
Postprint of the following paper: Wei,W.; Fu, S.*; Moan, T.; Lu, Z.; and Deng, S., (2017),“ A 

discrete-modules-based frequency domain hydroelasticity method for floating structures in 

inhomogeneous sea conditions”, Journal of Fluids and Structures, V.74, pp. 321-339. 



1 

 1 

Journal of Fluids and Structures, 2017, V.74, 321-339 2 

A discrete-modules-based frequency domain hydroelasticity method 3 

for floating structures in inhomogeneous sea conditions 4 

Wei Wei
a, b

, Shixiao Fu
*a,b

, Torgeir Moan
c
, Ziqi Lu

a
, Shi Deng

c
 5 

a State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China 6 

b Collaborative Innovation Centre for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240, China; 7 

c Norwegian University of Science and Technology, Trondheim, Norway 8 

Abstract 9 

Based on the three-dimensional (3D) potential theory and finite element method (FEM), this paper 10 

proposes a new numerical method for hydroelastic predictions of floating structures in 11 

inhomogeneous seabed and wave field conditions. The continuous floating structure is first 12 

discretized into rigid modules connected by elastic beams. The motion equations of the entire 13 

floating structure are established according to the six degrees of freedom (6DOF) motions of each 14 

module by coupling the hydrodynamics of the modules with the structural stiffness matrix of the 15 

elastic beams in the frequency domain. By applying different wave excitation forces onto different 16 

modules, this discrete-modules-based method then uniquely realizes application of various wave 17 

excitation forces onto different modules of the structures in inhomogeneous waves. The 18 

hydroelastic responses of a plate and a Wigley hull under an even and uneven seabed using the 19 

proposed method are verified against the results from the published model tests and the 20 

conventional 3D hydroelastic method. Finally, the effects of inhomogeneous waves on the 21 

distributions of the bending moment, shear force and vertical displacements of the freely floating 22 

plate are investigated. The results show that the inhomogeneity of waves may induce about 2~3 23 

times increase of the force responses in a specific wave frequency.  24 
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1. Introduction 1 

Since the late 1970s, hydroelasticity theory has been developed from 2D (Betts et al., 1977; 2 

Bishop et al., 1979) to 3D (Lee et al., 2015; Shin et al., 2015; Taghipour et al., 2009; Wu, 1984) 3 

and from linear (Bishop et al., 1986; Ohkusu and Namba, 2004) to nonlinear (Hu et al., 2012; Lee 4 

and Lee, 2016; Malenica and Tuitman, 2008; Wu et al., 1997).This theory has been widely 5 

applied in the design work of large-scale vessels and very large floating structures (VLFS’) (Chen 6 

et al., 2006).  7 

Two hydroelasticity approaches have been employed for the hydroelastic analysis of floating 8 

structures on an even seabed and in homogeneous wave conditions: the modal superposition 9 

method and direct method (Loukogeorgaki et al., 2012). Depending on the method used to obtain 10 

the structural modes, the modal superposition method can be further divided into the “dry” mode 11 

method (Senjanović et al., 2008a; Senjanović et al., 2008b) and the “wet” mode method 12 

(Humamoto and Fujita, 2002; Loukogeorgaki et al., 2012; Michailides et al., 2013). When it 13 

comes to the joining forces of the connectors of the interconnected floating structures, the local 14 

deflection/motion modes of the connectors have to first be calculated or predefined (Fu et al., 15 

2007; Gao et al., 2011; Lee and Newman, 2000; Michailides et al., 2013; Newman, 2005), which 16 

sometimes becomes very hard or even impossible because of the strong coupling of the global 17 

deformation modes of the floating structures.  18 

The direct method can analyze structures whose modes cannot be easily established using the full 19 

modes of the discretized system. Kim et al. (2007) and Yoon et al. (2014) combined the 20 

higher-order boundary element method (HOBEM) with the finite element method (FEM) and 21 

simplified the connectors as spring elements and plate finite elements, respectively, acquiring the 22 

hydroelastic responses of a multi-module VLFS and the joining forces in the connectors. 23 

Meanwhile, the direct method has been applied to the hydroelasticity of floating structures with 24 

liquid tanks by considering the couplings among structural motion, sloshing and waves (Lee et al., 25 

2015).   26 

The hydroelastic responses of floating structures in a uniform water depth were the main 27 

considerations in the above mentioned research. However, the effects of coastlines (Xia et al., 28 

1999), seawalls (Ertekin and Kim, 1999) and varying sea bottom topographies (Utsunomiya et al., 29 
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2001) on the hydroelastic responses of nearshore structures have been recognized as important 1 

issues in recent decades. Numerical methods for the hydroelastic responses of floating structures 2 

in variable bathymetry regions have been developed (Murai et al., 2003). Kyoung et al. (2005) 3 

investigated the effect of various sea-bottom topographies on the hydroelastic responses by 4 

adopting the FEM in a fluid domain. Song et al. (2005) used the boundary integral method of the 5 

finite water depth Green’s function and the plate theory to analyze the vertical displacements of a 6 

VLFS model on an uneven sea bottom and verified that the uniform effect of the seabed should be 7 

considered in the hydroelastic analysis. Gerostathis et al. (2016) extended the coupled-mode 8 

model that was developed by Belibassakis and Athanassoulis (2005) to the hydroelasticity of 9 

structures with shallow drafts lying over variable bathymetry regions. 10 

In addition to a complex seabed profile, the influences of the inhomogeneity of the incident waves 11 

(spatially varying incident wave angles and wave parameters) on the hydroelasticity have been 12 

considered during the design of large horizontal-scale structures near an island or in a fjord (Ding 13 

et al.; Lie et al., 2016).  14 

Based on the recently developed method (Lu et al., 2016), a new numerical method is established 15 

for the prediction of the hydroelastic behaviors of floating structures in both homogeneous and 16 

inhomogeneous seabed and wave field conditions. This method is verified against the model tests 17 

and the conventional 3D hydroelastic method. The effects of the uneven sea bottom and the 18 

influences of inhomogeneous regular waves on the hydroelastic responses are investigated in 19 

numerical examples. The inhomogeneity of waves may induce a 30%~80% increase in the force 20 

responses, which should be considered in hydroelastic analyses.   21 

2. Theoretical background 22 

Fig. 1 provides an overview of the discrete-modules-based hydroelastic analysis process. The 23 

floating structure is first discretized into a set of rigid modules that are connected by elastic beams. 24 

Considering the hydrodynamic interactions between modules, the multi-body hydrodynamic 25 

theory is adopted to obtain the velocity potential of the flow field (the incident potential
I , the 26 

diffraction potential 
D  and the radiation potential

R ) and the wave excitation force fw, added 27 

mass A and damping coefficient C of various modules. The motions of each module are affected 28 
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by the hydrodynamic interactions with the surrounding modules and are restricted by the 1 

displacement continuity of adjacent modules. The displacement continuity between modules is 2 

guaranteed by establishing an elastic beam with uniform section stiffness matrix [k] between the 3 

equivalent centers of the modules. The displacements can be obtained by solving the coupled 4 

kinetic equation. Then, the bending moments, shear forces and torsional moments of the floating 5 

structure are determined based on the theory of structural mechanics. 6 

No wet panels are set on the wall sides to avoid water resonance between two modules during the 7 

hydrodynamic calculation. Thus, the modules in the middle have two vertical walls, and those in 8 

the bow and stern have three. Simultaneously considering bending and torsional deformations in 9 

three-dimensional floating structures is difficult when adopting the simulation method of the 10 

beams. Therefore, the floating structure is discretized with only one module in the transverse 11 

direction for simplicity.  12 
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 1 

Fig. 1 Flow diagram of the numerical simulation 2 
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2.1. Hydrodynamic analysis 1 

2.1.1. Coordinate system 2 

The floating structure is only discretized in the longitudinal direction, so only one module is 3 

present in the transverse direction. Three right-handed coordinate systems are introduced to 4 

describe the wave-induced motion responses of a multi-module structure system: the global 5 

coordinate system OXYZ, body-fixed coordinate system 
m m m mo x y z  and reference coordinate 6 

system 
m m m mo x y z     ( 1,2,...m N ). The global coordinate system (OXYZ) remains fixed in space, 7 

with OXY at the still water surface and the Z axis oriented straight up. The body-fixed coordinate 8 

system (
m m m mo x y z ) moves with the floating modules and is parallel to the coordinate axes of the 9 

global coordinate system ( OXYZ ) in its initial position. The reference coordinate system 10 

(
m m m mo x y z    ) coincides with the body-fixed coordinate system (

m m m mo x y z ) in the initial stage and 11 

always remains at the balanced position. The incident wave angle is parallel with the X axis under 12 

an incident wave angle of 0   . 13 

 14 

Fig. 2 Coordinate systems of a multi-body system 15 

2.1.2. Governing equations and boundary conditions 16 

The three-dimensional potential theory assumes that the fluid is ideal, incompressible, and 17 

irrotational, and the overall velocity potential in the global coordinate OXYZ is expressed as18 
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where 
I

  is the incident wave potential; 
D
  is the diffraction potential; and  m

R
  denotes the 2 

radiation potential of module m, which can be expressed as 3 
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6
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m m m
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where 
 m

jR  refers to the unit radiation velocity potential, in which module m oscillates in a unit 5 

velocity in the j
th

 direction with the other modules fixed, and 
 m

j
  refers to the complex motion 6 

amplitude of module m in the j
th
 mode. 7 

In the global coordinate system OXYZ, the incident wave potential at a finite water depth can be 8 

expressed as 9 
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where A refers to the incident wave amplitude; H is the water depth; k refers to the wave number; 11 

and θ is the wave direction, as illustrated in Fig. 2. 12 

The radiation potential 
 m

jR  of module m satisfies the governing equation and boundary 13 

conditions in the fluid domain  , including the linearized free-surface condition (SF), body 14 

surface condition (Sn), sea bottom condition (SB) and distant radiation condition (S∞), as shown in 15 

Eq. (5). The simulated multi-module model has no wet panels on the wall sides between modules 16 

to avoid resonance in the gaps. Solving this model in mathematics is reasonable because the body 17 

surface boundary conditions are consistent with the actual situation.  18 
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              (5) 19 

For the diffraction problem, we assume that all the modules are fixed in the domain, with an 20 

javascript:void(0);
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incident wave acting on them. Similar to the radiation potential, the diffraction potential 
D  1 

satisfies the governing equation and boundary conditions in the fluid domain but with a different 2 

body boundary condition: 3 
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2.1.3. Hydrodynamic forces and coefficients 5 

The diffraction and radiation potential are first determined based on the three-dimensional Green’s 6 

function method. Applying the linearized Bernoulli equation, the dynamic fluid pressure that acts 7 

on the mean wetted surface can be obtained. Finally, by integrating the pressure along the mean 8 

wetted surface, the j
th

-order wave excitation force of module m in the body-fixed coordinate 9 

system can be expressed as 10 

        

m m

m m mi t

wj j I D j
S S
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The force can be decomposed into two components: 12 
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where 
 m

KjF  is the Froude-Krylov force and 
 m

DjF  refers to the diffraction force. 14 

The j
th

-order radiation force of module m that is generated by the free oscillations in the k
th

 mode 15 

of module n in the body-fixed coordinate system can be expressed as 16 
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If we substitute the body boundary condition of the radiation potential 
 

 
m

j m
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n
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
 into the above 18 

formula, Eq. (9) can be written as 19 
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where the subscripts k and j denote the number of modes; the superscripts m and n are the number 21 

of modules; and 
 mn

kjA  and 
 mn

kjC  denote the added mass and damping coefficients in the j
th 

mode 22 

of module m from the module n oscillating in the k
th 

mode, respectively. 23 

2.1.4. Hydrodynamic equations 24 

The coupled motion equations of the floating multi-body system in the reference coordinate 25 

system can be expressed as follows based on Newton’s Second Law of Motion: 26 
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where  N
M 
 

 refers to the 6 6  mass matrix of the N
th
 module;  NN

A 
 

 and  NN
C 
 

 are 3 

the added mass and damping coefficient matrices of module N, respectively, which can be derived 4 

from Eq. (10);  N
K 
 

 is the 6 6  hydrostatic restoring coefficient matrix;   N
x ,   N

x  and 5 

  N
x  are the rigid body displacement, velocity and acceleration arrays of module N, 6 

respectively, which are all 6 1  arrays; and   N

wF  is the wave excitation force array with 6 7 

degrees, which can be derived from Eq. (7).  8 

Eq. (11) can be simplified as 9 
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2.2. Structural analysis 11 

According to the discrete-modules-based method, the motion of a single rigid module can be 12 

influenced by the hydrodynamic interactions from the other modules and restricted by the motion 13 

responses of the adjacent modules, ensuring the deformation continuity of the entire floating 14 

structure. Therefore, adjacent modules are connected with Euler-Bernoulli beams by considering 15 

St. Venant’s torsion in the equivalent centers, as shown in Fig. 3. The structural stiffness matrix of 16 

elastic beams can be established based on structural mechanics and finite elements.  17 

 18 

Fig. 3 Equivalent structural beam model, where l is the length of the equivalent beam between two 19 
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2.2.1. Stiffness matrix  1 

In the structural analysis, two coordinate systems, namely, the local coordinate system mx’y’z’ and 2 

global coordinate system OXYZ, are selected to describe the deformation of the structure. Fig. 4 3 

shows the two principal bending planes of the beam, namely, x’mz’ and x’my’, with x as the beam 4 

axis and the origins in nodes m of element e. 5 

 6 

Fig. 4 Displacement of element e 7 
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where EMAM, EMIMy, EMIMz, and GMIM 
M MG I 

 are the axial stiffness, vertical bending stiffness, 12 

transverse bending stiffness and torsional rigidity of a single module, respectively; E, G and 13 

are the elasticity modulus, shear modulus and Poisson's ratio of the equivalent beam, respectively; 14 

b and h are the rectangular width and breath of the cross section of the beam, respectively; and 15 

  is the torsional factor of a rectangular cross section, which is related to the ratio of h  to b  16 

(Xia et al., 1998). 17 

Then, the stiffness matrix  
e

k   of the beam element can be obtained in the local coordinate 18 

system:  19 
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where A is the area of the beam cross section, with A=bh, and Iy, Iz, and Iρ are the vertical, 2 

horizontal and torsional inertia moments, respectively, with
3 31 1
,

12 12
y zI bh I hb   and3 

3I b h  . 4 

The stiffness matrix in the local coordinate system  
e

k  can be transformed to the global 5 

coordinate system based on a small deformation assumption: 6 
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where  
e

k  is the element stiffness matrix of element e in the global coordinate system, 8 

eT









 
 
      
 
 

 is the element variation matrix, and 9 

 
     

     

     

cos cos cos

cos cos cos

cos cos cos

x X x Y x Z

y X y Y y Z

z X z Y z Z



   
 

    
    

 is the direction cosine matrix of the local coordinate 10 

system that corresponds to the global coordinate system.  11 

Then, the element stiffness matrix can be grouped in accordance with the nodes: 12 
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  
e e

e mm mn

e e

nm nn

k k
k

k k

 
  
 

  (16) 1 

where each sub-block 
e

mnk    is a 6 6  matrix, and the nodes m and n of element e are the 2 

equivalent centers of module m and module m+1, respectively, in the multi-module system. 3 

2.2.2. Deformation equation 4 

Under external forces, the motion equation of the structure in the global coordinate system is as 5 

follows: 6 

           m c k F       (17) 7 

where {F} refers to the external load vector in the global coordinate system; [m] is the mass 8 

matrix of the beams; [c] is the structural damping;    ,   and    are the displacement, 9 

velocity and acceleration vectors, respectively; and [k] denotes the stiffness matrix of the entire 10 

structure, which is overlaid with the above element stiffness matrix and can be expressed as 11 

follows: 12 

  

,

1 1

1,1 1,2

1 1 2 2

2,1 2,2 2,2 2,3

2 2 3

3,2 3,3 3,3

N N

N

k k

k k k k

k k k
k

k

 
 

 
 
 

 
 
 
  

  (18) 13 

2.3. Coupling equations of hydrodynamic and structure deformations 14 

The structural damping is relatively negligible with respect to the hydrodynamic damping. 15 

Therefore, the forces on the beams in terms of waves and the structural attributions without the 16 

mass matrix of the beam itself and the structural damping after transforming the forces in the local 17 

coordinate system to the global coordinate system are shown in Fig. 5.  18 
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 1 

Fig. 5 Numerical method of the motion equation 2 

After coupling the hydrodynamic parameters with the structural deformation equation in 3 

accordance with the numerical method of Fig. 1 for a floating system with N modules, the motion 4 

equations of the waves can be written as 5 
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  (19) 6 

where 
,m m

mk 
 

 is the structural stiffness sub-matrix of the connection between module m and 7 

module m+1, as shown in Eq. (14) and Eq. (16);   m
  is the displacement vector of module m; 8 

and   m
F  is the external force vector of module m and is related to the displacement   .  9 

Based on the potential theory and shown in Fig. 5, {F} includes the wave excitation force {Fw}, 10 
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hydrostatic restoring force   K 
, inertial force 

  M 
 and wave radiation force, which 1 

contains two components: the added mass force 
  A 

 and damping force
  C 

.  2 

In the above equation, we assume that {δ} and {Fw} vary periodically with the stable frequency ω, 3 

which can be rewritten as 4 

        ,i t i t

w wu e F f e       (20) 5 

where {u} and {fw} are the complex amplitudes of the displacement and wave excitation force 6 

vectors, respectively. 7 

Consequently, Eq. (19) can be rewritten by separating the time variable: 8 

           2

6 16 6 6 6 6 6 6 1wNN N N N N N N
M A i C K k u f 

   
       (21) 9 

where [A], [C] and [K] are the added mass, damping and hydrostatic restoring coefficient matrices, 10 

respectively, which can be obtained from Eq. (12), and {u} refers to the time-independent 11 

displacement vector. 12 

The motion equation for a multi-module floating structure with connectors can be rewritten as 13 
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 (22) 14 

where 
rotk    is the stiffness value of the connectors, which equals zero for a hinged connector, 15 

and   l
  and   r

  are the displacement vectors of the two nodes of the connector, which 16 

have the same translational displacement, as listed in Fig. 6.  17 
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 1 

Fig. 6 Expression of the connector 2 

2.4. Bending moments and shear forces 3 

Structural bending moments and shear forces can be obtained by applying the beam bending 4 

theory. The motion equation in the frequency domain of Eq. (21) can be rewritten as 5 

                2

6 1 6 16 6 6 6 6 6 6 6 6 66 1wN NN N N N N N N N N NN
k u f M A i C K u 

     
       (23) 6 

The forces on the right side of Eq. (23) can be considered the equivalent external loads {f}, and 7 

then Eq. (23) can be transformed into the basic equation of the FEM method: 8 

      
6 1 6 16 6 N NN N

k u f
 
   (24) 9 

Finally, the problem is converted to solve the deformations and section forces of a free beam 10 

under concentrated forces, as shown in Fig. 7. 11 
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Fig. 7 External forces on the structure in the plane xoz, where 
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vertical force and moment of module m, respectively. 1 

In Fig. 7(b), the bending moment and shear force at the discrete points (bm) on the beam can be 2 

expressed as follows based on the beam bending theory: 3 

 

 

    1

2

m

z

m

m m

my z

m

SF f

BM f f x m l

 


    
         
    




  (25) 4 

where BM and SF are the vertical bending moment and shear force in the beam cross section, 5 

respectively.  6 

Similarly, the torsional moment can be obtained as follows: 7 

 m

mx

m

T f   (26) 8 

For a multi-module structure with connectors, the forces on the connectors can be obtained by 9 

solving the section forces on the connection points by the same method as above. 10 

2.5. Excitation forces in inhomogeneous waves  11 

The continuous structure is first discretized into rigid modules with elastic beam connections 12 

based on the discrete module-based method, and then these modules are further grouped into 13 

different regions (including several modules) according to wave variations (different incident 14 

wave directions, heights and periods). The wave in each region is then assumed to be 15 

homogeneous as a normal uniform wave, as illustrated in Fig. 8. 16 

 17 

Fig. 8 Description of the inhomogeneous wave conditions 18 

The inhomogeneity of the waves does not affect the radiations of the modules but introduces 19 

different wave excitations from incident and diffraction waves, which are always kept constant 20 

with one module (or the entire floating structure for conventional ships and platform structures). 21 

Under these circumstances, the j
th

-mode wave excitation force on the n
th

 module within the k
th

 22 

region could be written as follows: 23 

Region 1 Region 2 Region 3 

θ1, H1, T1 θ3, H3, T3 

Module 1~Module m Module m+1~Module 2m Module 2m+1~Module N 

θ2, H2, T2 
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                , cos , sin ,

2

n n n nk

wj wj k k j k k j k k

H
f f i           (27) 1 

where the superscript n denotes the n
th

 module; k denotes the k
th

 region; j denotes the j
th

-mode 2 

wave excitation force (j=1,...,6); Hk, k  and 
k are the incident wave height, wave frequency 3 

and wave angle in the k
th

 region, respectively; 
 n

wjf  represents the j
th

-DOF wave excitation force 4 

on the n
th

 module, whose position within the region is allocated according to its coordinates; 5 

   ,
n

wj k kf    is the amplitude of 
 n

wjf ; and 
   ,
n

j k k    is the position-related phase angle of the 6 

wave excitation force on the n
th

 module in the j
th

 mode at a wave frequency of 
k in the wave 7 

direction 
k .  8 

Consequently, the wave excitation forces on the discrete modules in the inhomogeneous wave on 9 

the right side of Eq. (21) can be expressed as 10 

               1

1 1 6 6= ,..., ,..., ,...,
T

n n M

w w w w wf f f f f   (28) 11 

If we replace the right side of Eq. (21) with Eq. (28), we can finally obtain the hydroelastic-motion 12 

equations of the entire structure under inhomogeneous waves. 13 

3. Validation of the proposed method in homogeneous conditions 14 

3.1. Numerical model 15 

The applicability and accuracy of the proposed method is verified by the hydroelastic responses of 16 

two models: a continuous floating plate (Fu et al., 2007) and a mathematical Wigley hull model 17 

that is formulated from Eq. (29). The parameters of the two models are listed in Table 1. 18 

 
      

4
2 2 2 2 8 21 1 1 0.2 1 1

2 2
, ,

x y z

L B d

      

  

      

  
   (29) 19 

in which L, B and d are the length, breadth and draft of the Wigley hull, respectively; 20 

, , 0
2 2 2 2

L L B Bx y d z         . 21 

Table 1 Main parameters of the numerical model 22 

Designation  
Model 1 

(Fu et al, 2007) 

Model 2  

(Journée, 1992) 
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Length, L (m) 300 300 

Breadth, B (m) 60 45 

Depth, D (m) 2 25 

Draft, d (m) 0.5 18.75 

Vertical Bending Stiffness, EIy (N.m
2
) 4.77E11 2.47E12 (mid-ship section) 

Water Depth, H (m)  58.5 infinite 

Both models are discretized into rigid modules that are connected by beams based on the proposed 1 

discrete-modules-based method. The characteristics of the elastic beams are listed in Table 2. 2 

Table 2 Main parameters of the connecting elastic beams between the modules 3 

Designation  Model 1 Model 2 (midship section) 

Length, L(m) 37.5 15 

Iy (m
4
) 40 209.87 

Iz (m
4
) 3.6E4 839.5 

Jx (m
4
) 159.44 639.78 

A 120 70.97 

3.2. Verification results 4 

The hydroelastic vertical displacements from the proposed method are compared to the 5 

experimental data by Yago and Endo (1996), and the distributions of the bending moments are 6 

compared to those from the three-dimensional hydroelasticity calculated by Fu et al. (2007). 7 

According to the recommendations in hydrodynamic analysis, at least four panels should be 8 

arranged within one wavelength. Thus, the required module number depends on the shortest 9 

wavelength of interest. In this paper, the model (Model 1 in Table 1) is discretized into 4, 8 and 15 10 

modules for a convergence study.  11 

Fig.9 shows the distribution of the vertical displacement and bending moment along the 12 

longitudinal direction of the structure for a 0° wave direction. The structural displacement and 13 

bending moment from the 8-module model match the test results and the predictions of the 3D 14 

hydroelastic method, while the results of the 4-module model do not show adequate accuracy. 15 

Compared to the results of the 15-module model, the 8-module model proves to be sufficiently 16 

accurate and more efficient. Fig. 10 illustrates the comparisons for different wavelengths and 17 
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angles, and good agreements are observed. 1 
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(a) Vertical displacement 
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(b) Vertical bending moment 

Fig.9 Vertical displacement and bending moment along the centerline of a continuous VLFS, with 2 

the effect from the number of modules.  3 
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(b) Vertical displacement 

Fig. 10 Vertical displacement along the centerline of a continuous VLFS for different wavelengths 4 

and angles. 5 

Fig. 11 shows the torsional angle and moment from both the proposed method and the 3D 6 

hydroelastic method for a wave direction of 30°; good agreement is observed between the two 7 

results.   8 
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(a) Torsional angle 
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(b) Torsional moment 

Fig. 11 Torsional responses for a wave direction of 30° 1 

Fu et al. (2007) investigated the hydroelastic responses of an interconnected flexible floating 2 

structure by dividing a continuous VLFS into two substructures that are connected by a line 3 

connection. The proposed method can also simulate this type of hinged connector by “hinging” 4 

the two corresponding nodes, as shown in Fig. 12. In accordance with Fig. 13(a), the vertical 5 

displacements at the hinge joint from the proposed method are consistent with those by Fu et al. 6 

(2007). However, obtaining the connecting forces inside the hinges through the conventional 7 

modal superposition hydroelasticity theory is impossible. The calculations of the connecting 8 

forces inside the connectors can be directly solved by applying the proposed method, as illustrated 9 

in Fig. 13(b), where the shear force at the connector is plotted as a function of the incident wave 10 

frequency.  11 

 12 

Fig. 12 Schematic plane view of an interconnected VLFS and equivalent beam model 13 
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(a) Vertical displacement at the connector 
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Fig. 13 Responses of the connector  1 

Moreover, the hydroelastic responses of a Wigley hull model are investigated by both the 2 

proposed and 3D hydroelastic method to demonstrate the applicability of the method to 3 

ship-shaped structures. The Wigley model is discretized into 20 modules along the longitudinal 4 

direction after the convergence study. Fig. 14 provides the finite element model and the equivalent 5 

beam model with variable cross-sections of the Wigley hull. Table 3 lists only the parameters of 6 

the first 10 beam elements because of symmetry. Fig. 15 shows good agreement between the two 7 

methods, which indicates the applicability of the proposed method for the analysis of hydroelastic 8 

responses of ship-shaped structures.  9 

Table 3 Parameters of the Wigley model 10 

Module b (m) h (m) Module b (m) h (m) 

Module 1 0.823 0.411 Module 2 0.874 0.437 

Module 3 0.926 0.463 Module 4 0.971 0.485 

Module 5 1.013 0.507 Module 6 1.065 0.533 

Module 7 1.110 0.555 Module 8 1.115 0.573 

Module 9 1.191 0.596 Module 10 1.217 0.609 

b and h are the width and height of the cross section of the equivalent beam, respectively.  11 
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 1 

 2 

Fig. 14 FEM mode of the Wigley model and the equivalent beam model 3 
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(b) Vertical bending moment 

Fig. 15 Responses of a Wigley hull model  4 

According to the verifications of the above two models, the proposed method is applicable to 5 

hydroelastic response analysis on any shape of floating structures for both finite and infinite water 6 

depths.  7 

4. Hydroelasticity of floating structures in inhomogeneous conditions 8 

4.1. Floating structures under an uneven sea bottom 9 

Song et al. (2005) experimentally investigated the effects of an uneven sea bottom, including both 10 
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2D and 3D regular shoal bottoms, on the hydroelastic responses of a floating plate under regular 1 

waves. The parameters of the floating plate are listed in Table 4, and the model is discretized into 2 

20 modules along the longitudinal direction after the convergence study. The 2D cylinder shoal 3 

bottom with an oval cross section in Song et al. (2005) is chosen as the uneven-bottom numerical 4 

example, as shown in  5 

 6 

Fig. 16 and listed in Table 5. Fig. 17 illustrates the wetted surface panels of the shoal bottom and 7 

the floating plate, where the cylindrical bottom is modeled as a fixed body on the seabed and the 8 

floating plate is modeled as a normal flexible floating structure. 9 

 Table 4 Main parameters of the floating plate 10 

Parameter 
Length 

L (m) 

Breadth B 

(m) 

Draft 

d (m) 

Vertical Bending Stiffness 

EIy (N.m
2
) 

Designation 1000 60 1 1.11E12 

Table 5 Dimension of the shoal model 11 

Type 
Length of section 

sl  (m) 

Height of section 

sh  (m) 

Length of cylinder

sL  (m) 

Two-dimensional 100 10 600 

 12 
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 1 

Fig. 16 Shoal model 2 

 3 

Fig. 17 Numerical model of a floating plate under an uneven bottom 4 

Fig. 18 shows the corresponding numerical results from the proposed method and the 5 

experimental results by Song et al. (2005) for both flat-bottom and uneven-bottom conditions. 6 

This figure shows generally good agreements in terms of the vertical displacements. As seen from 7 

the figures, the effect of the non-uniform bottom on the vertical displacements along the 8 

longitudinal direction of the structure becomes stronger with increasing wavelength, especially 9 

around the location of the shoal arrangement. The non-uniformity has little effect if the water 10 

depth becomes larger because of small disturbances on the wave field. Meanwhile, some 11 

deviations are found between the proposed method and the experimental data, which may be 12 

caused by wave nonlinearity in shallow water and is not considered in the proposed method. As 13 

introduced by Mei et al. (1989), the nonlinearity of the waves could be quantified by the following 14 

b) a) 

Wave 

L
s
 

l
s
 

h
s
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Ursell parameter:  1 

 
   

2

2 23

1

2
r

A A
U

h kh h




    (30) 2 

where A is the wave amplitude; h is the water depth; k  is the wave number, where 2 /k   ; 3 

and   is the wavelength. 4 

Table 6 Value of Ur for different wavelengths and water depths 5 

Water depth/ 

Wavelength 
h=10 m h=20 m h=30 m h=40 m 

λ=100 m 0.25 0.032 0.009 0.004 

λ=200 m 1.01 0.127 0.037 0.016 

λ=400 m 4.05 0.507 0.151 0.063 

According to wave dynamics, a wave is strongly nonlinear when 1rU , isolated or conoidal 6 

when  1rU O , and linear with a small amplitude when 1rU . As shown in Table 6, the water 7 

depth is only 10 m on the top of the uneven sea bottom, and the Ursell parameters for wavelengths 8 

of 200 m and 400 m are beyond the scope of linear small-amplitude waves. For a wavelength of 9 

200 m with Ur=1.01, the vertical displacements from the proposed method are slightly smaller 10 

than those from the model test around the uneven bottom. However, for a wavelength of 400 m 11 

with Ur=4.05, the proposed linear method, which cannot consider wave energy loss, exhibits 12 

larger vertical displacements compared to the experimental data. 13 
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(a) =100 , 20 , =0m h m    
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(c) =400 , 20 , =0m h m    
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(d) =200 , 40 , =0m h m    

Fig. 18 Vertical displacement along the centerline on an uneven bottom 1 

4.2.  Hydroelastic responses of a floating plate in inhomogeneous waves 2 

Waves are affected by islands and/or the shores of fjords when arriving from the open sea at 3 

certain angles or when passing by islands, and the wave field becomes inhomogeneous (Ding et al.; 4 

Lie et al., 2016). A typical inhomogeneous wave field that acts on a VLFS near an island is 5 

observed, with three sets of wave directions and wave spectra along the longitudinal region of the 6 

VLFS (Ding et al., 2016).  7 

The hydroelastic responses of the floating plate (mode 1) in Table 1 for regular waves with 8 

different incident wave directions (wave height fixed at 2 m) are investigated to reveal the effects 9 

of inhomogeneity in the frequency domain as a numerical case. The floating structure is first 10 

discretized into 8 modules and then grouped into 3 regions with regular incident wave directions 11 

of 55°, 90° and 70°, as shown in Fig. 19. 12 

 13 

Fig. 19 Distribution diagram of the inhomogeneous regular wave conditions 14 

M8 M7 M6 M5 M2 M3 M4 M1 

Region 1 Region 2 Region 3 

θ1=55° θ2=90° θ3=70° 

x/L=1.0 x/L=0 
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The hydroelastic responses of the structure in each homogeneous regular wave component in the 1 

inhomogeneous wave are calculated and then compared to those in the inhomogeneous wave to 2 

determine the effects of the inhomogeneity of the incident waves. 3 

As shown in Fig. 20, the difference in the vertical displacement at x/L=0.25 in inhomogeneous and 4 

homogeneous waves is not obvious. However, the vertical displacement at x/L=1.0 in the 5 

inhomogeneous wave is apparently different from those in homogeneous waves. Inhomogeneity 6 

induces a 20%~40% increase in the maximum vertical displacement compared to that in the most 7 

severe homogeneous wave condition (θ=55°), and the peak frequency decreases.   8 
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Fig. 20 Vertical displacements in different positions along the structure in homogenous and 9 

inhomogeneous regular wave conditions.  10 

Fig. 21 shows the distributions of the vertical bending moments and shear forces along the 11 

longitudinal direction of the structure at a wave frequency of 0.6rad/s in both homogeneous and 12 

inhomogeneous wave conditions. As shown in Fig. 21(a), the bending moments for homogeneous 13 

waves of 55° and 70° have two peaks around the positions of x/L=0.4 and 0.6, respectively, and 14 

are almost zero in beam seas (θ=90°). However, when the structure encounters inhomogeneous 15 

waves, the maximum bending moment along the longitudinal direction of the structure is almost 16 

double that of the result in the most severe homogeneous wave (θ=55°), and the position with the 17 

maximum bending moment moves from the middle to the waves from side. Similar trends can be 18 

also found in the distribution of the vertical shear forces, and the inhomogeneity of waves induces 19 

almost three times maximum bending moment, compared that in the most severe homogeneous 20 

wave (θ=55°), as shown in Fig. 21(b).   21 

Moreover, the bending moments and shear forces at two typical positions, namely, x/L=0.2 and 0.5 22 
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for vertical bending moments and x/L=0.3 and 0.75 for shear forces, are investigated under 1 

different wave frequencies. As shown in Fig. 22, the maximum vertical bending moment at the 2 

position of x/L=0.2 in the inhomogeneous wave condition is obviously larger than that in 3 

homogeneous wave conditions, and the peak frequency for inhomogeneous waves moves to a 4 

lower wave frequency. However, the inhomogeneity at the position of x/L=0.5 does not cause 5 

significant differences in the maximum value of the bending moment. The same trends can be also 6 

found in the distributions of the shear forces. 7 

Generally, in a specific wave frequency, the inhomogeneity of the regular wave may induce 2~3 8 

times increase in the maximum bending moments/shear forces along the longitudinal structure, 9 

compared to homogeneous waves.  10 
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(b) Vertical shear force for ω=0.6rad/s 

Fig. 21 Vertical bending moments and shear forces along the structure in homogenous and 11 

inhomogeneous regular wave conditions. 12 
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Fig. 22 Vertical bending moments and shear forces along wave frequencies in different positions 1 

in homogenous and inhomogeneous regular wave conditions. 2 

5. Concluding remarks 3 

A discrete-modules-based method was developed based on the three-dimensional potential theory 4 

and structural mechanics to investigate the hydroelastic behaviors of floating structures in both 5 

homogeneous and inhomogeneous seabed and wave field conditions. The following conclusions 6 

can be drawn: 7 

1) The proposed method has been verified against the model tests and the conventional 3D 8 

hydroelastic method in homogeneous waves. Moreover, this method could directly evaluate 9 

the connecting forces for interconnected flexible floating structures. 10 

2) The hydroelastic responses of a floating plate according to this method showed good 11 

agreement with published experimental data when considering an uneven sea bottom. 12 

3) The inhomogeneity of regular waves could induce an approximately 30%~80% increase in the 13 

maximum bending moments/shear forces compared to homogeneous waves, which should be 14 

considered to achieve safe design. 15 

Only inhomogeneous regular wave conditions with different incident wave directions were 16 

investigated in the frequency domain in this paper. The effects of inhomogeneous irregular wave 17 

conditions (different directions and spatial varying wave parameters) on the hydroelastic responses 18 

under real sea conditions will be considered and examined in future work. 19 
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