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Abstract

First we present high resolution large eddy simulations (LES) for the flow past a circular

cylinder at Reynolds number 3900 to prove the quality of the simulations. A thorough grid

convergence study is presented, and the agreement in the mean flow statistics between our

simulations and the references is excellent. Then we apply a no-slip boundary condition at the

spanwise boundaries of the cylinder, with aspect ratios of 6, 12 and 24. This results in large

changes in the shear layers and wake topology, even for an aspect ratio of 24. Even though

the boundary layers along the side walls are only about 0.4 diameters thick, they nevertheless

manage to stabilize the shear layers all the way through the channel, thus effectively delaying

the roll-up and transition to a turbulent wake.
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1



NOMENCLATURE

CD Drag coefficient

CL Lift coefficient

Cpb Base pressure coefficient

D Cylinder diameter

fv Vortex shedding frequency

L Cylinder length

Lr Recirculation length

Lv Vortex formation length

ωz Vorticity ωz = ∂v/∂x− ∂u/∂y

p Pressure

Puu Power spectral density of u-velocity

Q Second invariant of ∇u

Re Reynolds number Re = DU∞/ν

St Strouhal number St = fvD/U∞

u, v, w Instantaneous fluid velocity

U, V ,W Time-averaged fluid velocity

u′, v′, w′ u′ = u− U etc.

U∞ Inlet (freestream) velocity

ν Kinematic viscosity of fluid

x, y, z Cartesian coordinates

� Time-averaged

�rms Root-mean-square =
√

(�−�)2

1 Introduction

The flow around a circular cylinder is one of the most widely studied flow cases, both experi-

mentally and numerically. It is applicable to many physical processes, and the definition of the

problem is straight-forward. For long and smooth circular cylinders in infinite fluid the solution

is a function of the Reynolds number Re = DU∞/ν only, where D is the constant cylinder5

diameter, U∞ is the far-field inflow velocity and ν is the kinematic viscosity of the fluid. The

flow solution turns unsteady already around Reynolds number Re ≈ 40 and the wake become

three-dimensional when Re & 200 [1].

Due to the simple problem definition and the relatively complex flow solution, together with

a wide range of applications in nature, science and engineering, numerous experiments and10

simulations have been performed on this case. Although experiments have been performed on

cylinders with lengths up to several thousand diameters [2] to completely eliminate the effect

of end boundary conditions, this is currently not feasible to replicate in a simulation, even for

very low Reynolds numbers. Instead, periodic boundary conditions are used to replicate an

‘infinitely long’ cylinder. This is an efficient numerical ‘trick’ to save computational effort. In15

real life physical experiments this is not possible, since true periodicity cannot be realized in the

laboratory.

2



It has been known for a long time that flow around cylinders are easily influenced by the

spanwise boundary conditions, even for large aspect ratios L/D. Szepessy and Bearman [3]

performed experiments on cylinders with end-plates and varying distance between the plates,20

measuring forces and vortex shedding frequencies for the range 8000 < Re < 1.4 × 105. Norberg

[2] studied the influence of very large aspect ratios, up to L/D = 5000 in the most extreme

cases for the 50 < Re < 4 × 104. Both used end-plates to reduce the effect of the solid-wall

termination of the cylinder. The specific end-plate configuration was first described by Stansby

[4] who developed an optimized end-plate design to reduce the change in base suction with25

varying cylinder lengths. However, no other flow parameters were taken into account during this

design process, i.e. no indications were given on how the end plates changes the flow and wake

topology.

Zhang et al. [5] used large eddy simulation to study finite length cylinders in proximity to a

symmetry plane (i.e. a frictionless surface) in the spanwise direction at Re = 3900. They found30

that the forces on the finite length cylinder was lower than in the infinite length case, with a drag

reduction of up to 25%. They also found that the shear layers of the finite cylinder are more

stable, leading to a delayed roll-up further downstream. Pereira et al. [6] used RANS and XLES

(eXtra Large Eddy Simulation) to study the difference between periodic and symmetry-plane

end-wall boundary conditions also for Re = 3900. They found a significant difference in integral35

quantities such as drag coefficient between these two types of boundary conditions. Frölich and

Rodi [7] simulated a short cylinder (L/D = 2.5) with one end mounted on a solid wall and the

other end in the freestream at Re = 43000 focusing on exploring the vortex dynamics on this

special case. Neither of these references discuss the effect of no-slip end-wall boundary conditions

for long cylinders.40

Huang et al. [8] considered the end-wall effects on vortex shedding around a circular cylinder

at Re = 100 in which they studied the difference between slip and no-slip boundary conditions

on the spanwise boundaries. They found that for a cylinder of length 6D the effect of no-slip

boundary conditions substantially altered the vortex shedding in the middle of the channel.

However, their low Reynolds number and short spanwise length does not make any useful reference45

for a turbulent flow case.

But what happens really in an experiment when a cylinder terminate in a no-slip wall, like

the wall of a wind tunnel or water tank? In this paper we present simulation results for cylinders

with lengths up to 24 diameters and no-slip boundary conditions in the spanwise direction,
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Figure 1: Computational domain and coordinate system. The origin of the coordinate system is in the
center of the cylinder. The three directions are named streamwise (x-direction), crossflow (y-direction)
and spanwise (z-direction). L is the length of the cylinder and width of domain. The figure is not to scale.

replicating an experimental channel with a cylinder mounted between two parallel solid walls. In50

addition, we have simulated a cylinder with periodic spanwise boundary conditions as a reference

simulation for comparison with other published data.

We have previously studied a particular cylinder with fairings at Re = 5000 with both LES,

DNS and PIV [9] and studied the influence of boundary conditions on this specific case and

aspect ratio L/D = 12 [10]. In these studies we limited ourselves to one aspect ratio and one55

Reynolds number. The geometry we used was equipped with special fairings designed to reduce

drag and the oscillating forces from vortex shedding. Since the geometry was unique and never

studied before, there were no reference data available from other sources. The present paper is

a follow-up on this work, where the case is generalized by removing the fairings and lowering

the Reynolds number to Re = 3900, making it possible to compare our results with previously60

published data. We also increase the largest aspect ratio to L/D = 24 and include a lower aspect

ratio of L/D = 6 to give a more complete description of the flow case.

2 Problem and definitions

The computational domain is shown in figure 1. The coordinate system is indicated in the figure,

where the x-, y- and z-direction are the streamwise, crossflow and spanwise direction, respectively.65

The width of the domain equals the length of the cylinder L. All cases have a fixed-velocity

inflow boundary condition at the inlet, that is (u, v, w) = (U∞, 0, 0) and Neumann condition on

the pressure (∂p/∂x = 0). The outlet condition is a fixed pressure outlet (p = 0) with Neumann

conditions on all three velocity components. The boundary conditions in the crossflow direction
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Table 1: Simulation matrix.

Simulation per-6D nos-6D nos-12D nos-24D

Cylinder length L 6D 6D 12D 24D
Spanwise BC Periodic No-slip No-slip No-slip
Number of grid cells 76 × 106 76 × 106 152 × 106 304 × 106

Min. ∆x/D,∆y/D 0.00625 0.00625 0.00625 0.00625
Min. ∆z/D 0.0125 0.0125 0.0125 0.0125

are that of a symmetry plane, this prescribe zero wall-normal velocity (v = 0) and Neumann70

conditions on all other flow quantities. For all no-slip boundaries (in the spanwise direction and

on the cylinder surface) we prescribe zero velocity and a Neumann condition for the pressure.

For the cases with no-slip spanwise boundary conditions, we have simulated three aspect

ratios: L/D = 6, L/D = 12 and L/D = 24. For the reference case with periodic conditions, we

only simulated L/D = 6. Parnaudeau et al. [11] investigated the difference between L/D = π75

and L/D = 2π for the same Reynolds number. They found the difference to be small and

concluded that a span of πD in many cases could be sufficient. With that in mind, we believe

that there is no need for any longer cylinders than L/D = 6 when using periodic conditions. The

Reynolds number is, as previously noted, Re = 3900 in all cases.

The different simulated cases are summarized in table 1. All simulations were run until the80

effects of the initial condition no longer was present. After this initial phase, statistics were

sampled over 2000 D/U∞ time units, corresponding to roughly 400 vortex shedding cycles (given

a Strouhal number of St ≈ 0.2). The reason for this large number of cycles is to achieve converged

statistics along the entire span of the cylinder, without using a spanwise average.

3 Numerical methods85

The code MGLET [12] has been used to perform all simulations presented in this paper. In

short, MGLET uses a finite-volume formulation on staggered grids solving the incompressible

Navier-Stokes equations using linear interpolation and integration for all spatial terms, hence

leading to second-order accuracy in space. A third-order low-storage explicit Runge-Kutta time

integration scheme [13] is used for time stepping.90

MGLET uses a staggered Cartesian grid and introduces the solid geometry through an

immersed boundary method [14]. A local refinement of the grid around the cylinder is achieved
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Figure 2: Schematic illustration in 2D of the grid design and refinement process. The grid refinement
regions are marked with darker shades of grey for finer regions. Not to scale.

by embedding zonal grids. In the LES presented here, we used three levels of local grid refinement

(plus one coarse, parent grid) around the cylinder. This resolves the cylinder, its boundary layers

and the wake behind it sufficiently while keeping the total number of grid cells at a reasonable95

level. The refinement process is a simple cell splitting, in which each parent grid cell subject to

refinement is split into eight equal (3-D) child cells [15]. A schematic illustration of the grid design

is given in figure 2. The resulting smallest grid cell size is 0.00625D in the x- and y-direction

and 0.0125D in the z-direction. The grid is homogeneous in the spanwise direction. The grids

consist of 76, 152 and 304 million grid cells for the three aspect ratios L/D = 6, L/D = 12 and100

L/D = 24, respectively.

The time step was fixed at 0.002 D/U∞ in all simulations, except in the initial phase where

we used a smaller timestep for stability reasons, but no data was sampled from this phase. This

resulted in an average maximum CFL (Courant–Friedrichs–Lewy) number of 0.77, well below half

of the stability limit of the time integration method. For comparison, the results by Parnaudeau105

et al. [11] were simulated with a time step of 0.003 D/U∞ and a second order time integration

method. The ‘Wall-Adaptive Local Eddy-viscosity’ model, more commonly known as the WALE

model [16], was used as the LES subgrid-scale model. The same numerical setup has also been

used in other recent works, such as [17].

3.1 Grid convergence110

A detailed grid convergence study has been conducted. Four different grids of similar kind but

with different resolution were created and the reference periodic case simulated. The overall

properties of each grid is provided in table 2. The results in figure 3 clearly show that there
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Table 2: Grid convergence study setup

Simulation coarse medium fine veryfine

Cylinder length L 6D 6D 6D 6D
Spanwise BC Periodic Periodic Periodic Periodic
Number of grid cells 15 × 106 35 × 106 76 × 106 613 × 106

Min. ∆x/D,∆y/D 0.025 0.0125 0.00625 0.00312
Min. ∆z/D 0.05 0.025 0.0125 0.00625
Time step ∆t 0.002 0.002 0.002 0.001
Time steps 262144 262144 262144 167580
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Figure 3: Results from the grid convergence study with the four grids from table 2. (a) time-averaged
streamwise velocity in the centerline behind the cylinder at y = 0. (b) energy spectra in the point
(x, y, z) = (1.54D, 0.6D, 0.0) and (c) and (d) time-average streamwise velocity in two transverse lines at
x/D = 1.06 (c) and x/D = 1.54 (d). All data are sampled in the centerplane at z = 0.
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Figure 4: Comparing results from case per-6D with data from Parnaudeau et al. [11] (high resolution
LES and PIV cases). All lines are sampled in the center plane at z = 0.

is only minor difference between the case fine and veryfine. Since the veryfine grid has more

than eight times the number of cells and require a time step of half that of the fine grid, the115

computational cost of the veryfine grid is more than 16 times that of the fine. For this reason

the veryfine-case was only run a limited time until the first order statistics were converged. The

results in figure 3 are very clearly showing that the fine and veryfine case provide almost identical

results. For this reason the fine grid was chosen for all further simulations.

3.2 Comparing with references120

We have obtained the velocity profile data from Parnaudeau et al. [11]. The reference dataset

contain both flow data simulated with LES and experimental data obtained by PIV (particle

image velocimetry). A cylinder with end-plates was used in the experiment, and the cylinder

length between the end plates were L/D = 20. The reference data is plotted together with (the

same) data from the current simulation per-6D in figure 4. The reference LES dataset exhibits125

a somewhat higher minimum streamwise velocity at the centerline behind the cylinder, and a

slightly lower velocity in the range 1.8 < x/D < 4.0. The match between our simulations and

the experimental PIV data from the same reference [11] is on the other hand excellent. In total,

we consider the comparison to be satisfactory, and that all the effects discussed in the remainder

of this paper will be much larger than the discrepancies seen in figure 4.130
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Figure 5: Illustration of boundary layer profile U in the empty channel corresponding to case nos-12D
at position x = 0. The Blasius boundary layer thickness defined as the location where u/U∞ = 0.99 is
indicated on the figure. The actual boundary layer thickness, defined as the location in which the velocity
approach 99% of the value in the center of the channel, is also indicated as δ99. The boundary layer is
resolved by approximately 34 grid cells.

3.3 Simulation without body

A parameter in the simulations with the no-slip spanwise boundary conditions is the nature

of the boundary layer in the vicinity of the cylinder. If we position the cylinder closer to the

(uniform) inlet, it ‘sees’ a thinner boundary layer compared to a cylinder placed further away.

Since the boundary layer is laminar, we can make an estimation of the boundary layer shape135

based on a Blasius profile. However, due to the coarse grid near the channel inlet the boundary

layer profile will deviate from the ideal Blasius solution. In addition, we have a blockage effect

due to the displacement of the boundary layers which will contribute to increase the velocity in

the center of the domain.

We have performed a simulation with an empty channel, that is without any cylinder present.140

We used the domain from the intermediate length cylinder case (L/D = 12). In this way, we can

see how the boundary layers develop without the interference from the cylinder. A velocity profile

taken at the location of the cylinder (x = 0, y = 0) is presented in figure 5. This shows that there

is a large region of nearly uniform velocity u in almost the entire cross-section. The velocity at

the center is slightly larger than the inlet velocity U∞ by about 2.1%. When approaching the145

walls, the velocity increases from the value in the center of the channel, up to a maximum of

3.1% larger than the inflow velocity 0.67D from the wall (indicated in the figure 5 with both

position and magnitude). The boundary layer thickness predicted by a Blasius profile for this
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Figure 6: Instantaneous view of the flow field for the ‘nos-6D’ case showing the cylinder wake and
horseshoe vortex system. The solid green surfaces indicate the no-slip boundary conditions on the cylinder
itself and the side walls. The isosurfaces are computed for Q = 2.0 and coloured by the streamwise
vorticity ωxD/U∞.

location in the tank is δ99 ≈ 0.42D. When we define our boundary layer thickness as the location

in which the velocity reach 99 % of the velocity in the center of the channel, we get a computed150

boundary layer thickness of δ99 ≈ 0.42D, which happens to be exactly the same as predicted by

the Blasius profile.

In total, it seems like the simulation is representing a physical channel flow. The velocity

profile is not completely uniform, but in laboratory experiments this will never be the case either.

Since the velocity increase in the middle of the channel is small, to keep it simpler, we will155

normalize all velocities with respect to the inlet velocity U∞ instead of using the actual velocity

in the center of the channel.

4 Results

To give an overview of the flow topology for the cases with no-slip boundary conditions, the

Q-criterion was computed for the case ‘nos-6D’ and is shown in figure 6. The most important160

feature compared to the flow around an infinitely long cylinder, is the horseshoe vortex system
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Table 3: Main flow coefficients. The symbols are explained in the nomenclature in the beginning of the
paper. The characteristics from [11] are from the high-resolution LES case and the data from [18] are
from ‘run 7’. Recirculation length and vortex formation length are measured from the base of the cylinder.

Simulation per-6D nos-6D nos-12D nos-24D Ref. [11] Ref. [18]

St 0.212 0.196 0.208 0.210 0.208 0.210
CD 0.968 0.867 0.897 0.904
Crms

D 0.0258 0.0116 0.0093 0.0123
Crms

L 0.1249 0.0076 0.0235 0.0224
−Cpb 0.865 0.699 0.747 0.763 0.900
Lr/D 1.508 2.987 2.250 2.061 1.56 1.198
Lv/D 0.872 2.814 1.615 2.003 0.92

Umin/U∞ −0.316 −0.389 −0.285 −0.271 −0.26 −0.28

developing around the intersection between the solid wall and cylinder. The figure shows a

laminar horseshoe vortex forming around the cylinder, which turns turbulent around x/D = 3.0.

This point of transition is significantly further downstream than the point of transition in the

shear layers separating from the cylinder. The same principle flow configuration with a horseshoe165

vortex is present in all no-slip cases even though they are not all shown here.

The main flow characteristics and force coefficients are summarized in table 3. The force

coefficients presented here are measured and averaged over the entire span of the cylinder. A

practical consequence of this is that the ends of the cylinder are within the wall boundary layer

in the cases with no-slip boundaries, and consequently the force coefficients are affected by this.170

The largest difference between the cases with- and without the no-slip spanwise boundary is

that the RMS of the lift coefficient Crms
L is dramatically lower in the cases with no-slip boundary

condition, compared to the periodic case.

The Strouhal number is calculated based on the time history of the fluid velocity u and v

in position (x, y, z) = (3.0D, 0.45D, 0) in the wake. The base pressure coefficient is based on175

the mean pressure difference between a point immediately behind the cylinder (at x = 0.5D) in

the center of the domain and a corresponding point upstream at x = −20D. For the cases with

no-slip boundary conditions, the presence of the no-slip walls will lead to a pressure drop along

the channel that will affect the base pressure coefficient.

Figure 7 shows the time-averaged streamwise and spanwise velocities in a slice through180

y = 0. The first important point is that the velocities are nearly perfectly symmetric (U)

and antisymmetric (V ) in the z-direction, which mean that the statistics are well converged
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Figure 7: Time-average streamwise (a, c) and spanwise (b, d) velocity in a slice through y = 0 for
the cases nos-12D (a, b) and nos-24D (c, d). White regions are regions where the velocity exceed the
defined color scale indicated on the colorbar. Blue colors are negative velocities and red colors are positive
velocities. The solid black line in plots (a, c) indicate the contour U = 0.
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Figure 8: Profiles of mean velocity U (a) and u′u′ (b) along the center line behind the cylinder. The
origin of the x-axis is in the center of the cylinder. The lines are sampled in the center of the domain at
z = 0.

throughout the channel. Secondly, the figure shows that the walls have a significant effect on the

mean flow around the cylinder. The extent of the influence is much wider than the boundary

layer thickness δ99, from the previous chapter we recall that this is only about 0.4D. From figure185

6 we also recall that the horseshoe vortex system is confined to a region very close to the wall,

typically less than 1D away. Despite this, the influence of the wall reaches all the way into the

channel for the nos-12D case as seen in figure 7 (a). The mean streamwise velocities on the other

hand, are influenced by the wall up to about 4D from the wall. The spanwise velocities have

significant non-zero values up to 2D away from the walls. In the center of the channel, there is190

also a wide region with nearly 2-D flow statistics, this region is also about 4D wide. This region

of influence from the walls is increasing quickly downstream in the wake.

Stäger and Eckelmann [19] studied the thickness of the wall-affected region on a cylinder with

various end-plate diameters. If we use their data (provided in [19] figure 9) and assume that our

setup is similar to an endplate with diameter 25D (the same as the distance from the cylinder to195

the inflow boundary in the present study), we find that the thickness of the wall-affected region

is between 5D and 6D. This fits nicely within both figure 7 (a) and (c). Despite that we see a

large region with 2-D flow statistics in figures 7 (c) and (d), the flow is still strongly influenced

by the wall throughout the entire domain. The notion of a certain ‘wall-affected’ region is thus

in our opinion misleading.200

Figure 8 present the mean streamwise velocity in the centerline behind the cylinder, in the
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Figure 9: Profiles on how the recirculation length Lr (a) and vortex formation length Lv (b) vary along
the span of the cylinder for the different cases.

middle of the domain (at y = 0 and z = 0) for all simulated cases. This figure shows the major

impact of the no-slip boundary condition. All characteristic points, like the recirculation length

(the distance from the base of the cylinder to the the point where U turns positive) and vortex

formation length (the distance from the base of the cylinder to the maximum of u′u′) is longer205

by 0.5D to 1D for all no-slip cases compared to the periodic case.

Another interesting feature is that there is no sign of immediate convergence towards the

periodic reference case. Even the nos-24D case deviate significantly from the per-6D case. We

believe that a cylinder length of more than 100D is needed before the results are comparable

with the periodic reference case. This argument can be made because the difference between the210

nos-12D and nos-24D cases are quite small compared to the difference with the per-6D case, and

hence no sudden convergence can be expected.

The recirculation length and vortex formation length are extracted from every grid cell

location in the z-direction along the cylinder span, and plotted in figure 9. Again we see large

differences between the cases, even between the 24D length cylinder and the periodic case. The215

recirculation length increase from about 1.5D to about 2.1D in the center of the channel going

from the periodic case to the nos-24D case. Both quantities vary only marginally along the

cylinder span, and there are huge regions in the center of the channels where these quantities do

not change at all. The trend we have commented on earlier is also still present, i.e change from

the nos-12D to nos-24D case is much smaller than the difference compared to the per-6D case.220

Ma et al. [20] discussed the shape of the streamwise velocity profiles in the very near wake,
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Figure 10: Time-averaged streamwise (a) and crossflow (b) velocity in the wake behind the cylinder at
three different locations at z/D = 0. For legend, see figures 8 - 9.

and how very small changes in the simulation setup, such as the length of the cylinder and inflow

turbulence intensity can trigger a change from a U-shaped velocity profile to a V-shaped velocity

profile. Tremblay [21], on the other hand, demonstrated how insufficient sampling can influence

the shape of the velocity profiles in the wake, and comment that a lot of the previously published225

data in this field are probably sampled over too few shedding cycles.

We have plotted the same velocity profiles at the same locations in figure 10. At the nearest

section, at x/D = 1.06, the shape of the profile is nearly square for all cases with no-slip boundary

conditions, with very high crossflow gradients of the mean velocity. The periodic reference case

shows a more U-shaped profile. In the middle section at x/D = 1.54 the periodic case has turned230

into a V-shaped profile, the nos-6D case is still a square profile and the nos-24D case is more like

a U-shape. At the section furthest away, all profiles, except the 6D case, are clearly V-shaped.

The shear layers forming behind the cylinder is shown in the plot of spanwise vorticity

ωzD/U∞ in figure 11 for both time averaged and instantaneous values. This figure indicates

that the shear layers of the cases with no-slip sidewalls are more stable than in the periodic case.235

This enhanced stability leads to a delay of the roll-up of the shear layer vortices and subsequent

breakdown. If we compare the location of the last negative or positive vorticity contour before
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computed timestep of each simulation.
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Figure 12: Left: Time traces of instantaneous streamwise velocity u in a point (x, y, z) = (1.0, 0.8, 0.0)
shown for 30 vortex shedding cycles. Right: Power spectral density computed with Welch’s method [22]
of the velocity measurement. The peak corresponding to the shear layer instability is marked fSL.

the white region around the zero contour, we see that this contour extends all the way down to

x/D = 2.5 in the nos-24D case, while in the periodic case this contour stops at x/D = 1.8. We

also see that the regions with very high vorticity, above and below the color scale in this figure240

(pure white regions), are more or less of identical shape and size.

To show how the no-slip boundary condition stabilizes the shear layers, we conducted two

additional simulations where we sampled the time trace of the velocity in discrete points for

the per-6D and nos-12D cases. The sampling was over slightly more than 40 vortex shedding

cycles. The time traces of the streamwise velocity u is shown in figure 12 for the 30 first cycles.245

We also computed the power spectral density for both time series. The velocity measurements

for the case per-6D clearly show the same intermittent high-frequency bursts as discussed by

Prasad and Williamson [23]. These high-frequency bursts occur at irregular intervals, with

frequencies significantly higher than the vortex shedding frequency. The nos-12D case does not

show any such features at all. The power spectra also shows that the case with no-slip boundary250

condition contains almost no energy for frequencies higher than the vortex shedding frequency.

The per-6D case show a distinct high-energy region around f/fv = 5 corresponding to the shear

layer instability frequency fSL, and a peak at f/fv = 2 corresponding to the first harmonic of

the shedding frequency. Neither of them is visible in the spectrum for the nos-12D case. In

summary, the power spectrum for the nos-12D case is clearly much more narrow-banded than255

the per-6D case at this location in the wake.
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5 Concluding Remarks

Our simulations show that even for long cylinders, placement of the cylinder in a channel with

no-slip boundary conditions along the walls (e.g. a circulating water tunnel, wind tunnel etc.)

gives huge impacts on the flow, also in the centre of the channel, far from the wall boundary260

layers.

The shear layers forming behind the cylinder are considerably more stable in the simulation

with the no-slip walls, and this delays the roll-up and formation of the turbulent wake. This is

seen both on the mean and instantaneous vorticity and on the time-trace of a velocity sampling

just outside of the shear layer. For the case with no-slip walls there is significantly less energy265

content for higher frequencies compared to the case with periodic boundary conditions. These

effects must be considered when designing experiments and also when comparing experimental

and simulation results.

Another important result is that we showed that even though there is large regions of two-

dimensional flow statistics in the center of the channel, this is not alone enough to claim that the270

results are independent of the aspect ratio or free of any end-wall effects. Our nos-24D case show

that even tough there is a 12D wide region of 2-D flow statistics in the center of the channel,

the flow statistics there are not representative for the reference case with periodic boundary

conditions, i.e. for an infinitely long cylinder.

6 Attached animation275

An animation of the shedding process in the periodic case is attached to the electronic version of

this paper. The data and time series are the same as shown in figure 12. The reason for the

high-frequency bursts are much more clearly visible in this animation than in the still images in

figure 11. The black crosses in the animation indicate the position of the velocity sampling.
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