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Size and shape effects on thermodynamic properties
of nanoscale volumes of water†

Bjørn A. Strøm,∗a Jean-Marc Simon ,b Sondre K. Schnell,c Signe Kjelstrup, d Jianying
He,a and Dick Bedeaux,d

Small systems are known to deviate from the classical thermodynamic description, among other
things due to their large surface area to volume ratio compared to corresponding big systems.
As a consequence, extensive thermodynamic properties are no longer proportional to the vol-
ume, but are instead higher order functions of size and shape. We investigate such functions
for second moments of probability distributions of fluctuating properties in the grand-canonical
ensemble, focusing specifically on the volume and surface terms as proposed by Hadwiger [Had-
wiger, Springer, 1957]. We resolve the shape dependence of the surface term and show, using
Hill’s nanothermodynamics [Hill, J. Chem. Phys., 1962, 36, 3182], that the surface satisfies the
thermodynamics of a flat surface as described by Gibbs [Gibbs, Ox Bow Press, 1993, Vol. 1].
The Small System Method (SSM), first derived by Schnell et al. [Schnell et al., J. Phys. Chem.
B, 2011, 115, 10911], is extended and used to analyze simulation data on small systems of wa-
ter. We simulate water as an example to illustrate the method, using the TIP4P/2005 and other
models, and compute the isothermal compressibility and thermodynamic factor. We are able
to retrieve the experimental value of the bulk phase compressibility within 2 %, and show that
the compressibility of nanosized volumes increases by up to a factor of two as the number of
molecules in the volume decreases. The value for a tetrahedron, cube, sphere, polygon, etc. can
be predicted from the same scaling law, as long as second order effects (nook and corner effects)
are negligible. Lastly, we propose a general formula for finite reservoir correction to fluctuations in
subvolumes.

1 Introduction
Classical thermodynamics is the well-established framework for
classifying and interpreting chemical and physical properties, but
it applies only to systems that are sufficiently large. In thermody-
namics, a system is considered small when thermodynamic vari-
ables such as internal energy and enthalpy are no longer propor-
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tional to the volume V 1. For such systems, extensive variables are
higher order functions of size and shape, and the classical ther-
modynamic equations cannot be applied without modifications.
For small systems there is, for instance, an energy contribution
proportional to the surface area1 Ω∼V 2/3. Such size effects can
be significant. A systematic method that deals with these effects,
is the topic of this paper.

Terrell L. Hill generalized in 1962 the Gibbs equation of classi-
cal thermodynamics, to apply also for small systems. In doing so,
he initiated the development of what is now referred to as nan-
othermodynamics or the thermodynamics of small systems1–4.

Following Hill’s formalism, Schnell et al. derived in 2011 a
method to obtain macroscopic thermodynamic properties from
local fluctuations in density and energy, using molecular dynam-
ics simulations5. By embedding small non-periodic systems in a
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larger periodic reservoir, they showed that the properties of the
small systems at fixed chemical potential and temperature, indeed
differed from those of periodic bulk systems. By systematically
varying the size of the embedded systems, several of the prop-
erties derived from the local fluctuations were found, in good
approximation, to be linear in the inverse cube root of the vol-
ume. The linear relation could be extrapolated to obtain thermo-
dynamic limit values. In this manner, the partial enthalpy6 and
the thermodynamic factor5 were efficiently obtained from local
fluctuations. Similarly, Kirkwood-Buff integrals were obtained for
mixtures7,8. The non-periodic boundary condition of the small
system, produces an entropy of the surface, different from the
bulk entropy, dependent on system size and shape. An investiga-
tion on the details of the surface effect and higher order terms
related to the shape was initiated, and laid the groundwork for
further results9.

In this work we further develop the method and the systematic
description of thermodynamic properties of small systems, using
the specific treatment of volume and surface terms for extensive
quantities as proposed by Hadwiger10. We investigate the shape
dependence of the surface term and show, using Hill’s nanoth-
ermodynamics, that the surface satisfies the thermodynamics of a
flat surface as described by Gibbs4. We show that the first and sec-
ond moments of the particle - and energy - density distributions
are the fundamental quantities from which we can obtain volume
and surface terms separately. The second moments are related to
the fluctuations that naturally arise when the particles are free to
move in and out of the small system. The relations between these
and the thermodynamic properties of the small system can best
be obtained using Hill’s nanothermodynamics. We further show
how the partial enthalpy, thermodynamic factor, and the isother-
mal compressibility can be obtained by combination of the funda-
mental quantities. Improvements in the derivation, compared to
earlier work, shall be pointed out.

With two exceptions8,11, previous work has mainly focused
on short-range interaction models. As a natural progression of
these studies, we chose to calculate the fundamental quantities
for models simulated with long-range electrostatic interactions,
specifically the common water models SPC/E12, TIP3PEw13,
TIP4PEw14 and TIP4P/200515.

Using the TIP4P/2005 water model, we calculate the volume
and surface contributions to the isothermal compressibility. The
model is able to accurately reproduce the experimental values of
the compressibility in the thermodynamic limit. The equivalence
of Hill’s and Gibbs’ thermodynamics leads us to hypothesize that
the information we gain from local fluctuations in small volumes
of water is related to formation of droplets or bubbles within bulk
phases, however, this idea requires further research.

This paper is organized as follows: In Sec. 2, we review the
thermodynamics of small systems as developed by Hill. In Sec. 3,

we develop the description of thermodynamic variables in terms
of volume and surface contributions. Sec. 4 derives the equa-
tions relating fluctuations in the grand-canonical ensemble to the
volume and surface term description of thermodynamic variables.
Sec. 5 describes the details of the simulation setup, the methodol-
ogy and the parameters of the water models we have used. In Sec.
6 we present the simulation results for a selection of common wa-
ter models, demonstrating the shape dependence of particle and
energy fluctuations. We follow this by a subvolume analysis of
the isothermal compressibility for the TIP4P/2005 water model,
and discuss the influence of reservoir size effects on the analysis.
Conclusions are formulated in Sec. 7.

2 Grand-canonical small systems, as devel-
oped by Hill

Hill’s development of thermodynamics for small systems is based
on the idea that thermodynamics is valid for a large ensemble
of N independent replicas of the small system. We are free to
choose the environmental variables of the small system. Unlike
in macroscopic thermodynamics, the properties of small systems
depend on this choice2. Consider in particular an ensemble con-
structed by taking N independent, distinguishable, replicas of a
one-component small system characterized by the temperature,
the volume and the chemical potential (T , V , µ). The ensemble
of replicas follows the laws of macroscopic thermodynamic sys-
tems when N is large enough, and the Gibbs relation is given
by

dUGC
t = T dSGC

t − pGCN dV +µdNGC
t +XGCdN (1)

The so-called replica energy of an ensemble member is given by

XGC(T,V,µ)≡
(

∂UGC
t

∂N

)
St ,V,Nt

(2)

where the superscript GC specifies that the variables are func-
tions of the environmental variables of the grand-canonical en-
semble (T ,V ,µ). The subscript t denotes properties of the full en-
semble. The replica energy, XGC, can be interpreted as the work
−p̂V required to increase the volume of the ensemble by adding
one ensemble member, keeping SGC

t , V , and SGC
t constant, while

pGCN dV is the work required to increase the volume of the en-
semble by increasing the volume of each member. The variable p̂
is therefore called the integral pressure and is only equal to the
differential pressure p in the thermodynamic limit. Using Euler’s
theorem of homogeneous functions we integrate Eq. (1) holding
T ,V ,µ and XGC constant to obtain

UGC
t (T,V,µ,N ) = T SGC

t (T,V,µ,N )

+µNGC
t (T,V,µ,N )− p̂(T,V,µ)VN

(3)

where we have used the definition XGC ≡−p̂V . The ensemble av-
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erages of internal energy, particle number, and entropy are given
by

UGC
t (T,V,µ,N )≡N UGC(T,V,µ)

NGC
t (T,V,µ,N )≡N NGC(T,V,µ)

SGC
t (T,V,µ,N )≡N SGC(T,V,µ)

(4)

While UGC and NGC fluctuate because the small systems are open,
the entropy SGC does not, and is the same for each ensemble
member2. Substituting the relations in Eq. (4) into Eq. (3) we
can write the average internal energy of a single small system as

UGC(T,V,µ) = T SGC(T,V,µ)+µNGC(T,V,µ)− p̂(T,V,µ)V (5)

or alternatively

UGC = T SGC− pGCV +µNGC +(pGC− p̂)V (6)

where we have, for ease of notation omitted, the dependencies
of each variable. For a macroscopic system, where the integral
pressure and differential pressure are equal, the correction term
(pGC− p̂)V becomes zero, and we are left with the classical ther-
modynamic relation. For the small system enthalpy Eq. (5) gives

ĤGC ≡UGC + p̂V = T SGC +µNGC (7)

The small system enthalpy differ from the enthalpy in the ther-
modynamic limit, through the use of p̂ rather than p. We obtain
the Gibbs relation for the small system by inserting the relations
in Eq. (4) into Eq. (1), using XGC ≡−p̂V and Eq. (5)

dUGC = T dSGC− pGCdV +µdNGC (8)

By differentiating Eq. (5) and combining the result with Eq. (8)
the Gibbs-Duhem like equation becomes

d(p̂V ) = SGCdT + pGCdV +NGCdµ (9)

From this we derive the expressions which are particular for a
small system

SGC(T,V,µ) =
(

∂ p̂V
∂T

)
V,µ

pGC(T,V,µ) =
(

∂ p̂V
∂V

)
T,µ

NGC(T,V,µ) =
(

∂ p̂V
∂ µ

)
T,V

(10)

We see that as long as the systems are so small that the integral
pressure p̂ depends on the volume, the properties SGC, pGC, and
NGC are different from those of a large system. For large values

of V the integral pressure becomes independent of V , and one
finds pGC = p̂. In that case Eq. (9) gives the usual Gibbs-Duhem
equation. The information presented in this section gives us a ba-
sic understanding of the framework developed by Hill that allows
us to consistently handle the thermodynamics of small systems.
The last relations are needed to recover expressions for surface
thermodynamics.

3 The surface contribution satisfies Gibbs’
thermodynamics for flat surfaces

A property that is extensive in the sense of Hadwigers theorem10

can, as a first order approximation, be written as the sum of con-
tributions; one proportional to the volume and one to the surface
area

a(T,V,µ) =
A(T,V,µ)

V
= a∞(T,µ)+

Ω

V
as(T,µ) (11)

Here a(T,V,µ) is the density of A, a∞ and as are the volume and
surface contributions of a respectively, Ω is the surface area, and
V is the volume. By using Eq. (11), we can rewrite Eq. (8) in
terms of separate contributions from the volume and the surface

d(u∞V ) = T d(s∞V )+µd(n∞V )− p∞dV (12)

d(us
Ω) = T d(ss

Ω)+µd(ns
Ω)− ps Ω

V
dV (13)

Superscript GC has now been omitted. We see that Eq. (12)
is the classical thermodynamic description of a one-component
homogeneous system. We now continue to develop the surface
contribution. From our definitions L ≡ V 1/3 and Ω/V ≡ cs/L we
have(

∂Ω

∂V

)
T,µ

=

(
∂Ω

∂L

)
T,µ

(
∂L
∂V

)
T,µ

=
2csL
3L2 =

2
3

cs

L
=

2
3

Ω

V

⇒ Ω

V
dV =

3
2

dΩ

(14)

Substituting the last expression into Eq. (13) gives the Gibbs
equation for the surface

d(us
Ω) = T d(ss

Ω)+µd(ns
Ω)− 3

2
psdΩ (15)

By using the relation between the integral pressure p̂ and the dif-
ferential pressure p in Eq. (10), and separating the contributions
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according to Eq. (11), we obtain

p(T,V,µ) =
(

∂ p̂(T,V,µ)V
∂V

)
T,µ

=

(
∂ p̂∞(T,µ)V

∂V

)
T,µ

+

(
∂ p̂s(T,µ)Ω

∂V

)
T,µ

= p̂∞(T,µ)+ p̂s(T,µ)
(

∂Ω

∂V

)
T,µ

= p̂∞(T,µ)+
2
3

cs

L
p̂s(T,µ)

(16)

By multiplying with the volume, we can write pV as

p(T,V,µ)V = p̂∞(T,µ)V +
2
3

Ωp̂s(T,µ)

= p∞(T,µ)V + ps(T,µ)Ω

(17)

where
p∞ = p̂∞ and ps =

2
3

p̂s (18)

The first equality is an identity. The surface pressures ps and p̂s

are proportional to one another. They can be replaced by the
surface tension according to

γ(T,µ)≡−p̂s(T,µ) =−3
2

ps(T,µ) (19)

The Gibbs-Duhem type equation for the small system surface is

d(p̂s
Ω) = SsdT +Nsdµ +

3
2

psdΩ (20)

By substituting the pressures according to Eq. (19) and divid-
ing by the surface area, we arrive at the standard Gibbs-Duhem
equation for the surface

dγ(T,µ) =−ss(T,µ)dT −ns(T,µ)dµ (21)

We see that when we follow Hill’s small system analysis and con-
sider the volume and surface contributions as separate contribu-
tions, we obtain the classical thermodynamic equation for a ho-
mogeneous system for the volume contribution, and the Gibbs
surface relation for the surface contribution. This shows us that
Hill’s description agrees with classical thermodynamics, and that
the small system surface satisfies Gibbs thermodynamics when
the surface is flat. We can therefore study the thermodynamic
properties of the surface using Hill’s thermodynamics for small
systems.

4 Volume and surface contributions of ther-
modynamic functions from fluctuations

Having established the thermodynamic framework for the volume
and surface contributions to various thermodynamic properties,

we now present a route to efficiently obtain such contributions
from molecular dynamics simulations. The link between the prob-
ability distributions of statistical mechanics and Hill’s thermody-
namics of small systems in the grand-canonical ensemble is given
by2

p̂(T,V,µ)V = kBT lnΞ(T,V,µ) (22)

where Ξ is the grand-canonical partition function. From deriva-
tives of the partition function we can obtain probability distribu-
tion moments, of which the second moments quantify the fluctu-
ations of particle number and energy. According to Eq. (22) these
fluctuations are related to derivatives of p̂(T,V,µ)V . Taking the
second derivative of Eq. (22) with respect to the chemical poten-
tial and substituting the left hand side according to Eq. (10), we
have

kBT
(

∂N
∂ µ

)
T,V

= (kBT )2
(

∂ 2 lnΞ(T,V,µ)
∂ µ2

)
T,V

= 〈N2〉−〈N〉2
(23)

In the thermodynamic limit the thermodynamic factor is defined
by

Γ≡ N
kBT

(
∂ µ

∂N

)
T,V

(24)

Using Eq. (23) we therefore define

ν ≡ kBT
V

(
∂N
∂ µ

)
T,V

=
〈N2〉−〈N〉2

V
= ν

∞ +
Ω

V
ν

s (25)

Note that ν/n 6= 1/Γ, where n ≡ 〈N〉/V is the particle density. By
expanding this according to Eq. (11), we can relate the vol-
ume and surface terms of ν to the particle fluctuation in the
grand-canonical ensemble in the last equality. We use that N,
U , (∂N/∂ µ)T,V and (∂N/∂ µ)T,V are all extensive in the sense of
Hadwigers theorem10. The derivative of the internal energy den-
sity, u≡〈U〉/V , with respect to the chemical potential, µ , in terms
of the fluctuations of energy and particles is

kBT
(

∂u
∂ µ

)
T,V

= kBT
(

∂u
∂ µ

)∞

T,V
+ kBT

Ω

V

(
∂u
∂ µ

)s

T,V

=
〈UN〉−〈U〉〈N〉

V

(26)

These equations will be applied for analyses of small volumes of
water below.

The isothermal compressibility

The quantity ν enters the expression for the isothermal compress-
ibility, κT , of the liquid. This is a quantity of practical interest. The
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definition gives

κT =
V
N2

(
∂N
∂ µ

)
T,V

=− V
N2

(
∂ 2 p̂V
∂ µ2

)
T,V

=
1

n2kBT
ν

=
1

n2kBT
〈N2〉−〈N〉2

V

(27)

By introducing Eq. (25) we obtain

κT =
1

kBT

[
ν

∞ +
Ω

V
ν

s
]
/

[
n∞ +

Ω

V
ns
]2

(28)

The isothermal compressibility is not an extensive quantity in the
sense of Hadwiger’s theorem10 and can therefore in general not
be written as the sum of a volume and a surface contribution. For
the special case that ns = 0, relevant for the small systems con-
sidered in this and earlier papers, however, the above equation
reduces to

κT =
1

(n∞)2 kBT

[
ν

∞ +
Ω

V
ν

s
]
= κ

∞
T +

Ω

V
κ

s
T (29)

So in the special case that ns = 0, the isothermal compressibility
can be written as the sum of a volume and a surface contribution:

κ
∞
T =

1
n2kBT

ν
∞ and κ

s
T =

1
n2kBT

ν
s (30)

where n = n∞.

Kirkwood-Buff integrals are often used to express thermody-
namic properties16. The isothermal compressibility in terms of a
Kirkwood-Buff integral is

κT =
1

nkBT

(
1+nG(R)

)
=

1
nkBT

(
1+nG∞ +n

Ω

V
Gs
)

(31)

For the special case that ns = 0 it follows that

κ
∞
T =

1
nkBT

(
1+nG∞

)
and κ

s
T =

1
kBT

Gs (32)

In these equations, the integral, G(R), is defined for a sphere of
radius R, see e.g.7

G(R) = 4π

∫ 2R

0
h(r)r2

(
1− 3r

4R
+

r3

16R3

)
dr (33)

Here h(r)≡ g(r)−1, where g(r) is the pair correlation function of
an infinitely large system. The quantity h(r) does not converge to
0 for r→ ∞ in a closed system16. A positive excess density at a
given distance from the particle center, affects the density in the
rest of the system. This can be taken into account by correcting
the pair correlation function8.

The partial enthalpy and partial internal energy

Further remarks on fluctuating properties in the grand-canonical
ensemble can be made for the sake of completeness. From the
definition of the enthalpy of a small system, Ĥ ≡U + p̂V , we can
obtain the derivative of the enthalpy density, ĥ, with respect to
the chemical potential, µ, for small systems by the combination(

∂ ĥ
∂ µ

)
T,V

=

(
∂u
∂ µ

)
T,V

+

(
∂ p̂
∂ µ

)
T,V

=

(
∂u
∂ µ

)
T,V

+n (34)

It follows that (
∂ ĥ
∂ µ

)∞

T,V,µ

=

(
∂u
∂ µ

)∞

T,V
+n∞

(
∂ ĥ
∂ µ

)s

T,V,µ

=

(
∂u
∂ µ

)s

T,V
+ns

(35)

The combination of Eq. (25) and Eq. (26) as well as n = 〈N〉/V
is sufficient to obtain ν/n, partial internal energy, and partial en-
thalpy according to Eqs. (36),(37) and (38) respectively.

ν

n
=

[
ν

∞ +
Ω

V
ν

s
]/[

n∞ +
Ω

V
ns
]

=
〈N2〉−〈N〉2

〈N〉

(36)

(
∂ 〈U〉
∂ 〈N〉

)
T,V,µ

= kBT

[(
∂u
∂ µ

)∞

T,V
+

Ω

V

(
∂u
∂ µ

)s

T,V

]
/[

ν
∞ +

Ω

V
ν

s
]
=
〈UN〉−〈U〉〈N〉
〈N2〉−〈N〉2

(37)

(
∂ 〈Ĥ〉
∂ 〈N〉

)
T,V,µ

= kBT

[(
∂u
∂ µ

)∞

T,V
+n∞ +

Ω

V

((
∂u
∂ µ

)s

T,V
+ns

)]
/[

ν
∞ +

Ω

V
ν

s
]
=
〈UN〉−〈U〉〈N〉+ 〈N〉kBT

〈N2〉−〈N〉2
(38)

These properties are not extensive in the sense of Hadwigers the-
orem10.

On the importance of extrapolating extensive properties

It was noted in the previous section that the proper quantities
to expand in volume and surface contributions are extensive. The
reason for this is that Hadwiger’s theorem10 applies to such prop-
erties only. The quantities in Eqs. (25) and (26) as well as n and
u are proper quantities in this respect.

We have used Eq. (11) and given them as the sum of a vol-
ume and a surface contribution. The surface terms depend on the
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Fig. 1 Constructing grand-canonical ensembles of small systems. Left: illustration of the sampling of small systems in a closed reservoir,
showing three configurations from the simulation trajectory. Right: To use the fluctuation equation with the collection of samples for each subvolume
size V = L3, gives ν as a function of size.

Table 1 Values for the shape dependent coefficient cs ≡Ω/V 2/3. The
sidelength of each prism is given by a, and the radius of the sphere is
given by R.

Shape cs

cs =
Ω

V 2/3 =
√

3a2

(a3/6
√

2)2/3 ≈ 7.2

cs =
Ω

V 2/3 = 6a2

(a3)2/3 = 6

cs =
Ω

V 2/3 = 3
√

25+10
√

5a2

[(15+7
√

5)a3/4]2/3 ≈ 5.3

cs =
Ω

V 2/3 = 4πR2

(4πR3/3)2/3 ≈ 4.8

temperature and the chemical potential, but are independent of
the size. In Eqs. (36), (37) and (38) we consider combinations
of these quantities using non-linear operations such as division.
These combinations are not extensive quantities, however, in the
sense of Hadwiger’s theorem. As a consequence, these quanti-
ties can not be written as the sum of volume and surface con-
tributions. The equations show that they are more complicated
combinations of the volume and surface contributions.

Small system properties can be extrapolated to the thermody-
namic limit using the scaling law, only when the properties are
extensive in the sense of Hadwiger’s theorem. Only then, can
we substitute resulting thermodynamic limit values in Eqs. (36),
(37) and (38) to obtain the thermodynamic limit values of the
combinations.

For subvolume diameters below the molecular diameter, N is

either 0 or 1. The limits of ν , kBT (∂u/∂ µ)T,V and kBT (∂ ĥ/∂ µ)T,V

then follow

lim
V→0

ν = lim
V→0

〈N2〉−〈N〉2

V

=
〈N〉−〈N〉2

V
≈ 〈N〉

V
= n

lim
V→0

kBT
(

∂u
∂ µ

)
T,V

= lim
V→0

〈UN〉−〈U〉〈N〉
V

=
〈U〉−〈U〉〈N〉

V
≈ 〈U〉

V
= u

lim
V→0

kBT

(
∂ ĥ
∂ µ

)
T,V

= u+nkBT

(39)

where we used that U is also zero when N = 0. These expressions
are the same as for an ideal gas.

For the small systems considered here and earlier5–7,9, we find
that ns = 0. As we can see in Eqs. (28) and (36), this implies that
the terms containing Ω/V in the denominators disappear. For
this special case it is then possible to write the combinations as
sums of volume and surface contributions. One may even write
ν/n = 1/Γ in this case. While this is convenient, one should still
remember that the Small System Method only applies to quanti-
ties which are extensive in the sense of Hadwiger’s theorem. Note
that ns = 0 does not imply that νs is equal to zero.

5 Simulation details

Methodology

The molecular dynamics simulations reported here were done us-
ing the open source code LAMMPS (version 14 May 2016)17.
Input files were adapted from the notes made available at
http://www.orsi.sems.qmul.ac.uk/downloads.html18. The reser-
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Table 2 Simulation parameters for the water models. The units are mass ·g−1 ·mol, length ·Å
−1

, charge · e−1, energy ·kJ−1 ·mol and angle ·degree 12–15

SPC/E TIP3PEw TIP4PEw TIP4P/2005
Omass 15.9994 15.9994 15.9994 15.9994
Hmass 1.008 1.008 1.008 1.008
Ocharge −0.8476 −0.830 −1.0484 −1.1128
Hcharge 0.4238 0.415 0.5242 0.5564
OHbond length 1.0 0.9572 0.9572 0.9572
HOHangle 109.47 104.52 104.52 104.52
OOεLJ 0.6498 0.4268 0.6809 0.7749
OOσLJ 3.166 3.188 3.16435 3.1589
OMdistance n/a n/a 0.1250 0.1546
rc 8.5 8.5 8.5 8.5

voir referred to in the Small System Method was represented by
a cubic simulation box with periodic boundary conditions. The
small systems were represented by volumetric selections within
the reservoir. For instance, a spherical small system with radius R,
centered at pc = (xc,yc,zc), was defined to be the set of all points
ps = (xs,ys,zs) satisfying (xs−xc)

2+(ys−yc)
2+(zs−zc)

2 ≤R2. The
reservoir size and number of molecules were set to Lx = Ly = Lz =

62 Å and N = 8000 for the small system shape comparison in Fig-
ures 2 and 3, and for the comparison of water models in Figure
4. When calculating the isothermal compressibility we increased
the system size to Lx = Ly = Lz = 124 Å with N = 64000 water
molecules in order to minimize the finite reservior size effect. The
simulations comparing different reservoir sizes in Figure 6 were
performed at the same density and pressure with the reservoir
sizes ranging from 18 to 124 Å.

All simulations were performed with a time step of 1 fs, and
the initial configuration was created by replicating a single wa-
ter molecule across a cubic lattice with subsequent equilibration
for 200 ps in the isothermal-isobaric ensemble with thermostat
and barostat relaxation times of 0.1 ps and 1 ps respectively. The
production runs were performed in the canonical ensemble for
106 fs with a thermostat relaxation time of 0.1 ps. The Nosé-
Hoover thermostat and barostat were used as implemented in
LAMMPS19–22.

We obtained 〈N2〉 and 〈N〉2 for each small system volume V
from the simulation trajectory using the Small System Method9.
The system configuration and total energy per molecule were
stored from the trajectory every 100 fs over a total of 106 fs. For
each configuration and volume V we sampled the particle count
in 500 randomly positioned small systems, accumulating a total
of 5 · 106 samples for each V for statistical analysis. The samples
were used to calculate ν and kBT (∂u/∂ µ)T,V according to Eqs.
(25) and (26). The process is illustrated in Figure 1.

The finite volume Kirkwood-Buff integrals in Figure 5 were cal-
culated from the pair correlation function of the system up to half
of the reservoir size7. The pair correlation function was taken
from the same trajectory as the Small System Method, with the
same sampling interval.

Case studies

Four different small system-shapes were investigated, see Table
1. The shapes were chosen to include the largest area to vol-
ume ratio possible for a regular polygonal prism (tetrahedron),
and the smallest area to volume ratio limit (sphere). The table
shows the shape dependent coefficient cs ≡ Ω/(V 2/3), which for
equal volume gives the relative magnitude of the surface area for
the different shapes. We used the SPC/E12 model to examine
the general trends related to the shape, because it has a lower
computational cost compare to the 4-site models of water. When
comparing thermodynamic properties calculated according to the
procedures described above, we used the water models SPC/E,
TIP3PEw13, TIP4PEw14 and TIP4P/200515. The TIP4P/2005
model was selected for the calculation of the isothermal com-
pressibility because it describes the behavior of this property for
water very well. The pressure range for the compressibility simu-
lations included a negative pressure simply to get a point on both
sides of 1 bar.

Interaction models

We used the SPC/E12, TIP3PEw13, TIP4PEw14 and
TIP4P/200515 water models in our simulations. The spe-
cific parameters for each model are summarized in Table 2.
For all models, the intermolecular interactions between oxygen
atoms i and j were given by the Lennard-Jones (LJ) potential

uLJ(ri j) = 4ε

[(
σ

ri j

)12
−
(

σ

ri j

)6
]
, ri j < rc (40)

where ε is the potential well depth, σ is the separation at which
the potential is zero, and ri j is the distance of separation between
the particle centers. Long-range corrections for the LJ potential
were applied to the energy and the pressure, except for TIP3PEw,
consistent with the reference. Long-range Coulombic interactions
were computed according to the particle-particle particle-mesh
(PPPM) method23. This was also done for the SPC/E model,
which means it is a variation of the original model. Bond lengths
and angles were reset to their equilibrium values each timestep
using the SHAKE algorithm24.
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Table 3 Molecular dynamics simulation results for volume and surface contributions of selected thermodynamic properties. The results are averages
of 5 simulations with different initial velocities, and the uncertainties with 95% confidence are below 2% for ν∞ and kBT (∂u/∂ µ)∞

T,V , and below 0.5% for
νs and kBT (∂u/∂ µ)s

T,Ω. Numerical subscripts indicate the accuracy of the last decimal e.g. 32.44 means 32.4±0.4.

SPC/E TIP3PEw TIP4PEw TIP4P/2005
T/K 298 298 298 298
n∞ ·nm3 33.3 33.3 33.3 33.3
ns ·nm2 0.0 0.0 0.0 0.0
u∞ ·MJ−1 ·dm3 −2.16 −1.88 −2.14 −2.22
us · J−1 ·m2 0.0 0.0 0.0 0.0
ν∞ ·nm3 1.994 2.503 1.994 1.941
νs ·nm2 0.7165 0.7275 0.7105 0.7033

kBT
(

∂u
∂ µ

)∞

T,V
·MJ−1 ·dm3 −0.1463 −0.1713 −0.1393 −0.1381

kBT
(

∂u
∂ µ

)s

T,Ω
· J−1 ·m2 −0.04573 −0.03994 −0.04544 −0.04653
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Fig. 2 How the small system shape contributes to the slope of ν . Molecular dynamics simulations of water using the SPC/E model 12 at a density ρ =

1 gcm−3 and a temperature T = 298 K. Left: ν calculated from Eq. (25) for four different small system shapes ranging from the simplest regular
polygonal prism (tetrahedron), to a sphere. The volumes are given by the characteristic length L =V 1/3, indicating that each shape has the same
volume for a given abscissa, the surface area however is different. Right: the curves corresponding to those in the left panel with the shape dependent
contribution to the slope corrected.

6 Results

Zero surface excess density and surface internal energy den-
sity

Before we proceed to discuss the new results, we establish the
validity of the basic assumption behind the separation of bulk and
surface contributions to κT and ν/n; that is the requirement ns =

0. Within the numerical accuracy of the simulations, we confirm
in all cases that ns = 0 for all water models studied (cf. Table 3 ),
as expected. This means that there is no tendency for the particles
to accumulate at the subvolume surface.

Nevertheless, the statistics for an open subvolume are different
from that of a volume with periodic boundaries, and this is related
to a difference in entropy between the two. The correlations be-

tween particles close to the subvolume surface are different from
the correlations far from the surface. This will show in the fluctu-
ations of the number of particles in the subvolume. The quantity
ν is calculated from such fluctuations, and can be used to find the
compressibility of the liquid. While ν can have non-zero volume
and surface contributions, for a property like ns these correlations
do not contribute. The same reasoning applies to the fluctuations
in energy and the quantity us which is also zero (cf. Table 3). As
a result from the simulations, we find for all the water models

n = n∞ +
Ω

V
ns = n∞

u = u∞ +
Ω

V
us = u∞

(41)

This establishes the basis for the validity of the scaling laws for
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shape has the same volume for a given point, the surface area however is different. Right: the curves corresponding to those in the left panel with the
shape dependent contribution to the slope removed.

κT and ν/n in Eqs. (29) and (36). We note that for ns = 0 one
may write ν/n = 1/Γ.

A scaling law for shapes and sizes

Figure 2 (left panel) shows ν vs. 1/L = V−1/3 for the four differ-
ent small system shapes we investigated. The right panel of this
figure shows ν vs. Ω/V . We see that the slopes of the curves in
the left panel depend on the shape of the small system. There is
a systematically increasing slope from spherical shape to tetrahe-
dral shape. This is reflected in the different area to volume ratios
of the shapes, as indicated by the shape dependent coefficient cs

in Table 1.
When we plot against 1/L, the volumes of the different shapes

are the same when L is given. The surface areas differ, however.
As a consequence, the linear region of the curve, which we as-
sociate with the surface contribution, depends on the subvolume
shape. The thermodynamic limit value, however, must be inde-
pendent of the shape. This is documented by the left panel of the
figure: All curves extrapolate to the same point when 1/L→ 0.

It is possible to correct for the shape dependence, by plotting ν

as a function of Ω/V . This produces the plots in Figure 2 (right
panel). Here all curves for the shapes in the left panel collapse on
the same curve, as they obtain the same slope and limit values.
This confirms that the surface contribution is intrinsic and pro-
portional to the area to volume ratio, as predicted by Eq. (11).
It also enables us to predict surface contributions, independent of
shape, once the surface to volume ratio is known.

Figure 3 shows the shape dependence of the energy-density
correlations, cf. Eq. (26). Similar to Figure 2, the curves in the
left panel have different slopes depending on the small system

shape, and the limit values are the same. The curves in the right
panel are independent of the shape. The results are consistent
with 2, confirming that also the energy-density correlations can
be represented by Eq. (11).

The characteristic slope and ordinate of the properties for the
four water models are listed in Table 3. They will be discussed
below. The scaling law applies to a particular region which will
also be discussed below.

Scaling law - limits of validity

For the largest of the embedded small systems, when 1/L→ 0,
we observe deviations from linear behavior (cf. Figure 2). The
effect becomes significant at the same volume for each shape, as
opposed to being dependent on the area to volume ratio. This
confirms that the reservoir is the origin of this effect.

The reason is that the simulation box is not functioning prop-
erly as a grand-canonical reservoir for the small systems when
they approach the size of the reservoir9. This can be understood
from the following: For closed systems, a density change in a sub-
volume can not occur without a corresponding density change
in the reservoir. The significance of the correlation between the
two densities increases with the volume fraction of the subvol-
ume in the reservoir. At the extreme where the fraction is unity,
all the available particles are contained within the subvolume at
all times, and the fluctuation becomes zero. As a consequence, we
observe that the curves drop off as the small system approaches
the reservoir size.

A formula for the finite reservoir effect was suggested9, and a
method for implicitly accounting for it6 was proposed. We sup-
port the explanation of the reservoir effect above, and further de-
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velop the previous work by explicitly obtaining the finite reservoir
contributions to the volume and surface terms here. Assuming the
effect is a function of the volume fraction of the subvolume in the
reservoir only, we can write

ν = ν
∞ +

Ω

V
ν

s +ν
r V
V r (42)

where νr is the contribution from the reservoir effect, and V r is
the reservoir volume. As described above, when the suvolume
fraction V/V r is unity we get

ν
∞ +

Ωr

V r ν
s +ν

r = 0 (43)

where Ωr is the surface area of the reservoir. Solving for νr and
substituting νr in Eq. (42) gives

ν =

[
1− V

V r

]
ν

∞ +
Ω

V

[
1−
(

V
V r

)4/3 ]
ν

s (44)

When V << V r Eq. (44) reverts back to (25). Both the surface
term and the volume term are affected by the finite reservoir vol-
ume and this leads to an underestimation of the value of ν if the
reservoir is not large enough.

For the smallest of the embedded small systems, there are
higher order effects from edges, curvature and corners. These
contributions result in deviations from linear behavior at the
other end of the curve. In the limit where 1/L→ ∞, the parti-
cle fluctuations and energy-density correlations are given by Eq
(39). For more details the reader is referred to9.

Sign of scaling law slope

The slope of the curves in Figure 2 (right panel) is positive, and
this can be understood from the system properties. Earlier work
on small systems for particles that interact with the purely repul-
sive Weeks-Chandler-Anderson potential5 has also given a pos-
itive slope for ν vs. 1/L. This is different from Lennard-Jones
particles results, which give a negative slope at low particle den-
sity (ρ∗ = 0.15), and positive slope for higher particle density
(ρ∗ = 0.6). These observations suggest that repulsive interactions
dominate at higher densities.

The positive slope for ν can also be seen in terms of the increas-
ing number of available configurations per volume when the sub-
volume becomes smaller. The second moment of the particle dis-
tribution increases as additional configurations made possible by
the non-periodic boundary condition of the surface allow the par-
ticle number to fluctuate within a larger range. While the number
of additional configurations increases with the surface area, the
number of additional configurations per volume increases with
Ω/V . This contributes to an increase of the second moment of
the particle density distribution.

For low density Lennard-Jones particles, this contribution is
compensated, for reasons that are not entirely clear to us, so that
the slope of ν becomes negative. However, the observations in-
dicate that there is a balance between energetic and entropic ef-
fects.

Contributions to the compressibility from bulk and surface

Figure 4 and Table 3 shows our results for the four common
water models. The surface and volume contributions to ν and
kBT (∂u/∂ µ)T,V for each model are summarized in Table 3.
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All water models, except one, give approximately the same
scaling law for the plots versus Ω/V . There are no significant
variations in the surface contribution, νs, between the models.
Only the TIP3PEw model deviates from the other models’ results
for ν∞. At 298 K, for a number density of n = 33.3 nm−3, the in-
ternal energy density varies from the lowest value -2.22 MJ·dm−3

for TIP4P/2005, to the highest value -1.88 MJ·dm−3 for TIP3PEw.
In general, the TIP3PEw model stands out from the other mod-
els, but it is known in the literature that this can be the case
for certain properties26. We relate the deviations we observe for
TIP3PEw to the model’s noticeably different local structure and
molecular interaction parameters.

For instance, the Lennard-Jones parameter for the oxygen-
oxygen iteraction (OOεLJ ) in Table 2 is approx. 30% lower than
the other models, and the pair correlation function for TIP3PEw
does not agree well with the experimental results for water. Im-
portant is that the more common models agree within the accu-
racy of the calculation.

It is also possible to obtain the same results using the more
commonly known Kirkwood-Buff integrals. Figure 5 shows our
results for the isothermal compressibility of TIP4P/2005 using
both the Small System Method and the Kirkwood-Buff integrals.
The left panel shows the volume and surface terms for pressures
between -10 and 30 MPa, while the curves from which the terms
were obtained are given in the right panel. We see that κT from
both routes of calculation agree well for the pressures investi-
gated here.

The volume terms, κ∞
T , and the surface terms, κs

T , in Figure 5
are given in Table 4 with errors less than 5% and 2% respectively,
with 95% confidence.

The calculation of κT from the Kirkwood-Buff integral is far

more sensitive to the value of G, than the corresponding calcula-
tion of κT from the Small System Method is sensitive to the value
of ν . According to Eq. (30), a 5 % variation in ν∞ corresponds
to a 5 % variation in κ∞

T . From Eq. (32), using representative

values κT = 45.6 · 10−5 MPa−1, n = 0.0334 Å
−3

, and G∞ = −28.1
Å

3
, we find that the same 5 % variation in κ∞

T would require a
variation in G∞ of only 0.3 %. The thermodynamic limit value of

Table 4 Volume and surface terms for the isothermal compressibility of
TIP4P/2005 15 at T = 298 K and varying pressure. The values
correspond to the data in Figure 5 (left panel). The volume terms, κ∞

T ,
and the surface terms, κs

T , are given with estimated errors less than 5%
and 2% respectively, with 95% confidence.

P ·bar−1
κ∞

T ·105 ·MPa κs
T ·105 ·MPa ·Å

−1

-100 45.3 152.3
1 44.1 151.6
100 42.7 150.9
200 42.0 149.5
300 41.5 147.8

κT for water is expected to be small because of the strong inter-
molecular interactions resulting in a relatively high density and
thereby a low potential for compression. For TIP4P/2005 our
results give κ∞

T = (44.1± 2.2) · 10−5 MPa−1 at P = 1 bar, which
within the statistical uncertainty agrees well with the experi-
mental value27, 45.3 · 10−5 MPa−1, and the value of TIP4P/2005
from28, (46.3± 1.4) · 10−5 MPa−1. The fact that the comparison
of bulk values makes sense, gives credibility to the new surface
contributions. Comparing the two columns of Table 4, we find
that the surface contributions are large, and will more than dou-
ble the system’s compressibility. The compressibility increases as
the system becomes smaller.
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In order to examine further both contributions, we varied the
total pressure of the system,between -10 and 30 MPa. The bulk
contribution to the compressibility is reduced as the pressure in-
creases (Figure 5 left panel). The same behavior is observed for
the surface contribution, however, the decrease is lower, relatively
speaking. The data from the Small System Method and those
computed from Kirkwood-Buff integrals agree very well for the
bulk contribution, and less well for the surface contributions. The
result from the TIP4P/2005 model is systematically below the fit
from experimental data. We attribute the deviations to the uncer-
tainty in the computation as well as to the finite reservoir effect
discussed below.

Figure 6 shows κT from TIP4P/2005 simulations at equal con-
ditions for different reservoir sizes. This demonstrates how the
correlation between the small system density fluctuation and the
reservoir density fluctuation becomes less significant for larger
reservoirs. As a consequence κT tends to be underestimated if the
reservoir is not large enough.

For the reservoir size used to calculate κT in Table 4, the effect
is present, but the influence is so small that it is not justified to
increase the simulation time by using a larger reservoir. For the
smaller reservoirs the effect extends into the regime where oscil-
lations due to higher order terms become significant, and because
of this there is no clear linear region.

Figure 7 shows the results for the application of the finite
reservoir correction proposed in Eq. (44). The results are for
the isothermal compressibility of TIP4P/2005 at P = 1 bar and
T = 298 K. Two reservoir sizes are shown; L = 124 Å and L = 62
Å. The data points are fitted using Eq. (44) (solid lines), which
gives us the finite reservoir corrected values of ν∞ and νs. These
values are subsequently inserted into Eq. (28) to show the cor-
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Eq. (44) to the data points, and the dotted lines are the linear equations
obtained by inserting the resulting fitting parameters ν∞ and νs from Eq.
(44) into Eq. (28).

rected slope and limit values (dotted lines). We observe that the
finite reservoir effect on κT for the smallest reservoir is visible up
to Ω/V ≈ 0.5, while the effect for the largest reservoir is visible up
to Ω/V ≈ 0.25. Both reservoir sizes give the same values for ν∞

and νs when corrected using Eq. (44).
We have thus been able to reproduce accepted values for bulk

properties of water using the Small System Method. In addition,
we have found results that enable us to predict how the surface
contribution to the property of small volumes will vary with shape
and size. Scaling laws for ν , ∂u/∂ µ, and κT have been confirmed,
and the slope of the linear laws have been determined. Lastly, an
equation describing the finite reservoir effect has been proposed.

7 Conclusions
A systematic investigation of the size and shape effects of some
thermodynamic properties of small systems was conducted, pro-
viding a better understanding of the separate elements causing
the description of these systems to deviate from classical ther-
modynamic systems, and improving and further developing the
Small System Method. The densities and the correlations of the
particle and energy densities in the small systems were accurately
described as functions of size and shape with separate volume and
surface terms. It was found that these quantities, which are ex-
tensive quantities in the sense of Hadwiger’s theorem10 could be
written as the sum of a volume and a surface contribution.

This made it possible to obtain the value of these quantities in
the thermodynamic limit. This is the property crucial for the ap-
plication of the Small System Method. From these fluctuations,
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thermodynamic properties such as the thermodynamic factor, par-
tial internal energy, partial enthalpy and isothermal compressibil-
ity can be determined using standard expressions. The depen-
dence of these properties on the volume and surface terms are
then found. As these properties are not extensive quantities in
the sense of Hadwiger’s theorem, they can in general not be writ-
ten as a simple sum of a volume and a surface contribution. The
thermodynamic limit value of these quantities is found by taking
the surface area zero in the available expressions. Using Hill’s
nanothermodynamics1 we have shown that the volume term ob-
tained in the limit follows classical thermodynamics, while the
surface term satisfies the thermodynamics of a flat surface as de-
scribed by Gibbs4. The shape dependence of the surface con-
tributions of the extensive quantities in the sense of Hadwiger’s
theorem was verified to be proportional to the area to volume ra-
tio of the small system. This gives the true value of the surface
contribution, independent of shape.

For the small systems we consider in this paper, as well as those
we considered in earlier papers5–7,9, we find that ns = 0. As we
can see in Eqs. (36) and (28) this implies that the Ω/V term in
the denomenators of the thermodynamic factor and the isother-
mal compressibility disappears. For this special case it is then
possible to write the combinations in Eqs. (36) and (28) as sums
of volume and surface contributions. While this is a convenient
property, which we have extensively used, one should always re-
member that as a matter of principle the Small System Method
only works properly for extensive quantities in the sense of Had-
wiger’s theorem.

Calculating the isothermal compressibility of water using the
TIP4P/2005 model, we demonstrated, for the first time, that the
method gives reasonable results also for a system with long-range
interactions. The analysis of subvolumes in a closed reservoir is
inherently affected by the size of the reservoir because the fluc-
tuations in the subvolume are correlated with the fluctuations in
the reservoir, and the significance of the effect increases with the
fraction of reservoir volume occupied by the subvolume. A gen-
eral formula for finite reservoir correction was suggested.
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