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ABSTRACT

The host is protected by pattern recognition systems,
including complement and TLRs, which are closely
cross-talking. If improperly activated, these systems
might induce tissue damage and disease. Inhibition of
single downstream proinflammatory cytokines, such
as TNF, IL-1B, and IL-6, have failed in clinical sepsis
trials, which might not be unexpected, given the sub-
stantial amounts of mediators involved in the patho-
genesis of this condition. Instead, we have put
forward a hypothesis of inhibition at the recognition
phase by “dual blockade” of bottleneck molecules of
complement and TLRs. By acting upstream and
broadly, the dual blockade could be beneficial in
conditions with improper or uncontrolled innate im-
mune activation threatening the host. Key bottleneck
molecules in these systems that could be targets
for inhibition are the central complement molecules
C3 and C5 and the important CD14 molecule, which
is a coreceptor for several TLRs, including TLR4

and TLR2. This review summarizes current
knowledge of inhibition of complement and TLRs
alone and in combination, in both sterile and non-
sterile inflammatory processes, where activation of
these systems is of crucial importance for tissue
damage and disease. Thus, dual blockade might
provide a general, broad-acting therapeutic regimen
against a number of diseases where innate
immunity is improperly activated. J. Leukoc. Biol.
101: 193-204; 2017.

Abbreviations: aHUS = atypical hemolytic-uremic syndrome, DAMP =
damage-associated molecular pattern, FDA = U.S. Food and Drug
Administration, I/R = ischemia/reperfusion, IRF = IFN regulatory factor,
LTB4 = leukotriene B4, MASP = mannose-binding associated serine protease,
MD2 = myeloid differentiation protein 2, OmCI = Ornithodoros moubata
complement inhibitor, PAMP = pathogen-associated molecular pattern,
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Introduction

The ingenious inflammatory network preserves host integrity and
is essential in homeostasis. To fulfill host protection, the immune
system needs sensors that respond to potential dangerous
inducers, either of exogenous (PAMPs) or endogenous (DAMPs)
origin. The instantly acting sensors of innate immunity are the
first line of defense by recognizing these conserved molecular
structures or patterns. PRRs represent an upstream immunologic
hierarchy, sensing danger and subsequently signaling downstream
through a multitude of different pathways. PRRs are classified
based on their ligands and downstream effector pathways [1].
Nevertheless, pattern recognition may occur via several PRRs
concurrently, thereby integrating different pathways in a balanced
response via cross-talk. Under normal conditions, activation of
PRRs induces local and selflimited effector responses that
maintain homeostasis. However, improper or uncontrolled
activation may induce local tissue damage or cause systemic
imbalance, which may be fatal, as seen in SIRS and septic shock.
According to the danger model introduced by Matzinger [2],
the immune system recognizes DAMPs, irrespective of their
nature being exogenous microbes or endogenous “damaged
self.” In principal, this suggests that different threats to the
host unleash fairly similar initial host inflammatory responses.
The Inflammation and Host Response to Injury Large-Scale
Collaborative Research Program [3] underscored this
important point by demonstrating the similarities in leukocyte
gene expression patterns upon different severe injuries in
humans. It showed that trauma, burn injury, and low-dose
bacterial endotoxin infusion to humans induced a far more equal
than different global reprioritization of the leukocyte gene
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expression, involving increased expression of proinflammatory
and compensatory anti-inflammatory innate immune genes and
decreased expression of genes involved in adaptive immunity.
Thus, the targeting of key molecules belonging to the main

systems of recognition has the propensity to act broadly, on
numerous pathways, and can be an important tool in attenuating

severe and harmful inflammation.

The complement system and TLRs are both important
upstream components of the innate immune system, recognizing
ligands of exogenous and endogenous origin initiating down-
stream inflammatory effects. These sensors and effector pathways
act as partly individual branches but are connected through a
considerable cross-talk, representing a vast redundancy of the
host defense [4-7]. In 2008, we [8] postulated a hypothesis of
combined blocking of key upstream molecules in the comple-
ment system and the TLR family as a therapeutic regimen for
conditions with uncontrolled activation as a result of innate
immune recognition. We have searched for upstream bottleneck
molecules acting at the level of pattern recognition as targets for
efficient inhibition of the inflammatory response.

The present review highlights the significance of complement
and TLRs in various inflammatory models and importantly,
demonstrates the efficacy of single and combined inhibition of
these 2 upstream branches of innate immunity. The results
comprise data from different experimental inflammatory ex vivo
and in vivo models, including the use of different species. The
interpretations of data from the large animal studies can be
integrated into a complex context where dynamic relations
among physiology, inflammation, thrombogenicity, and specific
organs emerge.

COMPLEMENT INHIBITION

The complement system was discovered in the 1890s, where
Nuttal, Bordet, and others described it as a “Iytic system” killing
bacteria. The system was first named alexin, and Bordet
introduced the term “complement” when he, in 1895, discovered
that this was a heat-labile system present in normal human serum
and was “complementing” the antibodies in killing the bacteria.
Of interest, heat inactivation of serum (56°C for 30 min), which
Bordet used to distinguish complement (heat labile) from
antibodies (heat stable), is still a routine method used in our daily
laboratory work in 2016—“heat-inactivated serum.” Notably, this
procedure is by no means specific for complement activity, and
caution should be taken when interpreting data from such sera [9].
Nearly 100 yr later—in 1984—there was a meeting of The
Royal Society (London, United Kingdom) on complement, and
the summary in Immunology Today (now Trends in Immunology)
stated the following: “Many immunologists hold that comple-
ment is baffling or irrelevant or, most conveniently, both but a

(continued from previous page)

PNH = paroxysmal nocturnal hemoglobinurea, PRR = pattern recognition
receptor, rMIL-2 = recombinant murine MIL-2, s = soluble, SIRS = systemic
inflammatory response syndrome, TCC = terminal C5b-9 complement
complex, TRAM = Tol/IL-1R domain-containing adapter-inducing IFN-B-
related adaptor molecule, TRIF = Toll/IL-1R domain-containing adapter-
inducing IFN-B
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recent meeting emphasized that complement is interesting and
that it may be important, even only as an elegant model system”
[10]. It was, however, reasonable to ask how nature could have
created such a molecularly fascinating system just for fun and
entertainment for us. At that time, complement was simply
regarded as a protective system against infections. During the last
30 yr, it has been a “complement revolution,” documenting
complement to be involved in innumerable biologic systems
contributing to host homeostasis, and today, complement
inhibitors are in clinical use.

The complement system is built up of multiple proteins
organized in 3 separated pathways for broad recognition, with a
central C3 convertase for potent response amplification and an
effector phase acting instantly upon cleavage of C3 and C5
(Fig. 1). Activation is tightly balanced by numbers of membrane
and fluid-phase regulators targeting different levels in the
complement cascade as recently reviewed in Bajic et al. [11].

To achieve a global inhibition of complement, C3 is a suitable
protein to target, as all activation pathways converge at this step
after having recognized danger. Furthermore, C3 is discrimi-
nated from self vs. nonself surfaces and is therefore an ultimate
target for unspecific pattern recognition [12]. An important part
of the mechanism of this discrimination is the competition
between factors B and H for binding to C3b; i.e., C3b bound to a
foreign surface favors binding of factor B with propagation of the
activation, whereas on a self surface, factor H binds and inhibits
further activation. Short-term inhibition of C3 would be of no
concern, provided antibiotic prophylaxis, whereas long-term
systemic inhibition would increase the risk of infection, as the
main complement protection against infection is opsonization by
C3 of microbes. The targeting of Cb is an alternative approach.
Although this molecule belongs to the downstream part of
the complement cascade, it is a definite upstream molecule in
the inflammatory reaction [13]. The blocking of C5 prevents the
liberation of the potent anaphylatoxin Cba and subsequent
numerous proinflammatory effects [14]. Furthermore, C5
blockade prevents the formation of C5b that induces the
assembly of C5b-9, which can lyse certain pathogens and cells but
probably more important, in vivo can exert sublytic proinflam-
matory activity quite similar to that of Cba [15, 16].

The number of inflammatory diseases associated with
complement-mediated pathophysiology is steadily increasing, as
is the interest for complement-based therapy. Eculizumab was, in
2007, the first complement-targeting drug approved by the FDA
for the treatment of PNH and later, also extended to include
aHUS [17, 18]. Eculizumab is a mAb targeting C5, which
together with C3, is one of the bottleneck molecules in the
complement system and an obvious target for an efficient and
general complement blockade. To minimize undesired effector
functions related to the different IgG subclasses, eculizumab
consists of sequences from both IgG2 and IgG4, substantially
reducing FcyR binding (IgG2 portion) and complement
activation (IgG4 portion; Table 1) [17]. However, the plethora
of complement inhibitors in clinical trials targeting a number of
different components gives an idea of the complexity of
complement-driven inflammation, as previously reviewed
[19-21]. Indications for complement-based therapeutics may
cover acute systemic diseases to slow progressing or chronic
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Figure 1. The complement system. The complement system can be activated through 3 pathways (top), all converging to the cleavage of C3 to
generate C3a and C3b (middle). The classic pathway (CP) is typically activated by antibodies, but also, pentraxins (PTX), including Creactive
protein (CRP), serum amyloid P component (SAP), and PTX3 can activate Clq. The lectin pathway (LP) is activated through recognition of
carbohydrates by mannose-binding lectin (MBL), ficolins, and collectins. Furthermore, LP activation may be mediated through IgM antibodies, e.g.,
directed against damaged self-antigens. The alternative pathway (AP) is activated by foreign or damaged own cells, facilitated by the continuous
spontaneous hydrolysis of C3. AP also has an important function in the complement system, providing an amplification loop that enhances C3
activation independent of which pathway is initially activated. This effect is mainly a result of properdin (FP), the only positive regulator in the
complement system, which stabilizes the C3 convertase. Activation of C3 leads to formation of a C5 convertase, cleaving C5 into Cba and C5b. The
anaphylatoxins C3a and Cba bind to the receptors C3aR, ChaR1, and C5aR2, leading to downstream production of inflammatory mediators
(bottom). Cbb initiates the formation of the TCC, which forms the membrane attack complex (MAC) if inserted into a membrane (bottom). This
may lead to lysis of bacteria and cells or in sublytic doses to activation of cells. The cleavage and inactivation of C3b generate iC3b, bind to
complement receptors 3 (CR3; CD11b/CD18) and 4 (CR4; CD11c/CD18), facilitating phagocytosis, oxidative burst, and downstream inflammation
(right). The complement system is tightly regulated by soluble inhibitors (yellow), including C1 inhibitor (C1-INH), factor H (FH), factor I (FI), C4-
binding protein (C4BP), anaphylatoxin inhibitor (Al) inactivating the anafylatoxins (e.g., Cba to ChbadesArg), vitronectin (Vn), and clusterin (Cl),
keeping the continuous low-grade activation in the fluid phase in check. Host cell membranes are equipped with a number of inhibitors to protect
them against attack by complement (right), including membrane cofactor protein (MCP; CD46), CR1 (CD35), decay accelerating factor (DAF;
CD55), controlling C4 and C3 activation, and CD59 protecting against final assembly of the C5b-9 complex. Some attractive targets for therapeutic
inhibition are indicated with black arrowheads, e.g., specific CP activation by one of the Clqrs components, specific LP activation by MBL and
MASP intervention, and specific AP activation by neutralizing factor D (FD), which will attenuate the amplification of the system induced by all
initial activation mechanisms. The inhibition of C3 is the broadest possible strategy, whereas inhibition of C5 cleavage will clock both the
inflammatory potent Cba fragment and formation of the inflammatory and lytic C5b-9 complex. Alternatively, Cba can be inhibited, preserving the
Cbb-9 pathway, or the anaphylatoxin receptors can be blocked to prevent signaling. In particular, the blocking of CbaR1 will attenuate inflammation,
whereas the effect of blocking C3aR and CbaR2 receptors is to be studied in more detail, as they might have more anti-inflammatory effects.
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TABLE 1. Selected inhibitors of the complement system (A), the TLRs (B), and the combination thereof (C)

Target molecule, mode

Data from experimental

System Name, substance of action and clinical studies Reference
A Compstatin, cyclic peptide C3, prevents cleavage Evaluated in numerous preclinical [28]
(Cp40) exclusively in primates studies, including sepsis,
age-related macular
degeneration, periodontal
diseases, and transplantation
Eculizumab, IgG2/4 mAb Cb, prevents cleavage in Reduces intravascular hemolysis [99]
humans in PNH patients; inhibits [18]
complement-mediated TMA“
and improves renal function
Coversin (OmCI), a C5 and LTB4, prevents Ch Ablates complement activity in [31]
tick-derived lipocalin protein cleavage, capture LTB several species; attenuates [32]
immune complex-induced
acute lung injury in mice
B OPN-301 (mouse mAb) and TLR2, prevents dimerization Reduces infarction size and [63]
OPN-305 (humanized with TLR1 and/or -6, preserve cardiac function
IgG4 mADb) inhibiting downstream in pigs after I/R injury
cytokine production
Eritoran tetrasodium (E5564), MD2/TLR4, prevents LPS- Attenuates endotoxin-induced [61]
synthetic lipid A LPS analog mediated NF-«kB activation cytokine release in humans [62]
but did not reduce mortality
in severe sepsis
1C-14, IgG1 mAb (18E12) CD14 (coreceptor for Attenuates endotoxin-induced [67]
several TLRs) prevents cytokine release in humans
Anti-CD14, IgG2/4 mAb CD14 interaction with Attenuates endotoxin-induced [71]
(r18D11) respective TLRs, blocking cytokine release and reduced
downstream signaling Fc-mediated effects
Anti-CD14 (pig), IgG2/4 mAb Attenuates Escherichia coli-induced [71]
(rMIL2) cytokine release, avoiding
undesired Fc-mediated effects
C Anti-human C2 (IgGl, C2, factor D (functional Meconium-induced inflammation [96]
clone 175-26), anti-human D blocking of all pathways (sterile) in whole blood was
(IgG1, clone G3-519), and anti- before the level of C3) abolished by the dual blockade.
human CD14 (clone 18D11) and CD14
Coversin and anti-mouse CD14 Ch and CD14 Increased median survival [91]
antibody, clone biG 53 F(ab’)e (P=0.001) in a model of
polymicrobial sepsis in mice
Compstatin, anti-human CD14 C3, Cbha receptor, and CD14 Microarray revealed 80% [77]
F(ab')s (clone 18D11), ChaR reduction in fold change in
antagonist (PMX53) response when whole blood
was challenged with E. coli.
Coversin and anti-porcine Ch and CD14 Improved survival and [92]

CD14 IgG2/4 mAb (rMIL-2)

hemodynamic parameters
in a model of porcine

polymicrobial sepsis

“TMA, Thrombotic microangiopathy.

organ-specific disorders [22]. The question arises not only
which component to block but also, where, when, and how
to block.

Drugs in clinical phase targeting complement are mainly
found at 3 levels: 1) recognition phase, 2) C3/C3 convertase, and
3) C5/Cba/CbhaR1. Molecular targets at the recognition phase
include Cls and MASP-2, where blockade is investigated for the
treatment of cold agglutinin disease and complement-mediated
thrombotic microangiopathy, respectively [23]. Furthermore,
concentrates of Cl inhibitor are tested in complementrelated
indications [24, 25]. However, C1 inhibitor is not a specific
complement inhibitor but also targets serine proteases within the

196 Journal of Leukocyte Biology Volume 101, January 2017

coagulation and contact system, as well as a number of
nonprotease effects. Although it is an important regulator of the
autoactivation of Clqrs [26], it is less efficient as a complement
inhibitor under triggering conditions where high supraphysio-
logical doses are needed for efficient inhibition [27].

The level of C3 activation encompasses drugs preventing C3
cleavage by direct-targeting C3. The cyclic peptide compstatin
and later-developed acetylated derivatives, including Cp40,
inhibit complement activation by binding C3, sterically prevent-
ing the binding of the convertase and C3 cleavage [28] (Table 1).
It has been used in a wide range of different inflammatory
disease models, effectively attenuating complement activation in
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humans and nonhuman primates, but it is still not available for
clinical use. Another targeting approach at this level is to prevent
the formation of the alternative pathway C3 convertase, in
particular, by blocking the rate-limiting factor D. This level of
inhibition also comprises several molecules that promote C3
regulation, either by exerting cofactor activity or convertase
decay acceleration. Indications of interest for inhibition at the C3
level are, e.g., age-related macular degeneration and C3
glomerulopathy [29, 30]. The majority of drugs targeting
complement activation is found at the level of C5/Cba/CbaR1.
Cb is an attractive target, as generation of proinflammatory Cha
and TCC are prevented, but the C3 and upstream effects are
unaffected. In addition to eculizumab, there are several
nonantibody-based molecules in clinical trials for inhibition of C5
cleavage. An interesting example is the tick-derived lipocain
protein, OmCI, also known as coversin. This molecule binds to
and prevents cleavage of C5, additionally inheriting an internal
binding pocket capturing LTB4 [31, 32] (Table 1). The potent
anaphylatoxin Cba exerts pronounced proinflammatory activity
through the G-coupled receptor C5aR (CD88) and interacts
through the non-G-coupled receptor C5L2, exerting both pro-
and anti-inflammatory activity [33]. Molecules that specifically
target the C5a—CbaRl1 axis, directed against the anaphylatoxin or
the receptor, are being tested in intractable human diseases [34].
Notably, indications for complement inhibition at the level of C5,
beyond PNH and aHUS, have rapidly emerged during the last
years, and promising experimental and preclinical results are
found within a wide range of inflammatory diseases, such as
myasthenia gravis, transplant-associated thrombotic micro-
angiopathy, catastrophic anti-phospholipid syndrome, and
neuromyelitis optica [35-38].

Clinical trials, registered in FDA and the European Medicines
Agency, using complement-targeted therapeutics, study pri-
marily inflammatory diseases with a clear complement-
dependent profile, many caused by mutations in complement
genes related to either activation by gain of function or
regulation by loss of function, which both lead to an
homeostatic imbalance, producing pathologic, increased com-
plement activation [39]. It remains to be shown whether
complement inhibition can be successful in more broadly
triggered inflammation, such as in sepsis or I/R injuries, as
seen, e.g., in the course of transplantation or polytrauma. In
such a setting, the risk is that solely complement inhibition will
be ineffective, as redundancy by other inflammatory systems
may operate. Here, one might obtain an increased effect by
simultaneously also targeting other routes of the inflammation,
such as, e.g., the TLRs.

TLR INHIBITION

Probably, the best described PRRs are the TLRs, which are up-
regulated upon stimulation and found on nearly all cells,
especially on cells important in innate immunity signaling, such
as dendritic cells, leukocytes, macrophages, and endothelial cells.
Ten different human TLRs are known today (TLR1-10), whereas
there are 13 known in mice [40, 41]. TLRs are transmembrane
proteins, which recognize distinct PAMPs [40] and DAMPs [41]

www jleukbio.org
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(Fig. 2). TLR1, -2, 4, -5, -6, and -10 are located in the plasma
membrane, whereas TLR3, -7, -8, and -9 are found intracellularly
on endosomal membranes. All TLRs, except TLR3, use MyD88 as
an adapter molecule to induce signaling. TLR4 has a unique
role, as it initiates 2 different signaling pathways. From the
plasma membrane, TLR4 mediates MyD88-dependent signaling,
leading to rapid NF-«B activation and production of proinflam-
matory cytokines. Moreover, TLR4 can translocate to endosomes
and phagosomes, where it activates a TRAM-TRIF-dependent
pathway, leading to IRF3 phosphorylation and IFN-B production.
Both CD14 and Rablla control translocation of TLR4 to
endosomes and phagosomes [42, 43]. The TLRs are dependent
on interaction with a broad range of extracellular accessory
proteins and cofactors to elucidate full-scale intracellular
signaling and induction of proinflammatory gene transcription
and cytokine release. Numerous accessory or coreceptor
molecules are known and putative targets for therapy. MD2
(LY96) is a 160-aa soluble protein, which is essential for LPS-
mediated TLR4 signaling, as it binds the lipid A part of LPS and
leads to TLR4 dimerization [44].

It is well established that CD14 enhances LPS responsiveness
by binding LPS and facilitating LPS transfer to TLR4-MD2 [45].
In addition to TLR4, CD14 is important for TLR2 [46, 47]. CD14
is a 375-aa glycoprotein, comprising multiple leucine-rich
repeats, and is present both as a membrane and soluble form
(sCD14). CD14 can bind multiple PAMPs and DAMPs, including
LPS, peptidoglycan, polyinosinic:polycytidylic acid, and DNA.
Once bound, CD14 chaperones these pathogenic molecules to
the correct TLR, and today, CD14 has been shown to be a
coreceptor, not only for TLR2 and TLR4 but also, at least for
mice, for TLR3, -7, and -9 [46, 48]. CD14 is also implicated in LPS
signaling through non-TLRs, such as the purinergic P2X7
receptor for ATP [49]. Thus, CD14 is of utmost interest as a
bottleneck-target goal at the recognition phase of innate
immunity.

Several inhibitors, including antibodies or compounds against
TLRs and coreceptors, such as MD2 and CD14, have been
characterized. However, most of them have only been evaluated
in vitro and in rodent models, which makes it difficult to assess
their clinical relevance. The main findings from these studies are
that TLR inhibition is beneficial in viral infections, SIRS, and
sepsis, as well as in cerebral, myocardial, renal, and hepatic
I/R injury, but may be detrimental in intestinal I/R injury
[40, 50, 51].

TLR inhibition is only sparsely evaluated in large animal
models and clinical studies. TLR2 receptor blockade has been
evaluated in mice with the mAb OPN-301, which prevents TLR2
dimerization with TLR1 or TLR6 and downstream cytokine
production [52] (Table 1). TLR2 inhibition by the humanized
IgG4 OPN-305 reduced infarction in a pig model of myocardial
I/R injury [53] and was well tolerated by healthy human
volunteers in a phase I clinical study [54]. Currently, a phase II
study with OPN-305 is starting, with the aim to treat kidney
transplant patients at high risk to develop delayed renal graft
function (see clinicaltrials.gov: NCT01794663).

Specific inhibition of TLR4 has been tried using several small
molecular agents. The small compound TAK-242 (resatorvid) is a
direct TLR4 inhibitor, which blocks the intracellular binding of
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Figure 2. The TLRs. TLRs are transmembrane proteins recognizing conserved patterns of microbial structures, as well as damage self-molecules.
Ten TLRs have been described in humans, the first 9 with defined ligands. TLRI, -2, -4, -5, and -6 are plasma membrane receptors, whereas

TLRS, -7, -8, and -9 are intracellular, located to the endosomal membrane. TLR2 heterodimerizes with TLR1 or -6, whereas all others homodimerize.
TLR4 is translocated from the plasma membrane, where it serves as the LPS receptor, with MD2 and CD14 as coreceptors, to the endosomal
membrane. All TLRs, except TLR3, use MyD88 as one of their adaptor proteins. TLR2, -4, and -5 signal through IL-1R-associated kinases (IRAKs)
and TNFR-associated factor 6 (TRAF6) to activate NF-kB to produce proinflammatory cytokines, whereas TLR7, -8, and -9 activate IRF7, and
intracellular TLR4 activates IRF3 to produce IFN-a and -B. CD14 is a coreceptor for several of the TLRs. It has been known for years that TLR4 and
TLR2 use CD14, but recently, CD14 has been described as a coreceptor, at least for mice, also for TLR3, -7, and -9. Some attractive targets for
therapeutic inhibition are indicated with black arrowheads. Neutralization, usually using mAb, of both sCD14 and membrane-bound CD14 will
inhibit LPS binding to TLR4. CD14 is a cofactor for a number of TLRs—TLR2 being the best documented—thus, CD14 acts as a potent molecule
to target several TLR members. Specific TLR inhibitors, including the lipid A antagonist eritoran, blocks the TLR4/MD2 complex, and the
humanized anti-TLR2 antibody prevents the dimerization of TLR2 with TLR1 and TLR6. A number of other specific inhibitors of both membrane-
bound and intracellular TLRs and their signaling molecules are under development. HSP, heat shock protein; HMGBI, high mobility group box 1;
MAL, MyD88 adapter-like; Pam3CSK4, palmitoyl-3-cysteine-serine-lysine-4; TBK1, TANK-binding kinase 1; IKKe, IkB kinase €.

coadaptor proteins to TLR4 and thus, inhibits downstream
signaling [55]. Pretreatment with TAK-242 increased survival in
LPS-challenged guinea pigs [56], prevented systemic circulatory
deterioration, and reduced acute kidney injury in E. coli infused
sheep [57], also when administered 12 h after onset of
challenge [58]. However, TAK-242 failed in a phase III study to
reduce IL-6 concentration in septic patients with either shock or
respiratory failure, and it had no significant effect on
mortality [59].

198 Journal of Leukocyte Biology Volume 101, January 2017

Another TLR4 inhibitor, E5564 (eritoran), is a structural
analog of the lipid A portion of LPS, which binds to MD2 and
thus, prevents LPS binding and TLR4 activation [60] (Table 1).
Eritoran eliminated all clinical effects and decreased IL-6 and
TNF concentrations in healthy humans subjected to LPS
challenge [61]. Although promising in a phase II study, no
beneficial effects could be demonstrated in a large (n = 1961)
phase III study in severe septic patients [62]. Eritoran has been
shown to protect mice from influenza infection and was also
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shown to interact with CD14 [63]. Recently, eritoran was
compared with a neutralizing anti-CD14 antibody in a human
whole-blood model with respect to effect on Gram-negative
and -positive, bacteria-induced inflammation [64]. In line with
previous findings, eritoran and anti-CD14 mostly inhibited Gram-
negative-induced inflammation, whereas Gram-positive inflam-
mation was more complement dependent, possibly explaining
the lack of effects of eritoran in a broad sepsis population.
Additionally, anti-CD14 was more efficient than eritoran, in
particular, with respect to monocyte responses. When combined
with a complement inhibitor, anti-CD14 was also more efficient
in attenuating the inflammatory responses than eritoran,
underscoring CD14 as a more broad-acting recognition
molecule.

As mentioned above, CD14 is implicated in activation of
several TLRs. It has been shown that a blockade of CD14
attenuates central inflammatory cytokines in plasma and organs
and reduces the thrombogeneic state induced by E. coli sepsis in
pigs [65, 66]. In humans challenged with LPS, CD14 blockade
has been evaluated by IC-14, a chimeric mAb, demonstrating
reductions of inflammatory plasma cytokines [67, 68] (Table 1)
and a possible link of CD14 to the coagulation cascade [69].
However, phase II studies in septic patients (n = 40) revealed
inconclusive results, with 1 patient experiencing anaphylaxis
upon IC-14 infusion [70], whereas a study in patients with
acquired pneumonia was completed in 2005 without publication
of results (see clinicaltrials.gov: NCT00042588). No further
studies using IC-14 are currently registered. Our group has used
mouse CD14 mAb to produce recombinant chimeric variants on
a human IgG2/IgG4 backbone, which lack detrimental Fc-
mediated effects for both pig (rMIL-2) in vitro and in vivo and
human (r18D11) in vitro studies [71] (Table 1).

Taken together, TLR inhibition reduces a variety of proin-
flammatory cytokines and has even shown some promising
clinical effects. Nevertheless, in all studies, a significant in-
flammatory activation was still present, consistent with redun-
dancy by activation of other PRRs, including the complement
system.

COMBINED INHIBITION OF COMPLEMENT
AND CD14

To dissect to which degree complement was responsible for the
downstream inflammatory network, we developed a blood
model to investigate the mutual interaction among all in-
flammatory systems in human whole blood [72]. The use of
anticoagulant was critically important, as standard anticoagula-
tion interferes with most inflammatory systems, including
complement. The blood was anticoagulated with the highly
specific recombinant form of the thrombin inhibitor hirudin
(Iepirudin), which does not interfere with complement and the
other inflammatory systems but has the limitation that effects of
thrombin cannot be investigated. To our knowledge, this model
is the human whole blood ex vivo model closely mimicking the
physiologic condition.

With the use of complement inhibitors in this model, it was
shown that certain bacterial-induced inflammatory responses
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were virtually, totally dependent on complement, such as
granulocyte CD11b expression and oxidative burst. The
complement inhibitory effect on cytokines varied, and only a
few of them were substantially, demonstrating a vast in-
hibitory effect on IL-8, whereas IL-6 remained partly un-
affected in Gram-negative-induced inflammation [73]. Thus,
this model, to a great extent, answered the questions on
which readouts were mainly complement dependent and
which were not.

It was of utmost importance to find an additional inhibitor that
could enhance the anti-inflammatory effect of complement
inhibition, and we hypothesized that CD14 could be another
bottleneck target to block, as CD14 is a central coreceptor in the
TLR system. In 2007, the potency of combined inhibition of
complement and TLRs in the whole-blood model was described
for the first time, using Gram-negative-induced inflammation
[74]. Single inhibition with C5a and CD14 reduced up-regulation
of CD11b on monocytes and granulocytes only partly, whereas
the combined inhibition completely abrogated the expression in
both cell types.

Combined inhibition in Gram-positive- and -negative-
induced inflammation

E. colirinduced inflammation in human whole blood signifi-
cantly increases the formation of a vast range of inflammatory
mediators, including proinflammatory cytokines (TNF, IL-6,
and IL-1B), chemokines (IL-8, MCP-1, MIP-1a, eotaxin, and
IFN-vy-inducible protein 10), growth factors (vascular endo-
thelial growth factor, basic fibroblast growth factor, G-CSF,
and GM-CSF), and other ILs (IL-9, IL-15, and IL-17) [75].
Surprisingly, all mediators were abolished by a combined
inhibition of CD14 and complement using a anti-C2 mAb
and anti-factor D, which together, blocks all 3 initial
complement pathways at the level before C3. A similar effect
on the cytokine response was obtained by a combined
inhibition of C3 and CD14 in Neisseria meningitidis-induced
inflammation [76].

Although the CD14-driven pathway apparently plays a major
role in Gram-negative-induced inflammation, complement
plays a comprehensive part too. The complement dependence
(C3 and C5) of a vast range of inflammatory responses, as well
as the relative importance of CD14 in Gram-negative-induced
inflammation, was delineated in blood of a Ch-deficient
human, nature’s own gene knockout model [73]. It was found
that the release of cytokines and chemokines was, in general,
more dependent on CD14 but in a varying degree, also
complement dependent and some of them even inversely
dependent on complement; i.e., inhibition increased their
release. Expression of tissue factor, adhesion molecules, and
oxidative burst was highly dependent on C5, whereas
granulocyte—enzyme release was primarily dependent on C3. In
general, granulocyte responses were mainly complement
dependent, whereas monocyte responses were primarily de-
pendent on CD14. Importantly, all studied inflammatory
responses, including those inversely dependent on comple-
ment, were abolished by a combined inhibition of complement
and CD14.
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On a transcriptional level, microarray technology revealed a
significant change—up- or down-regulation—in >2200 tran-
scripts when human whole blood was challenged with E. coli [77].
As many as 70% of the genes were reversed by an average of 80%
reduction in fold change in response to the dual inhibition of
complement and CD14, in accordance with the pronounced
effect of the inflammatory response observed in blood. This study
underscores the presence of a fundamental crosstalk between
complement and CD14. Synergistic effects were primarily
observed, but also, different counteracting effects were present,
i.e., complement counteracting the inhibitory effect of anti-CD14
or vice versa, confirming the vast interplay between these 2
branches of innate immunity.

The effect of complement and CD14 inhibition on Gram-
positive bacteria is sparsely evaluated. One study using various

strains of Staphylococcus aureus in a human whole-blood model
demonstrated that simultaneous inhibition of CD14 and com-
plement efficiently reduced the inflammatory response [78].
However, and contrary to Gram-negative-induced inflammation,
the responses were primarily dependent on complement,
whereas CD14 played a lesser important role. However, the
combined inhibition was more efficient toward the bacterial
induced responses than either complement or CD14 inhibition
alone and attenuated the responses similar to what was seen for
the Gram-negative bacteria. A schematic presentation of the dual
inhibition is presented in Fig. 3.

Combined inhibition in experimental models of sepsis
The pathophysiology of sepsis is complex but can be regarded as
a prototype of a host-threatening systemic inflammatory response
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Figure 3. The “double blockade” of bottleneck recognition molecules at innate immune recognition. An upstream approach for inhibition of

inflammation achieved by targeting the key complement molecules C3 or C5 and the CD14 molecule of the TLR family are proposed. Activation
through all initial complement pathways converges at C3 and C5, and blocking of the bottleneck molecule C5 inhibits formation of the potent
anaphylatoxin Cba, which is a main contributor in the pathogenesis of a number of disease conditions. As CD14 serves as a coreceptor for several of
the TLRs, including the important TLR4 and TLR2, it might be regarded as a bottleneck molecule in the TLR family. Combined inhibition of these
molecules will reduce the downstream inflammatory response substantially.
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unleashed by infection. For years, researchers have sought
various inhibitory targets to attenuate and get control of the
overwhelming and counterproductive sepsis-induced inflamma-
tory response. Clinical studies using mAb toward the central
proinflammatory cytokines TNF and IL-1@ have failed to improve
survival [79, 80]. Drotrecogin a (activated recombinant protein
C) was initially thought to improve survival but was withdrawn
from the marked a few years ago as a result of lack of efficacy
[81]. In fact, all clinical immunomodulatory interventions toward
sepsis have, in general, been disappointing [82].

Pigs are suitable for medical research, as they have closer
anatomic, physiologic, and immunologic relations to humans
compared with rodents [83], and additionally, enable repeated
blood sampling for dynamic and comprehensive analysis. We
have explored the field of sepsis by using pigs and developed
models of Gram-negative sepsis induced by an incremental
infusion of either E. coli [84] or N. meningitidis [85]. Both of
these models induced hemodynamic alterations, capillary leak,
and inflammatory responses corresponding to human patho-
physiology and mimic, to a large extent, the initial phase of
human septic shock. In E. coli-induced sepsis in pigs, combined
inhibition of C5 and CD14 essentially abolished the formation
of all proinflammatory cytokines, extensively inhibited up-
regulation of CD11b on granulocytes, and partly prevented the
procoagulant state of sepsis [86]. In addition, tissue samples
from lung, heart, kidney, liver, and spleen were examined, all
displaying a significantly reduced organ inflammatory load
[87]. The substantial beneficial effect observed on the sepsis-
induced thrombogenicity is of clinical importance, as throm-
bus formation is a key feature in sepsis that may be
accompanied with impaired microcirculation and increased
risk of organ dysfunction. Expression of tissue factor, the key
initiator of coagulation in vivo, as well as formation of
thrombin-antithrombin complexes, were profoundly attenu-
ated by the combined regimen. These data are in accordance
with the well-known cross-talk between complement and
coagulation [88, 89], but notably, an additional effect of anti-
CD14 was observed on the hemostatic parameters. Thus, it is
likely that tissue factor expression was attenuated as a result of
anti-Ch treatment but also reduced by the effect of anti-CD14
or the combination thereof [90].

The efficacy of the combined regimen is convincing also
in polymicrobial sepsis, a clinically, more relevant model,
mimicking abdominal sepsis seen after bowel rupture
and anastomotic leak. In mice, combined inhibition of C5 and
CD14 profoundly attenuated all inflammatory markers and
importantly, significantly increased survival, whereas single
inhibition of C5 or CD14 did not [91]. Comparable results
were observed in pigs [92]. Dual inhibition of C5 and CD14
improved survival, was reflected by a significantly decreased
plasma sC5b-9 level in treated animals, and correlated
significantly with mortality.

The different sepsis studies demonstrate that inhibition of
bottleneck molecules belonging to 2 main systems of recognition
has the potential to act broadly on the numerous biomarkers and
reveal pronounced effects on downstream mediators and
importantly, on clinical outcome. Although the administration of
inhibitors before the induction of sepsis is a limitation with these
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experiments, all studies clearly demonstrate the efficacy of
upstream inhibition and belong to the field of science exploring
the proof of concepts. In general, the timing of intervention is a
great challenge within the field of sepsis; how can we properly
identify the patient and provide treatment early enough and not
at the time often described as the point of no return? With
consideration of the latter, it is therefore interesting and
promising that combined postchallenge inhibition of comple-
ment and CD14 significantly attenuate central proinflammatory
biomarkers in experimental E. coli-induced inflammation ex
vivo [93].

Combined inhibition of endogenous-induced
inflammation—the future
Today, no studies in big or small animals are published that
evaluate combined TLR and complement inhibition in sterile
inflammation. Therefore, an extensive area of research needs
attention. Meconium, aspirated by term newborns, may induce a
life-threatening respiratory condition called meconium aspira-
tion syndrome [94]. Experimental studies demonstrate that
piglets undergoing meconium aspiration syndrome have a
massive increase in complement activation and cytokine release
consistent with SIRS [95]. Sterile and endotoxin-free meconium
incubated in cord blood and adult blood induces a vast
inflammatory response that is almost abolished by a combined
inhibition of complement and CD14 [96]. Thus, we are currently
exploring this field by conducting an experimental, interventional
study in newborn piglets using the combined treatment regimen.
Both complement and the TLRs are implicated in I/R injury,
events that frequently happen in conjunction with infarction,
trauma, and transplantation [97, 98]. An episode of I/R will
lead to exposure of DAMPs from damaged tissue and activate
innate immunity, including complement and TLRs. Ongoing
studies from our group attempt to elucidate the efficacy of the
combined regimen in different ex vivo and in vivo studies
within this pathophysiological field. From a clinical point of
view, such models will have a great translational value; thus,
inhibitors can be administered before the detrimental reper-
fusion phase. In the case of a myocardial infarction, restoration
of blood to the ischemic area is priority number one, but there
is an interventional time window where inhibitors of innate
immunity can be provided before reperfusion. During trans-
plantation, therapy can be given from the time of organ
harvesting to implantation.

CONCLUSION

The targeting of bottleneck molecules at the level of innate
immune recognition of PAMPs and DAMPs may present a

particularly efficient way of attenuating the inflammatory re-
sponse, as all known innate immune systems closely interact.
Complement component C3 or preferentially, C5 inhibition,
combined with neutralization of the CD14 molecule, fulfills this
level of ambition. We suggest that this combined inhibition
approach can be a clinically relevant treatment regimen to block
an inappropriate and overwhelming inflammatory reaction and
restore the homeostasis of the host.
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