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Abstract 

We combine Full-Waveform Inversion (FWI) and rock physics inversion to provide quantita-

tive estimates of CO2 saturation at Sleipner. The rock physics tool is based on uniform satura-

tion and patchy saturation rock physics models. The patchy saturation model takes into account 

the attenuation at the mesoscopic scale. The uniform saturation model uses an effective fluid 

phase plugged into the Biot theory. The latter model will be mainly used in the Sleipner case. 

The rock physics inversion is implemented using an oriented Monte Carlo method (neighbour-

hood algorithm). We generate P-wave velocity using the FWI technology and then invert se-

lected rock physics parameters using the rock physics inversion tool. The methodology is ap-

plied to both synthetic and real datasets. We test the feasibility of the rock physics inversion on 

synthetic data. We propose a method to extract the baseline frame properties using P-wave 

velocity combined with S-wave velocity and density. We estimate the CO2 saturation using P-

wave velocity model derived from 2D FWI and evaluate the associated uncertainty. We show 

that the CO2 saturation at Sleipner can reach 90% with an uncertainty of 0.1 to 0.2. For another 

inline, we have a lower CO2 saturation estimation because we are located 533 m away from the 

injection point. We estimate a Brie exponent, which is describing the distribution type, ranging 

between around 5 and 25, which indicates that the mixture is between patchy and uniform sat-

uration.  
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1 INTRODUCTION 

With the increasing energy demand and consumption, the environmental protection and the 

mitigation of greenhouse gases have been hot topics from the last decade. Carbon dioxide is 

one of the most important gases to control the atmosphere temperature. The excessive emissions 

of the CO2 have a substantial contribution to the climate change. In 2016, various countries in 

United Nations signed the Paris agreement on mitigation of the global warming. In this context, 

CO2 Capture and Storage (CCS) into the subsurface is proposed as a potential mean of reducing 

the CO2 emissions into the atmosphere and mitigating global warming. The newest annual re-

port of 2016 (Institute, 2016) by global CCS institute shows that more than 20 large-scale CCS 

projects are under operation and more than 10 CCS projects will be started in the next decade.  

CO2 Capture and Storage requires careful monitoring to ensure the storage process and early 

detection of potential leakage related to geological hazards. Various geophysical techniques 

(including seismic and non-seismic techniques) are used prior to and during the injection pro-

cess to characterize the changes in the subsurface properties. Seismic data are often recorded 

and several methods (for example, imaging methods like seismic migration, Full-Waveform 

Inversion, Amplitude Versus Offset analysis) are used to quantify the effect of CO2 injection 

on seismic properties. In this work, we propose to study the changes of rock physics properties 

and quantify them during the injection of CO2 at the Sleipner storage site in the North Sea.  

Many empirical relations have been proposed to clarify the relation between seismic velocities 

and the porous rocks with respect to different parameters (clay content, porosity, and others). 

For example, Castagna et al. (1985) determined empirical regressions relating velocities with 

porosity and clay content for shaly sands of the Frio formation. Han et al. (1986) also presented 

a similar relation between P- and S-wave velocities based on the ultrasonic laboratory data. 

However, most of the empirical relations are valid only for given lithology and fluid type. 

4D time-lapse seismic methods are widely considered as an important method to characterize 

the subsurface property changes due to CO2 injection and migration. These techniques use re-

peated surveys to estimate changes in the reservoir and saturating fluid properties (brine, CO2, 

gas mixtures and others). Repeated seismic surveys can be used together with other geophysical 

methods, such as Controlled-Source Electro Magnetic (CSEM) method, Amplitude Versus Off-

set (AVO) analysis, and gravity surveys. For example, Landrø (2001) introduced a time-lapse 
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approach based on time-shifts and AVO attributes to discriminate between pressure and satu-

ration changes. Arts et al. (2004) applied a similar technique for CO2 storage monitoring. They 

found that the presence of CO2 has caused significant changes both in reflection coefficients 

and in travel time through the CO2 plume. Arts et al. (2008) combined seismic monitoring with 

seabed gravimetry to help constrain the simulation of CO2 migration. Meadows (2008) pro-

posed a model-based approach to predict and quantify the effects of CO2 injection for multiple 

reservoir properties and analyzed tuning effect including uncertainties. Since time-lapse seismic 

is highly dependent on the repeatability of the seismic survey, the reliability of this approach 

for fluid saturation changes could be discussed. White (2013) suggested an approach using 

time-lapse travel time differences in conjunction with log data to map the upper bound of CO2 

distribution. In this work, the pressure effects are calibrated by adopting a proper rock physics 

model. Bergmann and Chadwick (2015) proposed a method for volumetric estimation using 

time-shift analysis. They concluded that the behavior of fluid mixing could be observed in syn-

thetic and real data application. Norman et al. (2008) studied the CO2 saturation using time-

lapse marine CSEM surveys at Sleipner. In this study, resistivity is very high due to the present 

of gases. This high sensitivity of resistivity change is combined with seismic data to help the 

study in gas saturation. Landrø and Zumberge (2017) combined the time-lapse seismic data 

with gravity data to address the seismic shadow zone problem and study the CO2 saturation 

changes at Sleipner. 

Seismic reflection Amplitude Versus Offset or Angle technology (AVO/AVA) is also widely 

used to characterize lithology and fluids. AVO is supposed to be more sensitive to changes in 

reservoir fluid than 4D time-lapse technology with the help of extra VS information, rather than 

only VP (Castagna et al., 1985). For example, Brown et al. (2007) proposed a workflow using 

AVO attributes under arbitrary fluid saturation and pressure conditions. With the help of labor-

atory experiments to upscale effects of small-scale heterogeneities, they concluded that AVO 

not only can determine the presence of CO2, but also can track the changes in CO2 saturation 

over time. However, in many cases, the CO2 injection is associated with high-porosity high-

permeability rocks, where VS may be difficult to obtain accurately.  

During the last decades, FWI has been introduced as a powerful high-resolution method to map 

seismic properties of the subsurface. The method aims at searching for the best model that min-

imizes the misfit between observed and modelled waveforms. Tarantola (1984) first introduced 
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FWI and implemented in time domain. However, FWI requires solving a highly nonlinear in-

version problem and important computational resources. Cycle skipping is an important issue 

in particular when high frequencies are considered (Virieux and Operto, 2009). The quality of 

the seismic data seismic data (and especially for the low frequency content of the data), and the 

accuracy of the starting model play a key role for avoiding convergence towards local minima. 

The FWI method can be formulated in the time-space or in the frequency-space domain 

(Virieux and Operto, 2009). Time-domain FWI always highly depend on the starting model 

(Mora, 1987). While frequency-domain FWI can utilize the inversion procedure from low to 

high frequencies to ensure converging to the global minima (Song et al., 1995). The frequency 

domain FWI is more flexible in data selection while the time domain method can be less ex-

pensive.  

The goal of our study is to investigate how to estimate rock physics properties of the Sleipner 

CO2 storage pilot. To overcome the limitations of previous studies and obtain reliable reservoir 

properties, Dupuy et al. (2016a) described a two-step workflow with generic dynamic rock 

physics models. An effective fluid theory is applied to brine mixture with oil and gas. Selected 

poroelastic properties (rock frame and fluids properties) are estimated using an improved semi-

global optimization (Neighborhood Algorithm, NA) method. In this thesis, we use a similar 

two-step workflow. In the previous sensitivity study (Dupuy et al., 2017; Yan, 2016), we al-

ready implemented the first step into the rock physics tool. Hereafter, we will focus on the study 

of this rock physics tool to different synthetic and real datasets. Combinations of FWI and rock 

physics inversion are used to derive CO2 saturations. We will use 2D FWI, geological 

knowledge, log data, and rock physics inversion to quantify CO2 distribution and evaluate its 

associated uncertainty. Part of this work has been published in Yan et al. (2017b) and Yan et al. 

(2017a). 
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2 METHODS 

In this section, the FWI and the rock physics inversion methods are described. We consider two 

rock physics theories to define the poroelastic media partially saturated with brine and CO2. In 

uniform saturation theory, we describe an effective fluid phase and then apply the extended 

Biot theory (Pride, 2005) to the homogenized medium. In patchy saturation theory, to study the 

multiphase flow induced attenuation in the porous media, we consider an extended white (White, 

1975) model and use the Pride's equations (Pride et al., 2004) to obtain the effective frequency 

dependent moduli. 

2.1 Full-Waveform Inversion (FWI) 

The objective of the method is to generate a high-resolution image of the subsurface.  

The FWI is proposed and first implemented in the time domain by Tarantola (1984). Pratt and 

Worthington (1990) give the first try in frequency domain Full-Waveform Inversion. Virieux 

and Operto (2009) analyse the advantages and disadvantages between time domain and fre-

quency domain implementation. We use a similar frequency domain inversion method based 

on a preconditioned gradient approach as given by Pratt et al. (1998) and Romdhane and 

Querendez (2014). Figure 2-1 shows a representation of the approximate Hessian matrix. 

 

Figure 2-1. A representation of the approximate Hessian matrix e T  J J  by Pratt et al. (1998).  

An approximation of the Hessian operator with only the diagonal elements is used to save com-

putation cost. The inversion process is developed following a misfit minimization procedure. 
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The misfit m  (perturbation model) and the gradient of the misfit at iteration n can be formu-

lated as: 

 



2

mod

1
,

2
( )

e .

obs

Tn




 

 






m d d

m
J d

m

  (1) 

Where 
( )n



m

m
 is the gradient of the misfit at iteration n. modd and obsd are the modelled and 

observed data, respectively. e is the real part of a complex number. J denotes the Jacobian 

matrix, thus 
T

J is the transpose of the Jacobian matrix.  d  denotes the conjugate of the data 

residuals.  

Therefore, the perturbation model can be defined as: 

 1 .n n n  m m m   (2) 

The gradient method can be formulated as the link between the perturbation model and data 

residuals, and is given as: 

 
( )

.n
n n


 


 



m
m

m
  (3) 

Where n  is the step length at iteration n. 

Proper scaling and regularization can be applied to ensure the computational stability. The ap-

proximated Hessian aH  is given by: 

  .T

a e H J J   (4) 

If we only consider the diagonal term of the Hessian, the model that updates at iteration n can 

be estimated as: 

 
1 ( )

( ) .
n

n
n n adiag


    

  


m
m H I

m
  (5) 

Where   denotes the damping parameter to ensure computational stability.  
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More details about this FWI method can see in Shin et al. (2001) and Pratt et al. (1998).  

2.2 Rock Physics Inversion (RPI) 

2.2.1 Forward formulation (rock physics models) 

2.2.1.1 Uniform Saturation: effective fluid phase saturation  

The widely used Gassmann equations (Gassmann, 1951) provide a way to link the saturated 

fluid to the bulk modulus of the rock at a low frequency. Biot (1956a) theory is combined with 

the Gassmann equation to account for dynamic poroelasticity. The Biot-Gassmann equations 

are valid under several assumptions. The Gassmann equations are valid within a low frequency 

limit and do not account for the chemical interaction between the grains and the fluid phases. 

The Biot theory is limited to homogeneous and isotropic media, which consists of only one type 

of grain. To be more realistic, Pride (2005) extended the Biot-Gassmann equations and involved 

a generalized dynamic permeability (Johnson et al., 1987). The extensive Biot-Gassmann the-

ory can be applied to a multi-composite material saturated with a multi-fluid mixture. In addi-

tion, this approach is valid within a wide frequency range. More details on the assumptions and 

theory are given in Pride (2005). 

The extensive Biot-Gassmann equations allow us to calculate the viscoelastic attributes for an 

effective fluid phase, which is referred as uniform saturation in our study. Biot (Biot, 1956a, b) 

demonstrate that there are three types of waves propagating in a porous fluid saturated media. 

They are compressional wave (P-wave), shear wave (S-wave), and an additional slow compres-

sional wave (Biot wave or slow P-wave). The slownesses of these waves are formulated by 

Pride (2005) as: 
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  (6) 

Where ρ and ρf and ρ(ω)  are bulk density, effective fluid density, and flow resistance density. 

The undrained bulk modulus UK , the Biot modulus C, the shear modulus G and the fluid stor-

age coefficient M are the mechanical moduli. The additional terms γ(ω)  and H are defined by: 
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  (7) 

The mechanical moduli are related to the homogenized porous solid. UK , C, and M are for-

mulated as: 
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 (8) 

Where the term  is given by: 
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. (9) 

Where porosity is defined as the ratio between void and total volume in the solid matrix. Kd, 

Gd, and Kf are the frame bulk modulus, frame shear modulus and the effective fluid bulk mod-

ulus, respectively.  

Thus, we can deduce the effective wave velocities and quality factors, and formulated as: 
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  (10) 

We consider the solid material consists of different compositions. We compute the grains bulk 

moduli KS by averaging the bounds (Hashin and Shtrikman, 1963). The grain density ρS is 

computed with consideration of the compositional minerals in Utsira sandstone. Then, we use 

arithmetic average for the bulk density, which is given by: 

 (1 ) s f      . (11) 

For the frame properties, Pride (2005) suggests two methods to obtained the drained frame 

moduli Kd and Gd. He introduces the consolidation parameter cs which allow linking the frame 

moduli to the solid grain moduli. This approach is valid for consolidated sandstone, which has 

a consolidation parameter in the range of 2 < cs < 20. For unconsolidated sandstone, the Walton 

theory (Walton 1987) is more favourable. In the rock physics model, we considered the two 

approaches in the sensitivity analysis (Yan, 2016). In the application part in this paper, as the 

sandstone reservoir at Sleipner is unconsolidated, we do not use the cs term but rather the sep-

arated bulk and shear moduli. 

Johnson et al. (1987) proposed a frequency dependent dynamic permeability k(ω) , which cor-

rect the seismic permeability and differentiate the viscous and inertial predominant effects at 

low and high frequency domain (Dupuy et al., 2016). The dynamic permeability is expressed 

by Johnson et al. (1987): 

 
0( )

1
1

2 c c

k
k

i i


 

 



 

. (12) 

Whereω  is the angular frequency. cω is the characteristic angular frequency which is associ-

ated with the maximum attenuation. k0 is the hydraulic permeability. The characteristic angular 

frequency cω can be formulated with the cementation factor m, the effective fluid viscosity η 

and the fluid density ρf (Adler et al., 1992).  
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Biot (1956a) proposed another frequency depend property to extend the poroelasticity theory 

to the full frequency range. The frequency depend parameter is referred as the complex flow 

resistanceρ(ω) , and is defined by: 

 ( )
( )

i

k


 

 
  . (13) 

Where i  denotes the complex number. 

We define the effective fluid phase properties for the CO2 and brine mixture using different 

averaging methods. First, we use the empirical law (Brie et al., 1995) for the effective fluid bulk 

modulus Kf. Brie et al. (1995) proposed an empirical exponent e which varies from 1 to 40 

associated to different mixture trends. SW is the water (brine) saturation. KCO2 and KW is the 

CO2 and brine bulk moduli. The effective fluid bulk modulus Kf is formulated as: 

 2 2( ) e

f CO W W COK K K S K   . (14) 

Carcione et al. (2006) suggest using a brie exponent equal to 5 for the brine and CO2 mixture.  

Teja and Rice (1981) propose an equation for the effective fluid viscosity η. Considering the 

CO2 viscosity ηCO2 and brine viscosity ηW, the effective fluid viscosity η can be formulated as: 

 2

2

WS

W
CO

CO


 



 
  

 
 .  (15) 

The effective density ρf is given as the arithmetic average.  

 2(1 )f W W W COS S      . (16) 

Where ρW is the brine density. ρCO2 is the CO2 density. Hereafter, we will refer this model as 

the 'Brie rock physics model' and 'uniform saturation', which indicate the model using equations 

(14), (15) and (16). It can be uniform mixing or patchy mixing depending on the Brie exponent. 

2.2.1.2 Patchy Saturation  

White (1975) describes a patchy model for porous media saturated with multi-fluids. This 

model allows considering the pressure gradient generated by multi-fluids. Pride et al (2004) 
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reformulate and extend the White model using frequency dependent parameters. This allows 

taking into account wave induced fluid flows and associated attenuation and dispersion created 

by mesoscopic heterogeneities (fluid patches). In contrast to the uniform saturation, the fluids 

in the reservoir are not well mixed in the patchy saturation theory and the fluid-solid interactions 

are explicitly considered. The extended White model involves the spherical gas pocket and 

assumes the patch size should be much smaller than the detected wavelength. The assumptions 

of the extended White model are described by Pride (2005). Pride et al. (2004) point out that 

the extended patchy saturation has a limited range of validity for relative low and high brine 

saturations. Therefore, we consider the patchy model only for high brine saturation condition 

(SW   80% or similarly, SCO2   20% ) and low brine saturation (SW   20% or similarly, SCO2 

  80%) in the sensitivity analysis (Yan, 2016). With the consideration of geology studies at 

Sleipner, the case of high brine saturation is more likely to happen at Sleipner. The fluid patch 

is assumed spherical and a  is the radius for the patch sphere. 1L  is a geometrical term indicat-

ing the distance with zero pressure in the brine. The contact surface S between the saturated 

fluids and the elemental volume V form another geometrical term V S . Table 2-1 illustrates the 

parameters of the fluid properties corresponding to the high and low brine saturation conditions. 

Table 2-1: The fluid parameters corresponding to the high and low brine saturations. 

Saturation 

Condition 

High Water Saturation 

( CO2S 20% ) 

Low Water 

Saturation 

( CO2S 80% ) 

2

1L  
1 32

CO2

2 3

CO2

7S9
1

14S 6

a  
 

 
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15

a
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3

a 
 
 
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 
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ωk
 



 

11 

 

Pride et al. (2004) reformulate the Skempton modulus B(ω) , the bulk undrained modulus

UK (ω) , the Biot modulus C(ω) , and the fluid storage coefficient M(ω) , by using the stiffness 

coefficients 
ija ( i,j = 1, 2, 3) and the Biot-Willis constantα : 
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Where γ(ω)  is the inertial transport coefficient describing the mesoscopic flow, and is given as: 

 0

2

1
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W p

S k i
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
 

 
   , (18) 

where pω is the transition frequency associated with a high frequency mechanism.  

Using the similar equations in uniform saturation (see equations (6), (7), and (10)), we can de-

duce the velocities, quality factors in the patchy saturation model. More details for the patchy 

saturation theory are given in Dupuy and Stovas (2014). Hereafter, we will refer this model as 

'patchy saturation' or 'patchy model', which is different from patchy mixing of Brie rock physics 

model. 

2.2.2 Inversion formulation 

The rock physics inversion process estimates the poroelastic parameters from various combi-

nation of viscoelastic attributes (P- and S-wave velocities, P- and S-wave quality factors, and 

density). 

We assume that d , m  and g represents the data vector, the model vector and the linking func-

tion for the data and model, respectively. Therefore, the forward modelling process can be de-

scribed as: 
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 .gd (m)   (19) 

The relation function g is the rock physics model, for uniform and patchy saturation models in 

our study. The inverse of g cannot be computed and the system is solved by a semi-global 

optimization method. 

We implement the inversion process by using the NA algorithom. Sambridge (1999) introduces 

the NA algorithm method, which is a Monte Carlo oriented method. The NA method is search-

ing for the minimum discrepancy between the observed data 
obsd and the estimated data g( )m  

from the forward modelling. The scalar misfit function C(m) can be given as a L2 norm:  

 
1

C(m) ( ) ( ) .
2

Tg g    obs obs
d (m) d (m)   (20) 

The implementation of NA algorithm method has only two control parameters: the number of 

new models at each iteration and the resampling size of Voronoï cells. The misfit of the previous 

iteration decides the new sampling of Voronoï cell for the next iteration. Dupuy et al. (2016) 

and Sambridge (1999) provide more details of the rock physics inversion and NA algorithom, 

respectively. 

In our sensitivity study (see (Yan, 2016)), an iteration number of 1000 and a resampling factor 

of 10 has been shown to be sufficient to ensure the accuracy of the results. Whereas, the iteration 

number is reduced for synthetic and real data applications for the computational efficiency. For 

the estimation of the frame moduli (Yan, 2016), the iteration number is reduced to 500 to opti-

mize the computational process. For the CO2 saturation estimation, we reduce the iteration 

number to 400. This number is selected based on the misfit variation versus iteration number 

(see Appendix B).  

2.3 Summary of the sensitivity 

In the previous study on the sensitivity and well baseline application (Yan, 2016), we adopted 

a similar two-step workflow as described by Dupuy et al. (2016). We demonstrated the use of 

rock physics inversion for estimating CO2 properties, saturations, and rock frame properties at 

Sleipner CO2 storage site in the North Sea (Yan, 2016). We investigated the elastic wave ve-

locities and quality factors for the Utsira unconsolidated sandstone containing CO2 and brine 
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mixture and modeled the effect of various CO2 saturations on viscoelastic properties. Figure 

2-2 shows the P-wave velocity changes with different brine and CO2 saturations for uniform 

saturation with different Brie exponents and for patchy saturation with a bubble size equal to 

0.01 m. 

 

Figure 2-2. P-wave velocity variation with brine saturation for uniform saturation with various 

Brie exponent and patchy saturation with bubble size a of 0.01 m. 

The sensitivity tests are conducted using the extracted viscoelastic properties for uniform and 

patchy saturation to invert selected poroelastic parameters from various input data parametri-

zations. By analysis the results of the sensitivity tests, we found the following conclusions: 

1) The bubble size a in patchy saturation model cannot be well estimated. 

2) The critical frequency of patchy saturation is more variable compared with the one for 

uniform saturation model. 

3) Both patchy and uniform saturation models have better estimations of CO2 properties 

and brine saturation when the brine saturation is high. 

4) The brine saturation (thus CO2 saturation) can be estimated from only VP input with 

more or less uncertainty. CO2 saturation can be well estimated for low CO2 saturation 

condition. 

5) The additional information (quality factor of P-wave, S-wave velocity, density infor-

mation) can help the estimation of CO2 bulk modulus and reduce the uncertainty on 

CO2 saturation estimates. 

In a second step, we applied the rock physics inversion to the log data before CO2 injection to 

estimate the rock frame properties at Sleipner. With density and S-wave velocity computed 



 

14 

 

with an empirical relation, we can derive an estimation of the drained bulk and shear moduli 

of the reservoir which are similar to those derived by Lindeberg (2013).  

2.4 Workflow outline 

In this section, we outline the basic workflow that we used for all the applications. We will 

explain the workflow for the baseline and monitor CO2 injected application applications.  

2.4.1 Baseline application 

The baseline information is essential for the later estimation of CO2 saturation. Based on the 

sensitivity analysis, we know that better estimations of the rock frame properties can be 

achieved by involving additional proper empirical S-wave information and density. We apply 

a similar procedure to estimate the rock frame properties (Kd, Gd) for fully brine-saturated base-

line. We modify the baseline inversion code to handle a 2D case. For baseline information, we 

propose different strategies adopted for different cases. For the true synthetic model and FWI 

synthetic model application, we extract the baseline information using one trace with less CO2 

impacts and extend laterally along the layer variation carefully to obtain the associated frame 

properties. For the real data of inline 1881, we apply the extracted baseline information from 

log data. For the real data of inline 1838, we use the FWI derived baseline information. 

2.4.2 Monitor application 

From a practical point of view, the information of the real data is normally limited to P-wave 

velocity. We use FWI to generate P-wave velocity models. The initial P-wave velocity data 

prior to FWI would be obtained by a generated synthetic model or real dataset from seismic. 

Data processing is applied before the application of FWI. We select an area of the P-wave 

velocity model obtained from FWI. From the sensitivity analysis (Yan, 2016), we know that 

providing a priori properties to reduce the unknowns in the inversion process can increase the 

stability of inversion. Therefore, we prepare the a priori rock properties for the rock physics 

inversion.  

To start the application study, we also modify our rock physics inversion code to be adaptable 

for the 2D application with given grids design. The following cases are considered: 
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Case 1: Estimation of fluid saturation assuming a known Brie exponent e using uniform satu-

ration model for partially saturated media. 

Case 2: Estimation of fluid saturation and Brie exponent e using uniform saturation model for 

partially saturated media. 

Case 3: Estimation of fluid saturation and fluid phase properties using uniform saturation model 

for partially saturated media. 

Case 4: Estimation of fluid saturation using patchy saturation model for partially saturated me-

dia. 

Based on the sensitivity studies (Dupuy et al., 2017; Yan et al., 2017b) of the rock physics 

inversion tool, we found that there are always many good models with low misfit. For example, 

the low misfit area (pink region in Figure 2-3 (a)) shows that the trade-off between Brie expo-

nent e and brine saturation SW. The best estimated model (blue cross, lowest misfit) is located 

at the upper part of the low misfit region (Figure 2-3 (a)). We also found that the best estimation 

with the minimum misfit of frame bulk modulus is located at the bound of the low misfit area 

(Figure 2-3 (b)). Therefore, we can expect to give a more realistic estimation when we consider 

average of all the low misfit models. In this sense, we select all the models with a misfit lower 

than a given maximum value of misfit. In addition of the mean value, we estimate the one 

standard deviation to give an idea of the uncertainty. It is worth noting that we also apply similar 

uncertainty analysis on the baseline inversion process for the estimation of reservoir frame 

moduli. The uncertainty in our study is an absolute value and not in percentage. 
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Figure 2-3. Panel (a) indicates the estimations of Brie exponent e and brine saturation SW for 

uniform saturation from P-wave velocity input only. Panel (b) indicates the estimation of frame 

moduli for Utsira sandstone of log data from P-wave velocity only. The blue cross indicates the 

best model and the red cross indicates the true model.  
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3 SLEIPNER GEOLOGICAL SETTING AND ROCK PHYSICS 

PROPERTIES 

Since 1996, the Sleipner site, known as the world’s first industrial scale CO2 storage operation 

(Chadwick et al., 2004), is operated in the North Sea. About 1 million tons per year of CO2 is 

separated from production and injected into the underground saline aquifer at Sleipner 

(Carcione et al., 2006). The CO2 is injected into the Utsira Formation at a depth of 1012 m 

below the sea level through a deviated well (Arts et al., 2008).  

The reservoir sand comprises two big depositional basins, which are lying on the North Sea 

Basin at depths from 550 m and 1500 m (Chadwick et al., 2000). The CO2 is being injected at 

the part in the southern Sleipner where the thickness of the Utsira sandstone is about 300 m 

(Figure 3-1). The reservoir extends about 400 km from south to north, which consists of late 

Miocene to early Pliocene dominantly sandy unit and some shaly intra-reservoir horizons 

(Chadwick et al., 2000).  

 

Figure 3-1. Map of the Utsira sand reservoir thickness (Arts et al., 2004).  

Figure 3-2 shows the geological structure of the Utsira Sand, which is surrounded by the Nord-

land shale on the top and the Hordaland shale on the bottom. Shale layers are clearly visible on 

the gamma ray (GR) response with values higher than 80 API (Dupuy et al., 2017; Yan, 2016). 

The Utsira Formation is a highly porous, weakly consolidated, highly permeable sandstone 

which provides a good reservoir condition for high injection rate through only one single well 

(Michael et al., 2010). The intra-reservoir shale layers are very thin and can be less than 1 m 
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thick (Zweigel et al., 2000). The intra-reservoir shales are regarded as the low permeability 

barriers, which impact the CO2 top wards migration (Chadwick et al., 2004).  

 

Figure 3-2: Sketch of geological model for CO2 migrations (Bickle, 2009). 

The caprock shale is known as the Nordland shale, which comprises dominantly kaolinite, illite, 

quartz, and smectite (Gaus et al., 2005). Based on the cutting analysis, that the caprock is as-

sumed to be a good quality seal with a low probability of leakage (Chadwick et al., 2004).  

For the application of rock physics inversion, we need to determine a set of realistic a priori 

poroelastic properties at Sleipner. The a priori parameters are extracted based on the existing 

geological studies on Sleipner field. Grain moduli of the Utsira sandstone and the Nordland 

shale are calculated by averaging Hashin-Shtrikman bounds (Hashin and Shtrikman, 1963; 

Mavko et al., 2009). Effective grain density for the Utsira sandstone and the Nordland shale are 

computed by using volume weighted averages, the specified calculation are clarified in the sen-

sitivity tests (Yan, 2016). The cementation parameter m is assumed to be 1 for the weakly con-

solidated sandstone and mudstone. The permeability for the Utsira Formation is high and ranges 

from 1×10-12 m2 to 3×10-12 m2 (Boait et al., 2012). We use an average permeability of 2×10-12 

m2. Porosity of the Utsira sandstone ranges between 27% and 42% (Chadwick et al., 2004). The 

drained frame moduli (Kd and Gd) of the Utsira sandstone are taken from Lindeberg (2013), 
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while the drained frame moduli of the Nordland shale are obtained by rock physics inversion 

for the fully brine saturated baseline data. The a priori properties of the Utsira sandstone and 

the Nordland shale properties used in our application studies are summarized in Table 3-1. The 

shale grain properties are applied to all the interbedded shales. In previous log data application 

study (Yan, 2016; Yan et al., 2017b), we use baseline information from well 15/9 - A16 before 

the CO2 injection started. More details for KS and ρS are illustrated in Appendix D and Appendix 

E. 

Table 3-1. The composite Utsira sandstone and Nordland shale properties. 

Lithology 

Solid Properties Frame Properties 

KS ρS m ko 

GPa kg/m3  m2 

Utsira 

Sandstone 
39.29 2663.5 1 2.00×10-12 

Nordland Shale 22.6 2390 1 1.47×10-17 

 

For the a priori properties of the saturating fluids, we consider a CO2 and brine mixture after 

CO2 injection and a fully brine saturated medium before CO2 injection. At the pressure and 

temperature of the reservoir, the bulk modulus of brine is 2.3 GPa (Boait et al., 2012), and the 

density of brine is 1030 kg/m3 (Mavko et al., 2009). Most of the CO2 is stored in a supercritical 

state (Arts et al., 2008) and we use a relative high density of 700 kg/m3 for the CO2 phase. Since 

the initial hydrostatic pore pressure of 8 MPa is considered (Furre et al., 2015; Furre and Eiken, 

2014), the range of KCO2 is estimated to be 0.02 GPa - 0.075 GPa (Ghaderi and Landrø, 2009; 

Span and Wagner, 1996). We use value of 0.075 GPa for bulk modulus of CO2 (Lindeberg, 

2013). The viscosity property of CO2 is discussed in many papers and depends on the temper-

ature and pressure (Gasda et al., 2012; Singh et al., 2010). However, the effective viscosity 

influence on seismic velocity is minor in low frequency (Dupuy et al., 2016), and we use 6×10-
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5 Pa.s for the CO2 viscosity. The saturating fluids properties used in our application studies are 

summarized in Table 3-2.  

Table 3-2. Brine and CO2 fluid properties. 

Fluid phase 

Fluid properties 

ƞ ρf Kf 

Pa.s kg/m3 GPa 

Brine 6.90×10-4 1030 2.30 

CO2 6.00×10-5 700 0.075 
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4 SLEIPNER WELL 15/9-A16 

In this section, we are going to apply the rock physics inversion to the baseline log data (i.e. 

before injection). The objective is to evaluate the uncertainty in the estimation of the rock frame 

moduli and to see if the estimations using the mean values are different from the model with 

the lowest misfit.  

4.1 Data preparation 

We use the same combination input data of (VP, VS and density) for the baseline application as 

described by Yan (2016). The combined S-wave velocity is derived by Vernik's relation (Vernik 

et al., 2002). The grain density is derived from Hashin-Shtrikman bounds, and thus we derived 

the density porosity. We use an iteration number of 500 and a resampling size of 10. Figure 4-1 

shows input information of P- and S-wave velocities, density and the density-derived porosity. 

The thin interbedded shale layers within the Utsira sand formation can be discriminated from 

the log data.  

 

Figure 4-1. From left to right: P-wave velocity, S-wave velocity, bulk density and the density log 

derived porosity. P-wave velocity and density responses are log data from well 15/9-A16. S-wave 

velocity is derived using Vernik's relation. Density porosity log is derived from bulk density log 

and the grain density computed from Hashin-Shtrikman bounds. The red and green dots indicate 

the caprock of the Nordland shale and the Utsira sandstone, respectively. 
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4.2 Estimation of frame moduli 

Figure 4-2 shows the estimations of frame bulk modulus Kd and frame shear modulus Gd. The 

mean values of the extracted frame moduli are estimated with a threshold misfit of 10%. The 

mean estimation of the frame moduli (Kd, Gd) are similar with the one corresponding to the 

lowest misfit result and give a similar slight increasing trend with the increasing of depositional 

depth. The deviations of the frame shear modulus are slightly higher than that for the frame 

bulk modulus. To conclude, the difference between the mean estimation of the frame moduli 

(Kd, Gd) and the one corresponding to the lowest misfit result is very small. 

 

Figure 4-2. From left to right: frame bulk and shear moduli, which are derived from the 

combination input of P-wave velocity, S-wave velocity and density. The black lines indicate the 

best estimations with the lowest misfit models. The blue lines indicate values of a set of models 

have misfit lower than 0.1. The dotted lines correspond to the mean value of estimation plus/minus 

uncertainty. 

We also try a different threshold (10 instead of 0.1). The conclusion is that the choice of the 

misfit threshold will not have a big impact on the mean estimation. The figures are given in 

Appendix A. 
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5 SYNTHETIC SLEIPNER MODEL  

This chapter uses the synthetic Sleipner model from Traub (2008). The true synthetic model is 

shown in Figure 5-1. We conduct several tests to figure out various effects by different models 

on the estimation of CO2 distribution.  

 

Figure 5-1. Initial 2D synthetic true model.  

5.1 Data preparation and a priori rock properties 

In this section, we show the results using rock physics inverted rock frame information and 

prepare the a priori rock properties for RPI. We select a region focus on CO2 saturated layers 

from 765m (Figure 5-2). To extract a more reliable baseline reservoir properties, we select a 

trace as shown in Figure 5-2. Then, we extract the frame moduli from the baseline using inputs 

of P-wave velocity, S-wave velocity and density. S-wave velocity and the bulk density are de-

rived using Vernik's and Gardner's relations (Mavko et al., 2009), respectively. The Vernik’s 

relations for sand and shale are given by: 

 

2 4 0.5

2 4 0.5

( 1.267 0.372 0.00284 )  (km/s) for sandstone,

( 0.79 0.287 0.00284 )  (km/s) for shale.

S P P

S P P

V V V

V V V

   

   
 (21) 

The Gardner relation is given by: 

 0.2611.66 .PV   (22) 

Where the bulk density ρ is in unit of g/cm3, the P-wave velocity VP is in km/s. The correspond-

ing porosity is derived using the Gardner relation derived density and grain density, and can be 

computed by volumetric average as: 
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The deduced estimation of the frame moduli is derived using mean values of the models with 

misfit lower than 0.1 (Figure 5-3). 

 

Figure 5-2. Synthetic P-wave velocity model for selected region. The black line indicates the 

extracted vertical profile (x = 1947 m). 

 

Figure 5-3. From left to right: P-wave velocity, S-wave velocity, bulk density, density porosity, 

frame bulk modulus and frame shear modulus. The red and green dots indicate the caprock of 

the Nordland shale and the Utsira sandstone, respectively. The blue lines indicate the rock frame 

moduli (mean value with maximum misfit of 0.1) inverted using the combination input of P-wave 

velocity, S-wave velocity, and density. The dotted lines correspond to the mean value of estimation 

plus/minus uncertainty. 
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From the P-wave velocity model shown in Figure 5-2, we estimate the P-wave vertical gradient 

in order to define the boundary between shale and sand. As shown in Figure 5-4, a distinctive 

positive value of the first derivative is expected to be related to a lithology change from sand to 

shale. While a distinctive negative value of the first derivative is expected to be related to a 

lithology change from shale to sand. Meanwhile, we should be careful in the region with CO2 

induced reduction in velocity. Thus, we generate the 16 layers numbered with constant number 

from 1 to 16 (as shown in Figure 5-4 ).  

(a) 

 

(b) 

 

(c) 

 

Figure 5-4. From top to bottom: (a) first derivative of P-wave velocity with respect to the depth, 

(b) velocity model with extracted boundaries, and (c) the generated 16 layers. The vertical axis is 

corresponding to the row number of the matrix, while the horizontal axis is the column number 

of the matrix.  

Therefore, we construct the corresponding rock frame properties using the structural model and 

the estimated frame moduli. We interpolate linearly for each corresponding layer based on the 

extracted baseline information. The procedure is repeated for all the traces. Thus, we create the 

a priori information of the frame properties (Figure 5-5). 
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Figure 5-5. The derived new a priori rock properties. From top to bottom: frame bulk modulus, 

frame shear modulus, grain bulk modulus, porosity, grain density and permeability. 

5.2 Estimation of CO2 saturation 

After deriving the a priori frame properties, we use the same P-wave velocity input for the rock 

physic inversion. We use a central frequency of 30 Hz and a NA iteration number of 400. 

Figure 5-6 shows the estimation results when we use a Brie rock physics model with a Brie 

exponent e equal to 5 (Carcione and Picotti, 2006). The CO2 saturation is high from 60% to 90% 

in central plume. CO2 saturation is about 20% - 30% outside of the main plume. It is worth 

noting that the uncertainty in our estimation results is absolute value. The related uncertainty 

of CO2 saturation is ranging from 0.15 to 0.25. This means that the saturation is known with ± 

0.15 to 0.25 i.e. between 35 to 100% SCO2. 
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Figure 5-6. Estimation of CO2 saturation (top panel) and uncertainty of CO2 saturation (bottom 

panel) using Brie rock physics model with e = 5.  

Figure 5-7 shows the estimation results when we use a Brie rock physics model to invert CO2 

saturation and Brie exponent e simultaneously. The estimated CO2 saturation is higher and the 

related uncertainty of CO2 saturation is also higher. The Brie exponent e varies from 6 to 16 for 

CO2 saturated layers, while for the Brie exponent can be quite high to around 35 for the CO2 

plume, suggesting uniform saturation distribution. The  uncertainty of Brie exponent is around 

6 – 10. 
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Figure 5-7. From top to bottom: estimation of CO2 saturation, uncertainty of CO2 saturation, 

estimation of Brie exponent, and uncertainty of Brie exponent using Brie rock physics model with 

e inverted. 

Figure 5-8 and Figure 5-9 show the estimation results when we use a Brie rock physics model 

to invert CO2 saturation and CO2 properties (CO2 bulk modulus, density, and viscosity) simul-

taneously. The estimated CO2 saturation is similar with the case when CO2 properties are de-

fined. The estimated CO2 bulk modulus is around 0.05 - 0.06 GPa with an uncertainty around 

0.01 - 0.02 GPa for the central plume. The estimated CO2 density is around 700 - 800 kg/m3 

with an uncertainty around 30 - 50 kg/m3 for the central plume. The viscosity of CO2 is hard to 

be inverted using P-wave velocity only as we concluded in the sensitivity tests. Therefore, the 

related figures for CO2 viscosity in 2D are not shown here for brevity. It could be explained 

using the sensitivity results in Figure 5-10 (Yan, 2016). We can see that SW is well estimated 

even when the CO2 properties are not defined using only VP. The CO2 properties cannot be well 

estimated using only VP as an input. There are several local minima and KCO2 cannot converge 
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towards the true model. KCO2 and ρCO2 can be better estimated when VS is added (Dupuy et al., 

2017; Yan, 2016). Quality factor QP is also important to reduce uncertainty. More details are 

provided in Yan (2016). 

 

 

Figure 5-8. Estimation of CO2 saturation (top panel) and uncertainty of CO2 saturation (bottom 

panel) using Brie rock physics model (e = 5) with CO2 properties inverted. 
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Figure 5-9. From top to bottom: estimation of CO2 bulk modulus, uncertainty of CO2 bulk 

modulus, estimation of CO2 density, and uncertainty of CO2 density using Brie rock physics model 

(e = 5) with CO2 properties inverted. 

 

Figure 5-10. Uniform saturation condition (true model SW = 85%): inversion of CO2 density, CO2 

bulk modulus, CO2 viscosity and brine saturation from VP. The blue cross indicates the best model; 

red cross indicates the true model. 
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We also conducted the tests for fully patchy mixing with e = 1 (Figure 5-11) and fully uniform 

mixing with e = 40 (Figure 5-13), and the case with e = 3 (Figure 5-12) (Brie et al., 1995). 

When e = 1, the Brie rock physics model gives the highest estimation of CO2 saturation. While 

the estimation using e = 40 is with a high uncertainty up to 0.4. This can be explained using 

Figure 2-2 that the P-wave velocity is less sensitive to the change of saturation when brine 

saturation is low. The estimation results using e = 3 is similar with that using e = 5. 

 

 

Figure 5-11. Estimation of CO2 saturation (top panel) and uncertainty of CO2 saturation (bottom 

panel) using Brie rock physics model with e = 1. 
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Figure 5-12. Estimation of CO2 saturation (top panel) and uncertainty of CO2 saturation (bottom 

panel) using Brie rock physics model with e = 3. 

 

 

Figure 5-13. Estimation of CO2 saturation (top panel) and uncertainty of CO2 saturation (bottom 

panel) using Brie rock physics model with e = 40. 

Figure 5-14 shows the estimation results when we use patchy saturation model. The estimated 

CO2 saturation is ranging from 0% to 17% with ± 0.02 to 0.035 uncertainty. Due to the limita-

tion related to the validity range of saturation, the results are not meaningful and, therefore, we 

do not show this model for the later application on FWI synthetic model.  

We also give a 1D view analysis at x = 1062 m to better visualize the estimation results. The 

selected trace through the main CO2 plume. The estimation of CO2 saturation is given in Figure 

5-15 and the jointly estimated other properties are given in Figure 5-16. 
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Figure 5-14. Estimation of CO2 saturation (top panel) and uncertainty of CO2 saturation (bottom 

panel) using a patchy saturation with a = 0.01 m. 

  

Figure 5-15. 1D estimation of CO2 saturation using Brie rock physics model with different Brie 

exponent (left panel) and 1D estimation of CO2 saturation using different rock physics models 

(right panel) for x = 1062 m. The dotted lines correspond to the mean value of estimation 

plus/minus uncertainty. 
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Figure 5-16. From left to right: 1D profile of Brie exponent and other CO2 properties results (CO2 

viscosity, CO2 bulk modulus, and CO2 density) inverted jointly with the CO2 saturation using 

different rock physics models for x = 1062 m. The dotted lines correspond to the mean value of 

estimation plus/minus uncertainty. 
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6 FWI SYNTHETIC MODEL  

In this part of study, we apply the rock physics inversion tool on the synthetic Sleipner data 

using the results derived from FWI. The goal is to test and demonstrate the validity and effi-

ciency of the proposed rock physics tool prior to the application of the real data set in 2008.  

6.1 Data preparation and FWI tests 

We start the FWI with a smooth starting model as shown in Figure 6-1. The warm colour region 

in the central is related to the layers with a low P-wave velocity ranging from 1700 m/s to 

1800 m/s. This low-velocity anomaly spot is indicating the CO2 saturated layers. 

 

Figure 6-1. Starting model of P-wave velocities before FWI. 

We run different FWI tests and generate different VP results. Figure 6-2 shows the P- wave 

results derived using different FWI processes. We are using a preconditioned-gradient tech-

nique jointed FWI tomographic method. We conduct the FWI process in different ways to ob-

tain the best P- wave results. First, we detect the smoothing factor effects on the P- wave results 

(as shown in panel (a), (b), (c), (d) in Figure 6-2). The P- wave velocity models derived from 

in FWI tests 1 and 3 show the effect due to a different value of x-direction smoothing factor. 

The higher smoothing factor (0.8) in x-direction will slightly increase the P-wave velocity re-

sults but does not affect the discrimination of layers (as shown in panel (a), (c) in Figure 6-2). 

In contrast, the P-wave velocity derived in FWI tests 2 and 4 show the effect due to a different 

value of z-direction smoothing factor. The z-direction smoothing factor has a strong effect on 

the vertical resolution. An improper selection of the z-direction smoothing factor will smear the 

layers and geological variation in depth (as shown in panel (b), (d) in Figure 6-2). Therefore, a 

z-direction smoothing factor of 0.2 and a relative small z-direction smoothing factor of 0.1 are 
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favourable in our case. In addition, the P-wave velocity results using a FWI without smoothing 

show many artefacts (panel (e) in Figure 6-2). The velocity in the layers is not laterally constant 

in this area and cannot be distinguished from each other (panel (e) in Figure 6-2). The last FWI 

test (panel (f) in Figure 6-2) is designed with estimating the Hessian operator at each iteration 

step and with a very small damping factor for the Hessian operator (1×10-8). With this more 

time-consuming computation of the Hessian, the P-wave velocity is better defined and the 

deeper layers in the reservoir (panel (f) in Figure 6-2) are well reconstructed. The different 

setting parameters for different FWI tests are described in Table 6-1. More details of the FWI 

setting parameters are given in Appendix B. 

Table 6-1. Different parameter settings for FWI tests. 

Parameter 
Value for 

test 1 

Value for 

test 2 

Value for 

test 3 

Value for 

test 4 

Value for 

test 5 

Value for 

test 6 

Damping 

coefficient of 

Hessian 

0.001 0.001 0.001 0.001 0.001 1.00×10-8 

Smooth 

method 

Gaussian 

spatial 

smoothing 

Gaussian 

spatial 

smoothing 

Gaussian 

spatial 

smoothing 

Gaussian 

spatial 

smoothing 

No 

smoothin

g 

Gaussian 

spatial 

smoothing 

Wavelength 

fraction 

along x 

0.2 0.2 0.5 0.2 0 0.2 

Wavelength 

fraction 

along z 

0.1 0.8 0.1 0.5 0 0.2 

Estimated 

Hessian at 

each iteration 

No No No No No Yes 

 

We can distinguish approximately 8 CO2 injected layers from the FWI derived P-wave velocity. 

With the considering of the higher resolution on layers saturated with CO2, the full inversion 
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results of test 6 is used as the input for the rock physics inversion. To save the computational 

cost in the process of application on the rock physics inversion, we focus on a region of interest 

with CO2 saturated. The 1D P-wave velocity profiles for selected region of different FWI tests 

(Figure 6-3) are extracted to illustrate the velocity variation for each FWI test. 

(a) 

Test 1 

 

(b) 

Test 2 

 

(c) 

Test 3 
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(d) 

Test 4 

 

(e) 

Test 5 

 

(f) 

Test 6 

 

Figure 6-2. P-wave velocities after various FWI tests. 
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Figure 6-3. P-wave velocity for different FWI tests at x = 1062 m.  

Figure 6-4 shows the selected region of FWI test 6 at depths from 765 m to 1047 m. For a priori 

rock physics parameters, we use true model derived frame moduli as described in previous chapter 

(Figure 6-5). 

 

Figure 6-4. P-wave velocity model extracted for the target region from FWI test 6. 
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Figure 6-5. From left to right: P-wave velocity of FWI test 6, S-wave velocity, bulk density, density 

porosity, frame bulk modulus, frame shear modulus at x = 1077 m. The red dots indicate the 

Nordland caprock shale, and the green dots indicates the Utsira sandstone. The frame moduli 

(blue lines) are inverted using rock physics inversion for true synthetic model with plus/minus 

related uncertainty (dotted blue lines). 

6.2 Estimation of CO2 saturation 

In this section, we present the estimation results using different rock physics models with a 

maximum misfit of 0.1 and the corresponding uncertainty. We use a central frequency of 30 Hz 

and a NA iteration number of 400.  

Figure 6-6 shows the CO2 saturation is ranging from 0.1 to 0.3 ± 0.1 to 0.15, i.e. between 0 and 

0.45 (0 to 45% SCO2). This is lower than that using the true synthetic model. The reason for 

this low CO2 saturation estimation could be the overestimated velocity from FWI. 
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Figure 6-6. Estimation of CO2 saturation (top panel) and uncertainty of CO2 saturation (bottom 

panel) using Brie rock physics model with e = 5. 

Figure 6-7 shows the estimation results when we use a Brie rock physics model to invert CO2 

saturation and Brie exponent e together. The estimated CO2 saturation ranges from 20% - 65% 

with an uncertainty of 0.20 to 0.36, which is higher than using e = 5. The Brie exponent e varies 

from 8 to 32 with an uncertainty of 5 to 16 for CO2 saturated layers in general, which indicates 

the mixture is between a fully patchy mixing and uniform mixing distribution.  
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Figure 6-7. From top to bottom: estimation of CO2 saturation, uncertainty of CO2 saturation, 

estimation of Brie exponent, and uncertainty of Brie exponent using Brie rock physics model with 

Brie exponent e inverted. 

Figure 6-8 shows the estimation results when we use a Brie rock physics model with e = 5 to 

invert CO2 saturation and other CO2 properties (CO2 bulk modulus, CO2 density, and viscosity) 

simultaneously. The estimated CO2 saturation are similar with that when the CO2 properties are 

defined. The results of CO2 bulk modulus and density are not as good as that for the case of true 

synthetic model. One possible reason is that the true synthetic model is a more favourable case with 

clear thin layers. The viscosity of CO2 is also hard to be inverted using only P-wave velocity. 

The related figures for CO2 viscosity in 2D are not shown here for brevity. 
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Figure 6-8. From top to bottom: estimation of CO2 saturation, uncertainty of CO2 saturation, 

estimation of CO2 bulk modulus, uncertainty of CO2 bulk modulus, estimation of CO2 denisty, 

and uncertainty of CO2 denisty using Brie rock physics model (e = 5) with other CO2 properties 

inverted. 

We also conducted the Brie rock physics model tests for fully patchy mixing with e = 1 (Figure 

6-9) and fully uniform mixing with e = 40 (Figure 6-11), and the case with e = 3 (Figure 6-10) 

(Brie et al., 1995). The highest saturations for the Brie rock physics model with e = 1, 3 and 40 

are known with 82% ± 0.2 uncertainty, 53% ± 0.2 uncertainty, and 92% ± 0.41 uncertainty, 

respectively. When e = 1, the Brie rock physics model shows the highest amount of CO2. While 

the Brie rock physics model with e = 40 does not show the CO2 saturated layers and has a high 

uncertainty up to 0.4. It could be due to the P-wave velocity is less changeable when brine 

saturation is ranging from 0% to 90% for the Brie rock physics model with e = 40 (Figure 2-2). 

The estimation results using e = 3 is similar with that using e = 5. 

For the 2D synthetic data, we also extract the results and the input data at x = 1062 m, where 

we can observe through the injection point and the above accumulation layers of carbon dioxide. 

The estimation of CO2 saturation is given in Figure 6-12 and the jointly estimated other prop-

erties are given in Figure 6-13. 
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Figure 6-9. Estimation of CO2 saturation (top panel) and uncertainty of CO2 saturation (bottom 

panel) using Brie rock physics model with e = 1. 

 

 

Figure 6-10. Estimation of CO2 saturation (top panel) and uncertainty of CO2 saturation (bottom 

panel) using Brie rock physics model with e = 3. 
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Figure 6-11. Estimation of CO2 saturation (top panel) and uncertainty of CO2 saturation (bottom 

panel) using Brie rock physics model with e = 40. 

  

Figure 6-12. 1D estimation of CO2 saturation using Brie rock physics model with different Brie 

exponent (left panel) and 1D estimation of CO2 saturation using different rock physics models 

(right panel) for x = 1062 m. The dotted lines correspond to the mean value of estimation 

plus/minus uncertainty. 
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Figure 6-13. From left to right: 1D profile of Brie exponent and other CO2 properties results (CO2 

viscosity, CO2 bulk modulus, and CO2 density) inverted jointly with the CO2 saturation using 

different rock physics models for x = 1062 m. The dotted lines correspond to the mean value of 

estimation plus/minus uncertainty. 
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7 REAL DATA (INLINE 1881, VINTAGE 2008, AFTER IN-

JECTION) 

The data is obtained after CO2 injection in 2008. This inline data is located at about 533 m away 

of the injection point. The seismic data after time migration of inline 1881 is given in Figure 

7-1. 

 

Figure 7-1. Seismic data after time migration from inline 1881.  

7.1 Data preparation 

Figure 7-2 shows the P-wave velocity derived from FWI. The CO2 induced low P-wave velocity 

region is shown with warm colour (Figure 7-2). The FWI results are discussed in Romdhane 

and Querendez (2014).  
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Figure 7-2. P-wave velocity for 2D real data section (inline 1881, 2008 vintage, after CO2 injection). 

The black square shows the selected region of interest with CO2 saturated. 

In this case, we use the baseline information derived from the log data as described in Chapter 

4. The 1D derived frame properties from the Well 15/9-A16 are smoothed and horizontally 

extended to 2D layered structure. For efficient computation, we selected a target region from 

the FWI model (Figure 7-3). The selected region consists of 95×401 grid points. We can see a 

moderate pushdown effect on P-wave velocity in the region caused by the contrast between the 

slow-velocity CO2 and the surrounded high-velocity brine-saturated reservoir.  

 

Figure 7-3. P-wave velocity model for target region.  

The correlation between monitor P-wave velocity and reservoir frame properties are given by 

Figure 7-4. The 1D P-wave velocity profile is extracted at x = 2835 m. The log data derived 

frame properties are shifted form depth of 792 m - 1074 m to the depth of 762 m - 1044 m. 
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Figure 7-4. Correlation of P-wave velocity of inline 1881 real data and smoothed reservoir 

properties derived by log data. From left to right: P-wave velocity, grain density, density porosity, 

frame bulk modulus and frame shear modulus. The red dots indicate the Nordland caprock shale, 

and the green dots indicates the Utsira sandstone. The log data derived properties from 792 m are 

shifted to the depth of 762 m. The P-wave velocity profile is extracted at x = 2835 m. 

7.2 Estimation of CO2 saturation 

We apply the rock physics tool to the selected region of inline 1881 real data. The estimation 

of CO2 saturation for uniform saturation model with Brie exponent e = 5 is given in Figure 7-5. 

The estimations of CO2 saturation within the sandstone layers vary in the range of 13% - 30% 

with a maximum misfit of 0.1. The CO2 saturation estimates within the sandstone layers are 

known with ± 0.13 to 0.16 uncertainty. The higher deviation is present where the CO2 satura-

tion is higher. 
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Figure 7-5. Estimation of CO2 saturation (top panel) and uncertainty of CO2 saturation (bottom 

panel) using Brie rock physics model with e = 5. 

The estimations of CO2 saturation and Brie exponent are given in Figure 7-6. The estimations 

of CO2 saturation within the CO2 saturated sand layers vary in the range of 10% - 56% ± 0.12 

to 0.24 uncertainty. The Brie exponent e varies from 5 to 16 with an uncertainty ranging around 

6–15. 
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Figure 7-6. From top to bottom: estimation of CO2 saturation, uncertainty of CO2 saturation, 

estimation of Brie exponent, and uncertainty of Brie exponent e using Brie rock physics model 

with Brie exponent e inverted. 

We also conduct the Brie rock physics model for cases of fully patchy mixing with e = 1 (Figure 

7-7) and fully uniform mixing with e = 40 (Figure 7-9), and the case with e = 3 (Figure 7-8) 

(Brie et al., 1995). The Brie rock physics model with e = 1 gives the highest estimation of CO2 

saturation up to 62% ± 0.2 uncertainty. While the estimation of CO2 saturation using e = 40 

have a high uncertainty up to 0.4. The estimation of CO2 saturation using e = 3 is similar with 

that using e = 5. The 2D estimation results of CO2 saturation from patchy saturation model are 

very low and not shown here for brevity. 
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Figure 7-7. Estimation of CO2 saturation (top panel) and uncertainty of CO2 saturation (bottom 

panel) using Brie rock physics model with e = 1. 

 

 

Figure 7-8. Estimation of CO2 saturation(top panel) and uncertainty of CO2 saturation (bottom 

panel) using Brie rock physics model with e = 3. 
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Figure 7-9. Estimation of CO2 saturation (top panel) and uncertainty of CO2 saturation (bottom 

panel) using Brie rock physics model with e = 40. 

Figure 7-10 shows the estimation results when we use a Brie rock physics model (e = 5) to 

invert CO2 saturation and CO2 properties (CO2 bulk modulus, density, and viscosity) simulta-

neously. The estimated CO2 saturation is similar with the case when CO2 properties are defined 

(Figure 7-5). The figures of estimation results for other CO2 properties (CO2 bulk modulus, 

density, and viscosity) are not shown here for brevity. 

 

 

Figure 7-10. Estimation of CO2 saturation (top panel) and uncertainty of CO2 saturation (bottom 

panel) using Brie rock physics model (e = 5) with other CO2 properties inverted. 

To better understand and compare the estimations of CO2 saturation by different rock physics 

models, we compare the results for 1D profiles (Figure 7-11, Figure 7-12) for x = 2835 m. 
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Figure 7-11. 1D estimation of CO2 saturation using Brie rock physics model with different Brie 

exponent (left panel) and 1D estimation of CO2 saturation using different rock physics models 

(right panel) for x = 2835 m. The dotted lines correspond to the mean value of estimation 

plus/minus uncertainty. 

Figure 7-11 shows the 1D profile of CO2 saturations estimated using different rock physics 

models. The uniform saturation model with a smaller Brie exponent gives a higher estimation 

of CO2 saturation. The higher Brie exponent e is indicating that the fluids are mixed at the finest 

scale (uniform mixing). The estimation of CO2 saturation is low with around 12% for uniform 

saturation model with e = 40 within the CO2 saturated zone. The high CO2 saturation phenom-

enon is located in 7 layers at depths of approximately 810 m, 846 m, 873 m, 918 m, 942 m, 972 

m and 1005 m. The difference of the estimated CO2 saturation from uniform saturation using 

different Brie exponents is bigger for the shallower layers, which seems to be saturated with a 

higher CO2 concentration. The estimation of CO2 saturation is more consistent for the deeper 

deposited layers with lower CO2 saturation. It could be due to the buoyancy effect controlling 

the CO2 migration towards upper layers (with temporary boundaries created by the thin intra-

shale layers). In addition, estimation of CO2 saturation varies dramatically and seems higher 

than the other models when we use the uniform saturation to invert CO2 saturation and CO2 

properties simultaneously. On the contrary, the patchy saturation with a bubble size a equal to 

0.01 m gives a lower estimation of CO2 saturation. This could be due to the limit validity range 
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of patchy saturation. Therefore, we do not show this model for real data application on inline 

1838.  

The jointly estimated CO2 properties and Brie exponent are given in Figure 7-12. The higher 

estimation of Brie exponent (8 - 16) and the higher estimation of CO2 saturation seem to have 

a spatial correlation. The CO2 properties are difficult to inverted, while given a reasonable range 

of CO2 properties can give a similar estimation of CO2 saturation with defined range of 

properties. In this context, if we know the pressure and temperature in the reservoir, we can 

have reasonable ranges for CO2 properties. For example, Alnes et al. (2011) study the CO2 

density variation at Sleipner using gravity data. They consider the increased temperature effects 

and conclude that the density variation is small (675 20 kg/m3). 

 

Figure 7-12. From left to right: 1D profile of Brie exponent and other CO2 properties results (CO2 

viscosity, CO2 bulk modulus, and CO2 density) inverted jointly with the CO2 saturation using 

different rock physics models for x = 2835 m. The dotted lines correspond to the mean value of 

estimation plus/minus uncertainty. 
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8 REAL DATA (INLNE 1838, VINTAGE 1994, BEFORE IN-

JECTION) 

The idea for this section is to characterize the baseline frame properties before the CO2 injection. 

The derived reservoir information will be used as input to the estimation of CO2 saturation. 

Figure 8-1 and Figure 8-2 show the starting velocity for FWI and P-wave velocity tomography 

from FWI, respectively. The baseline information is based on the seismic data acquired in 1994.  

 

Figure 8-1. P-wave velocity starting model for FWI. 

 

Figure 8-2. P-wave velocity model at last iteration of FWI using smoothing r2 = 5. 

8.1 Data preparation and a priori rock properties 

A target region is selected after we analysed the FWI results for the monitor data that will be 

described in Chapter 9. The selected P-wave velocity is given in Figure 8-3. Based on the gra-

dient (first derivative) of the P-wave velocity with respect to depth, we can identify 10 distinct 

horizons and construct the lithology variations, which are later used to define the a priori rock 

properties. 
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Figure 8-3. Selected P-wave velocity model for vintage 1994 before CO2 injection. 

Because S-wave velocity and bulk density are crucial for the estimation of frame properties 

(Dupuy et al., 2017), we build the S-wave velocity (Figure 8-4) and the bulk density by using 

Vernik's and Gardner's relation (Mavko et al., 2009), respectively (see equations (21), (22) ). 

Porosity is derived using a density porosity relation (see equation (23)).  

 

Figure 8-4. S-wave velocity model obtained from Vernik's relation. 

The corresponding 2D properties of permeability, cementation factor and grain density are built 

according to the a priori properties as given in Table 3-1. Then, based on the 2D a priori prop-

erties, we invert the bulk and shear frame moduli by combination of inputs of P- and S-wave 

velocities, and bulk density. The estimation result is given using the mean value of the models 

with misfit lower than 0.1. 

8.2 Estimation of frame moduli 

The estimation results of Kd and Gd (including the related uncertainty) from VP, VS, and density 

are shown in Figure 8-5.  
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Figure 8-5. From top to bottom: estimation of frame bulk modulus Kd, uncertainty of frame bulk 

modulus Kd , estimation of frame shear modulus Gd, and uncertainty of frame shear modulus Gd.  

From the 2D estimation results, we average the derived frame properties for all shale and sand-

stone layers, respectively. Table 8-1 summarises the obtained results. 
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Table 8-1. Averaged estimated frame moduli and porosity derived for baseline vintage (1994). 

Lithology Kd 

(GPa) 

Gd 

(GPa) 

Porosity 

Shale  4.25 1.67 24 % 

Sandstone 3.60 1.42 38 % 

 

We also tried the test to estimate Kd and Gd with only P-wave velocity as input (Figure 8-6). 

We observe higher uncertainties related to the frame moduli estimation. As the inversion system 

is under-determined, the frame moduli results (Figure 8-6) have a checkerboard pattern but the 

main trends are still visible. 
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Figure 8-6. From top to bottom: estimation of frame bulk modulus Kd, uncertainty of frame bulk 

modulus Kd , estimation of frame shear modulus Gd, and uncertainty of frame shear modulus Gd 

using only P-wave velocity as input. 
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9 REAL DATA (INLINE 1838, VINTAGE 2008, AFTER IN-

JECTION) 

Inline 1838 is the section where the injection point is located Figure 9-1.  

 

Figure 9-1. Seismic data after time migration for inline 1838. 

Figure 9-2 shows P-wave starting model for FWI. The starting model is extracted from the 

seismic data acquired in 2008. Figure 9-3 shows the P-wave velocity from FWI. The extension 

of low P-wave velocity region is a bit larger than that for inline 1881 (Figure 7-2). More infor-

mation about data processing and FWI tests can see Appendix C 

 

Figure 9-2. P-wave velocity starting model for FWI. 
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Figure 9-3. P-wave velocity model at last iteration of FWI using smoothing r2 = 5. 

9.1 Data preparation and a priori rock properties 

The RPI is applied to the FWI derived P-wave velocity. We select a region corresponding to 

the CO2 accumulation (Figure 9-4).  

 

Figure 9-4. Selected P-wave velocity model for vintage 2008 (inline 1838). 

The a priori frame properties are built (Figure 9-5) based on the structure of P-wave velocity 

gradient after CO2 injection and based on the properties derived from the baseline before CO2 

injection shown in Table 8-1. The other a priori properties (grain density, grain bulk modulus, 

permeabityand cemetation factor) are built in the same way. 
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Figure 9-5. From top to bottom: frame bulk modulus Kd, frame shear modulus Gd, porosity. 

9.2 Estimation of CO2 saturation 

The estimation results of CO2 saturation are shown in following figures, including the related 

uncertainty analysis. Due to the limited range of validity of the patchy saturation model (only 

high or low saturations), we only show the results for the uniform saturation model. 

Figure 9-6 shows the estimation of CO2 saturation using e = 5. There are two distinct high CO2 

saturated layers, one at depth of around 1140 m, which could be around the injection point. 

Another is at depth from 900 m – 950 m, which is just below the caprock with a high amount 

CO2 trapped. The estimations of CO2 within the sandstone layer at 1140 m has CO2 saturations 

from 30% to 40%. The CO2 saturation is higher (from 30% to 75%) in the top layers. The 

uncertainty of the estimation for CO2 saturation within the sandstone layers is around 0.15 to 

0.23. In general, we observe that higher uncertainty is associated with the high CO2 saturated 

regions. 
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Figure 9-6. Estimation of CO2 saturation (top panel) and uncertainty of CO2 saturation (bottom 

panel) using Brie rock physics model with e = 5. 

Figure 9-7 shows the estimations of CO2 saturation and Brie exponent. The estimations of CO2 

saturation within the sand layers vary in the range of 30% to 70%. The estimation of CO2 satu-

ration within sand layers is known with ± 0.15 to 0.3 uncertainty. The Brie exponent e within 

CO2 saturated layers varies from 10 to 28 with an uncertainty about 6 to 16. The estimated Brie 

exponent is higher and more uniform than we found for inline 1881. 
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Figure 9-7. From top to bottom: estimation of CO2 saturation, uncertainty of CO2 saturation, 

estimation of Brie exponent, and uncertainty of Brie exponent using Brie rock physics model with 

Brie exponent e inverted. 

The other estimation results of CO2 saturation from uniform saturation are not shown here for 

brevity. To better understand the results, we select 1D vertical profiles, some crossing the CO2 

accumulations (Figure 9-8, Figure 9-9, Figure 9-10, Figure 9-11, Figure 9-12, Figure 9-13) and 

one vertical profile outside of the main plume (Figure 9-14).  

We find that patchy mixing (e = 1) tends to give the highest estimation of CO2 saturation (up 

to 90 – 100%). The uniform mixing (e = 40) seems to give peak responses for CO2 saturation 

within CO2 accumulated layers (top or near the injection points). The Brie exponent is also 

higher within CO2 layers. In summary, the highest CO2 saturation appears at the depth of around 

935 m - 940 m. In addition, we found that the estimated CO2 saturation is varying around 10% 

for the one vertical profile (Figure 9-14) outside of the main plume. The CO2 properties (CO2 
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viscosity, CO2 bulk modulus, and CO2 density) cannot be well estimated using only P-wave 

velocity (Figure 9-9, Figure 9-11, Figure 9-13), which is similar as our other case studies 

(Dupuy et al., 2017; Yan, 2016).  

  

Figure 9-8. 1D estimation of CO2 saturation using Brie rock physics model with different Brie 

exponent (left panel) and 1D estimation of CO2 saturation using different rock physics models 

(right panel) for x = 2403 m (inside of plume). The dotted lines correspond to the mean value of 

estimation plus/minus uncertainty. 
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Figure 9-9. From left to right: 1D profile of Brie exponent and other CO2 properties results (CO2 

viscosity, CO2 bulk modulus, and CO2 density) inverted jointly with the CO2 saturation using 

different rock physics models for x = 2403 m (inside of plume). The dotted lines correspond to the 

mean value of estimation plus/minus uncertainty. 

  

Figure 9-10. 1D estimation of CO2 saturation using Brie rock physics model with different Brie 

exponent (left panel) and 1D estimation of CO2 saturation using different rock physics models 

(right panel) for x = 2553 m (inside of plume). The dotted lines correspond to the mean value of 

estimation plus/minus uncertainty. 
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Figure 9-11. From left to right: 1D profile of Brie exponent and other CO2 properties results (CO2 

viscosity, CO2 bulk modulus, and CO2 density) inverted jointly with the CO2 saturation using 

different rock physics models for x = 2553 m (inside of plume). The dotted lines correspond to the 

mean value of estimation plus/minus uncertainty. 

  

Figure 9-12. 1D estimation of CO2 saturation using Brie rock physics model with different Brie 

exponent (left panel) and 1D estimation of CO2 saturation using different rock physics models 

(right panel) for x = 3453 m (inside of plume). The dotted lines correspond to the mean value of 

estimation plus/minus uncertainty. 
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Figure 9-13. From left to right: 1D profile of Brie exponent and other CO2 properties results (CO2 

viscosity, CO2 bulk modulus, and CO2 density) inverted jointly with the CO2 saturation using 

different rock physics models for x = 3453 m (inside of plume). The dotted lines correspond to the 

mean value of estimation plus/minus uncertainty. 

  

Figure 9-14. 1D estimation of CO2 saturation using Brie rock physics model with different Brie 

exponent (left panel) and 1D estimation of CO2 saturation using different rock physics models 

(right panel) for x = 1803 m (outside of plume). The dotted lines correspond to the mean value of 

estimation plus/minus uncertainty. 
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10 DISCUSSION 

From all the studies, we can conclude that the uncertainties of CO2 saturation are ranging around 

0.1 - 0.2 for Brie rock physics model with e = 5 including the case with undefined CO2 proper-

ties. When we invert the CO2 saturation and Brie exponent simultaneously, the uncertainties of 

CO2 saturation increase to around 0.3. Because we only have one input data (P-wave velocity), 

we can expect better estimation of CO2 saturation when we have more information (Dupuy et 

al., 2016; Yan, 2016). The additional inputs will help the estimation when other parameters as 

Brie exponent, CO2 bulk modulus are inverted jointly with CO2 saturation, especially P-wave 

quality factor and S-wave velocity (Yan, 2016).  

For the inline 1881, we show the two-step workflow as: first, estimate the frame properties from 

log data, and then, we estimate the CO2 saturation using the log frame properties as a priori 

input. The baseline derived information from the log data is about 2 km away from the injection 

point and with a high sonic frequency, which can induce an inconsistency with the seismic 

monitor data of inline 1881. To minimize the uncertainty, we smooth the sonic data. While this 

smoothing may involve another risk in smearing out the lithology information. Instead of 

smoothing and extending horizontally, we might use the log data information and interpolate it 

based on the lithology variation. However, the created layers (as used for inline 1838) would 

be another source of uncertainties, which could be included in the further research work. We 

have a quite low estimation of CO2 saturation around 20 to 60% for inline 1881, which is lower 

compared with some other existed studies at Sleipner (Chadwick and Noy, 2010; Savioli et al., 

2017). There are several reasons for this low saturation estimation. First, the 2D section corre-

sponding to inline 1881 is 533 m away from the injection point. Second, the FWI method tends 

to overestimate the velocity. For example, the P-wave velocity of the sandstone before CO2 

injection from log data (well 15/9-A16) ranges from 2000 – 2100 m/s while the P-wave velocity 

of the sandstone before CO2 injection from the FWI of inline 1838 ranges from 2000 to 2200 

m/s and up to 2400 m/s. This increased velocity could be due to the smearing effect and other 

limitations of the FWI method (Dupuy et al., 2017).  

For the study performed on inline 1838 data, we change the two-step workflow as: first extract 

the frame moduli from FWI baseline results, and then, we estimate the CO2 saturation after 

applying FWI to the monitor data and using the baseline information as a priori input. For the 

extraction of baseline information for inline 1838, the FWI results are smeared out and it is 
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difficult to resolve the shale sand interbedded layers. Therefore, the utilization of the extracted 

rock frame properties is not straightforward. In our study, we use an average value to represent 

the lithology variation. Including the lateral variations of the frame moduli in each layers can 

improve the a priori inputs. For the monitor data, the improved resolution benefited from the 

injected CO2. But it is still difficult to resolve 1 m to 3 m thick shale layers. It could be due to 

the band-limited seismic wave, which cannot resolve the thin layers (Dejtrakulwong et al., 

2010). The derived results suggest much higher CO2 saturation for inline 1838 than that for 

inline 1881. The reason could be the better estimated frame properties when we using FWI data. 

The relation between the P-wave velocity and CO2 saturation can also explain it. For example, 

the fully brine saturated case from FWI is corresponding to higher P-wave velocities. This lead 

to the higher estimation of CO2 saturation for monitor data, which we think is more correct.  

The estimation results in our study of CO2 saturation within shale layers and sand layers outside 

of CO2 accumulation never reach 0% CO2 saturation. For example, the lowest CO2 saturation 

we can see in the estimation of CO2 saturation for inline 1838 is around 6%. There are several 

reasons for this phenomenon. First, the ‘shale’ that we see is not purely shale due to the resolu-

tion limitation of FWI. Second, the geological study shows that the sand layers in the Sleipner 

are interbedded with 1-3 m shale layers, which is under seismic resolution. At Sleipner, most 

of the CO2 bearing layers are thin and subject to tuning effects (Arts et al., 2004b). This thin 

shale imbedded sequence can be also found in other CCS projects like Ketzin (Stenhouse, 2009). 

Therefore, we have a more homogeneous CO2 distribution without a very high CO2 saturation 

zone inside. Third, we show the mean estimation of the results instead of the model with lowest 

misfit. The CO2 saturation can be 0% when we take into account the mean value with uncer-

tainty. Some other issues and limitations in our study are listed as: 

1. The uncertainties associated with the pressure effect should be discriminated from the fluid 

saturation change. 

2. The frequency dependent fluid properties are difficult to investigate using only one fre-

quency of 30 Hz. This may induce uncertainties induced by the frequency dispersion. For 

example, a higher P-wave velocity associated the same CO2 saturation for a higher fre-

quency. 

We also compare our results with some other studies. Lumley et al. (2008) use the seismic data 

to monitor the CO2 distribution as Sleipner. They conclude that the seismic tool can detect the 

CO2 presentation but it is difficult to quantify the CO2 saturation when it is larger than 10-30%. 
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Ravazzoli and Gómez (2014) emphasize several issues related to the feasibility of using seismic 

data and the influence of saturation transition zones. They suggest to use AVA to help the esti-

mation of the state of CO2 (Ravazzoli and Gómez, 2011). Sen et al. (2016) introduced a capil-

lary pressure equilibrium theory in their study and they found that the CO2 distribution at Sleip-

ner is more uniform for high CO2 saturation and more patch for low CO2 saturation. In our 

study, we also found similar trends, i.e. that the Brie exponent is higher for CO2 saturated layers, 

which is indicating a more uniform mixing phase. Ghosh et al. (2015) proposed a time-lapse 

method combined with a pressure-dependent differential effective medium (PDEM) theory. 

They conclude that the CO2 is more patchy for the sand layers with mud layer capped and some 

is mixed more uniformly with brine. Zhang et al. (2014) suggested that the maximum limit of 

the CO2 saturation is 89% from the relative permeability, while the CO2 saturation from their 

model can reach up to around 87%. Chadwick and Noy (2010) shows an approach using his-

tory-matching simulations and 4D seismic data ad get even higher estimation of maximum CO2 

saturation of 98%. This is comparable with our application results in inline 1838, in which case 

the maximum CO2 saturation can reach 90% - 93% ± 0.15 to 0.25. 
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11 CONCLUSIONS AND OUTLOOK 

11.1 Conclusions 

Our study shows a two-step workflow combining the use of a rock physics tool and the high-

resolution estimations from FWI. The rock physics inversion is applied on different datasets 

including the synthetic data and real data for different vintages and 2D sections. We focus on 

the estimation of CO2 saturation, considering the results derived in the sensitivity tests of this 

report (Yan, 2016). Some conclusions are given hereafter: 

1. The application on synthetic data validates the feasibility the rock physics tool for the esti-

mation of CO2 saturation. 

2. We use generic rock physics models, which may be more realistic and help to understand 

the mixture mechanism in the CO2 storage process.  

3. We provide a method to extract the baseline frame properties using P-wave velocity com-

bined with S-wave velocity and density. We also show an approach using the P-wave ve-

locity gradient to construct the a priori information of the reservoir. 

4. We estimate the CO2 saturation using only P-wave velocity from FWI. The uncertainty 

related to the CO2 saturation estimation is usually low. 

5. The extended White's model (patchy saturation) does not work well on the estimation of 

CO2 saturation due to the validity range limited to very high or low saturations. 

6. We provide a way to evaluate the uncertainty using the mean estimation including all the 

models with misfit lower than a certain value. 

7. The uncertainty is higher for higher CO2 saturations. In the case of inline 1838, we obtain 

high CO2 saturation (up to around 90% ± 0.15 - 0.25). We show that the undefined CO2 

properties is not crucial for the estimation of CO2 saturation.  

8. The Brie exponent is varying from 5 to 25 for the CO2 saturated layers. This indicates that 

the brine and CO2 mixture distribution is not fully patchy (e = 1) nor fully uniform (e = 40) 

mixing.  

11.2 Further work 

In our studies, we show the quantitative estimation of CO2 saturation by the combination of 

FWI and RPI. The rock physics inversion results are dependent on the resolution of the FWI 
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results and are limited to acoustic approximation in our case. Using higher frequencies in FWI 

(if such frequency content is present in the data) and multi-parameter FWI can help to better 

constrain the RPI step. We expect to use FWI to estimate more information (such as P-wave 

quality factor and S-wave velocity) to give a better constrain on estimation of CO2 saturation 

and other properties (Dupuy et al., 2017; Yan, 2016). The impact of the pressure change after 

CO2 injection and the impact on the frame properties need to be considered carefully, even if 

the pressure effects should be limited at Sleipner. In addition, the in-situ properties of CO2 in 

the reservoir can affect the CO2 saturation results. Therefore, it can be meaningful to consider 

the in-situ CO2 saturation and monitor the change of frame moduli. In addition, capillary pres-

sure (Santos* et al., 2014) and the injected volume of CO2 can help the understanding of the 

CO2 Capture and Storage process.  

 

 



 

77 

 

12 REFERENCES 

Adler, P. M., C. G. Jacquin, and J. F. Thovert, 1992, The formation factor of reconstructed porous media: 
Water Resources Research, v. 28, p. 1571-1576. 

Alnes, H., O. Eiken, S. Nooner, G. Sasagawa, T. Stenvold, and M. Zumberge, 2011, Results from sleipner 
gravity monitoring: Updated density and temperature distribution of the CO2 plume: Energy 
Procedia, v. 4, p. 5504-5511. 

Arts, R., A. Chadwick, and O. Eiken, 2004, Recent time-lapse seismic data show no indication of leakage 
at the Sleipner CO2-injection site: Proceedings of the 7th International Conference on 
Greenhouse Gas Technologies (GHGT-7), p. 653-662. 

Arts, R., A. Chadwick, O. Eiken, S. Thibeau, and S. Nooner, 2008, Ten years' experience of monitoring 
CO2 injection in the Utsira Sand at Sleipner, offshore Norway: First break, v. 26. 

Bergmann, P., and A. Chadwick, 2015, Volumetric bounds on subsurface fluid substitution using 4D 
seismic time shifts with an application at Sleipner, North Sea: Geophysics, v. 80, p. B153-B165. 

Bickle, M. J., 2009, Geological carbon storage: Nature Geoscience, v. 2, p. 815-818. 

Biot, M. A., 1956a, Theory of propagation of elastic waves in a fluid‐saturated porous solid. I. Low‐
frequency range: The Journal of the acoustical Society of america, v. 28, p. 168-178. 

Biot, M. A., 1956b, Theory of propagation of elastic waves in a fluid‐saturated porous solid. II. Higher 
frequency range: the Journal of the Acoustical Society of America, v. 28, p. 179-191. 

Boait, F., N. White, M. Bickle, R. Chadwick, J. Neufeld, and H. Huppert, 2012, Spatial and temporal 
evolution of injected CO2 at the Sleipner Field, North Sea: Journal of Geophysical Research: 
Solid Earth, v. 117. 

Brie, A., F. Pampuri, A. Marsala, and O. Meazza, 1995, Shear sonic interpretation in gas-bearing sands: 
SPE Annual Technical Conference and Exhibition. 

Brown, S., G. Bussod, and P. Hagin, 2007, AVO monitoring of CO 2 sequestration: A benchtop-modeling 
study: The Leading Edge, v. 26, p. 1576-1583. 

Carcione, J. M., and S. Picotti, 2006, P-wave seismic attenuation by slow-wave diffusion: Effects of 
inhomogeneous rock properties: Geophysics, v. 71, p. O1-O8. 

Carcione, J. M., S. Picotti, D. Gei, and G. Rossi, 2006, Physics and seismic modeling for monitoring CO2 
storage: Pure and Applied Geophysics, v. 163, p. 175-207. 

Castagna, J. P., M. L. Batzle, and R. L. Eastwood, 1985, Relationships between compressional-wave and 
shear-wave velocities in clastic silicate rocks: Geophysics, v. 50, p. 571-581. 

Chadwick, R., S. Holloway, G. Kirby, U. Gregersen, and P. Johannessen, 2000, The Utsira Sand, Central 
North Sea–an assessment of its potential for regional CO2 disposal: Proceedings of the 5th 
International Conference on Greenhouse Gas Control Technologies (GHGT-5), Cairns, Australia, 
p. 349-354. 



 

78 

 

Chadwick, R., and D. Noy, 2010, History-matching flow simulations and time-lapse seismic data from 
the Sleipner CO2 plume: Geological Society, London, Petroleum Geology Conference series, p. 
1171-1182. 

Chadwick, R., P. Zweigel, U. Gregersen, G. Kirby, S. Holloway, and P. Johannessen, 2004, Geological 
reservoir characterization of a CO 2 storage site: the Utsira Sand, Sleipner, northern North Sea: 
Energy, v. 29, p. 1371-1381. 

Dupuy, B., S. Garambois, and J. Virieux, 2016, Estimation of rock physics properties from seismic 
attributes — Part 1: Strategy and sensitivity analysis: GEOPHYSICS, v. 81, p. M35-M53. 

Dupuy, B., A. Romdhane, P. Eliasson, E. Querendez, H. Yan, V. A. Torres, and A. Ghaderi, 2017, 
Quantitative seismic characterisation of CO2 at the Sleipner storage site, North Sea 
Interpretation, In press. 

Dupuy, B., and A. Stovas, 2014, Influence of frequency and saturation on AVO attributes for patchy 
saturated rocks: GEOPHYSICS, v. 79, p. B19-B36. 

Furre, A.-K., A. Kiær, and O. Eiken, 2015, CO2-induced seismic time shifts at Sleipner: Interpretation, v. 
3, p. SS23-SS35. 

Furre, A. K., and O. Eiken, 2014, Dual sensor streamer technology used in Sleipner CO2 injection 
monitoring: Geophysical Prospecting, v. 62, p. 1075-1088. 

Gardner, G., L. Gardner, and A. Gregory, 1974, Formation velocity and density—The diagnostic basics 
for stratigraphic traps: Geophysics, v. 39, p. 770-780. 

Gasda, S., H. Nilsen, and H. Dahle, 2012, Upscaled models for CO2 migration in geological formations 
with structural heterogeneity: ECMOR XIII-13th European Conference on the Mathematics of 
Oil Recovery. 

Gassmann, F., 1951, Uber die elastizitat poroser medien: Verteljahrss-chrift der Naturforschenden 
Gesellschaft in Zurich, 96, 1–23: Translated to English in the 16th issue of Geophysics. 

Gaus, I., M. Azaroual, and I. Czernichowski-Lauriol, 2005, Reactive transport modelling of the impact 
of CO 2 injection on the clayey cap rock at Sleipner (North Sea): Chemical Geology, v. 217, p. 
319-337. 

Ghaderi, A., and M. Landrø, 2009, Estimation of thickness and velocity changes of injected carbon 
dioxide layers from prestack time-lapse seismic data: Geophysics, v. 74, p. O17-O28. 

Ghosh, R., M. K. Sen, and N. Vedanti, 2015, Quantitative interpretation of CO 2 plume from Sleipner 
(North Sea), using post-stack inversion and rock physics modeling: International Journal of 
Greenhouse Gas Control, v. 32, p. 147-158. 

Han, D.-h., A. Nur, and D. Morgan, 1986, Effects of porosity and clay content on wave velocities in 
sandstones: Geophysics, v. 51, p. 2093-2107. 

Hashin, Z., and S. Shtrikman, 1963, A variational approach to the theory of the elastic behaviour of 
multiphase materials: Journal of the Mechanics and Physics of Solids, v. 11, p. 127-140. 

Institute, G. C., 2016, The Global Status of CCS: 2016 Summary Report. 



 

79 

 

Johnson, D. L., J. Koplik, and R. Dashen, 1987, Theory of dynamic permeability and tortuosity in fluid-
saturated porous media: Journal of fluid mechanics, v. 176, p. 379-402. 

Landrø, M., 2001, Discrimination between pressure and fluid saturation changes from time-lapse 
seismic data: Geophysics, v. 66, p. 836-844. 

Landrø, M., and M. Zumberge, 2017, Estimating saturation and density changes caused by CO2 
injection at Sleipner—Using time-lapse seismic amplitude-variation-with-offset and time-lapse 
gravity: Interpretation. 

Lindeberg, E., 2013, in C. Calculation of thermodynamic properties of CO2, H2O and their mixtures also 
including salt with the Excel macro ‘‘CO2 Thermodynamics’’. , ed., Trondheim, SINTEF. 

Lumley, D., D. Adams, R. Wright, D. Markus, and S. Cole, 2008, Seismic monitoring of CO 2 geo-
sequestration: realistic capabilities and limitations, SEG Technical Program Expanded Abstracts 
2008, Society of Exploration Geophysicists, p. 2841-2845. 

Mavko, G., T. Mukerji, and J. Dvorkin, 2009, The rock physics handbook: Tools for seismic analysis of 
porous media, Cambridge university press. 

Meadows, M., 2008, Time-lapse seismic modeling and inversion of CO 2 saturation for storage and 
enhanced oil recovery: The Leading Edge, v. 27, p. 506-516. 

Michael, K., A. Golab, V. Shulakova, J. Ennis-King, G. Allinson, S. Sharma, and T. Aiken, 2010, Geological 
storage of CO 2 in saline aquifers—a review of the experience from existing storage operations: 
International Journal of Greenhouse Gas Control, v. 4, p. 659-667. 

Mora, P., 1987, Nonlinear two-dimensional elastic inversion of multioffset seismic data: Geophysics, v. 
52, p. 1211-1228. 

Norman, T., H. Alnes, O. Christensen, J. Zach, O. Eiken, and E. Tjåland, 2008, Planning time-lapse CSEM-
surveys for joint seismic-EM monitoring of geological carbon dioxide injection: First EAGE CO2 
Geological Storage Workshop. 

Pratt, R. G., C. Shin, and G. Hick, 1998, Gauss–Newton and full Newton methods in frequency–space 
seismic waveform inversion: Geophysical Journal International, v. 133, p. 341-362. 

Pratt, R. G., and M. Worthington, 1990, Inverse theory applied to multi-source cross-hole tomography. 
Part 1: Acoustic wave-equation method: Geophysical prospecting, v. 38, p. 287-310. 

Pride, S., 2005, Hydrogeophysics: Water Science and Technology Library: Springer, p. 253–284. 

Pride, S. R., J. G. Berryman, and J. M. Harris, 2004, Seismic attenuation due to wave‐induced flow: 
Journal of Geophysical Research: Solid Earth, v. 109. 

Ravazzoli, C. L., and J. L. Gómez, 2011, AVA seismic reflectivity analysis in carbon dioxide accumulations: 
Sensitivity to CO 2 phase and saturation: Journal of Applied Geophysics, v. 73, p. 93-100. 

Ravazzoli, C. L., and J. L. Gómez, 2014, Seismic reflectivity in carbon dioxide accumulations: a review, 
CO2 Sequestration and Valorization, InTech. 



 

80 

 

Romdhane, A., and E. Querendez, 2014, CO2 characterization at the Sleipner field with full waveform 
inversion: Application to synthetic and real data: Energy Procedia, v. 63, p. 4358-4365. 

Sambridge, M., 1999, Geophysical inversion with a neighbourhood algorithmöII. Appraising the 
ensemble: Geophys. J. Int, v. 138, p. 727-746. 

Santos*, J. E., G. B. Savioli, L. A. Macias, J. M. Carcione, and D. Gei, 2014, Influence of capillary pressure 
on CO2 storage and monitoring, SEG Technical Program Expanded Abstracts 2014, Society of 
Exploration Geophysicists, p. 4971-4976. 

Savioli, G. B., J. E. Santos, J. M. Carcione, and D. Gei, 2017, A model for CO2 storage and seismic 
monitoring combining multiphase fluid flow and wave propagation simulators. The Sleipner-
field case: Computational Geosciences, v. 21, p. 223-239. 

Sen, A., R. Ghosh, and N. Vedanti, 2016, Saturation estimation from 4D seismic data from Sleipner Field 
by a capillary pressure-based rock-physics model, SEG Technical Program Expanded Abstracts 
2016, Society of Exploration Geophysicists, p. 3314-3321. 

Shin, C., S. Jang, and D. J. Min, 2001, Improved amplitude preservation for prestack depth migration 
by inverse scattering theory: Geophysical prospecting, v. 49, p. 592-606. 

Singh, V. P., A. Cavanagh, H. Hansen, B. Nazarian, M. Iding, and P. S. Ringrose, 2010, Reservoir modeling 
of CO2 plume behavior calibrated against monitoring data from Sleipner, Norway: SPE annual 
technical conference and exhibition. 

Song, Z.-M., P. R. Williamson, and R. G. Pratt, 1995, Frequency-domain acoustic-wave modeling and 
inversion of crosshole data: Part II—Inversion method, synthetic experiments and real-data 
results: Geophysics, v. 60, p. 796-809. 

Span, R., and W. Wagner, 1996, A new equation of state for carbon dioxide covering the fluid region 
from the triple‐point temperature to 1100 K at pressures up to 800 MPa: Journal of physical 
and chemical reference data, v. 25, p. 1509-1596. 

Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, v. 
49, p. 1259-1266. 

Teja, A., and P. Rice, 1981, Generalized corresponding states method for the viscosities of liquid 
mixtures: Industrial & Engineering Chemistry Fundamentals, v. 20, p. 77-81. 

Traub, B., 2008, 2ReMoVe - WP 3.4: Sleipner AVO study on synthetic Sleipner data, SINTEF 
Petroleumsforskning AS, SINTEF Petroleum Research. 

Vernik, L., D. Fisher, and S. Bahret, 2002, Estimation of net-to-gross from P and S impedance in 
deepwater turbidites: The Leading Edge, v. 21, p. 380-387. 

Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration geophysics: 
Geophysics, v. 74, p. WCC1-WCC26. 

White, D., 2013, Toward quantitative CO 2 storage estimates from time-lapse 3D seismic travel times: 
An example from the IEA GHG Weyburn–Midale CO 2 monitoring and storage project: 
International Journal of Greenhouse Gas Control, v. 16, p. S95-S102. 



 

81 

 

White, J., 1975, Computed seismic speeds and attenuation in rocks with partial gas saturation: 
Geophysics, v. 40, p. 224-232. 

Yan, H., 2016, Rock Physics Inversion for CO2 Characterization at Sleipner: Sensitivity Tests and 
Baseline Application, Project Report, Trondheim, Norwegian University of Science and 
Technology. 

Yan, H., B. Dupuy, A. Romdhane, and B. Arntsen, 2017a, Rock physics inversion for CO2 injection at 
Sleipner: 4th International Workshop of Rock Physics. 

Yan, H., B. Dupuy, A. Romdhane, and B. Arntsen, 2017b, Rock Physics Inversion for CO2 Saturation 
Estimation at Sleipner-Sensitivity Tests and Baseline Application: 79th EAGE Conference and 
Exhibition 2017. 

Zhang, G., P. Lu, and C. Zhu, 2014, Model predictions via history matching of CO2 plume migration at 
the Sleipner Project, Norwegian North Sea: Energy Procedia, v. 63, p. 3000-3011. 



 

1 

 

APPENDIX 

Appendix A Supplementary notes of Sleipner well 15/9-A16 

In this section, we show the estimation of frame moduli with a threshold of maximum misfit 

equal to 0.1 (Figure A- 1) and 10 (Figure A- 2). We found that the the mean estimations of 

frame properties are similar for using maximum misfit of 10 and 0.1. The discrepancy between 

the best estimation and the mean estimation using a misfit threshold of 10 are slightly bigger 

than that for the case using a misfit threshold of 0.1.  

  

Figure A- 1. Estimation results of frame bulk modulus Kd (left) and frame shear modulus Gd (right) 

inverted by the inputs of P-wave velocity, S-wave velocity derived by Vernik's relation, and 

density log. The black lines correspond to the best estimation with lowest misfit. The blue lines 

correspond to the mean value of estimation with a maximum misfit of 0.1. The dotted lines 

correspond to the mean value of estimation plus/minus uncertainty. 
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Figure A- 2. Estimation results of frame bulk modulus Kd (left) and frame shear modulus Gd (right) 

inverted by the inputs of P-wave velocity, S-wave velocity derived by Vernik's relation, and 

density log. The black lines correspond to the best estimation with lowest misfit. The blue lines 

correspond to the mean value of estimation with a maximum misfit of 10. The dotted lines 

correspond to the mean value of estimation plus/minus uncertainty. 
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Appendix B Supplementary notes of FWI synthetic model 

I. FWI process on the 2D FWI synthetic model 

Table B- 1 shows the setting parameters for the FWI on the 2D synthetic data.  

Table B- 1. The parameters used in the FWI tests. 

Parameter Value 

Input files for FWI P-wave velocity, quality factor, density 

Sample number along Z direction 367 

Sample number along X direction 1074 

Grid size 3 m 

pml thickness in grid points 2 

pml coefficient  90 

number of selected frequencies to be 

inverted 
9 

number of time steps 1250 

time stepping 0.004 s 

source wavelet file fricker 

maximum number of iteration per 

frequency 
10 

minimum velocity 1300 
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maximum velocity 2600 

velocity above topography 1200 

reference velocity 1700 

compute diagonal terms of Hessian Yes 

model perturbation 2% for optimum step length 

 

II. Selection of iteration number 

The iteration number is important for the accuracy of rock physics inversion. A proper iteration 

number can avoid unnecessary excessive computation. We compare the misfit variation versus 

different iteration number and conduct different tests with iteration number from 100 up to 1000 

(Figure B- 1). The misfit values are tending to be stabilized when iteration number is 400 for 

all the rock physics models. Therefore, we decide to use an iteration number of 400 in our 

application of rock physics inversion. 

 

Figure B- 1.The misfit variation with various iteration numbers.  
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III. Selection of FWI results 

In this case, we use 1D derived frame properties from the Well 15/9-A16, which are smoothed 

and horizontally extended to 2D layered structure. We will show the rock physics inversion 

results using different P-wave velocity results using FWI test 1, 2 and 5. Here, we only show 

the results from uniform saturation with a Brie exponent e = 5.  

Figure B- 2 shows estimation results of CO2 saturation using the captured P-wave velocity 

model of FWI test 1 with a light smoothing along z direction. Figure B- 3 shows estimation 

results of CO2 saturation using the captured P-wave velocity model of FWI test 2 with a strong 

smoothing along z direction. Figure B- 4 shows estimation results of CO2 saturation using the 

captured P-wave velocity model of FWI test 5 with no smoothing applied. The estimation of 

CO2 saturation from test 1 and 2 are similar (20% - 30%) within the CO2 saturated layers. While 

CO2 saturation from FWI test 5 gives higher CO2 saturation and does not show the layer struc-

ture. All the estimations of CO2 saturation from the tests have a similar uncertainty ranging 

from 0.1 to 0.15, and higher within the CO2 saturated layers. In summary, the results of rock 

physics inversion are highly dependent on the quality of FWI results. 

 

 

Figure B- 2. Estimation of CO2 saturation (top panel) and uncertainty of CO2 saturation (bottom 

panel) using Brie rock physics model with e = 5 and FWI result of test 1. 
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Figure B- 3. Estimation of CO2 saturation (top panel) and uncertainty of CO2 saturation (bottom 

panel) using Brie rock physics model with e = 5 and FWI result of test 2. 

 

 

Figure B- 4. Estimation of CO2 saturation (top panel) and uncertainty of CO2 saturation (bottom 

panel) using Brie rock physics model with e = 5 and FWI result of test 5.  
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Appendix C Supplementary notes of real data (inline 1838, vintage 2008 and 

1994). 

This section is aimed at showing the processing steps and FWI tests of inline 1838. 

I. Data processing procedure 

Before the FWI, a basic processing procedure is applied using Seismic Unix on the raw data of 

inline 1838. We extract the data from 3D data set and try to rotate the data to a normal position 

in a 2D view. We outline the processing steps for inline 1838 of vintage 2008 in Table C- 1, 

including extracting guns, muting, rotating, transformation, and trace windowing, and so on. 

For inline 1838 of vintage 1994, we use similar processing steps. 

Table C- 1. The processing steps applied prior to FWI. 

Step Processing workflow applied to the prestack dataset of inline 1838 of year 2008 

1 Read the SEGY data 

2 Extract the geometry information 'sx,sy,gx,gy'  of the selected source No.1 and 

Receiver cable No.3 

3 Mute the noises, sure as the first-arrival muting 

4 Rotate the dataset with angle of 0.85 according the velocity cube 

5 Translate the dataset and shift velocity cube to sy=0 and have smallest gx of data 

6 Create the interval velocity from the RMS velocity data with the similar rotate, 

translation workflow 

7 Resample the dataset (depth interval of 12.5 m) and apply the smooth factor in 3D 

(less smooth in the vertical direction) 

8 Resample the sources and receivers corresponding to the velocity geometry, that the 

Y-axis ranges from 0 to 7 km 
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9 Do the amplitude corrections to the data (from 3D into 2D). Multiply the data by 

power of time (tpow=-2) 

10 Apply Butterworth bandpass filtering 

11 Top mute again to remove the filter induced noises 

12 Scale the position unit from centimetre into meter by multiply 0.01 

13 Offset selection with minimum offset equal to 420 

14 Minimum to zero phase conversion 

15 Data editing with reference to the given seismic source in the later FWI process 

16 Create geometry profile (source depth of 6 m beneath the sea level, receiver depth of 

8 m beneath the sea level) 

The acquisition geometry of inline 1838 is given in Figure C- 1. Since the 2D inline data is 

extracted from a 3D dataset, the previous translation and rotation process of the data help to 

give a better 2D view. We can see that the 2D data is well processed with only smaller than 15 

m crossline offset deviation. 
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Figure C- 1. Acquisition geometry after the processing.  
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II. FWI tests 

To prevent a large computation cost, we cut the deeper data and clip the interested region. The 

sources and the receiver at the boundary of the acquisition geometry are removed to minimise 

the boundary effects. The lateral variation of inline 1838 for vintage 2008 is from 0 m to 6980 

m. The data is later shifted with adding a 30 m air layer to investigate the multiple created by 

the interface of air and water.  

We generated the associated same size P-wave starting model, P-wave quality factor model, 

and density model. We consider a small attenuation. The quality factor is assumed with a con-

stant number of 1000. We introduced the empirical density-velocity relations to derive the den-

sity information from P-wave velocity using Gardner relation for the reservoir section (Gardner 

et al., 1974). In addition, we add a constant water layer density which is equal to 1000 kg/m3. 

We know that the air density is as low as 1.3 kg/m3. However, for FWI, too low density will 

affect the inversion results. Therefore, we add an air layer with a constant density of 100 kg/m3. 

Figure E- 1 shows the generated density file with the water and air layers. The smoothed veloc-

ity is derived by using a function of structure smoothing. We also add a water layer with a 

constant velocity of 1500 m/s and a 30 m air layer with a constant velocity of 330 m/s (see 

Figure 9-2). 

 

Figure E- 1. Density profile with a water layer and an air layer. 

The FWI process performed from low to high frequencies. We use four tests with : 3 frequencies 

(10.0, 10.5, 11.0 Hz), 7 frequencies (11.5, 12.0, 12.5, 13.4, 15.2, 17.1, 19.6 Hz), 5 frequencies 

(22.0, 23.2, 24.4, 25.7, 26.9 Hz), and 5 frequencies (28.1, 29.3, 30.5, 31.8, 33.0 Hz), respec-

tively. We use a smoothing factor equal to 0.3 for beginning three tests and a smaller smoothing 
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factor equal to 0.15 for the last test to minimize the misfit. Finally, we generate the final P-wave 

velocity model of 2008 vintage (inline 1838) as shown in Figure E- 2. 

 

Figure E- 2. P-wave velocity model at last iteration of FWI (vintage 2008, inline 1838). 

For real data of vintage 1994, we use a similar FWI procedure to derive the baseline P-wave 

velocity model as shown in Figure E- 3. 

 

Figure E- 3. P-wave velocity model at last iteration of FWI (vintage 1994, inline 1838). 

The FWI results are later smoothed to smear the oscillations before rock physics inversion (Fig-

ure 8-2, Figure 9-3). 
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Appendix D Grain bulk moduli and density computation for the Utsira sandstone 

The sandstone properties are calculated with considering mineral compositions. The bulk mod-

ulus (KS) and density (ρs) of each solid grain material are considered, as illustrated Table D- 1, 

Table D- 2, Table D- 3.  

Table D- 1. Bulk modulus calculation illustration for the Utsira sandstone. 

Minerals  KS (GPa) GS (GPa) Percentage 

 Low bound High bound 
Low 

bound 

High 

bound 
 

Quartz 36.5 37.9 44 45.6 75 % 

Calcite 63.7 76.8 28.4 32 3 % 

Feldspar 37.5 37.5 15 15 13 % 

Albite 75.6 75.6 25.6 25.6 3 % 

Aragonite 44.8 44.8 38.8 38.8 3 % 

Mica 

(muscovite) 
42.9 61.5 22.2 41.1 2 % 

Mica (biotite) 41.1 59.7 12.4 42.3 2 % 

This Hashin-Shtrikman bounds are illustrated by Hashin and Shtrikman (1963). KHS+ and GHS+ 

are corresponding to the upper bound with stiffer material forms the shell. KHS- and GHS- are 

corresponding to the lower bound with stiffer material forms the core. We use a more general 

form of the Hashin–Shtrikman–Walpole bounds, which can be applied to mixtures of more than 

two phases and is given by: 
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Where Kmax and Gmax are the maximum bulk and shear moduli of the individual constituents. 

Kmin and Gmin are the minimum bulk and shear moduli of the constituents. ( )z , ( )z and 
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Where the brackets .  indicate an average over the medium, which is the same as an average 

over the constituents weighted by their volume fractions. 

The KS is obtained by averaging Hashin-Shtrikman bounds, as shown in Table D- 2. 

Table D- 2. Ks is obtained by averaging Hashin-Shtrikman bounds. 

KHS+ 

(GPa) 

KHS-

(GPa) 

KS 

(GPa) 

40.31 38.26 39.29 
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Table D- 3. The grain density of each constituent in the Utsira sandstone. 

Minerals 
ρs(i) 

(g/cc) 

Volume 

percentage 

(%) 

ρs 

(g/cc) 

Quartz 2.65 75 % 

2.663 

Calcite 2.71 3 % 

Feldspar 2.62 13 % 

Albite 2.63 3 % 

Aragonite 2.92 3 % 

Mica 

(muscovite) 
2.79 2 % 

Mica (biotite) 3.05 2 % 

 

The grain density of the Utsira sandstone ( sρ ) is calculated by using volume-weighted density 

calculation method (Table D- 3). 
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Appendix E Supplementary table for the Nordland shale 

In our studies, the mineralogy of the Nordland shale in volume percentage (as shown in Table 

E- 1) is exacted from the mineralogy in mass percentage by Gaus et al. (2005).  

Table E- 1. Nordland shale rock mineralogy by Gaus et al. (2005). 

 

 

  



 

16 

 

Appendix F Analysis tables for sensitivity test results 

In our sensitivity studies, the inversion estimation of fluid properties and saturation simultane-

ously can be concluded in the following tables. Since in geophysics, we always only obtain P-

wave velocities for FWI results, we analysis the inversion tests especially for inversion from 

only VP at first. Then, we analysis the other parameter effect for estimation of fluid properties.  

Table F- 1. Results analysis for inversion for CO2 properties at SW = 5%. 

 

Table F- 2. Results analysis for inversion for CO2 properties at SW = 20%. 
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Table F- 3. Results analysis for inversion for CO2 properties at SW = 85%. 

 

Where: 

\  is indicating that there is no obvious impact or relation. 

+  is indicating a positive effect in estimation or constraining the misfit. 

Good estimation is indicating the relative error ˂ 20%. 

Bad estimation is indicating the relative error ˃ 20%.  

And input groups are given as:  

1. Only P-wave velocity (VP);  

2. P- and S-wave velocities (VP, VS);  

3. P- wave velocity and density (VP, ρ); 

4. P- and S-wave velocities and density (VP, VS, ρ); 

5. P- wave velocity and quality factor (VP, QP);  

6. P-wave velocity, quality factor, and density (VP, QP, ρ); 

7. P- and S-wave velocities and quality factors (VP, VS, QP, QS);  

8. P- and S-wave velocities, quality factors, and density (VP, QP, VS, QS, ρ). 
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The misfit under the lower brine saturation (higher CO2 saturation) condition is larger than that 

for high brine saturation (lower CO2 saturation). We may conclude that for low brine saturation 

(high CO2 saturation) it is more difficult to invert the CO2 properties. 
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Rock physics inversion for CO2 injection at Sleipner 

  



 

 

 

 



 

 

 


