties (γ, V , DA): Circles
◯ (2.5, 105, 1), squares ◻ (2.5, 104, 1), diamonds ◇ (2.5, 103, 1), downward triangle ▽
(2.5, 104, 0), upward triangle △ (2.5, 105, 0), leftward triangle ◁ (3.0, 104, 0).

ρB at ρ = 3 is only half of what the analytical expression predicts. The reason for these
large differences was not found in my project thesis [2], but will be discussed below.

For type II reactions, the relative density of B particles, ρB/ρ, is just dependent on
β/µ, not on ρ. In this case, the phase transition occurs when β/µ = 1. Colizza et al. [8]
therefore present a simulation where they vary the ratio β/µ, as shown in Fig. 4.3(a).
The results of my project thesis [2] are shown in Fig. 4.3(b). Again we observe the same
picture, namely that Colizza’s values are too low, and also here the phase transition is
slightly off. Our results, however, are exactly on top of the analytical predictions.

As shown in Fig. 4.2 and Fig. 4.3, our simulation results was in very good agreement
with the analytical mean-field predictions. However, the reason for Colizza’s errors was
not found in my project thesis [2]. As noted in section 3.2, Colizza et al. implemented the
reaction-diffusion process stochastically, with integer particle number. We therefore tried
performing simulations with the same implementation. For type I, rather high values of
µ and β gave very similar results to those of Colizza, as shown in Fig. 4.4.

The results indicate that Colizza et al. have used too high values for the reaction
coefficients µ and β, and that this is the reason why their results are not accurate. Too
high values for µ and β will cause the reaction probability for each particle to exceed 1,
something that is not self-consistent. This will lead to a ”saturation” of the reaction, since
a probability > 1 implies that a particle should participate in more than one reaction.

Fig. 4.4(c) shows results for lower reaction coefficients, which is significantly better
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(a) Colizza (stochastic, µ and β unkown). Simu-
lation results read directly from figure in Ref. [8],
analytical results superimposed by us.

(b) Lund [2] (deterministic, µ = 0.1)

Figure 4.3: Comparison of (a) Colizza’s and (b) Lund’s simulation results for type II
reactions, with ρ = 20 and DB = 1. Lines indicate analytical result (Eq. (4.21)), symbols
are simulation results. Each symbol with properties (γ, V , DA): Circles ◯ (2.5, 104, 1),
squares ◻ (3.0, 104, 1), diamonds ◇ (2.5, 104, 0) and triangles ▽ (3.0, 104, 0).

than with high ones, shown in Fig. 4.4(b). By lowering the reaction coefficients, the
position of the phase transition is also more accurately determined. This should serve as a
confirmation that it is not the implementation in itself that causes the errors, but instead
the exceedingly high values of the reaction coefficients µ and β.

For type II, similar stochastic results are shown in Fig. 4.5. High reaction coefficients
(µ = 0.4) also in this case lead to results similar to those of Ref. [8], which indicates
that this is the reason why their results are not correct. The results for lower reaction
coefficients, in Fig. 4.5(c), are once again far closer to the analytical solution, and has a
more accurate phase transition.

The stochastic simulations performed to obtain the results in figures 4.4 and 4.5 are
(with our implementation) quite computationally expensive, far more expensive than the
discretization of the differential equations. With our implementation, the difference is on
the order of 102. Higher reaction coefficients help reduce the time needed for simulations,
because the stationary state is reached in fewer simulation steps. It is therefore tempting
to perform simulations with high reaction rates, at the expense of the accuracy of the
results. This may be the reason why Colizza et al. apparently have used such high rates.

Finally, we present simulation results for type M in Fig. 4.6. The simulation results
accurately match the analytical mean-field predictions. We see that the stationary state
ρB for the different cases all approach the stationary state of type II (ρB/ρ = 0.5) as ρ/ρ×
increases. Since type M is similar to type II when ρ≫ ρ×, this is to be expected. On the
other hand, the stationary state is sensitive to network topology when ρ/ρ× is small. This
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(a) Colizza (stochastic, µ and β unkown). Simu-
lation results read directly from figure in Ref. [8],
analytical results superimposed by us.

(b) Lund (stochastic, µ = 0.4, β = 0.2)

(c) Lund (stochastic, µ = 0.1, β = 0.05)

Figure 4.4: Comparison of (a) Colizza’s [8] and (b)-(c) Lund’s stochastic simulation results
for type I reactions, with µ/β = 2 and DB = 1. Lines indicate analytical results (Eqs. (4.14)
and (4.20)), symbols are simulation results. Each symbol with properties (γ, V , DA):
Circles ◯ (2.5, 105, 1), squares ◻ (2.5, 104, 1), diamonds ◇ (2.5, 103, 1), downward
triangle ▽ (2.5, 104, 0), upward triangle △ (2.5, 105, 0), leftward triangle ◁ (3.0, 104, 0).
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(a) Colizza (stochastic, µ and β unkown). Simu-
lation results read directly from figure in Ref. [8],
analytical results superimposed by us.

(b) Lund (stochastic, µ = 0.4)

(c) Lund (stochastic, µ = 0.05)

Figure 4.5: Comparison of (a) Colizza’s [8] and (b)-(c) Lund’s stochastic simulation results
for type II reactions, with ρ = 20 and DB = 1. Lines indicate analytical result (Eq. (4.21)),
symbols are simulation results. Each symbol with properties (γ, V , DA): Circles ◯ (2.5,
104, 1), squares ◻ (3.0, 104, 1), diamonds ◇ (2.5, 104, 0) and triangles ▽ (3.0, 104, 0).

29



CHAPTER 4. RESULTS AND DISCUSSION

(a) Scale-free network, γ = 2.5

(b) Scale-free network, γ = 3.0

Figure 4.6: Simulation results for type M reactions, with DB = 1 and β/µ = 2. Lines
indicate analytical result (Eqs. (4.18) and (4.22)), symbols are simulation results. Each
symbol with properties (V , DA): Circles ◯ (104, 1), squares ◻ (102, 1), diamonds ◇ (104,
0) and triangles ▽ (102, 0).
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is expected since type M is similar to type I when ρ/ρ× is small.
Fig. 4.6 shows results for two scale-free networks with exponents γ = 2.5 (Fig. 4.6(a))

and γ = 3.0 (Fig. 4.6(b)). We see that the results are more sensitive to network size when
γ = 2.5 than with γ = 3.0. This is because a higher γ gives more homogeneous degrees,
which in turn will increase the critical density ρc. This can be seen from equation (4.22).
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4.2 Continuous-time reaction-diffusion

As pointed out by Saldaña [10], the approach of Colizza et al. has no well-defined continuous-
time limit. The equations they present do not include any time interval τ so that the
equations can be considered in the limit τ → 0. We will now do an approach similar to
that of Colizza et al., but introducing a time interval for each step.

We let the time step for each reaction and diffusion be τ . That is, reactions occur in a
time interval [t, t+ τ), followed by diffusion in the time interval [t+ τ, t+2τ). The discrete
time equations for reactions are then

ρA,k(t + τ) = ρA,k(t) + τµρB,k(t) − τβΓk(t) , (4.23a)
ρB,k(t + τ) = (1 − τµ)ρB,k(t) + τβΓk(t) . (4.23b)

and the discrete time equations for diffusion are

ρA,k(t + 2τ) = (1 − τDA)ρA,k(t + τ) + τDA
k

⟨k⟩∑k′
p(k′)ρA,k′(t + τ) , (4.24a)

ρB,k(t + 2τ) = (1 − τDB)ρB,k(t + τ) + τDB
k

⟨k⟩∑k′
p(k′)ρB,k′(t + τ) . (4.24b)

By substituting the expression for ρA,k(t + τ) and ρB,k(t + τ) from Eqs. (4.23) into
Eqs. (4.24) we get

ρA,k(t + 2τ) = (1 − τDA)(ρA,k(t) + τµρB,k(t) − τβΓk(t))

+ τDA
k

⟨k⟩∑k′
p(k′)(ρA,k(t) + τµρB,k(t) − τβΓk(t)) , (4.25a)

ρB,k(t + 2τ) = (1 − τDB)((1 − τµ)ρB,k(t) + τβΓk(t))

+ τDB
k

⟨k⟩∑k′
p(k′)((1 − τµ)ρB,k(t) + τβΓk(t)) . (4.25b)

After doing the sums over k′, we get

ρA,k(t + 2τ) = (1 − τDA)(ρA,k(t) + τµρB,k(t) − τβΓk(t))

+ τDA
k

⟨k⟩(ρA(t) + τµρB(t) − τβΓ(t)) , (4.26a)

ρB,k(t + 2τ) = (1 − τDB)((1 − τµ)ρB,k(t) + τβΓk(t))

+ τDB
k

⟨k⟩((1 − τµ)ρB(t) + τβΓ(t)) . (4.26b)
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Now we approximate the continuous time derivatives ∂tρA,k(t) and ∂tρB,k(t) with the
standard forward difference (over two time steps),

∂tρA,k(t) ≈
ρA,k(t + 2τ) − ρA,k(t)

2τ
, (4.27a)

∂tρB,k(t) ≈
ρB,k(t + 2τ) − ρB,k(t)

2τ
. (4.27b)

Hence from Eqs. (4.26) we get

∂tρA,k(t) =
1 − τDA

2
(µρB,k(t) − βΓk(t)) −

DA

2
ρA,k(t)

+ DA

2
k

⟨k⟩ [ρA(t) + τµρB(t) − τβΓ(t)] , (4.28a)

∂tρB,k(t) =
1 − τDB

2
(−µρB,k(t) + βΓk(t)) −

DB

2
ρB,k(t)

+ DB

2
k

⟨k⟩ [(1 − τµ)ρB(t) + τβΓ(t)] . (4.28b)

When letting τ = 1 one can easily see that Eqs. (4.28) is almost equivalent to Colizza’s
equations (4.8) apart from a factor 2. This factor appears because Colizza et al. have
defined the time derivative differently, as pointed out earlier.

To achieve a continuous time derivative, one would typically let the time step τ de-
crease, i.e. τ → 0. The limit τ → 0 insures that events are mutually exclusive (as pointed
out by Saldaña [10]), i.e. a single particle is subject to at most one event in each time
step. Taking this limit leads to the following differential equations for ρA,k(t) and ρB,k(t):

∂tρA,k(t) =
1
2
[µρB,k(t) − βΓk(t) −DAρA,k(t) +DA

k

⟨k⟩ρA(t)] , (4.29a)

∂tρB,k(t) =
1
2
[−µρB,k(t) + βΓk(t) −DBρB,k(t) +DB

k

⟨k⟩ρB(t)] . (4.29b)

This is similar to the master equation for a continuous reaction-diffusion process, ∂tρ =
D∇2ρ +R(ρ). The difference is a factor 1

2 , because reactions only occur half of the time,
and similar for diffusion.

We proceed with Eqs. (4.29), only replacing all rates r ∈ {µ,β,DA,DB} in Eqs. (4.29)
with 2r. This would have been the result if we had let diffusion and reaction occur
simultaneously.

∂tρA,k(t) = µρB,k(t) − βΓk(t) −DAρA,k(t) +DA
k

⟨k⟩ρA(t) , (4.30a)

∂tρB,k(t) = −µρB,k(t) + βΓk(t) −DBρB,k(t) +DB
k

⟨k⟩ρB(t) . (4.30b)
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We now want to solve for the stationary state ρB,k, i.e. when ∂tρA,k(t) = ∂tρB,k(t) = 0.
This leads to the equations

−DAρA,k +DA
k

⟨k⟩ρA + µρB,k − βΓk = 0 , (4.31a)

−DBρB,k +DB
k

⟨k⟩ρB − µρB,k + βΓk = 0 . (4.31b)

We can now compare these equations with the ones resulting from Colizza’s approach.
Dividing Eqs. (4.11) by (1 −DA) and (1 −DB), respectively, yields

− DA

1 −DA
ρA,k +

DA

1 −DA

k

⟨k⟩ρA + µρB,k − βΓk = 0 , (4.32a)

− DB

1 −DB
ρB,k +

DB

1 −DB

k

⟨k⟩ρB − µρB,k + βΓk = 0 . (4.32b)

We can see that the equations are very similar, except the diffusion factor. The relation
between the two diffusion constants DA,disc (discrete time) and DB,cont (continuous time)
is

DA,cont =
DA,disc

1 −DA,disc
, (4.33)

and similarly for DB. An interesting point to note is that a discrete diffusion constant
DA,disc = 1 implies a continuous diffusion constant DA,cont →∞.

Another way to explain the difference between the discrete and continuous equations,
is to investigate how the equations are affected by changing the diffusion and reaction
rates. One would intuitively expect that by scaling all rates (DA, DB, µ, β) with the
same factor, one would just re-scale time, leaving the stationary state unchanged. From
the continuous equation, (4.31), we see that the stationary state is unchanged by scaling
the rates. For discrete time, however, Eq. (4.32) reveals that a scaling of the rates would
affect diffusion and reaction differently.

We have now explained some of the similarities and differences between the analytical
approaches with continuous and discrete time. Apart from a different diffusion factor, the
equations are identical. Since the continuous time equations are perhaps more intuitive
and a better mathematical description of a continuous reaction-diffusion process, we prefer
this approach to the discrete time approach, and use it in further calculations. We will
now make an attempt to solve for the stationary states ρB,k and ρB, this time for any
values of DA and DB.
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4.3 Solving for the stationary state ρB

We choose to continue with the continuous-time equations (4.31), as the results can easily
be translated to the discrete-time situation using Eq. (4.33). From now on we let DA and
DB implicitly denote the continuous diffusion coefficients (DA,cont and DB,cont). We will
make an attempt to solve for all values of DA and DB, and also for the newly introduced
type M. Solving explicitly for ρA,k and ρB,k is not as easy as in Colizza’s expressions. We
therefore try to express ρA,k and ρB,k as series expansions in powers of k:

ρA,k =
∞

∑
i=0

aik
i , (4.34a)

ρB,k =
∞

∑
i=0

bik
i . (4.34b)

Adding equations (4.31a) and (4.31b) gives us a relation between ρA,k and ρB,k:

DA(ρA,k −
k

⟨k⟩(ρ − ρB)) = −DB(ρB,k −
k

⟨k⟩ρB) . (4.35)

Inserting the series expansions into Eq. (4.35) gives a relation between ai and bi:

ai =
⎧⎪⎪⎨⎪⎪⎩

−DB

DA
bi , if i ≠ 1,

ρ
⟨k⟩ −

DB

DA
b1 − ρB

⟨k⟩(1 −
DB

DA
) , if i = 1.

(4.36)

To continue we have to insert an expression for the reaction kernel Γk, depending on
the reaction type.

4.3.1 Type I

For type I, the reaction kernel (in the stationary state) reads Γk = ρA,kρB,k. Inserting this
and the series expansion (4.34) into Eq. (4.31b), we get

−(DB + µ)
∞

∑
i=0

bik
i +DB

k

⟨k⟩ρB + β
∞

∑
i=0

⎡⎢⎢⎢⎢⎣
aik

i
∞

∑
j=0

bjk
j
⎤⎥⎥⎥⎥⎦
= 0. (4.37)

We then continue by solving Eqs. (4.37) for every power of k separately.

� 0th order

With only terms of order k0 = 1, equation (4.37) gives us an expression for b0:

−(DB + µ)b0 + βa0b0 = −(DB + µ)b0 − β
DB

DA
b20 = 0 ,

b0 = 0 ∨ b0 = −
DA(DB + µ)

DBβ
.

We must have that ρB,k = 0 ∀ k when ρB = 0, which implies that b0 = a0 = 0.
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� 1st order

With terms of order k1, equation (4.37) yields

−(DB + µ)b1 +DB
ρB
⟨k⟩ = 0 ,

b1 =
DBρB

⟨k⟩(DB + µ)
. (4.38)

From Eq. (4.36) we get an expression for a1:

a1 =
ρ

⟨k⟩ −
ρB
⟨k⟩ (1 − DBµ

DA(DB + µ)
) . (4.39)

Since we want to be able to solve for ρB, we expand each coefficient ai and bi in
powers of ρB:

ai =
∞

∑
j=0

ai,jρ
j
B , (4.40a)

bi =
∞

∑
j=0

bi,jρ
j
B . (4.40b)

Using this notation, Eq. (4.39) implies

a1,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ
⟨k⟩ , if j = 0,
1
⟨k⟩ (

DBµ
DA(DB+µ)

− 1) , if j = 1,

0 , otherwise.

(4.41)

and Eq. (4.38) gives

b1,j =
⎧⎪⎪⎨⎪⎪⎩

DB

⟨k⟩(DB+µ)
, if j = 1,

0 , otherwise.
(4.42)

� Higher orders

For higher orders (i > 1), we can derive equations which relate ai and bi to lower
order coefficients. Equation (4.37) gives us

− (DB + µ)bi + β
i−1

∑
l=1

albi−l = 0 ,

bi =
β

DB + µ
i−1

∑
l=1

albi−l =
β

DB + µ
i−1

∑
l=1

∞

∑
m=0

∞

∑
n=0

al,mbi−l,nρ
m+n
B .
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Looking only at the j-th power of ρB, we must have m + n = j, or n = j −m. This
gives an expression for bi,j :

bi,j =
β

DB + µ
i−1

∑
l=1

j

∑
m=0

al,mbi−l,j−m . (4.43)

Eq. (4.36) relates ai,j to bi,j :

ai,j = −
DBβ

DA(DB + µ)
i−1

∑
l=1

j

∑
m=0

al,mbi−l,j−m .

From these equations we can see that bi is only dependent on lower degree coefficients,
i.e. al and bl where l < i.

We can now calculate the density of B particles in the stationary state using ρB =
∑k p(k)ρB,k:

ρB =∑
k

p(k)ρB,k =∑
k

p(k)
∞

∑
i=0

bik
i =∑

k

p(k)
⎡⎢⎢⎢⎢⎣

∞

∑
i=0

ki
⎛
⎝
∞

∑
j=0

bi,jρ
j
B

⎞
⎠

⎤⎥⎥⎥⎥⎦

=
∞

∑
i=0

⟨ki⟩
⎛
⎝
∞

∑
j=0

bi,jρ
j
B

⎞
⎠

We already know that bi,0 = 0, so we start the summation at j = 1. We divide by ρB
and get

1 =
∞

∑
j=1

ρ
(j−1)
B

∞

∑
i=0

⟨ki⟩bi,j =
∞

∑
j=0

ρjB

∞

∑
i=0

⟨ki⟩bi,j+1 .

Rearranging this finally yields

⎛
⎝
∞

∑
j=0

ρjB

∞

∑
i=0

⟨ki⟩bi,j+1
⎞
⎠
− 1 = 0 . (4.44)

By terminating the j-sum at some finite n, one retrieves an nth order equation which can
be solved analytically or numerically.

Simulation results

Simulation results, compared to solutions of Eq. (4.44), for different cases are shown in
Figure 4.7. A plot of ρB,k as function of k for the same cases is shown in Fig. 4.8. As we
see, the analytical solution is good for several different values of DA and DB. Colizza’s
expressions for DA,disc =DB,disc = 1, i.e. DA,cont =DB,cont =∞, are shown to illustrate the
difference between these and our series expansions. In these figures we have used γ = 2.5,
but simulations have also been performed for other γs, giving similar results.
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We see that the difference from Colizza’s expressions is largest for the largest network
(V = 104). This is because a larger network typically has higher degree fluctuations, and
thus higher moments ⟨ki⟩. We also note that the phase transition seems to move left
(lower critical density ρc), while the stationary state for higher densities is lower than for
DA =DB =∞.

However, the analytical solution encounters problems when DA and DB are small (on
the same order as µ and β), as shown in Fig. 4.7(d). For the same case, Fig. 4.8(d)
shows how the analytical expression diverges for high node degrees k. However, when
DA and DB are small, the mean-field approximation is not a good approximation either.
As Fig. 4.8(d) shows, the spread in number of B particles for nodes with equal degree is
substantial, especially for low degree nodes. With faster diffusion (DA = 0.7, DB = 1), the
spread in for each degree is much less, i.e. the mean-field approximation is better with
fast than with slow diffusion. This is discussed in the next section.

Since the mean-field approximation is not exact, one cannot expect the series expansion
to be exact either. In addition, a high order expansion will be sensitive to high degrees.
This is seen in Fig. 4.8(d), where the analytical solution is diverging for high degrees.
The simulations show a clear deviation from the linear function ρB,k = ρBk/⟨k⟩. With
only a finite number of terms from the series expansion, this approach is best when the
density ρB,k is almost linear in k, i.e. when the diffusion dominates over reaction and the
mean-field approximation is good.

Validity of the mean-field approximation

As Fig. 4.8 shows, nodes with the same degree have a similar, but not exactly the same,
number of B particles, which indicates that the mean-field approximation is not perfect.
We will therefore try to show why this is the case. By going back to the equations for a
single node, we can readily discover if the mean-field approximation is correct or not. The
differential equation for NB(i, t), i.e. the number of B particles at node i at time t, is

dNB(i, t)
dt

= −(DB + µ)NB(i, t) + βNA(i, t)NB(i, t) +DB ∑
j∈U(i)

NB(j, t)
kj

, (4.45)

where U(i) denotes the set of neighbors to node i. In the mean-field approximation,
NB(i) = ρB,ki

, which yields

−(DB + µ)ρB,ki
+ βρA,ki

ρB,ki
+DB ∑

j∈U(i)

ρB,kj

kj
= 0 . (4.46)

We know that the previously presented stationary state, ρB,k, satisfies the equation

−(DB + µ)ρB,k + βρA,kρB,k +DB
k

⟨k⟩ρB = 0 . (4.47)

Hence, by comparing the two equations (4.46) and (4.47), we see that Eq. (4.46) can only
be satisfied if
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(a) DA =DB = 0.5 (b) DA = 0.7, DB = 0.3

(c) DA = 0.7, DB = 1 (d) DA = 0.1, DB = 0.1

Figure 4.7: Stationary state for type I reactions, with µ = 0.02 and β = 0.01. Grey lines are
Colizza’s analytical results (DA = DB =∞, Eq. (4.20b)), colored lines indicate analytical
result (4th order of Eq. (4.44)), symbols are simulation results. Each symbol with network
size (V ): Circles ◯ (102), squares ◻ (103) and diamonds ◇ (104). All networks are scale-
free with γ = 2.5.
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(a) DA =DB = 0.5 (b) DA = 0.7, DB = 0.3

(c) DA = 0.7, DB = 1 (d) DA = 0.1, DB = 0.1

Figure 4.8: Density of B particles, ρB,k, as function of degree k, with µ = 0.02, β = 0.01
and ρ = 4. The network is scale-free with V = 1000 and γ = 2.5. Dashed lines are linear
(ρB,k = k/⟨k⟩ρB), solid lines are analytical results (4th order of Eq. (4.34b)). Each symbol
corresponds to a node with it’s degree and number of B particles in stationary state.
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ki
⟨k⟩ρB = ∑

j∈U(i)

ρB,kj

kj
.

Inserting the series expansion of ρB,k yields

ki
⟨k⟩

∞

∑
l=1

bl⟨kl⟩ = ∑
j∈U(i)

∞

∑
l=1

blk
l−1
j . (4.48)

Since kj , that is the degree of a neighbor node j, may vary, this equation is not always
(and possibly never) exactly satisfied. Thus, one may conclude that the mean-field ap-
proximation is not exactly correct for type I reactions.

Although the mean-field approximation is not exactly correct, it is instructive to in-
vestigate when it represents a reasonable approximation. Eq. (4.48) is satisfied if bi = 0
for i > 1, i.e. ρB,k ∼ k. This is the case if we have only diffusion, when DB,DA ≫ µ, ρβ.

4.3.2 Type II

For type II, the reaction kernel (in the stationary state) reads Γk = ρA,kρB,k/ρk. Inserting
this into Eq. (4.31b), we get

−(DB + µ)ρB,k +DB
k

⟨k⟩ρB + β
ρA,kρB,k

ρA,k + ρB,k
= 0. (4.49)

One could continue by making the same approach using series expansions as in section
4.3.1, but instead we then make a clever guess by assuming that ρA,k and ρB,k are of the
same form as with discrete time;

ρA,k =
k

⟨k⟩ρA,

ρB,k =
k

⟨k⟩ρB.

Inserting this into (4.49) yields

− (DB + µ)ρB +DBρB + β
ρAρB
ρA + ρB

=

ρB(−µ + β ρ − ρB
ρ

) = 0,

ρB = ρ(1 − µ
β
) ,

which is the same solution as Colizza et al. presented. In figure 4.9 we present simulation
results together with this analytical result. The figure shows that the simulations match
the analytical result exactly, regardless of the values of the diffusion constants DA and
DB.
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Figure 4.9: Stationary state for type II reactions, with µ = 0.1 and DB = 0.5. Solid line
is analytical result, symbols are simulation results. Each symbol with network size and A
diffusion constant (V , DA): Circles ◯ (103, 0.5), squares ◻ (104, 0.5), diamonds ◇ (103,
0) and triangles ▽ (104, 0). All networks are scale-free with γ = 2.5.

4.3.3 Type M

For type M, the reaction kernel is Γk =
ρA,kρB,k

ρ×+ρk
in the stationary state. Inserting this and

the series expansions (4.34) into Eq. (4.31b), we get

−(DB + µ)
∞

∑
i=0

bik
i(ρ× +

∞

∑
j=0

(aj + bj)kj) +DB
k

⟨k⟩ρB(ρ× +
∞

∑
i=0

(ai + bi)ki)

+ β
∞

∑
i=0

⎡⎢⎢⎢⎢⎣
aik

i
∞

∑
j=0

bjk
j
⎤⎥⎥⎥⎥⎦
= 0. (4.50)

We then continue by solving equation (4.50) for every power of k separately.

� 0th order

Similar arguments as for type I imply that b0 = a0 = 0.

� 1st order

With terms of order k1, equation (4.50) yields

− (DB + µ)b1ρ× +DB
ρBρ×
⟨k⟩ = 0 ,

b1 =
DBρB

⟨k⟩(DB + µ)
, (4.51)
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and Eq. (4.36) gives us

a1 =
ρ

⟨k⟩ −
ρB
⟨k⟩ (1 − DBµ

DA(DB + µ)
) . (4.52)

As with type I, we expand each coefficient ai and bi in powers of ρB (see Eqs. (4.40)).
Using this notation, Eq. (4.52) implies

a1,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ
⟨k⟩ , if j = 0,
1
⟨k⟩ (

DBµ
DA(DB+µ)

− 1) , if j = 1,

0 , otherwise.

and Eq. (4.51)

b1,j =
⎧⎪⎪⎨⎪⎪⎩

DB

⟨k⟩(DB+µ)
, if j = 1,

0 , otherwise.

� Higher orders

For higher orders (i > 1), the coefficients ai and bi are once again dependent on lower
order coefficients. Eq. (4.50) yields

−(DB + µ)(ρ×bi +
i−1

∑
l=1

bi−l(al + bl)) +DB(ai−1 + bi−1)
ρB
⟨k⟩ + β

i−1

∑
l=1

ai−lbl = 0 .

Once again, we expand in powers of ρB and get

− (DB + µ)ρ×
∞

∑
j=0

bi,jρ
j
B +

i−1

∑
l=1

∞

∑
n=0

∞

∑
m=0

(βai−l,nbl,m − (DB + µ)bi−l,n(al,m + bl,m))ρm+nB

+ DB

⟨k⟩
∞

∑
n=0

(ai−1,n + bi−1,n)ρn+1
B = 0 ,

Collecting terms of the same power j yields

− (DB + µ)ρ×bi,j +
i−1

∑
l=1

j

∑
m=0

(βai−l,j−mbl,m − (DB + µ)bi−l,j−m(al,m + bl,m))

+ DB

⟨k⟩ (ai−1,j−1 + bi−1,j−1) = 0 ,

bi,j =
1

(DB + µ)ρ×
(
i−1

∑
l=1

j

∑
m=0

(βai−l,j−mbl,m − (DB + µ)bi−l,j−m(al,m + bl,m))

+ DB

⟨k⟩ (ai−1,j−1 + bi−1,j−1)) .
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From these equations we can see that bi is only dependent on lower degree coefficients,
i.e. al and bl where l < i.

We can now use the same equation as for type I, Eq. (4.44), to calculate ρB. However,
it turns out that the sum ∑i biki is not converging, but alternating and diverging. The
series is quite good in the limit where ρ× ≫ ρ, i.e. almost type II, but in the limit ρ× → 0,
bi,j diverges. The reason for this can be seen from the last expression for bi,j , from which
it is evident that limρ×→0 ∣bi,j ∣ =∞.

Simulation results

Although the series expansion for type M does not seem to be instructive, we can still
perform simulations and compare the results to the analytical results with DB,disc = 1 and
DA,disc ∈ {0,1} (Eq. (4.18) and Eq. (4.22)). The results for several cases are shown in
Fig. 4.10. As we see, the analytical expression matches the simulation results quite well.
Eq. (4.18) and Eq. (4.22) are based on the assumption that ρB,k is linear in k. We recall
that this assumption is correct for type II reactions, regardless of the value of DA and
DB, but not for type I reactions. As the results show, the analytical expression for type
M is best when similar to type II (ρ≫ ρ×) and less good when similar to type I (ρ≪ ρ×).
This is clearly seen in Fig. 4.10(b).

4.4 Phase transition

We can also examine how the location of the phase transition is affected by changing the
parameters. This is interesting because it gives information about when there is a risk
that the infection will spread and not die out.

4.4.1 Type I

Series expansion

One way of solving for the phase transition, is to use the series expansion approach pre-
sented earlier. We take Eq. (4.44) as our starting point,

⎛
⎝
∞

∑
j=0

ρjB

∞

∑
i=0

⟨ki⟩bi,j+1
⎞
⎠
− 1 = 0 . (4.53)

We want to find the phase transition, i.e. for which (critical) particle density ρ = ρc we
have no B particles in the stationary state. We insert ρB = 0 into Eq. (4.53) and get

(
∞

∑
i=0

⟨ki⟩bi,1) − 1 = 0 . (4.54)

To solve for ρ = ρc, we need to know how bi,1 relies on ρ. For i = 1, we know from
Eq. (4.42) that
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(a) DA =DB = 0.5 (b) DA =DB = 0.1

(c) DA = 0, DB = 0.1

Figure 4.10: Stationary state for type M reactions, with µ = 0.04 and β = 0.02. Lines
indicate analytical result for DB = ∞ (Eq. (4.18) or Eq. (4.22)), symbols are simulation
results. Each symbol with network size (V ): Circles ◯ (102), squares ◻ (103) and diamonds
◇ (104). All networks are scale-free with γ = 2.5.
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b1,1 =
DB

⟨k⟩(DB + µ)
.

For orders higher than 1 (i > 1), Eq. (4.43) yields

bi,1 =
β

DB + µ
i−1

∑
l=1

(al,0bi−l,1 + al,1bi−l,0) . (4.55)

We continue by determining the factor bi−l,0. With j = 0, Eq. (4.43) reads

bi,0 =
β

DB + µ
i−1

∑
l=1

al,0bi−l,0 .

From Eq. (4.42) we know that b1,0 = 0. Using this and the above equation for bi,0 yields
that bi,0 = 0 for all i. Eq. (4.36) then implies that ai,0 = 0 for all i > 1. This reduces
Eq. (4.55) to

bi,1 =
β

DB + µ
a1,0bi−1,1 . (4.56)

Inserting a1,0 = ρc/⟨k⟩ and b1,1 =DB/(⟨k⟩(DB + µ)) and using Eq. (4.56) recursively gives
a general formula for bi,1:

bi,1 = ( βρc
(DB + µ)⟨k⟩

)
i−1

DB

⟨k⟩(DB + µ)
.

Finally, inserting the expression for bi,1 into Eq. (4.54), we get an equation for ρc:

(
∞

∑
i=1

⟨ki⟩
⟨k⟩i

DB

DB + µ
( β

DB + µ
)
i−1

ρi−1
c ) − 1 = 0 . (4.57)

By terminating the i-sum at some finite integer n, one retrieves an nth order equation
for ρc, which can be solved analytically or numerically. Higher degree n will presumably
give a better result, although numerical difficulties may cause trouble for very high n.

Jacobian matrix

For comparison and to make sure the series expansion approach gives the correct result,
we also present an approach based on a Jacobian matrix. This approach was briefly
mentioned by Saldaña in Ref. [10], but not used for solving exactly for the critical density.
More specifically, we look at the Jacobian matrix for the differential equations (4.30),

Fk = ∂tρA,k(t) = µρB,k(t) − βΓk(t) −DAρA,k(t) +DA
k

⟨k⟩∑k′
p(k′)ρA,k′(t) , (4.58a)

Gk = ∂tρB,k(t) = −µρB,k(t) + βΓk(t) −DBρB,k(t) +DB
k

⟨k⟩∑k′
p(k′)ρB,k′(t) . (4.58b)
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We can determine the stability of the (trivial) stationary state ρA = ρ, ρB = 0 by examining
the eigenvalues of the Jacobian matrix. If there are any eigenvalues λ > 0, this stationary
state is unstable, and there exists a stationary state with ρB > 0. In other words, when
there exists an eigenvalue λ > 0, we are above the phase transition (ρ > ρc).

First, we simplify our notation by defining Ak = ρA,k, Bk = ρB,k and the maximum
degree m = kmax. We then define our Jacobian matrix J as

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∂F1

∂A1

∂F1

∂A2
⋯ ∂F1

∂Am

∂F1

∂B1
⋯ ∂F1

∂Bm
∂F2

∂A1

∂F2

∂A2
⋯ ∂F2

∂Am

∂F2

∂B1
⋯ ∂F2

∂Bm

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
∂Fm

∂A1

∂Fm

∂A2
⋯ ∂Fm

∂Am

∂Fm

∂B1
⋯ ∂Fm

∂Bm
∂G1

∂A1

∂G1

∂A2
⋯ ∂G1

∂Am

∂G1

∂B1
⋯ ∂G1

∂Bm
∂G2

∂A1

∂G2

∂A2
⋯ ∂G2

∂Am

∂G2

∂B1
⋯ ∂G2

∂Bm

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
∂Gm

∂A1

∂Gm

∂A2
⋯ ∂Gm

∂Am

∂Gm

∂B1
⋯ ∂Gm

∂Bm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The different derivatives are found directly from the differential equations (4.58):

∂Fi
∂Aj

=
⎧⎪⎪⎨⎪⎪⎩

−βBi +DA ( ip(j)
⟨k⟩ − 1) , if i = j,

DA
ip(j)
⟨k⟩ , if i ≠ j.

∂Fi
∂Bj

=
⎧⎪⎪⎨⎪⎪⎩

µ − βAi , if i = j,
0 , if i ≠ j.

∂Gi
∂Aj

=
⎧⎪⎪⎨⎪⎪⎩

βBi , if i = j,
0 , if i ≠ j.

∂Gi
∂Bj

=
⎧⎪⎪⎨⎪⎪⎩

βAi − µ +DB ( ip(j)
⟨k⟩ − 1) , if i = j,

DB
ip(j)
⟨k⟩ , if i ≠ j.

We want to examine the stability when Bi = 0 and Ai = i
⟨k⟩ρ. Inserting this into the

above equations yields

∂Fi
∂Aj

=
⎧⎪⎪⎨⎪⎪⎩

DA ( ip(j)
⟨k⟩ − 1) , if i = j,

DA
ip(j)
⟨k⟩ , if i ≠ j.

∂Fi
∂Bj

=
⎧⎪⎪⎨⎪⎪⎩

µ − β i
⟨k⟩ρ , if i = j,

0 , if i ≠ j.
∂Gi
∂Aj

= 0 .

∂Gi
∂Bj

=
⎧⎪⎪⎨⎪⎪⎩

β i
⟨k⟩ρ − µ +DB ( ip(j)

⟨k⟩ − 1) , if i = j,
DB

ip(j)
⟨k⟩ , if i ≠ j.
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Although finding the eigenvalues to this matrix analytically might be difficult, we can
calculate them numerically. By varying the particle density ρ, one can determine the
point where the largest eigenvalue turns positive, i.e. when ρ = ρc. This result can then
be compared to the results given by the series expansion.

Simulation results

In Fig. 4.11 we show our simulation results together with analytical results. Both Colizza’s
result for DA,disc = DB,disc = 1 (Eq. (4.20b)), our result with series expansion and the
Jacobian matrix are shown. As seen in the figure, a high order series expansion seems to
match the Jacobian matrix results very well. We must assume that this agreement is more
than just a coincidence, and that a high enough order will be an exact match. Since the
two quite different approaches seem to give the same results, we suggest that this is the
best result one can get without discarding the mean-field approximation.

We see from the figure that the value of DA has little impact on the location of the
phase transition. The B particle diffusion DB, however, significantly changes the critical
density ρc. Interestingly, lower diffusion rate DB actually lowers the critical density ρc.
This means that a particle density which (with fast diffusion) would not cause a long-term
infection, can with slower diffusion actually spread an infection. This is in stark contrast
to the common advice of reducing travel to prevent an epidemic or pandemic. In our case,
reducing travel (diffusion) can actually contribute to the spreading of the infection. The
explanation for this may be that without a fast diffusion, B particles are not transported
away from high degree nodes, where they have many A particles to infect, to low degree
nodes, where there are fewer A particles.

4.4.2 Type II

From previous results we know that the stationary state for type II reactions is

ρB = ρ(1 − µ
β
) ,

regardless of the value of DA (but with positive DB). Thus, there is no phase transition
when varying ρ. There is, however, a phase transition when varying µ/β, and the transition
occurs when µ = β.

4.4.3 Type M

Series expansion

As mentioned earlier, the series expansion for type M is an alternating and diverging one,
and therefore of little use, also when locating the phase transition.

Jacobian matrix

As with type I, we can calculate the eigenvalues of the Jacobian matrix to determine
where the phase transition occurs. The different derivatives are found directly from the
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(a) DA =DB = 0.02 (b) DA = 0.1, DB = 0.02

(c) DA = 0.02, DB = 0.1 (d) DA =DB = 0.1

Figure 4.11: Location of phase transition for type I reactions, with µ/β = 2. The network
is scale-free with V = 1000 and γ = 2.5.
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differential equations (4.58):

∂Fi
∂Aj

=
⎧⎪⎪⎨⎪⎪⎩

−β Bi(ρ×+Bi)

(ρ×+Ai+Bi)
2 +DA ( ip(j)

⟨k⟩ − 1) , if i = j,
DA

ip(j)
⟨k⟩ , if i ≠ j.

∂Fi
∂Bj

=
⎧⎪⎪⎨⎪⎪⎩

µ − β Ai(ρ×+Ai)

(ρ×+Ai+Bi)
2 , if i = j,

0 , if i ≠ j.

∂Gi
∂Aj

=
⎧⎪⎪⎨⎪⎪⎩

β
Bi(ρ×+Bi)

(ρ×+Ai+Bi)
2 , if i = j,

0 , if i ≠ j.

∂Gi
∂Bj

=
⎧⎪⎪⎨⎪⎪⎩

−µ + β Ai(ρ×+Ai)

(ρ×+Ai+Bi)
2 +DB ( ip(j)

⟨k⟩ − 1) , if i = j,
DB

ip(j)
⟨k⟩ , if i ≠ j.

We want to examine the stability when Bi = 0 and Ai = i
⟨k⟩ρ. Inserting this into the

above equations yields

∂Fi
∂Aj

=
⎧⎪⎪⎨⎪⎪⎩

DA ( ip(j)
⟨k⟩ − 1) , if i = j,

DA
ip(j)
⟨k⟩ , if i ≠ j.

∂Fi
∂Bj

=
⎧⎪⎪⎨⎪⎪⎩

µ − β iρ
⟨k⟩ρ×+iρ

, if i = j,
0 , if i ≠ j.

∂Gi
∂Aj

= 0 .

∂Gi
∂Bj

=
⎧⎪⎪⎨⎪⎪⎩

β iρ
⟨k⟩ρ×+iρ

− µ +DB ( ip(j)
⟨k⟩ − 1) , if i = j,

DB
ip(j)
⟨k⟩ , if i ≠ j.

We can then calculate the eigenvalues numerically. By varying the particle density ρ,
one can determine the point where the largest eigenvalue turns positive, i.e. when ρ = ρc.

Simulation results

In Fig. 4.12 we show our simulation results together with analytical results. We expect the
simulation results to coincide with the Jacobian matrix results. For comparison, we also
present the analytical result for DA,disc = DB,disc = 1 (DA,cont = DB,cont = ∞, Eq. (4.22)),
i.e. when ρA,k ∼ k and ρB,k ∼ k. We see that the Jacobian matrix approach gives a very
good result, close to the simulation results.

The results show many similarities with the type I results. The diffusion rate DA for
A particles has little effect on the critical density, while DB clearly affects it. Also for type
M, lowering the diffusion rate DB lowers the critical density ρc.
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(a) DA =DB = 0.02 (b) DA = 0.1, DB = 0.02

(c) DA = 0.02, DB = 0.1 (d) DA =DB = 0.1

Figure 4.12: Location of phase transition for type M reactions, with β/µ = 2. Network is
scale-free with V = 1000 and γ = 2.5.
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Chapter 5

Other reaction-diffusion models

As an example of other applications of reaction-diffusion processes on networks, we will
in this chapter present a model for opinion formation. Opinion formation is a field of
sociophysics, which uses methods from physics to explain or understand sociological phe-
nomena. One of the early contributions to this field was given by Galam [13]. Later,
different models for opinion formation has been presented by Sznajd-Weron and Sznajd
[14] and Krapivsky and Redner [15]. The two latter ”spin-like” models typically have a
long-term limit where all sites have the same opinion (ferromagnetic) or alternating opin-
ions (anti-ferromagnetic). We are therefore interested in creating a new model which has
stationary states in which both opinions can coexist (in more complex patterns than the
anti-ferromagnetic), which may be more realistic.

We wish to model opinion formation on a network which for example can represent
cities or social groups, and connections between them. We let A and B particles represent
people with different (binary) opinions A and B, which can persuade each other and move
around on the network. To model the travel between cities (or nodes), we let these particles
or persons diffuse around on the network. We also associate a persuasive power µ with
each person, which describes how many persons each person manages to persuade per time
step. The process of persuading will be the reaction step in our reaction-diffusion model.

Since every person has the same persuasive power, this results in a variant of majority
rule. With majority rule, the majority is most likely win an argument, and thus further
increase its majority. Many variants of majority rule has been presented, e.g. the Sznajd
model [14] and MR (Majority Rule) model of Krapivsky and Redner [15]. Both these
models represent opinions as spins placed on some kind of lattice, with interactions between
neighboring spins. To our knowledge, however, no model has been presented which let
the spin particles or persons move around in a network, with interaction only between
particles within the same node.

5.1 Master equations

To describe the time evolution of our opinion model, we use master equations similar to
those used for the epidemic model presented earlier. Let NA(i, t) and NB(i, t) represent
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the number of A and B particles, respectively, at node i at time t, as before. The diffusion
rates DA and DB are the probabilities that A and B particles, respectively, will diffuse
in each time step. Together with the persuasive power µ > 0, this leads to the master
equations

∂tNA(i, t) = µ [NA(i, t) −NB(i, t)] −DANA(i, t) +DA ∑
j∈U(i)

NA(j, t)
kj

, (5.1)

∂tNB(i, t) = µ [NB(i, t) −NA(i, t)] −DBNB(i, t) +DB ∑
j∈U(i)

NB(j, t)
kj

. (5.2)

where U(i) denotes the set of neighboring nodes of node i. Here, the terms with µ describes
the persuasion of the other opinion, while the two latter terms describes the diffusion of
particles away from and into the node, respectively. To make sure all particle numbers are
positive, these equations have to be limited when implemented, so that NA(i, t) > 0 and
NB(i, t) > 0 1.

By looking at limiting cases of the master equations (5.2), we can learn something
about the stationary state of the system. In the limit DA,DB → 0 (no diffusion), we are
left with ∂tNA(i, t) = −∂tNB(i, t) = µ[NA(i, t) −NB(i, t)]. This implies that if NA(i,0) >
NB(i,0), the node will end up with only A particles. Similar arguments can be used if B
particles are initially in the majority. Thus, depending on the inital state, one can have
a stationary state with some nodes with A particles in majority and some nodes with B
particle majority.

Another limit to investigate, is when the diffusion dominates over the reaction, i.e.
DA,DB ≫ µ. In this case, the dominating diffusion makes it possible to consider the
whole network as a single node. So if the inital total number of A particles exceeds the
number of B particles, NA(0) > NB(0), the stationary state will have only A particles.

Between these two limits, we expect there to be a transition between a stationary state
just dependent on local properties (first case) to a state only dependent on global properties
(second case). To describe this transition, we present simulation results in section 5.2. In
our simulations, the master equations (5.2) were implemented with forward difference.

5.2 Simulation results

We performed simulations to investigate the behavior of the model. More specifically,
we were interested in how the stationary state depends on µ, DA and DB. We let the
initial state be a random distribution of A and B particles, but with equal total number
of A and B particles (NA(t = 0) = NB(t = 0)). The total (conserved) particle number is
N = NA(t) +NB(t), as before.

In Fig. 5.1, we show results for the fraction Nm/N where Nm is the number of majority
particles. We recognize the limits discussed in the previous section. With slow diffusion

1One could imagine a more intricate reaction term, e.g. µ(NA(i, t)−NB(i, t))NA(i, t)NB(i, t)/N(i, t)
2,

which ensures that NA(i, t) > 0 and NB(i, t) > 0. This will not be considered here.
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Figure 5.1: Fraction of majority particles in the stationary state, with DA = DB = D.
The results were obtained by averaging over 600 samples (20 networks, 30 simulations per
network). The networks were scale-free with V = 1000 nodes.

(DA,DB ≪ µ), the stationary state of each node is just dependent on its initial state
NA(i, t = 0) and NB(i, t = 0). Since the particles were randomly distributed initially, there
is an (almost) equal number of nodes A and B majority, and thus Nm/N ≈ 1/2. When
diffusion dominates (DA,DB ≫ µ), the minority will not survive, and all particles will be
majority particles (Nm = N).

Figure 5.1 shows results for scale-free networks with different exponents γ. A low
exponent makes it more probable with high degree nodes, while a high exponent gives
a network with many low degree nodes and few high degree hubs. We have chosen to
show results for γ ∈ {2.25,2.5,3.0} because real-world networks often have exponents in
this area (see e.g. [5]). In addition we show results for γ = 0, to illustrate how the model
behaves in a very dense network. When γ = 0, all degrees are equally probable, and hence
the network is very densely connected.

We see from figure 5.1 that network topology has a huge impact on the fraction of
majority nodes. For γ = 3, significantly stronger diffusion is needed to distribute the
majority opinion to the whole network, than for γ < 3. This is because higher γ causes a
less closely connected network, with few high degree nodes. For a more densely connected
network (γ = 0), there seems to be a sudden change at DA ≈ 2µ where the minority opinion
suddenly disappears.

The results in figure 5.1 indicate that an opinion spreads more easily in a closely
connected network. This is perhaps not surprising, since a closely connected network
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Figure 5.2: Fraction r of links connecting same-spin nodes in the stationary state, with
DA =DB =D. The results were obtained by averaging over 600 samples (20 networks, 30
simulations per network). The networks were scale-free with V = 1000 nodes.

causes more communication between different opinions, thus increasing the chance of being
persuaded by the majority.

Next, we will try to look at the relation between which particles are in majority at
neighboring nodes. First, to simplify the terminology, we introduce a spin quantity to
describe which particle type is in majority. The spin σ(i, t) of a node i at time t is defined
as

σ(i, t) =
⎧⎪⎪⎨⎪⎪⎩

1 , if NA(i, t) ≥ NB(i, t),
−1 , if NB(i, t) < NA(i, t).

(5.3)

Thus, if two neighbor nodes i and j have the same particle type in majority, σ(i, t)σ(j, t) =
1, and otherwise σ(i, t)σ(j, t) = −1. Using this spin quantity, we can easily calculate the
correlation r between neighboring nodes’ spin:

r(t) = 1
2V ⟨k⟩

V

∑
i=1

σ(i, t) ∑
j∈U(i)

σ(j, t) . (5.4)

We recall that V is the number of nodes in the network, and U(i) is the set of neigh-
boring nodes of node i. Since there are V ⟨k⟩ links and every link is counted twice, the
normalization factor is 1/(2V ⟨k⟩).

Figure 5.2 shows the correlation r in the stationary state as function of D/µ (DA =
DB = D). As one would expect, there is no correlation when diffusion is negligible, since
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Figure 5.3: Average clique size in the stationary state for a randomly chosen node. The
diffusion constant was DA = DB = D. The results were obtained by averaging over 600
samples (20 networks, 30 simulations per network). The networks were scale-free with
V = 1000 nodes.

the nodes then practically will be independent of other nodes. When diffusion is strong,
however, all nodes will eventually have the same spin (or opinion), and thus the correlation
is r = 1. The interesting part of this figure lies in the transition between these two limits.

We can see that for diffusion rates on the same order as reaction rates, D ∼ µ, the
networks with γ = 3 actually have a larger neighbor correlation than the other networks.
When comparing with Fig. 5.1, we see that when D/µ = 2, no significant majority has
formed yet (for γ = 3). However, at this point, the neighbor correlation r is quite strong,
with r ≈ 0.65. The correlation is far stronger than for γ = 2.25, which has a significantly
larger majority for D/µ = 2.

That there is no clear majority but significant correlation, must mean that there are
many small clusters or ”cliques” with same-spin nodes. However, with slow diffusion,
the networks are too loosely connected to be able to convert neighboring ”cliques”. The
network topology makes it necessary with faster diffusion to achieve a spreading of the
majority opinion.

It would be interesting to look at how the clique sizes {Si} evolve with increasing
diffusion. Let C be the total number of cliques, Si be the size of clique i and si the size
of the clique which contains node i. ”Average clique size” can then be interpreted in (at
least) two ways: ⟨S⟩ or ⟨s⟩. The first interpretation is just the average size of all cliques,
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Figure 5.4: Average clique size in stationary state. The diffusion constant was DA =DB =
D. The results were obtained by averaging over 600 samples (20 networks, 30 simulations
per network). The networks were scale-free with V = 1000 nodes.

i.e.

⟨S⟩ = 1
C

C

∑
i=1

Si .

The other interpretation corresponds to the average clique size when choosing a random
node,

⟨s⟩ = 1
V

V

∑
i=1

si .

Since each clique i contributes with Si nodes, each with a clique size Si, we get the following
relation between ⟨s⟩ and ⟨S2⟩:

⟨s⟩ = 1
V

C

∑
i=1

S2
i =

C

V
⟨S2⟩ .

In figure 5.3 we show simulation results which show how the clique sizes evolves as
the diffusion rate increases. We see that a higher γ gives smaller cliques. Due to the
sparse connections for γ = 3, small cliques of nodes are sufficient to increase the neighbor
correlation r significantly, with only few connections between the cliques. With lower γ,
larger cliques are necessary to achieve the same correlation, because these networks are
more densely connected.

To find out more about the clique size distribution, we also present results for the
average clique size ⟨S⟩ (in Fig. 5.4) and the largest clique size max(S) (in Fig. 5.5). We
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Figure 5.5: Maximum clique size in the stationary state. The diffusion constant was
DA =DB =D. The results were obtained by averaging over 600 samples (20 networks, 30
simulations per network). The networks were scale-free with V = 1000 nodes.

see that the average clique size ⟨S⟩ for γ ∈ {2.25,2.5,3} actually decreases in the region
around D ≈ 3µ. In this region, both the average node clique size ⟨s⟩ and the maximum
clique size increases. The only explanation for this must be that there are a number
of medium sized clusters around D ≈ 2µ. When increasing D, these clusters split, which
increases both the number of small clusters and the size of the largest cluster. This decrease
in ⟨s⟩ must be said to be quite peculiar. One could suspect that it is caused by stochastic
variations, but each data point in these figures is the result of 600 separate simulations,
so that should not be the case. The reason for this ”dip” should be investigated further.

All in all, if one interprets this in a social context with cities as nodes, we can conclude
that more travel (diffusion) gives more homogeneous opinions. This seems to make sense,
since communication (obviously) is necessary for spreading information or opinions. We
can also see that the way cities or countries are connected, matters a great deal for how
easily opinion spreads between them, as a network with many hubs (low γ) is more efficient
at spreading an opinion. We have also learned that with quite low diffusion, long before
one opinion has gained significant majority, there is a high correlation between the opinion
of neighbor cities. In other words, clusters of same-opinion cities form, eventually followed
by the merging of these clusters, and finally a homogeneous opinion forms throughout the
network.

Until now, we have let the A and B particles diffuse with the same rate, DA =DB =D.
One could, however, imagine that different opinions lead to different travel patterns, and
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Figure 5.6: Fraction of A particles in the stationary state, with DB = µ. The results were
obtained by averaging over 100 samples (10 networks, 10 simulations per network). The
networks were scale-free with V = 1000 nodes.

thus different diffusion constants. We will therefore investigate how the stationary state
behaves when DB = µ and varying DA.

Figure 5.6 shows the fraction of A particles in the stationary state. Surprisingly,
increasing the diffusion constant DA actually decreases the number of A particles. This is
quite contra-intuitive, as we found previously that increasing diffusion (D = DA = DB) is
necessary for spreading a majority opinion to the whole network.

One explanation for this behavior can be that less diffusion makes to easier to keep the
majority nodes that a particle type already has conquered. As mentioned earlier, initially
the A and B particles are distributed randomly. One can imagine that in the first stage of
the process, the majority of each node (almost) eliminates the minority. In the next stage,
the quick diffusing A particles diffuse into B majority nodes, in which they are absorbed.
The B particles, however, mostly stay in place. After a while, the nodes are emptied for
A particles, and the B particles can slowly diffuse into and conquer them.

In figures 5.7, 5.8 and 5.9 we show how the clique sizes evolve as function of DA/DB.
We see that there is fairly little change (at least for γ ∈ {2.25,2.5,3.0}) from DA ≪ DB

to DA = 2DB. At DA = 2DB there is a sudden jump where the cliques merge to form a
single clique. One could say that there is a condensation or phase-transition at DA = 2DB,
where the whole network is occupied by B particles.

The behavior of γ = 0 is slightly different, although it also shows the same sudden jump
in ⟨s⟩ and max(S). Since the nodes in this network are so closely connected, any node
can be reached in very few steps from any other. Therefore, almost all A nodes belong
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Figure 5.7: Average clique size in the stationary state for a randomly chosen node. The B
diffusion constant was DB = µ. The results were obtained by averaging over 100 samples
(10 networks, 10 simulations per network). The networks were scale-free with V = 1000
nodes.
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Figure 5.8: Average clique size in the stationary state. The B diffusion constant was
DB = µ. The results were obtained by averaging over 100 samples (10 networks, 10
simulations per network). The networks were scale-free with V = 1000 nodes.

Figure 5.9: Maximum clique size in the stationary state. The B diffusion constant was
DB = µ. The results were obtained by averaging over 100 samples (10 networks, 10
simulations per network). The networks were scale-free with V = 1000 nodes.
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to the same cluster, and thus ⟨s⟩ ≈ 500 (when DA < 2DB). The results for ⟨S⟩, however,
show that there still exists small clusters not connected to the main cluster for DA <DB.
Not until DA = DB does the average cluster size ⟨S⟩ increase to ≈ 500, where all nodes
belong to the large cluster.

The results for the case where DA ≠ DB show that the behavior of this model is far
from simple or obvious. In a social context, this last result means that less travel actually
could be beneficial to spread one’s opinion. By staying together, one will convert people
with other opinions traveling into a city, and then slowly migrate when the neighbor cities
are almost emptied for other opinions.

We have shown that this model is seemingly more complex than one would initally
think. Although the model already shows complex behavior, we can readily think of
changes to adapt it to more realistic cases. An interesting extension of the model would
be to include more than two (binary) opinions. One could theoretically have infinitely
many opinions described in the same way we have done with the two A and B opinions.
It would also be interesting to investigate a model with different persuasive power µ
for different opinions. Finally, one could model the persuasion process differently with
another reaction term in the master equations, which in itself ensure that NA(i, t) > 0 and
NB(i, t) > 0.
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Chapter 6

Conclusion and outlook

We have considered a reaction-diffusion process on complex networks. In particular, we
have studied the so-called susceptible-infected-susceptible (SIS) model on networks. This
model describes the behavior of an infection where one has two types of particles: suscep-
tible and infected. A simple reaction model governing the infection by susceptible particles
and the recovery of infected particles is used. A diffusion process distributes these particles
around on the network.

Within the SIS model, we have studied the long-term behavior (stationary state) with
different networks and parameters. Previously, the stationary state was studied by Colizza,
Pastor-Satorras and Vespignani [8]. These authors present both analytical and simulation
results for this state and demonstrate that there exists a phase transition at a critical
density. Below this density there are no infected particles in the stationary state, and
above it, an infection will always persist. Previous work [2] reviewed and reproduced their
analytic (mean-field) results, but also reveiled that their simulations deviate from the an-
alytical expressions. This applied both to the location of the phase transition as well as
the quantitative behavior. The simulations in Ref. [2], however, matched the analytical
expressions accurately. In this thesis, we have put forward a plausible explanation for the
deviation between simulation and analytical results in Ref. [8]. This was demonstrated by
implementing the reaction-diffusion process as done in Ref. [8] and then performing simu-
lations with excessively high reaction rates. Too high reaction rates lead to a saturation of
the reaction (giving a reaction probability greater than one), which alters the stationary
state.

We have also presented an analytical approach based on continuous time (as proposed
by Saldaña [10]), whereas the approach of Colizza et al. [8] was based on discrete time.
The differences and similarities between these two approaches were discussed. We contin-
ued with finding analytical solutions for all values of the diffusion constants by a series
expansion in the degree k. We also presented analytical results for a new reaction type (in
addition to two reaction types proposed in Ref. [8]) which was meant to better resemble
a real-life situation. Simulation results match well with the analytical (mean-field) se-
ries solution for parameters where the mean-field approximation is a good approximation.
Finally, we presented analytical and simulation results for the critical density, at which
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the phase transition occurs. Both a series expansion and a Jacobian matrix was used to
predict this density, and simulation results agree well with these analytical results.

As an example of other uses of reaction-diffusion processes on networks, a model for
opinion formation and spreading was proposed. This model was meant to resemble the
complexity of the real world in a better way than existing models. Simulation results show
that the model has some interesting and unexpected behavior. Further work on this model
can reveal more on how the opinion spreads and how clusters of same-opinion nodes form.
Expanding the model to include more than two opinions would also be interesting.
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