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Abstract

In this thesis, we discuss a method of line planning of a public transportation system

on a city road network. The desired solution is the cheapest and fastest line network,

which is a complex combination to be attacked at the same time. We want to address

the fact that the optimisation problem is a hard problem since the feasible solutions

are not clearly defined.

The method we use to approximate the solution is based on a heuristic method,

the Local Search, and then we combine it with the Minimum Mean-weight Cycle on

a graph. The local search method comes first to minimise the operational cost and

then followed by the minimum mean-weight cycle algorithm to find some express

lines to decrease the average value of travel time. We optimise the solution by

performing both steps alternately.

At the end, we discuss the result from numerical experiments of the method

with two small-scale city road networks, one with 10 stations and the other with

30 stations. The results show that the optimisation method produced reasonable

solutions for the problem. The operational cost and average travel time decrease

significantly compared to the initial guess.
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Chapter 1
Introduction

Public transportation network systems have become a necessary requirement in an

urban area. By transporting people collectively, the travelling cost per passenger is

expected to be lower than using a private vehicle, and so is the environmental impact.

To encourage more people to use a shared transportation mode instead of their own

cars, a good planning and continuous improvement of the public transportation

system is needed to be done. Travel time, line routes, cost, service quality, reliability,

safety and comfort are among the important factors to be considered.

This thesis focuses on bus line planning on an existing road network in a city. We

are given the characteristics of the road network, bus station locations, and demand

in a certain period of time. Our goal is to find a bus line network with minimum

operational cost while ensuring that the travel time is reasonable.

The many-to-many pattern of the travelling demand gives a huge variation of

route in the network, thus it is difficult to choose the optimal combination among

all possible lines. In general, most of the methods have been developed are based

on heuristic approach with iterative process.

We will start with an overview of the researches that have been done. In chapter

2, we discuss the mathematical model formulation of the problem, and then describe

the implementation of the model in more detail in chapters 3 and 4. The implemen-

tation is then followed by numerical experiments in the programming part to find

an optimal solution. The result from the experiments will be discussed in chapter

5. Finally, we conclude the discussion in chapter 6 together with some suggestions

3



4 CHAPTER 1. INTRODUCTION

for the future work.

Previous researches

Various methods have been developed to improve quality service of public trans-

portation system. Since the late 1960s, researchers have extensively examined the

public transportation network design problem. Kepaptsoglou and Karlaftis in [1]

presented a list of over 60 studies published between 1967 and 2007 in a table. The

list presents the major features of line network optimisation problem such as objec-

tive functions, decision variables, network structure, demand characteristics and the

method to solve the problem.

In the stage of line planning, Schöbel underlined in [3] two main objectives

that somehow contradict each other. A line network which is convenient for the

passengers is costly. In the other hand, a line network which uses a small budget

usually does not offer the service that customers would like to have. Schöbel then

suggested to combine these two objectives and to identify Pareto solutions of such

planning models.

According to Schöbel [3], there are some basic constraints must be considered in

the line network optimisation problem. The constraints are budget, capacity of the

network or a single vehicle, minimum or maximum bus frequencies on the road or

station, and direct connections for every origin-destination pair.

Both Schöbel and Kepaptsoglou and Karlaftis reported that many of the opti-

misation methods with heuristic approaches are used to improve the result while

reducing the need for computational power. Most of these methods consist of pro-

cedures for candidate line network generation and combinations of feasible lines.

There are two distinct ways have been used to generate the line network.

The first approach assumes that a line pool — a set of all potential lines —

is given. This information could be provided by, for example, a transportation

company. Then we choose some lines in the line pool to create a line network by

considering the shortest path procedure or driven by the passenger demand.

The second approach would construct a line network candidate within an opti-

misation process. The construction is done heuristically by considering some rules
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or criteria regarding the line shapes.

In this thesis, we are interested to implement the second approach for defining

the line network candidates. The optimisation process starts with a feasible set of

lines, and then heuristically improved by testing different line network candidates.

The construction of the line networks will be done during the optimisation process

by modifying the temporary solution with respect to some rules.
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Chapter 2
Modelling of the problem

Consider a city as an area consisting of a number of given locations for the bus

stations. A road network has been made in such a way to connect all the stations

to facilitate the movement of the people throughout the city. On the road network,

some interconnected bus lines will be established in such a way that each station in

the city is visited by one or more bus lines. These interconnected bus lines form a

line network, which is the decision variable of our problem.

Our intention is to find the cheapest and at the same time the fastest line network,

which is impossible to do because the two objectives contradict each other. A less

expensive line network tends to be inefficient in the passenger’s point of view. While

providing a line network that the passenger would like to have, in relation with short

travel time, will increase the number of lines or frequencies and thus increase the

operational cost. To accommodate these two concerns, we will follow the suggestion

in [Schöbel] to combine the two objectives and then identify the Pareto solutions of

our optimisation problem.

Our approach will start with an initial line network, and then search for some

possible line networks in the neighbourhood to minimise the cost. This strategy

is known as local search method, a heuristic based optimisation method for solving

hard problems. The solution from the local search is a line network with minimum

cost. Into this line network, we will add some express lines in addition to the existing

lines such that the travel time could be reduced. Another local search will follow

using the previous solution together with the additional express lines as the new

7
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initial line network.

We will present the solutions obtained during the search as pairs of cost and

time on a Cartesian diagram. Finally, we choose an approximation of the solution

from the points lie on the Pareto front of this diagram.

2.1 The city road network

The road network in the city can be represented as a graph network with a bus

station location as a vertex and a road segment between two bus stations as an

edge. Let V denote the vertex set and E denote the edge set, then we have the

graph G = (V,E) representing the city road network. Since all the stations are

interconnected with every other station via road segments in both directions, G is

thus a complete directed graph where the edge set E consists of all pairs (u, v) for

u, v ∈ V .

The digraph G is weighted by two different values according to travel time and

cost. At each edge e ∈ E, we have te for the travel time and ce for the cost of

operating a single bus along edge e, respectively.

We also consider the transportation demand in the city. There will be different

numbers of potential passengers that start from any point to their various destina-

tions. Then for any u and v in V , positive constants du,v indicate the passenger

demand to travel from u to v per unit time.

Summary of the variables used to model the city road network:

V vertex set, where v ∈ V is a location for a bus station,

E edge set, where e ∈ E is a direct connection roads between two stations,

te travel time on edge e ∈ E,

ce operational cost on edge e ∈ E,

du,v demand for transportation from u to v in V per unit time.
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2.2 The line network

To fulfil the transportation demand in the city, the buses will run regularly following

some specific routes. Therefore, we require a line network consisting of several bus

lines such that all the potential passengers in the city are served. This set of lines

will be discussed in the next section. In this section we look first at the bus line’s

route, its properties and how to place it in the graph G.

Let L be a bus line that visits a series of stations v0, ..., vj. To make sure that a

bus is continuously used, we set vj = v0 such that it comes back to the first station

where it departs and then start again for the next ride.

In the graph G, a line L is a sequence of vertices v0 — ... — vj with v0 = vj

which forms a closed walk. This can also be read as a sequence of edges e1 — ...

— ej where ei = (vi−1, vi) for i = 1, ..., j. In a walk, it is possible that a vertex or

an edge occurs several times. Consequently, there are possibilities that a single line

will visit some stations for more than once. The figures below show two basic types

of possible line’s shapes: the circular line and the back and forth line.

Figure 2.1: A circular line, visits each
station exactly once.

Figure 2.2: A back and forth line,
traces the same route in both direc-
tions.
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Different shapes of the lines can occur during the search. We do not restrict the

shape of the closed walks for two reasons. First, it is difficult to determine which

shapes would make a line better route. And the second reason is that we expect

that these shapes lead to a better set up until we find an optimal network. The

figures below show two possible combinations of both basic types.

Figure 2.3: A line consists of two
cycles that meet in the green sta-
tion.

Figure 2.4: A line consists of two
cycles that overlap each other
on several consecutive stations.

Providing a public transportation system in a city requires a set of lines such that

every station in the city is visited by one or more lines. Let L = {L1, ..., LN}, N ∈

N, be the set of N lines operated in the line network. Then the edges in the

lines L1, ..., LN have to form a connected network graph G
′

= (V,E
′
) where E

′
=⋃

1,...,N Ln. As a consequence of Ln ∈ L being a closed walk, the connectivity of

G
′

assures that every vertex in the graph G
′

is reachable from every other vertex.

Hence the graph is strongly connected. Figure 2.5 presents a simple example of a

line network consisting of three bus lines.

To transport all the potential passengers in a certain period of time, we need

to define the frequency of buses for each line. Denote for each line Ln, a constant

fn the number of vehicles operating per time unit. We call fn the frequency of

line Ln. Collect this number for n = 1, ..., N in a vector f , then together with

the corresponding line network L = {L1, ..., LN} we have a pair (L, f) as a line
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Figure 2.5: The graph of line network L consists of three lines: 1) A circular line in
blue; 2) A back and forth line in red; 3) A line of two cycles in green.

configuration.

The pair (L, f) is the variable that determines the operational cost of the net-

work, which we have to minimise at the end. We will discuss the definition of the

operational cost later in section 2.5.

Here is a brief summary of the notation we have used in the line network:

L a line network,

N number of lines in line network L,

Ln a bus line in line network L,

fn frequency of buses serving in line Ln,

(L, f) a line network configuration.
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2.3 Passenger shortest path

A potential passenger who wants to travel from a location u to another location v in

the city can choose from some available lines connecting u and v. The journey starts

from u and goes to v passing through some other stations, so the passenger route can

be written as a sequence of stations v0—v1—...—vj where v0 = u and vj = v. We

assume that the best route is the fastest one among all possible routes. Therefore,

information about the time for travelling on this path is necessary. This can be

done by adding the travel time te as a weighting function on the graph G
′
= (V,E

′
)

where E
′

is the edge set containing all the edges on the line network L. We choose

the path from u to v with the smallest weight. To be emphasized, the symbol Pu,v

is only for the shortest path between u and v within L, not an arbitrary path from

u to v in general.

The passenger shortest path is chosen within the available bus service, that is

the line network G
′
, not the original network G. Thus, each edge in Pu,v must be a

part of some lines in G
′
. In other words, for all u, v ∈ V ,

Pu,v(G
′
) ⊆

⋃
n

Ln. (2.1)

Consider again the line network from figure 2.5, we add the travel times as shown

in figure 2.6. There are several possible paths, for instance from station 8 to 3, such

as P1 = 8—11—12—2—3 with total travel time 19, and P2 = 8—11—10—3 with

total time 15. The second option is the shortest path, marked with a dotted line.

2.4 Meet the demand

The transportation requirement is that all passengers are transported to where they

want to go. This means that the configuration of (L, f) has to satisfy the demand

du,v for any u, v ∈ V . We assume that all the passengers will always take the shortest

connection Pu,v in the line network L.



2.4. MEET THE DEMAND 13

Figure 2.6: Graph G
′

with travel time. The passenger shortest path from station 8
to station 3, P8,3, is shown as the dotted line 8 — 11 — 10 — 3.

To solve this problem, we start by formulating some equations to calculate the

following:

• The number of passengers on each edge over a unit time, and

• the capacity on each edge over the same time.

Then we can see whether the demand is satisfied in any edge by comparing the

number of buses and number of passengers on the relevant edge. How to compute

each of the values will be described in the following two subsections.

2.4.1 Demand on the edges

We are given a constant du,v, denoting the number of passengers who want to travel

from a location u to v over a unit time. The passengers are assumed to be evenly

distributed along the shortest path Pu,v. To find how many of them are currently on

a certain edge e, we multiply with the travel time of this edge, te. The passengers

travelling on a particular edge e per unit time is thus

du,v te, e ∈ Pu,v.
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Note that this number is only for passengers following a particular route Pu,v. For

finding all passengers travelling simultaneously on e, we add together all possible

combination (u, v) ∈ V 2 and we get

de(u, v) =
∑
u,v:

Pu,v3e

du,v te. (2.2)

This is the number of all passengers in the network who simultaneously travel

on edge e. We want to check whether these passengers can all be transported by the

buses. We will compute the number of available capacity on each edge in the next

step.

2.4.2 Capacity on the edges

To find out how many buses are needed altogether on an edge e, first we need to

know how many buses serving each line on this edge. The argumentation is similar

as we did before for number of passengers. Assuming that the buses are evenly

distributed along the trip, we multiply the frequency and travel time on edge e. The

number of buses serving the line Ln on this edge is then

fn te, (2.3)

where fn is the frequency of line Ln.

Consider now all lines that pass through edge e. Then the number of the buses

altogether is the sum of (2.3) over all lines that serve e, that is,

be(L, f) =
∑
n:

Ln3e

fn te. (2.4)

Assume that all the buses used in the network have a similar capacity M , then

the demand de(u, v) will all be transported along e if

de(u, v) ≤M · be(L, f).
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This gives us the following set of conditions to be satisfied: for all e ∈ E ′ ,

∑
u,v:
Pu,v3e

du,v te ≤ M
∑
n:
Ln3e

fn te. (2.5)

2.5 Operational cost of the bus network

We are given a constant ce for each edge e in the city network, which denotes the

operational cost for a bus with a capacity M on the edge. If an edge is served

by be(L, f) buses as in equation (2.4), the operational cost on this edge is then

be(L, f) ce. Summing the cost of all edges in the network gives us the total opera-

tional cost,

C(L, f) =
∑
e∈E′

∑
n:
Ln3e

ce fn te. (2.6)

From the economic point of view, it is very important that the bus network is

cost efficient. Then the line configuration (L, f) is not only satisfying the conditions

in (2.5), but also is the one with the lowest cost possible. This leads us to see the

problem as an optimisation problem with respect to the cost. The cost function in

(2.6) is the objective to be minimised, while the conditions in (2.5) are the constraints

to be satisfied.

2.6 Summary of the problem

Our line planning problem can be written as an optimisation problem with respect

to the line network L = {L1, ..., LN} and f ∈ RN
≥0,

min
L

∑
e∈E′

∑
n:
Ln3e

ce fn te

}
(2.7)
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where each Ln is a closed walk in G
′

= (V,E
′
) and fn for n = 1, ..., N give the

minimum cost for a fixed network L,

min
f

∑
e∈E′

∑
n:
Ln3e

ce fn te

such that
∑
u,v:
Pu,v3e

du,v te ≤ M
∑
n:
Ln3e

fn te,


(2.8)

where Pu,v for all u, v ∈ V solve optimisation problems

min
P

∑
e∈P

te

such that P ⊆
⋃
n

Ln for some n ∈ {1, 2, ..., N}, and

P is a path from u to v in G
′
= (V,E

′
), E

′
=
⋃
n

Ln.


(2.9)

Our main problem, the line planning problem, clearly consists of these three

nested optimisation problems. The desired solution is a line network configuration

(L∗, f ∗) with minimum operational cost. During the search of L∗ in (2.7), we have

to solve the second problem (2.8) that gives us a vector f ∗ containing the optimal

frequencies of the lines. Similarly, the computation of the second problem includes

a set of passenger shortest paths Pu,v for all u, v ∈ V where each Pu,v is the solution

of the third problem in (2.9).

Beside being as cheap as possible, the line network configuration (L∗, f ∗) should

also be as fast as possible We will discuss a method to minimise the travel time later

in chapter 4.



Chapter 3
Implementation

The line planning problem as formulated in section 2.6 consists of three optimisa-

tion problems. The second problem is nested inside the first problem, as the third

problem is also inside the second one. Thus we have to solve the third problem

first before we can continue the computation for the second problem, and finally the

main problem.

In order to find the cheapest network configuration (L∗, f ∗), we evaluate different

line networks L iteratively. At every iteration, we solve the nested problem stated

in (2.9) to find the shortest paths Pu,v within the current line network L, and then

use the solutions to solve the second problem in (2.8). The solution of the second

problem is the optimal frequency set f that minimises the cost of the current L.

The step by step computation is briefly shown in the flowchart in figure 3.1. We

will discuss the detail of each step in the sections of this chapter.

3.1 Initial line network

We start with the road network consisting the designed locations for the bus stations,

and assume that every station can be reached from every other station. We are given

the travel time te between each pair e = (u, v) of stations as input, as well as the

cost ce for a bus to travel on that road segment. Furthermore, we assume that the

demand for travelling from u to v is given for each u, v ∈ V .

17
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Start

1 Set up an initial
line network L,

and set L′ ← L.

2 For all u, v ∈ V , find the
shortest paths Pu,v within L′

— problem (2.9) —

3 Compute the optimal
frequency of lines, f ,
— problem (2.8) —

6 Find another
line network L′

4 Evaluate the operational cost
— part of problem (2.8) —

5 Is the cost
satisfactory?

7 Replace L by L′

Stop

yes

no

Figure 3.1: The computation steps for solving the line planning problem.
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Before we start the computation, which is an iterative process testing different

line networks, we set an estimated number of lines operating the transportation

system.

Limit the number of lines

The number of lines, N , naturally grows as a function with respect to the size of

the network, m. It has to be a positive and monotonic increasing with a relatively

slow rate function, say N(m) = N0 log(m) for positive integers m > 1.

Let N1 and N2 be positive constants where N1 < N2, then we can define the

number of lines, N , as a positive integer satisfying

N1 ≤ N ≤ N2. (3.1)

We use this double inequality to bound the number of lines below and above.

For the initial line network, we set the number in the middle between the lower and

upper bounds,

N =
(N1 +N2)

2
.

Constructing the initial lines

For the first guess of the line network, we think about how would potential passengers

like to travel. We arrange a network in such a way that people benefit from it. The

primary requirement is that the bus route is efficient, in the sense that the route

takes as short as possible time to get to the destination. For a potential passenger

who wants to travel from a station u to v, it would be best to take the fastest

possible route from u to v, which is the shortest path Pu,v(G) in the original graph

G = (V,E).

We list all the shortest paths for all pairs (u, v) where u 6= v, and sort the list

from the biggest to the smallest demand. We want to create N lines, so we take the

first N shortest paths as the line candidates and check whether their routes connect

all stations in the city. That is, the graph formed by the edges in the line network

has to be a connected graph. This is the graph G
′
= (V,E

′
) where E

′
= ∪nLn, and
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n = 1, ..., N as we have discussed in section 2.2.

If some stations are not included in the first N shortest paths, we include some

shortest paths with lower demand into the line network candidate. By adding more

shortest paths, the number of lines grow and there might be too many lines beyond

the upper bound at the end. So we select a shortest path with lower demand only if

it brings some excluded stations into G
′

or connect some components of the graph.

Once G
′

becomes a connected digraph with all the stations included, we create

the lines by grouping the shortest paths into N groups. Shortest paths with similar

demand will be grouped and then attached one after another forming a longer path.

Then we add a new edge to connect the last station with the first one to make a

closed walk.

Suppose the shortest paths to be included in the first group are P1, P2, ..., Pi

where P1 = v1,0—...—v1,k1 , P2 = v2,0—...—v2,k2 , and Pi = vi,0—...—vi,ki . The first

line is then L1 = v1,0—...—v1,k1—v2,0—...—v2,k2—vi,0—...—vi,ki—v1,0. Algorithm 1

describes the construction procedure of the initial line network.

3.2 Passenger shortest paths

Passengers who want to travel by public bus are assumed to take the shortest routes

as discussed in section 2.3. These routes are the best, fastest routes according to

the availability of bus lines. In the graph made by the line network L, these are the

shortest paths Pu,v from each vertex u to every other vertex v in the vertex set V .

Recall from section 2.2, the graph of the line network L is given by G
′
= (V,E

′
)

where E
′

= ∪nLn for n = 1, ..., N . Employ a weighting function t : E
′ → R to the

graph, then we can compute the shortest paths Pu,v(G
′
) ⊆ E

′
for all u, v ∈ V .

There are a number of well known algorithms for computing shortest paths,

such as More, Dijkstra, Bellman and Ford, and Floyd and Warshall, according to

Jungnickel, in chapter 3 in [4]. The first three algorithms compute the shortest path

from a certain vertex to every other vertex in the graph with complexity equivalent

to O(m2), while the last one, the algorithm of Floyd and Warshall with complexity

O(m3) returns the shortest paths for all pairs of vertex.
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Algorithm 1: initialLineNetwork

Input: demand d, number of lines N , shortest paths P , list of station V .
Output: initial line network L.

1 L ← {p1, ..., pN}
2 P ← P \ {p1, ..., pN}
3 V0 := list of station in L0

4 c := number of connected component of the graph formed by L
5 while c > 1 or V0 6= V do
6 p1 := the first element in P
7 P ← P \ {p1}
8 L̃ := L ∪ {p1}
9 Ṽ0 := V0 ∪ {stations in p1}

10 c̃ := number of connected component of the graph formed by L̃
11 if c̃ < c or Ṽ0 ) V0 then

12 L ← L̃
13 V0 ← Ṽ0
14 c← c̃

15 end

16 end

17 Divide L into subsets Ln ⊂ L for n = 1, ..., N

18 L̂ ← ∅
19 for all Ln, n = 1, ..., N do
20 L ← L \ Ln
21 L := connect all shortest paths in Ln
22 Add an edge connecting the last and the first vertex in L

23 L̂ ← L̂ ∪ {L}
24 end

25 L ← L̂
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In this thesis, we use the Dijkstra algorithm with a repetition such that all

vertices becomes the starting vertex. Repeating the algorithm m times increases

the complexity to O(m3), but it can be done in a less expensive computation as

follows: In the first iteration, the Dijkstra algorithm runs as usual to get shortest

paths from a particular vertex v0 ∈ V to every other vertex. Thus we have m − 1

shortest paths Pv0,vj with j = 1, ...,m − 1. A shortest path Pv0,vj can written as a

sequence of distinct vertices Pv0,vj = v0—v1—...—vj−1—vj or a sequence of distinct

edges Pv0,vj = e1—e2—...—ej−1—ej where ej = (vj−1, vj).

By the Bellman’s equation in section 3.5 in [4], a part of a shortest path is also a

shortest path. Thus, we keep the sub paths of Pv0,vj during the construction process.

Since the algorithm searches the shortest paths progressively by adding the edges

one by one, we have a possibility to keep the sub paths at every time a new edge

has been added. The sub paths of the new shortest path are progressively computed

from the last edge.

Suppose the newly discovered shortest path is Pv1,vγ , then we keep the sub paths

Pv2,vγ ,...,Pvγ−1,vγ such that we save some computational time at the later iterations.

This procedure is presented in algorithm 2 by taking a weight function t on the

graph G as an input. The outputs are the shortest paths P and the weight of the

shortest paths t(P ).

In our main computation for the line planning problem, the shortest paths algo-

rithm runs every after a new line network has been made. Particularly in the first

iteration, the line network is the initial guess described in the previous section.

Once we have the shortest paths for each pair of the stations, we assign demand

to the network as we have discussed in section 2.4.1. It is more efficient to directly

compute the demand on each edge during the shortest path computation. We add

the demand d as an additional input, and carry out an extra information in the

output, the demand on edge de. The computation will be done by inserting three

extra lines to algorithm 2. Between line 13 and 14, we compute the demand every

time we get a shortest path as defined in formula (2.2). The additional lines are

presented in algorithm 3.
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Algorithm 2: ManyToManyShortestPaths

Input: G, t
Output: P, t(P )

1 for all (u, v) ∈ V × V do
2 t(u, v)←∞, c(u, v)← 0, P (u, v)← ∅
3 end

4 for s ∈ V do
5 t(s, s)← 0, c(s, s)← 1, P (u, v)← s
6 Q← V
7 while Q 6= ∅ do
8 Find some u ∈ Q such that t(s, u) is minimal
9 for all η, ϕ vertices in P (s, u) do

10 if c(η, ϕ) = 0 then
11 if P (η, ϕ) ⊆ P (s, u) then
12 P (η, ϕ) := shortest path from η to ϕ
13 t(η, ϕ) := distance from η to ϕ
14 c(η, ϕ)← 1

15 end

16 end

17 end

18 end
19 Q← Q \ {u}
20 for all v ∈ Q in the form (u, v) do
21 if c(s, v) = 0 then
22 if t(s, u) + w(u, v) < t(s, v) then
23 t(s, v)← t(s, u) + w(u, v)
24 P (s, v) := P (s, u) ∪ {v}
25 end

26 end

27 end

28 end

Algorithm 3: Between line 13 and 14 in algorithm 2

for all edges e ∈ P (η, ϕ) do
de := de + d(η, ϕ)te

end
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The demand at each edge in the network are now assigned. To transport all the

passengers, we will compute the number of buses on the relevant edge such that the

total capacity is equal or larger than the demand. We have discussed the idea in

section 2.4.2, and in the next section we will discuss the computation procedure.

3.3 Frequency of the lines

A bus network operates a different number of vehicles for each line depending on the

demand. Assume that the demand is constant per time unit, then we can compute

a set of constant f = {f1, ..., fN}, where each fn is the number of vehicle operating

line Ln ∈ L per time unit.

These constants determine the operational cost of the network as formulated in

equation (2.6). We want that this cost is the lowest one for the current line network.

This brings us to solve the optimisation problem in (2.8), and so (2.9). We have

discussed problem (2.9) in the previous section, so this section focuses on problem

(2.8).

The problem in (2.8) is a linear optimisation problem as both objective function

and all the constraints are linear, so it can be treated with the linear programming.

The only issue in this part is the size of the problem. The number of inequality

constraints to be satisfied is the same as the edges in the network, which can grow

as fast as O(m2) for m stations. To deal with this situation, we want to reduce

the number of inequality constraints. Some of the inequalities will be removed if

they are automatically satisfied by some other inequalities. This strategy will be

described in the rest of this section.

We start by rewriting the problem in (2.8) in a more compact formula as

min
fn≥0

∑
n

fn hn such that
∑
n:

Ln3e

fn ≥ µe (3.2)
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for all edges e ∈ E ′ = ∪nLn, where we use the notations

hn =
∑
e∈E′

ce te, for the cost function of each Ln ∈ L, and

µe =
1

M

∑
u,v:

Pu,v3e

du,v, the right hand side constants for all e ∈ E ′ , u, v ∈ V.

Now we want to remove some of the inequality constraints of (3.2). The idea is

as follows:

Step 1.

Let E1 be the set of all edges that are served by only one line. Then for all

n = 1, ..., N , define E1
n as the set of edges in E1 that are served by line Ln.

The multiple conditions

fn ≥ µe, for all e ∈ E1
n

can be replaced by the single inequality

fn ≥ µen

where en ∈ E1
n is such that µen = maxe{µe; e ∈ E1

n} for n = 1, ..., N .

The solution of problem (3.2) if the constraints are restricted to the set E1 is then

f 1
n, where

f 1
n =

µen if en ∈ Ln,

0 otherwise.

(3.3)

Hence the number of buses for each line Ln is fn = f 1
n + f

′
n, where f

′
n ≥ 0 will

be computed on the next step.

Step 2.

Now we check the rest of the edges, that are served by more than one bus lines.

For s > 1, let Es ⊂ E be the set of edges where exactly s lines being operated.

For any set I ⊂ {1, 2, ..., N} of s > 1 distinct lines, denote by EI the set of edges
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that are served by lines in I. In other words,

EI = {e ∈ E ′ ; e is served by the lines in LI ⊂ L} (3.4)

where LI is a part of the line network with exactly lines in I.

For all e ∈ EI 6= ∅ we have the inequality constraints

∑
i∈I

fni ≥ µe,

which with the substitution fn = f 1
n + f

′
n becomes

∑
i∈I

f 1
ni

+ f
′

ni
≥ µe

or ∑
i∈I

f
′

ni
≥ µe −

s∑
i=1

f 1
ni
. (3.5)

Let eI be an edge in EI such that µeI = maxe{µe, ∀e ∈ EI}, then we can replace

the multiple constraints in (3.5) by the single inequality

∑
i∈I

f
′

ni
≥ µeI −

∑
i∈I

f 1
ni
, e ∈ EI .

This single constraint can be removed as well whenever the constant at the right

hand side is non-positive. This can be expected to result in fewer constraints.

Simplified problem.

Rewriting problem (3.2) after fn has been replaced by f 1
n + f

′
n and some of the

constraints have been removed, we get

min
f ′≥0

∑
n

(f 1
n + f

′

n) hn such that

∑
n:
Ln3e

f
′

n ≥ µeI −
∑
n:
Ln3e

f 1
ni
, ∀I ⊂ {1, ..., N}

 (3.6)

where f 1
n are constants in (3.3) and eI is an edge in the edge set EI defined in (3.4).
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Since f 1
n are constants for all n = 1, ..., N , we can simplify problem (3.6),

min
f ′≥0

∑
n

f
′

n hn such that

∑
n:
Ln3e

f
′

n ≥ µeI −
∑
n:
Ln3e

f 1
ni
, ∀I ⊂ {1, ..., N}

 (3.7)

The solution of the optimisation problem in (3.7) is a set of N constants f
′

that

gives the frequency set in addition to f 1 we have found earlier. Hence the solution

for the whole problem is f = f 1 + f
′

corresponds to the line network L.

The linear programming turns f together with the optimal value of the objective

function as the outputs. This value is the minimum operational cost defined in

problem 2.7. On our chart in figure 3.1, this occurs at step 3. Then we continue to

the next step to evaluate this value. If the cost is satisfactory, then we are done and

the corresponding line network L is the optimal solution. Otherwise, we need to

find another bus line network L′ and evaluate it in the next iteration. How then, to

find another line network to be evaluated, is the most challenging part of the thesis.

This will be discussed in the following section and in the next chapter.

3.4 Search for new line networks

Searching of a different line network than L means that we are looking for another

set of closed walks L′ in the complete graph G = (V,E) such that the edges in the

closed walks form a connected graph G
′
= (V,E

′
) where E

′
= ∪nLn.

It is impossible to list all the combination of closed walks, since the number of

closed walks increases exponentially with the number of vertices. Indeed, we can

only evaluate the cost for a small number of possible line networks. There is no clear

guidance on how to choose the networks, and thus we will use a heuristic method

to approximate the solution. This section focuses on this approach, the so called

local search method, one of the standard techniques for solving a hard optimisation

problem.
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3.4.1 The local search method

The local search method is a heuristic based method to find a solution ”locally”. The

method searches for the optimal solution in the neighbourhood of the candidates.

In other words, we have to choose a sufficiently good initial candidate that lies near

the optimal solution. The initial line network that we have discussed in the first

section of this chapter can be seen as a good line network since it is constructed

by considering the shortest paths and demands from all to all locations. During

the optimisation, the solution candidate will be replaced by the new one every time

we find a better solution. Considering the modification of the solution candidate,

two decisions must be made in the preparation step according to Korte and Vygen,

section 21.3 in [5]

• Which modifications are allowed?

• When do we actually modify our solution?

For the first point, we will use four different methods of modifying the candidate

solution which allow only small change in the line network. The details about these

four methods come in the next sub section. For the second point, we will replace

the temporary solution with a new one every time we find an improvement. That

is when a new line network decreases the operational cost.

At every iteration, we choose any line network L′ in the neighbourhood of L.

If the new line network gives a lower cost, then we use it to replace the previous

solution. We stop the iteration when the cost is satisfactory or the maximum number

of iteration is reached. We write this procedure in the algorithm below:

This algorithm summarise the computation steps we have discussed previously

in the beginning of the chapter. Consider the chart in figure 3.1, it is clear that our

computation steps in the chart follow the procedure in the local search algorithm in

algorithm 4.
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Algorithm 4: localSearch

Input: A complete digraph G, a weight function c, an initial line network L0,
the desired cost C, and maximum number of iteration m.

Output: The optimal line network L
1 i← 1, L ← L0, L

′ ← L0

2 while c(L′) > C and i < m do
3 L′ := a new modification of L
4 if c(L′) < c(L) then
5 L ← L′

6 end
7 i = i+ 1

8 end

3.4.2 Find a new line network in the neighbourhood

Assume that our initial guess for the line network, L, is good enough. Then we are

close to the solution, and we can use the local search method to find some neighbours

of L to be evaluated. A neighbour of a line network L is another line network L′

that contains mostly the same lines as in L, except a minor change in a few of the

lines. Next, we will discuss four methods for making slight changes to the lines.

Flipping a segment of lines

The first method is by flipping a segment within a line. We randomly pick a few

lines Ln1 , Ln2 , ..., Lni ∈ L and choose two stations ani , bni ∈ Lni in each of these

lines. The line segment between ani and bni will be in the reversed order in the new

lines L
′
ni

Suppose we choose line Ln = v0—...—vk1—...—vk2—...—vn where v0 = vn. Then

by choosing an = vk1 and bn = vk2 , we flip the vertex sequence from vk1 to vk2 . The

resulting line is L
′
n = v0—...—vk1−1,vk2 ,vk2−1—...—vk1+1,vk1 , vk2+1—...—vk.

As an example, we consider the line Ln = 1—2—3—4—5—6—7—8—9—10—1.

Let an = 3 and bn = 7 be two stations that are randomly chosen. Reversing the

order of the stations starting from 3 until 7 gives us a new line L
′
n := 1—2—7—

6—5—4—3—8—9—10—1 as illustrated in figures 3.2 and 3.3.
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Figure 3.2: Line Ln Figure 3.3: Line L
′
n

We emphasize that the change is done for multiple lines simultaneously. To

make sure that the resulting line network is in the neighbourhood, we limit the

number of lines can be changed to a relatively small number. Algorithm 5 shows

the implementation of this idea.

Algorithm 5: lineChangeA

Input: L
Output: L′

1 L̂ := randomly choose a small subset of L
2 L := L \ L̂
3 for all L ∈ L̂ do
4 u, v := choose two random stations in L
5 l(u, v) := take the line segment between u and v in L

6 l
′
(v, u) := reverse the order of l(u, v)

7 l ← l
′

8 end

9 L′ := L ∪ L̂

Flipping a segment in a line can however lead to some error in the network. It

is possible that the resulting lines are already exist in the network, and hence we

will loose some lines in the system. Another possible error is if the resulting lines

contain some repeated stations that form self-loops. It is clear that a self-loop edge

is unacceptable in a line’s route. We will deal with the potential error of the line

changes later at the end of this section.
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Exchange segments between lines

The second method of finding a neighbour line network L′ is by exchanging line

segments between a few different lines Ln1 , ..., Lni . We use the same idea of the line

segment as in the previous method, but we exchange segments instead of flipping

them. Suppose Ln1 , ..., Lni are some lines in L that are randomly chosen, and this

number should be relatively small compared to the number of lines in the network.

At each Lnk , we take a line segment starting from station ank to station bnk . Then

we have i line segments to be randomly exchanged between Ln1 , ..., Lni .

The following example illustrate the changing of three lines, before and after they

exchange line segments. Suppose we choose two lines Ln1=1—2—3—4—5—6—7—

8—1 and Ln2=16—10—4—9—6—13—12—11—14—15—16. The line segments

3—4—5—6 and 10—4—9—6—13 are chosen from Ln1 and Ln2 , respectively. After

the exchange, the resulting lines are L
′
n1

=1—2—10—4—9—6—13—7—8—1 and

L
′
n2

=16—3—4—5—6—12—14—15—16, as shown in figures 3.4 and 3.5.

Figure 3.4: Line Ln1 and Ln2 , before
exchanging line segments.

Figure 3.5: Line L
′
n1

and L
′
n2

after ex-
changing line segments.

The algorithm for exchange line segments between a few lines in a network is as

follows,
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Algorithm 6: lineChangeB

Input: L
Output: L′

1 L̂ := randomly choose a small subset of L
2 L := L \ L̂
3 M ← ∅.
4 for all L ∈ L̂ do
5 u, v := choose two random stations in L
6 l(u, v) := take the line segment between u and v in L
7 M := M ∪ {l(u, v)}
8 L

′
:= replace l(u, v) in L by zeros.

9 end

10 M
′
:= shuffle the order of elements in M

11 for all L
′ ∈ L̂ do

12 µ := the first element in M
′

13 L
′
:= replace the zero element in L

′
by µ

14 M
′
:= M

′ \ {µ}
15 end

16 L′ := L ∪ L̂.

The change done by exchanging segments between lines could also lead to similar

errors as in the flipping method. There might be some stations that are visited sev-

eral time consecutively, or the new lines might have existed in the network. Another

error potentially occurs is that the whole network could become disconnected after

a few lines have exchanged their parts. Thus we also need to check the connectivity

of the network after a change has been made. We will discuss the method to check

these potential errors after two more line-changing methods being described.

Exchange stations within a line

The third method of bus line changes is by exchanging order of a few stations within

the lines. Suppose we choose the line Ln = v0—...—vk1—...—vk2—...—vk3—...—vn

and vk1 , vk2 , and vk3 are the stations to be exchange positions, then the resulting

line is L
′
n = v0, ..., vk1−1,�, vk1+1, ..., vk2−1,�, vk2+1, ..., vk3−1,�, vk3+1, ..., vn where

the three boxes are places for vk1 , vk2 , and vk3 in random order. L
′
n can be, for

instance, L
′
n = v0, ..., vk1−1,vk3 , vk1+1, ..., vk2−1,vk2 , vk2+1, ..., vk3−1,vk1 , vk3+1, ..., vn
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As an example, we choose three stations 3, 4, and 9 in a line Lni = 1—2—3—

4—5—6—7—8—9—10—11—1 as shown in figures 3.6. One of the possibilities of

rearrangement of the line will be L
′
ni

= 1—2—4—9—5—6—7—8—3—10—11—1,

shown in figure 3.7.

Figure 3.6: Line Lni = 1—2—3—4—
5—6—7—8—9—10—11—1

Figure 3.7: Line L
′
ni

= 1—2—4—9—
5—6—7—8—3—10—11—1.

As the two previous method, we do the station shuffling also for a few lines si-

multaneously. The algorithm is presented as in the following,

Algorithm 7: lineChangeC

Input: L
Output: L′

1 L̂ := randomly choose a small subset of L
2 L := L \ L̂
3 for all L ∈ L̂ do
4 λ := choose a random small number of stations in L
5 l := {v1, ..., vλ} randomly choose λ stations in L

6 l
′
:= shuffle the order of elements in l

7 L
′
:= replace l with l

′
in L

8 end

9 L′ := L ∪ L̂.
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This change, however, can also lead to some errors as the previous methods.

Shuffling the stations can at some point cause repeated stations or some of the new

lines are already exist in the network. We still have one more line-changing method

before we discuss the procedure for handling the errors.

Exchange stations between lines

The fourth method of changing a line network is described as shuffling some stations

between a few lines simultaneously. Instead of shuffling the stations within the line

in the previous method, here we choose a number of stations from different lines and

then exchange the stations from one line to another. The order of the stations are

also randomly changed. Thus, in this method, there are two shuffling process. First

we do this to the order of the lines, and then to the order of the chosen stations in

each line.

Suppose the chosen lines are Ln = v0—...—vnk —...—vn and Lm = w0—...—

wmk—...—wm and let the vertices vnk and wmk be the chosen stations from each

line to be exchanged. The resulting lines after changing are L
′
n = v0—...—vnk−1—

wmk
—vnk+1—...—vn and L

′
m = w0—...—wmk−1—vnk

—wmk+1—...—wm.

Figures 3.8 and 3.9 below show an example before and after switching stations

6 and 13 in lines Ln = 7—6—5—4—3—2—1—7 and Lm = 14—13—12—11—10—

9—8—14. After exchanging station number 6 and 13, we get the resulting lines

L
′
n := 7—13—5—4—3—2—1—7 and L

′
m := 14—6—12—11—10—9—8—14.

Figure 3.8: The lines Ln and Lm be-
fore exchanging stations

Figure 3.9: The lines L
′
n and L

′
m, after

exchanging stations
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The algorithm for randomly exchange stations between lines is presented in the

following,

Algorithm 8: lineChangeD

Input: L
Output: L′

1 L̂ := randomly choose a small subset of L
2 L := L \ L̂
3 M ← ∅.
4 for all L ∈ L̂ do
5 λ := choose a random small integer
6 l := {v1, ..., vλ} randomly choose λ stations in L

7 l
′
:= shuffle the order of element in l M := M ∪ {l ′}

8 L
′
:= replace l in L by zero.

9 end

10 M
′
:= shuffle the order of elements in M

11 for all L
′ ∈ L̂ do

12 µ := the first element in M
′

13 L
′
:= replace the zero element in L

′
by µ

14 M
′
:= M

′ \ {µ}
15 end

16 L′ := L ∪ L̂.

After exchanging stations between different lines, there are the same potential

errors as in exchanging segments in the second line-changing method: the line has

existed in the network, forming of consecutive stations, or disconnection of the

network may occur. We will discuss the method of checking and fixing the errors in

the next subsection.

Checking and fixing errors in the new line network

We have discussed four line-changing methods previously. Each method has some

issues with potential error in the resulting lines. It is a good idea to always check

the new lines before we decide to take the change. We will do the checking and

fixing in a few steps:

The first check is the easiest one. We examine the resulting lines from the ex-

istence of self-loops. If there are consecutively repeated stations, then we fix it by
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keeping only one of them and removing rest from the line. Suppose a new line

Ln = v0—...—vnk−1—vnk
—...—vnk

—vnk+1—...—vn has been made with consecu-

tive repeating stations vnk—...—vnk . Then we remove the sequence and keep only

one of the vnk . The result is L
′
n = v0—...—vnk−1—vnk

—vnk+1—...—vn.

The similar procedure applies when there are multiple such sequences exist in a

line. We expect that the line has become shorter, and in some cases it could be too

short. This might happen if, for example, after several times of modification, only

a single station left in the line. This means that the line is no longer a closed walk,

thus we remove it from the network.

Removing a line means that our line network has less lines as before and it can

possibly lead to a disconnected network. So it is necessary to check the connectivity

of the whole network. The procedure is run by the Breadth First Search algorithm,

which is known as an efficient algorithm for finding shortest spanning tree in a graph.

In the case that a new line network is disconnected, then we cancel the change and

try to make another change instead.

Beside the line with a single station, we also remove the line if it is already exist

in the network. This also reduce the line number, N . The complete checking and

fixing steps is presented in algorithm 9.
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Algorithm 9: fixLines

Input: L, L̂
Output: L′

1 L ← L \ L̂
2 % remove consecutive repeated stations

3 for all L ∈ L̂ do
4 l := find sequences of repeating stations in L.
5 for all l(vk) ∈ l where vk is a station with self-loop do
6 vk ← l(vk)
7 end

8 end

9 % remove lines that consist of a single station

10 for all L ∈ L̂′ do
11 if L contains only one station then

12 L̂′ ← L̂′ \ {L}
13 end

14 end

15 % checking connectivity of the network

16 L ← L ∪ L̂
17 d := BFS(L), distances from an arbitrary station to every other stations
18 if d contains an infinite element then
19 return
20 end

21 % checking the existence of the new lines in the network

22 for any Li, Lj ∈ L̂, i 6= j, do
23 if Li = Lj then

24 L̂ ← L̂ \ {Li}
25 end

26 end
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Among the four methods we have discussed, the local search will choose one at

every iteration to be implemented. We set weights to every method to let the local

search choose any of these methods by the probability based on the weights. We set

positive constants w1, w2, w3, and w4 such that w1 + w2 + w3 + w4 = 1.

At every iteration, the local search method generates a random number between

0 and 1 to decide which method to be used to change the line network. Suppose

we set w1 = w2 = w3 = w4 = 0.25, then each method has similar probability to be

chosen.

By performing the line-changing methods, we expect that the local search ap-

proaches the optimal solution with minimum cost. We still have another variable,

the average travel time, to be minimised during the computation. In the next chap-

ter, we will discuss a method to find express lines in order to reduce the average

travel time per passenger.



Chapter 4
Express bus lines

The method for finding neighbourhood of the line networks we discussed in section

3.4 intended to reduce the operational cost during the iterative computation, but

there is no guarantee that the average travel time would be decreased at the same

time. In this chapter, we want to introduce a method to find another line network

that can be expected to reduce the travel time. Instead of making small change to

the network, we perform a relatively large change in the next iteration.

The method we choose adds a few new lines into the network. We call these new

lines express lines, that is, lines that transport passengers faster as their routes are

intended to visit only certain stations and skip the rest in between. By this approach,

we expect that the travel time can be reduced, and hence also the average travel

time in the network.

However, we are aware of the consequent that adding new lines tends to increase

the cost at the same time. The chance to reduce the cost after the new lines involved

is tiny. We can still consider the network as a candidate of the solution if the cost

increment is reasonable for the time reduction.

4.1 Adding direct connections to a line network

As indicated above, the goal of this chapter is to introduce express lines which save

time by transporting passengers between two stations without intermediate stops.

To that end, we first compute for each pair of stations (u, v) how much time we can
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save by adding a direct connection from u to v to the current network.

Recall from section 2.3, that the shortest path from u to v is denoted by a

sequence of distinct vertices Pu,v = v0 — ... — vj where v0 = u and vj = v, or

distinct edges Pu,v := e1 — ... — ej where ei = (vi−1, vi).

Let t(Pu,v) =
∑j

i=1 tei be the travel time through the path Pu,v and tu,v be the

travel time directly on the edge (u, v). Then the saved time by using the direct

connection is

τ̃u,v = t(Pu,v)− tu,v. (4.1)

where τ̃u,v is non-negative, and τ̃u,v = 0 if Pu,v is already a direct connection.

The value of τ̃u,v is the time saved per passenger who takes the direct connection

instead of going through the original path. To compute the total time saved for all

the passengers on the direct connection from u to v, we first need to compute the

number of passengers in this part.

Assume that the passengers who travel from u to v are all moved to the direct

route. Then we need to sum up the demands di,j for all i, j in the network for which

Pu,v is a part of the shortest paths from i to j. The number of passengers on the

direct connection (u, v) is thus

d(Pu,v) =
∑
(i,j):

Pi,j⊇Pu,v

di,j, (4.2)

and the total saved time for all of them is

τ(u, v) = d(Pu,v) τ̃u,v. (4.3)

Applying this computation to all pairs (u, v) in the network, we obtain a new

weight function τ on the complete directed graph G = (V,E) over V . This is the

graph we defined for the city road network in the first section of chapter 2. On this

complete digraph, we use τ as a weighting function, and then construct closed walks

within the graph for the new, faster lines.

In order to save as much time as possible, the closed walks are required to have
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large weights. To construct such walks, we have to choose edges with first the large

weight and then progressively add another edge with biggest possible weight until

we get a closed walk with as large as possible weight.

But then, this method leads us to some difficulties. As the closed walks may

visit all vertices, adding as many direct connection as possible is not a good idea to

save time. Adding more edges might decrease the average time saved per passenger.

Without question, we want to avoid such computation in solving this particular

problem.

Instead of computing the total weight of the walks, we propose to take the average

weight. An advantage of this method is that there exists an efficient algorithm for

solving the problem, namely the minimum mean cycle algorithm. This algorithm

computes the closed walk with the smallest mean weight. More detail about the

algorithm will be discussed in the next section.

4.2 Minimum mean-weight cycle

As indicated above, we want to find a closed walk in the network (G, τ) such that

the average weight is as large as possible. Since we want to use the algorithm for

finding the minimum mean-weight cycle, the resulting cycle will be the opposite of

our goal. To use the algorithm in this particular problem, we need to modify the

weighting function in the edge set E such that the minimum weight indicates the

maximum saved time. We will use the weighting function −τ instead of τ , and hence

the minimum mean-weight cycle in (G,−τ) is the maximum in (G, τ).

In the network graph (G,−τ), suppose W = e1 — ... — ek is a closed walk. The

average weight of the edges in W is

−τ(W ) =

∑k
i=1(−τei)
k

.

We now want to find a closed walk W ∗ with smallest value −τ(W ∗). In [2],

the algorithm of minimum mean-cycle is introduced for a strongly connected graph.

If the graph is not strongly connected, then we can find a minimum mean-weight
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cycle of each strong component of the graph. In our case, G is always a strongly

connected graph, thus we skip checking for the strong connectivity.

Let s be any vertex in G, then every other vertex in G is reachable from s because

of the strong connectivity. For all v ∈ V and non-negative integers k, define Fk(v)

to be the minimum weight of a walk of length k from s to the vertex v. If no such

walk exists, then we define Fk(v) :=∞.

As an example, we consider the graph with five vertices in figure 4.1. The walks

of lengths k = 0, 1, 2, 3, 4 from s to v with minimum weights are shown on the graph

below.

Figure 4.1: A directed graph with five vertices

k = 0 : Fk(v) =∞,

k = 1 : Fk(v) = −5,

k = 2 : Fk(v) = min{−2− 4 , −3− 4} = −7,

k = 3 : Fk(v) =∞,

k = 4 : Fk(v) = min{−5− 5− 1− 4 ,−5− 5− 3− 5} = −18.

We use the values of Fk(v) for all v ∈ V to find the minimum weight of all

possible closed walks as introduced in the theorem below.

Theorem 4.1. In the strongly connected graph G with n vertices, the minimum

cycle mean is

λ∗ = min
v∈V

max
0≤k≤n−1

[
Fn(v)− Fk(v)

n− k

]
(4.4)

Proof. The proof of this theorem can be found in [2].



4.2. MINIMUM MEAN-WEIGHT CYCLE 43

Beside the minimum mean-weight computed in (4.4), we are also interested in

producing the cycle whose mean-weight is λ∗. korte and Vygen in section 7.3 in [5]

suggest the Minimum mean cycle algorithm that constructs a closed walk C with

minimal average weight λ∗(C), or decides that the graph is acyclic.

Our graph G is a complete digraph which is strongly connected, thus we skip

the computation of the connectivity. With the weighting function τ as an input,

the algorithm gives outputs the minimum mean cycle C and the minimum average

weight λ∗ = −τ ∗(C). The algorithm is presented below,

Algorithm 10: Minimum mean-weight closed walk

Input: G, τ
Output: C

1 Add to G a vertex s and edges (s, v)
2 τ((s, v))← 0 for all v ∈ V
3 n← number of vertices, p← ∅
4 F0(s)← 0, F0(v)←∞ for all v ∈ V \ {s}.
5 for k = 1 to n do
6 for all v ∈ V do
7 Fk(v)←∞.
8 for all edges of the form (w, v) do
9 if Fk−1(w)− τ((w, v)) < Fk(v) then

10 Fk(v) := Fk−1(w)− τ((w, v)) and pk(v) := w.
11 end

12 end

13 end

14 end

15 v := a vertex for which max
0≤k≤n−1
Fk(v)<∞

Fn(v)− Fk(v)

n− k
is minimum.

16 C := p1(p2(...(pn(v))))—...—pn−1(pn(v))—pn(v)—v, a closed walk.

The algorithm in the previous section returns a closed walk C with the smallest

mean-weight. As a walk is allowed to visit a vertex multiple times, C might include

multiple loops on the same routes. We keep one of the loops and remove the rest

from C. Suppose algorithm 10 gives us the minimum mean-weight closed walk:

v0—...—vk1—...—vkj
—vk1—...—vkj

—vk1—...—vn—v0, then we remove one of

the sequences in the form vk1—...—vkj . Our express line is then v0—...—vk1—...—

vkj
—vk1—...—vn—v0.
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4.3 Express lines in the line network

Together with the express line from the computation above, the new line network

L is expected to provide a lower travel time. In a larger network, it is a good idea

to add more than one express line. By including the first express line into the line

network L, we can compute again another express line. The computation steps

follow the similar procedure as we construct the first express line. We repeat the

process until the number of maximum express lines is reached or the total saved

time is no longer significant. The algorithm below describes the repeating process,

Algorithm 11: Express lines

Input: Complete graph G, line network L, minimum saved time ε, number of
express line `

Output: Lex
1 Lex ← ∅, τ ←∞
2 while τ > ε and |Lex| < ` do
3 P := passenger shortest paths
4 t(P ) := travel time in L ∪ Lex
5 Add direct connections into L ∪ Lex
6 τ := saved time by using direct connections
7 C := Minimum mean-weight closed walk (G, τ)
8 Lex ← Lex ∪ {C}
9 l := number of element in Lex

10 end

When a set of express line Lex is established and added into the line network L,

we compute the operational cost and average travel time for the whole line network

L∪Lex. The cost might increase because the number of lines has increased, but the

travel time should be lower than before. This is the main goal of adding the express

lines, that some of the passengers are transported faster.

We call this procedure line-optimisation cycle, a cycle consisting of a number

of local search iteration and a step of express lines inclusion. If the tavel time is

satisfactory, then the computation is done and we choose our optimal solution among

the solutions on the Pareto front. Otherwise, we will try to improve our solution by

performing another line-optimisation cycle.
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In the second cycle, we perform again the local search to minimise the operational

cost over L ∪ Lex. During the search, we keep the express lines in Lex fixed while

L is regularly replaced by the other one in its neighbourhood. The solution is a

line network L such that L ∪ Lex gives minimum operational cost. If the average

travel time is satisfactory then we stop the computation. Otherwise, we try again

to improve the solution in the next cycle.

For the third cycle, we want to test a different express line set L′ex. First, we

remove the existing express lines Lex from the line network and re-compute the cost

and travel time. Then we construct new express lines based on the line network

solution. We use the new express lines together with our current solution as an

initial guess for the local search. During the computation, the express lines are kept

fixed as we did previously. Then the same steps follow the local search until the end

of the cycle, and we can repeat this computation cycle several times until we are

satisfied with the average travel time, or a maximum number of cycle has reached.

An extra attention must be paid in the replacement of the express lines. It is

possible that the network becomes disconnected or some stations are missing when

the old express lines are removed, and the new express lines do not connect the

components back. Thus, we check the connectivity of the line network L ∪ Lex,

where Lex is the new express line set. If the network is disconnected or there are

some stations missing, then we need to include back one or more of the old express

lines until all stations are connected to each other. It can be done as long as the

number of lines does not exceed the upper bound N2.

We modify algorithm 11 by taking the old express lines as additional input

variable Oex and add a few lines at the end of the algorithm:

1 if L ∪ Lex makes a disconnected network then

2 take a subset Õex ⊂ Oex such that L ∪ Lex ∪ Õex makes a connected
network

3 end

4 Lex ← Lex ∪ Õex

At the end, we expect to have several good solution candidates; therefore, it is

important to identify the solutions with relatively low cost and low travel time. We
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will choose one of the the possible solutions lie on the Pareto front on the diagram

showing all solutions in the form (time, cost).

Summary

In this chapter we have discussed about the express lines, how to produce and include

them in the line network. With the express lines in the network, the potential

passengers have more options to travel faster, hence the average travel time in the

network is expected to be lower than before.

Even though replacing express lines in the beginning of the third line-optimisation

cycle does not guarantee to give a lower travel time than in the first two cycles, we

would expect some reductions in a longer optimisation process. We will see the long

term behaviour in the numerical experiment in the next chapter.

We end this chapter with a summary of our method for solving the line planning

problem. After the inclusion of express lines, we add a few more steps to our chart

in figure 3.1. The complete computation steps are presented in figure 4.2.



4.3. EXPRESS LINES IN THE LINE NETWORK 47

Start

1 Set up an initial line network L,
L′ ← L, Lex ← ∅, L′ex ← ∅

2 For all u, v ∈ V , find the
shortest path Pu,v within L′ ∪ L′ex

— problem (2.9) —

3 Compute the optimal frequency f ,
— problem (2.8) —

4 Evaluate the operational cost
— part of problem (2.8) —

5 Is the cost
satisfactory?

6 Find
another network L′

7 Replace L by L′

8 Is the
travel time

satisfactory?

9 Compute new
express lines L′ex

10 Replace Lex by L′ex

Stop

yes

no

no

yes

Figure 4.2: The computation steps of bus routing optimisation
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Chapter 5
Numerical experiments and discussions

In this chapter, we will discuss the numerical experiments while implementing the

ideas we have discussed previously. We tested our computation with two networks

of different size: 10 and 30 stations that are made as follows:

First, we create a road network based on a real map. We choose a special area

with its bus station locations, and then generate some data for our input. In this

experiment, we use Google interactive map and restrict the area for Trondheim

municipality. For the travel time between each pair stations, we use the direct

driving time provided by the map, and then add a constant to each of it as the

boarding and alighting time at the bus stations. Since Google map gives us the

travel time in minute, then we add the stopping time also in the same time unit.

Assume that the buses need in average 30 seconds stopping time at each station,

then we add 0.5 minutes to every connection.

The value of the travel cost between stations are not provided by the map.

Therefore, we take the relevant distance that is given simultaneously with the travel

time by the map and scale it by some constants. For the same reason as we added

extra stopping time, we also add a constant, in this case 0.25.

For the demand, we do not have any real or relevant scaled data. So we create the

demand values by generating random numbers between 20 and 40 from every station

to every other station, except one particular station that we set as a center point of

the area. This can be, for example, the city center having a higher demand. The

demand from everywhere else to this station is set to be random numbers between

49



50 CHAPTER 5. NUMERICAL EXPERIMENTS AND DISCUSSIONS

40 and 60. We expect that the result will show that this particular station is visited

by more lines. In this experiment, this special station is named as Station-7.

Denote the 10-stations network by N10 and the 30-stations by N30. We will do

the multiple line-optimisation cycle to each network, starting with N10.

5.1 Line network optimisation in N10

We set our first experiment for 10 computation cycles and discuss the solutions in

three stages: 1) the solution obtained from the first local search computation; 2)

the solution at the end of the first cycle, i.e. after we added an express line; and 3)

the complete long term computation.

At each cycle except the first one, we use the express lines together with the

other lines as initial guess in the local search part, and we end the cycle by replacing

the express lines as we have discussed in section 4.3.

5.1.1 Local search only

We start our experiment with the local search method to optimise only the oper-

ational cost. The target cost is set to be very low, 10% of the initial cost because

we want to let the local search iterates until the maximum number of iteration is

reached. The maximum number of iteration imax is set to be 10,000, including the

computation of cost and travel time of the initial guess. We set 3 initial lines fol-

lowing the procedure in section 3.1 and set the lower and upper bounds N1 = 2 and

N2 = 4, respectively. In this stage, however, we expect the same number of lines

or decrease by relatively small number at the end of the computation. There is no

possibility to have a new line during our local search method.

During the computation, we keep the solution whenever it gives a lower cost.

Figure 5.1 shows the operational cost decreased significantly in the first 725 itera-

tions. After that, it slightly decreased until the iteration of 3,346. The local search

did not find a better line network in the later iterations. We recorded the same

iteration numbers as the cost decreased to see the travel time behaviour. Figure

5.2 shows that the travel time fluctuated during the first 415 iterations before it
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consistently decreased.

Figure 5.1: Operational cost vs. iteration number for N10. The data points are
recorded when the solutions give lower operational cost. The cost decreased signifi-
cantly in the first 725 iterations, and decreased more at iteration 3,290 and 3,346.

Figure 5.2: Average travel time vs. iteration number for N10. The data points are
the same iteration numbers as in the previous figure, recorded when the solutions
give a lower cost. The average travel time fluctuated during the first 415 iterations
and then constantly decreased as the cost decreased.

It is also interesting to see how the local search behaves. The dots on figure 5.3

represent all solutions during the local search iterations. The more condensed dot
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population lie in the direction approaching the solution, marked by a green circle.

This can be interpreted as a good behaviour of the local search. To be precise, the

line-changing methods described in section 3.4.2 are good enough to produce the

neighbour line networks.

Figure 5.3: Operational cost vs. average travel time for the 10-stations network.

The best solution is found at iteration 3,346 with operational cost 217.0751 unit

and average travel time 0.3617 unit. It is a line network consisting of three lines,

described in table 5.1 and illustrated in figure 5.4.

Line number Route Frequency
L1 10—6—7—10 1.5876
L2 3—8—5—1—7—3 2.1533
L3 3—2—9—3—7—4—3 1.1021

Table 5.1: Three lines in the optimal line network in N10.
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Figure 5.4: The optimal line network on N10, searched by the local search method.
L1 is coloured green, L2 is coloured red, and L3 is coloured blue.

5.1.2 Adding express lines to the local search solution

In the second stage of our discussion, we will compare the last solution with the new

one after an express line has been included. We added only one express line because

the network is small and adding an express line makes our line network reaches the

upper bound N2 = 4.

The method used for finding the express line, the minimum mean-weight cycle

algorithm, is designed in such a way that the travel time must be reduced. Thus,

we have a guarantee that once we add the express line to the network, the average

travel time must be reduced. While the operational cost could be increased at this

stage. Figure 5.5 and 5.6 show the the change right after an express line has been

added, marked with in the blue dots.

While the average travel time significantly decreased, the operational cost has

a light increment. This solution appears in the Pareto front as one of the best

solutions. Figure 5.7 shows the Pareto front together with some of the other so-

lutions. The Pareto solutions are the three points marked with green circles. We

could choose the one with blue dot inside, since it has much lower travel time than

the other two candidates. This is the solution founded at the last iteration, when

we added the express line to the network.

Once we decided the optimal solution to be taken, we could find the lines in this

line network solution as presented in table 5.8 and figure 5.2.
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Figure 5.5: The first optimisation cycle on N10. The local search solution was
founded at iteration 3,346. At the end of the local search, an express line was added
into the optimal line network, causing a slight increment to the operational cost.

Figure 5.6: The first optimisation cycle on N10. The points were recorded at the
same time when the cost decreased. At the end of the local search, an express line
was added into the optimal line network, significantly lowering the average travel
time.
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Figure 5.7: The Pareto solutions right after the addition of the express line

Line number Route Frequency
L1 10—6—7—10 0.9200
L2 3—8—5—1—7—3 2.5597
L3 3—2—9—3—7—4—3 1.1021
Lex 6—5—10—5—10—3—6 0.6125

Table 5.2: Lines in the line network with the lowest travel time

Figure 5.8: The line network in N10 with an express line in the purple dotted line.
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The operational cost for this line network configuration is 244.5719, which is

12.68% higher than the operational cost before adding the express line. In the other

hand, the travel time decreased 12.38% from 0.3617 to 0.3169 unit time. Hence, the

express line constructed by the minimum mean cycle algorithm works. However,

we want to continue the computation with the rest 9 cycles to see the long term

behaviour.

5.1.3 The complete computation

Now we continue the computation by repeating the same procedure as in the first

cycle. The difference is that we have an express line in the line network. During the

local search, we keep the express line fixed while the other lines could be modified

at every iteration.

In the second cycle, the local search reduced the cost twice, while the travel time

within the associate cost reduced once and then remain in the same level. This is

shown in figures 5.9 and 5.10 by the pink stars and lines. We end the second cycle

by replacing the express line. First we removed the existing express line.

Based on the remaining lines in the line network, we compute again the travel

time and then construct a new express line using the same procedure as in the

previous express line construction. Our data in figure 5.10 shows that the new

express line did not lower the travel time. This means that the old express lines did

better in reducing time. This possibility has been discussed in chapter 4.

We let the new one to be included in the line network, and use them together as

an initial guess for the next computation cycle. The line network solution from the

last local search will be the initial guess together with the new express lines.
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Figure 5.9: The first two computation cycle. At the end of the second cycle, a new
express line has replaced the old one.

Figure 5.10: The first two computation cycle. At the end of the second cycle, a new
express line has replaced the old one.

We continue the computation to the third cycle. At the end of this cycle, we

replace again the express line with a new one. This time, we have travel time

reduction in the contrary to the previous cycle while the cost remain increased. At

the end of computation, 10 optimisation cycles have been made, and we present the

operational cost and associate travel time for the complete computation process in

figures 5.11 and 5.12.
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Figure 5.11: The operational cost slightly increased every time the express line being
replaced and lowered again, but there is no good improvement of the solution.

Figure 5.12: The travel time oscillated by the express line replacements.

Figure 5.12 shows that the travel time decreased when we added an express

line for the first time. In the later 9 cycles, replacing express line caused 5 times

reduction and 4 times increment of travel time. While the cost has always increased

at every time we added or replace the express line, as shown in figure 5.12.

We plot the solutions on the Pareto front together with some other solutions that

lie nearby. The red dots indicate the solutions from the first cycle, before we added
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the express line. The blue dots indicate the solutions after we added or replaced the

express line. It is clear that the existence of express line is very important to reduce

the travel time.

We choose one of the best cost-time combination solutions lie on the Pareto front

in figure 5.13. There are five available solutions from the complete computation

process, with the best cost-time combination as presented in table 5.3.

Figure 5.13: The five Pareto solutions together with some of the other solutions.

Solution candidate Operational cost Average travel time
L1 206.7021 0.3306
L2 220.2366 0.3154
L3 220.7350 0.2991
L4 230.2126 0.2990
L5 252.1360 0.2970

Table 5.3: Solution candidates on the Pareto front from the complete 10 cycles
optimisation process.

Suppose we choose line network L3 as the optimal solution, The table and the

sketched graph in the following show the idea of our optimal line network.
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Line number Route Frequency
L1 10—6—7—10 1.1979
L2 8—3—7—1—5—8 2.1313
L3 3—2—9—3—4—3 1.1021
Lex 6—5—10—5—10—3—6 0.7178

Table 5.4: Lines in the optimal line network L3

Figure 5.14: The optimal line network for the 10-stations network N10.

We have discussed the result from our experiment with 10 stations network. In

short, the summary of the results is presented below:

Procedure Operational cost Average travel time

The local search only 217.0751 0.3617

local search solution plus 244.5719 0.3169
express line (1st cycle) (increased by 12.67%) (decreased by 12.39%)

Complete 220.7350 0.2991
computation (decreased by 9.75%) (decreased by 5.63%)
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5.2 Line network optimisation in N30

In this section, we will briefly present the results from the experiment with the

30-stations network N30. The maximum number of iteration in local search is 2,500,

and the maximum computation cycle is 4.

Figure 5.15: Local search procedure on the network N30. The operational cost
decreased very fast in the first 627 iteration, then slower down until itration 2,213.
This gives the lowest cost 2,636.5589 unit.

Figure 5.16: Local search procedure on the network N30. The average travel time
tended to increase while the associate cost decreased. At the point when the cost is
lowest, the average travel time is 0.4740.
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Figure 5.17: The first optimisation cycle. The cost slightly increased by 8.56% to
2,862.3387 unit when the express lines included.

Figure 5.18: The first optimisation cycle. The travel time decreased by 6.73% to
0.4421 unit from the previous solution.
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Figure 5.19: The operational cost during the complete computation. The local
search improved the solution in almost every computation cycles. Only in the last
computation cycles, the local search did not improve solution. Adding and replacing
the express lines, however, never decrease the cost.

Figure 5.20: The average travel time during the complete computation. The points
recorded as the same time when the associate operational cost improved or in addi-
tion or replacement of express lines.
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Figure 5.21: The plot of all solutions in the form of (cost,time). The most dense
area is in the nearby of some of the Pareto solutions.

Figure 5.22: The solutions on the Pareto front together with some of the other solu-
tions nearby. There are several red dots lie on the Pareto front, can be interpreted
as: some line network without express lines could transport faster. This is possible
because the way of constructing the initial guess was considering the shortest path
of the passengers.

Among the Pareto solutions in figure 5.22, we could choose the most left hand

side with blue dot inside because it gives extremely lower cost than the other two

points with red dots inside, and lowest travel time among the blue dots. This point

lies in the coordinate (2,177.7166 , 0.42016). This was recorded at iteration 9,170.
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The line network associated with this point is as described in table 5.5.

Line number Route Frequency

L1 20—7—18—20 5.4753

L2 2—19—25—9—30—2 4.3249

L3 23—11—30—7—14—3—7—30—23 13.3765

L4 8—3—27—7—8 2.8654

L5 1—29—5—17—7—1 11.2668

L6 7—4—7—28—7 2.9037

L7 6—26—7—6 5.7947

L8 10—21—7—21—10 3.7021

L9 15—12—16—7—22—13—24—15 6.3937

Lex 7—24—7 9.3129

Table 5.5: Lines in the optimal line network.

The results from our experiment with 30 stations network are presented in the

summary below,

Procedure Operational cost Average travel time

The local search only 2,636.5589 0.4740

local search solution plus 2,862.3387 0.4421
express line (1st cycle) (increased by 8.56%) (decreased by 6.73%)

Complete 2,177.7166 0.42016
computation (decreased by 31.44%) (decreased by 4.96%)
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Chapter 6
Conclusion and further work

We have defined a line planning problem which is an optimisation problem with

two objectives, cost and time. We proposed a heuristic-based method to find a line

network on a given city road network. The solution is an optimal line network with

relatively low operational cost and average travel time.

We proposed a combination of the local search method, a heuristic method and

the minimum mean weight cycle algorithm as an optimisation tool for a line network

planning.

The objective of the local search is to optimise the operational cost. The initial

line network is created using the many-to-may shortest paths method, based on the

Dijkstra algorithm. We proposed a method for the local search to find a new line

network in the neighbourhood of the initial solution. To further optimise the travel

time, we applied the minimum mean-weight cycle algorithm to construct an express

line a special line visiting certain stations and skipping the rest in between.

We have applied our optimisation method for two study cases, each consisting

of 10 and 30 stations, respectively. In both cases, the local search method could

find significantly lower cost solutions compared to the initial solutions. Adding an

express line for the first time to the line network decreased the average travel time.

However, it increased the operational cost.

Performing further optimisation cycle showed that for the 10-stations case, the

local search did not find any better solution. But, for the 30-stations case, the local

search found some better solutions. Express line replacement did not always reduce
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the average travel time. On the other hand, it always the operational cost, which

is a logical consequence of adding a new line. Finally, we plotted all the solutions

on a chart, to find the best combination of operational cost and average travel time

solutions. The Pareto solutions can be further evaluated by considering the trade-off

between the lowest cost and the lowest average travel time solutions.

Further work

We propose some possible improvements can be done in the future:

• We could add some more constraints into the problem, such as limiting the

number of line transfer.

• We could vary the vehicle capacity.

• It is possible to optimise with respect to the station locations.

• After a line network is established, we could generate a time table such that

the actual travel time can be computed including the waiting time.



List of Symbols

v a vertex represents a bus station location

e an edge represents the direct connection between two bus station locations

V vertex set, where v ∈ V is a location for a bus station

E edge set, where e ∈ E is a direct connection roads between two stations

G complete graph of the city road network

te travel time on edge e ∈ E

ce operational cost on edge e ∈ E

du,v demand for transportation from u to v in V per unit time.

de total demand on edge e per unit time.

N number of lines in a line network

N1 lower bound for N

N2 upper bound for N

M capacity of a bus

L a line network

Ln a bus line in line network L

fn frequency of buses serving in line Ln

f frequency set for line network L

(L, f) a line network configuration

L∗ the optimal line network

f∗ frequency set of the optimal line network L∗
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E
′

edge set of the line network L

G
′

graph of a line network L

P path in a graph

t(P ) total travel time on path P

Pu,v passenger shortest path from u to v

de(u, v) total demand on edge e

be(L, f) number of buses on edge e

C(L, f) total operational cost of line network L

wi probability of line-changing methods, i = 1, 2, 3, 4

Lex set of express lines

τ̃ saved time by using direct connection instead of shortest path

d(Pu,v) number of passenger per unit time on the direct connection (u, v)

τ total saved time by all passenger per unit time

Fk(v) walk with minimum weight of length k from a source vertex to v

λ∗ minimum cycle mean

N10 road network with 10 stations

N30 road network with 30 stations
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