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ABSTRACT Animal models are generalized linear mixed models used in evolutionary biology and animal
breeding to identify the genetic part of traits. Integrated Nested Laplace Approximation (INLA) is a
methodology for making fast, nonsampling-based Bayesian inference for hierarchical Gaussian Markov
models. In this article, we demonstrate that the INLA methodology can be used for many versions of
Bayesian animal models. We analyze animal models for both synthetic case studies and house sparrow
(Passer domesticus) population case studies with Gaussian, binomial, and Poisson likelihoods using INLA.
Inference results are compared with results using Markov Chain Monte Carlo methods. For model choice we
use difference in deviance information criteria (DIC). We suggest and show how to evaluate differences in
DIC by comparing them with sampling results from simulation studies. We also introduce an R package,
AnimalINLA, for easy and fast inference for Bayesian Animal models using INLA.
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To estimate the additive genetic variance (and thus the heritability) of
different kinds of traits, biologists and animal breeders often use
a generalized linear mixed model (GLMM), called an animal model.
In an animal model individual i’s trait yi has a genetic part, ui. The
value ui is known as the breeding value of individual i. From the
assumption that the breeding value is the sum of effects of many
genes and from the central limit theorem, the breeding values are
assumed to have a Gaussian distribution with a dependence structure
given by the pedigree. Since early 1980s, animal breeders have suc-
cessfully used a frequentist approach with restricted maximum likeli-
hood (REML), to for example increase meat or milk yield in cattle
(Simm 1998). However, inference with REML is not trivial for GLMM
models. Models for non-Gaussian traits especially are challenging in
regard to uncertainty in breeding values and other parameter esti-
mates (Tempelman and Gianola 1994; Sorensen and Gianola 2002;
Bolker et al. 2009; Fong et al. 2010). A popular approach is best linear

unbiased prediction (BLUP) (Henderson 1950) for calculating breed-
ing values (Wilson et al. 2009). However, BLUP ignores all the un-
certainty associated with the estimation and are not suitable for
hypothesis testing in evolutionary questions (Postma 2006; Wilson
et al. 2009; Hadfield et al. 2010). Another approach is to perform
modeling in a Bayesian framework. All parameters are then consid-
ered random variables, and it is (in theory) straightforward to account
for all uncertainty jointly in parameter estimates. This solves the
problems making inference for non-Gaussian traits (Tempelman
and Gianola 1994; Fong et al. 2010) and accounting for estimation
uncertainty in the breeding values. Further, Bayesian modeling also
solves many of the issues regarding analysis of breeding values
discussed in Postma (2006), Wilson et al. (2009), and Hadfield
et al. (2010) as both breeding values and functions of breeding
values (e.g., mean breeding values over hatch years) are considered
random variables, and hence both uncertainty and dependencies
are accounted for. This flexibility of the Bayesian framework has
made Bayesian animal models increasingly popular. They have
been used in animal breeding since early 1990s, whereas they only
recently have been introduced to evolutionary biology (Kruuk et al.
2008; O’Hara et al. 2008; Ovaskainen et al. 2008; Hadfield 2010;
Steinsland and Jensen 2010). See Gianola and Fernando (1986) and
Sorensen and Gianola (2002) for a discussion of Bayesian animal
models.

Except in a few special cases, Bayesian models do not have closed
form analytic expression for quantities of typical interest, e.g., poste-
rior means. Hence, numerical approximations are needed. The tradi-
tional approximation procedure for Bayesian models is Markov Chain
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Monte Carlo (MCMC) (Sorensen and Gianola 2002, Van De Wiel
et al. 2013). MCMC is a very flexible methodology that can be used to
make inference for any Bayesian model, and we can get posterior
estimates for any random variable or parameter; marginally, jointly,
or functions of them. Setting up a good MCMC algorithm (quick
convergence, good mixing, and computationally fast) and evaluating
it (convergence and mixing) is challenging for a nonspecialist. Re-
cently, this has improved for animal models as there are now packages
available for doing inference for these models with MCMC in R
(MCMCglmm; Hadfield 2010) and in BUGS (Lunn et al. 2000).

For hierarchical latent Gaussian Markov random field models,
a nonsampling-based numerical approximation procedure, the In-
tegrated Nested Laplace Approximation (INLA) has recently been
introduced (Rue et al. 2009). Using INLA we can calculate marginal
posteriors for all parameters and each random effect, as well as the
posterior for linear combinations of random effects. INLA is based on
direct numerical integration instead of simulations. Rue and Martino
(2007) show for several models and datasets that INLA is much faster
than MCMC and more accurate for a given computation budget.
Faster inference encourages applied researchers to explore more mod-
els. Furthermore, this also opens new opportunities to do simulation
studies, which for example can be used to explore identifiability issues
and to set up tests of specific hypotheses. To perform model selection
between GLMMs is not a trivial task (Skrondal and Rabe-Hesketh
2004), and using difference in deviance information criterion (DIC)
has been questioned (Fong et al. 2010). We suggest using a simulation
study to evaluate whether DIC is an appropriate measure for model
selection. Fast simulation and inference methods are essential for
simulation studies to be computationally feasible. INLA has been used
in several fields of statistics, e.g., survival analysis (Martino et al. 2011),
for spatial GLMM (Eidsvik et al. 2009) and in disease mapping (Roos
and Held 2011, Schrödle et al. 2011). This paper contributes to easier
and faster Bayesian inference for both Gaussian and several non-
Gaussian animal models by demonstrating that these models fit the
INLA-framework and by providing an R-package, AnimalINLA, for
doing the inference.

In the section Materials and Methods, we introduce the data used
in the case studies. Then we briefly revise relevant requirements for
using INLA and the possibilities INLA gives, and fully specify the
animal models we use. We also present a framework for simulation
based testing of the ability of difference in DIC to choose between
models with and without genetic effects. Next, results from the syn-
thetic case studies and the house sparrow case studies are presented.
Inference is carried out using INLA and for some cases results are
compared with MCMC. The article ends with a Discussion and Con-
clusion, where the results as well as opportunities and limitations of
the INLA framework in quantitative genetics are discussed.

MATERIALS AND METHODS

Data
For the case studies we use data from a natural metapopulation of
house sparrow (Passer domesticus) on six islands off the coast of
Helgeland, Northern Norway (66�N, 13�E). From adults and juveniles
(i.e., birds born the same summer) a small blood sample was collected
and from adults several morphological traits were measured (includ-
ing bill depth). The blood samples were used to determine genetic
parenthood, and a genetic pedigree for the birds on the study islands
could be established. This study system has many qualities for pro-
viding data on morphology and fitness-related traits as more than 90%
of all birds on the six main study islands were individually ringed.

Intensive observation and capture protocols each year gave good esti-
mates of the lifespan of individual birds (a bird was considered dead
when it was no longer captured or observed). For a more thorough
description of the field work, study area and genetic parenthood anal-
yses, see (Ringsby et al. 2002; Jensen et al. 2008; Pärn et al. 2009) and
references therein.

For all case studies we used 1993 to 2002 as our study period, and
we used the same pedigree, which consisted of the np = 3574 individ-
uals that were present on the six main study islands in this period. The
pedigree spanned up to seven generations. For our case studies we
used individual data on (1) bill depth, (2) breeding season success, and
(3) average reproductive intensity (ARI). For all birds, sex, hatch year,
and hatch island were available. The animal model implicitly assumes
that missing phenotype observations are missing at random, and hence
we (implicitly) have assumed this. However, if the process behind the
missing data are connected to the trait of interest, this could result in
biased inference of additive genetic variance (Hadfield 2008).

In case study one we considered bill depth. This trait was mea-
sured each year (i.e., age) for most individuals over the course of a
lifetime. The proportion of individuals that have more than one mea-
surement was 0.4, ranging from two to nine measurements in total.
Bill depths were approximately Gaussian distributed (see Supporting
Information, Figure S1), and we have measurements for nd = 1025
birds. Many individuals in the pedigree had missing data for this trait
because the bird did not survive until it was 1 year of age. We stan-
dardized the data to have mean 0 and variance 1.

In case study two, we considered breeding season success. If at
least one of the offspring of an adult bird produced in a given breeding
season survived until recruitment, we defined its breeding season
a success. A recruit is an offspring that survives up to adult age, i.e., 1
year of age in the house sparrow. Otherwise the breeding season was
a failure. The breeding season could be a failure either because the bird
did not produce any offspring, or because all its offspring died before
recruitment. The data consist of pairs of values (ni, yi), where ni is the
number of breeding seasons individual i had during the study period
(i.e., it was alive and adult) and yi is the number of successful breeding
seasons, yi # ni. Individuals that died before their first breeding season
(did not recruit) or that emigrated to an island not among the six
main study islands have no data. There are nd = 1182 individuals with
data. Of these approximately 71% did not have any successful breed-
ing seasons.

In case study three, we considered data on ARI, i.e., the average
number of recruits an individual produced over its lifetime. Data take
the form (ni, yi) where ni is identical to ni in case study two, and yi is
the total number of recruits produced in the study period. For this
trait we had data for the same nd = 1182 individuals as in case study
two. yi ranged from 0 to 10, with mean 0.64. 71% produced no
recruits, and about 46% of the 344 individuals that produced one or
more recruits produced only one. The datasets are available in File S5.

Latent Gaussian models and INLA
In this section we give a brief introduction to latent Gaussian models
and how INLAs can be used to make approximations for posterior
marginals for these models. In general, latent Gaussian models are
hierarchical models in which we assume a np-dimensional latent field
x to be point-wise observed through nd # np data y, f ðyjxÞ ¼Qnd

i¼1 f ðyijxÞ. The latent field x includes both random and fixed effects
and is assumed to have a Gaussian density conditional on hyperparam-
eters u1: x|u1 � N (0, Q21(u1)).

The data y are assumed to be conditionally independent given the
latent field x and, possibly, some additional hyperparameters u2. The
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model definition is completed by assigning a prior density to the
hyperparameters u = {u1, u2}. In addition, some linear constraints
of the form Bx = e, where the matrix B has rank k, may be imposed
(Rue et al. 2009).

INLA provides a recipe for computing in a fast and accurate way,
approximations to marginal posterior densities for the hyperparam-
eters ~pðujyÞ and for the latent variables ~pðxijyÞ. Such approximations
are based on a smart use of Laplace or other related analytical approx-
imations and of numerical integration schemes. As a by-product of
the main computations INLA can also compute the DIC (Spiegelhalter
et al. 2002). DIC is calculated as the expectation of the deviance
over the posterior distribution (Ex,u(D(u, x))) plus the effective num-
ber of parameters (pD), DIC = Ex,u(D(u, x)) + pD. For the class of
latent Gaussian models INLA is constructed for the deviance can
be expressed as Dðu; xÞ ¼ 22

Pn
i¼1log  f ðyiju; xÞ, where the sum is

over all observations. The posterior mean of the deviance
Ex;uðDðu; xÞÞ ¼ R

u;xDðu; xÞpðujyÞpðxju; yÞdu  dx can therefore be
calculated using INLA (Rue et al. 2009). pD is approximated to n 2
tr{Q(um)Q�(um)21}, where n is the number of observations and um

denotes the posterior median of p(u|y). It is worth to note that
another common definition of DIC is to use the posterior mean
(instead of median) for the parameters in the deviance. This defini-
tion is used in MCMCglmm.

For the INLA methodology to work in a fast and efficient
way, latent Gaussian models have to satisfy some additional prop-
erties. First, the latent Gaussian model x, often of large dimen-
sion, admits conditional independence properties. That is, it is
a Gaussian Markov random field (GMRF) with a sparse precision
matrix Q (Rue and Held 2005). The efficiency of INLA relies, in
fact, on efficient algorithms for sparse matrices. Second, because
INLA needs to integrate over the hyperparameter space, the di-
mension of non-Gaussian u should not be too large, say # 14, due
to the numerical integration scheme and optimization methods
used. Finally, each data point yi depends on the latent Gaussian
field only through the linear predictor hi = g(mi) where g(�) is a
known link function and mi = E(yi|x, u), i.e., p(yi|x, u) = p(yi|hi, u).
INLA presents several advantages over MCMC based inference: it
provides accurate results in just a fraction of the time needed
by smart MCMC algorithms, and it does not require convergence
diagnostics. Moreover, the R-INLA package (available at www.r-inla.
org) makes inference from GRMF models using the INLA method-
ology easy.

Animal models
In this section we show that animal models are latent GMRF models,
which fits into the INLA framework (see the section Latent Gaussian
models and INLA). Moreover, we describe in detail the different ver-
sions of animal models for which we are interested. Because the focus
of this article is to emphasize INLA as a method of inference for
animal models, the models in the case studies and synthetic studies
are kept simple. For a more in depth introduction to animal models,
see (Sorensen and Gianola 2002).

In general, an animal model is a generalized linear mixed model;
the observed trait yi, i = 1, . . . , nd belongs to an exponential family

yi � p
�
yi;mi; u2

�
;

where the expected value mi = E(Yi) is linked to a linear predictor hi

through a known link function g(�), so that g(mi) = hi. The linear
predictor hi accounts for the effects of various covariates and the
breeding value in an additive way;

hi ¼ b0 þ zTi bþ ui þ ei; (1)

where b0 is an intercept, b ¼ ðb1; . . . ;bnf Þ are fixed effects, ui in-
dividual i’s breeding value, ei its residual effect, and zTi a known
incidence vector. The fixed effects (in a frequentist’s framework)
account for group-specific effects such as e.g., sex, year of birth,
and locality or subpopulation. In a Bayesian framework all param-
eters are treated as random variables, but out of convenience we
refer to bs as fixed effects. The breeding values are genetically linked
random effects also known as additive genetic effects. The residual
effects are unstructured Gaussian random effects, often named the
environmental effect in quantitative genetics. We assign a Gaussian
prior to b: b � Nð0;s2

bIÞ, where I is the identity matrix. The re-
sidual effects are e � Nð0;s2

e IÞ, where s2
e is often referred to as

environmental variance.
The breeding values for the population, u ¼ ðu1; u2; . . . unpÞ, are

assumed to have a dependency structure corresponding to the
pedigree

ujA;s2
u � N �

0;s2
uA

�
;

where A is the relationship matrix and s2
u is the additive genetic

variance (see e.g., Lynch and Walsh 1998, Sorensen and Gianola
2002). A GMRF is a multivariate Gaussian model with a conditional
independence structure, also known as a Markov structure. The
pedigree imposes a Markov structure. If we are interested in indi-
vidual i’s breeding value, and we know its parents, offspring and the
other parent(s) of its offspring, other individuals’ breeding value do
not give us any extra information. Because of the fact that the
breeding values forms a GMRF, the inverse of the relationship ma-
trix, A21, is a sparse matrix (Steinsland and Jensen 2010). A21 can
be calculated from the pedigree (Quaas 1976).

Note that there might be more individuals in the pedigree than
individuals with observations, nd # np, and we have assumed an
indexing such that ui corresponds to yi. The hyperparameters
ðs2

u;s
2
e Þ are assigned inverse gamma priors. Furthermore, to avoid

identification problems we include a common intercept and constrain
the levels of each factors to sum to zero (see Steinsland and Jensen
2010).

The animal model as described previously is a latent GMRF model
where the latent field is x = (b, u) and the hyperparameter vector u
includes the variances ðs2

u;s
2
eÞ and, possibly, the parameters in the

likelihood function. The precision matrix for the latent field x is sparse
because the inverse of A is sparse. Moreover, the likelihood of each
data point depends on the latent field only through the linear pre-
dictor hi defined in equation 1. Therefore, INLA can be applied to the
animal model.

In our analyses we might be interested in marginal posterior for
individual breeding values, ui, fixed effects b, the additive genetic
variance s2

u, the residual variance s
2
e , the heritability h

2, or to evaluate
the model using DIC. The heritability is loosely speaking the pro-
portion of the variability the genes account for in a phenotypic trait.
Precise definitions of heritability are given in subsequent subsections.
In addition, it might be interesting to look at linear combinations of
breeding values

P
i2Cwiui, where wi are weights, for example the

mean of breeding values for different cohorts.

Animal model for Gaussian data: For many continuous traits, such
as the bill depth of house sparrows, it is natural to assume a Gaussian
likelihood with an identity link function, hi = mi. The animal model
can then be written as: yi � Nðmi;s

2
e Þ, where the linear predictor is
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modeled as in (1) and the variance s2
e is the variance of the residual

effects. The model can be formulated in the INLA framework with
likelihood yijhi � Nðhi;s

2
e Þ and latent field hi ¼ b0 þ zTi bþ ui.

In many datasets there are repeated measurements for some
individuals. A common modeling approach is then to include an
individual specific random effect indi for each individual. Let yij
denote measurement j of individual i. The likelihood is
yijjhi � Nðhi;s

2
e Þ, and the latent field hi ¼ b0 þ zTi bþ ui þ indi.

This redefines the variance interpretation, and we can interpret s2
ind

as a special environmental variance (variation of the individuals’
trait values through life), and s2

e as the measurement error or un-
explained (environmental) variance (Lynch and Walsh 1998).

In general, and in the Gaussian case, the narrow sense heritability
is defined as the proportion of the phenotypic variance that is caused
by additive genetic variance (Lynch and Walsh 1998)

h2 ¼ s2
u

s2
u þ s2

e
: (2)

Although it is easy to use the INLA methodology to compute
posterior marginals of hyperparameters, posteriors for functions of
more than one hyperparameter, e.g., h2, become computationally
inconvenient. This can be solved by reformulating the model in
the INLA framework (see File S1 for this model formulation, and
how to use it).

Animal model for binomial data: With binomial data, the animal
model is defined as: yi ~ Bin(ni, pi) i = 1, . . . , nd, where ni is the numer
of trials and pi is the probability of success. Moreover, we assume
a logit link function, so that the linear predictor is defined as:
hi ¼ logitðpiÞ ¼ logð pi

12 pi
Þ. The linear predictor is then modeled as in (1).

In the binary case (ni = 1) the variance of the non-structured random
effect s2

e is confounded with the link, and is not identifiable (Sorensen
and Gianola 2002) because the individual effects are already accounted
for through the link and the likelihood. Therefore, we omit e from the
linear predictor and use this linear predictor for all binomial models

hi ¼ b0 þ zTi bþ ui: (3)

For binomial data, it is not immediately obvious how to define the
heritability of the trait. The most common definition is derived from
the idea that there exists a latent (unobserved) continuous trait called
liability li such that we register a success if li , 0 and a failure if li .
0 (Dempster and Lerner 1950). The definition of heritability depends
also on the type of the link function and in the case of the logistic
function it is

h2 ¼ s2
u

s2
u þ

p2

3

(4)

were p2=3 is the variance of a logistic variable (see Vazquez et al.
2009). Note that the heritability on the latent scale does not cor-
respond to the proportion of explained variance in the phenotype,
e.g., the binomial data. For a discussion on heritability for non-
Gaussian traits, see (Dempster and Lerner 1950, Visscher et al.
2008). The binomial animal model is a latent Gaussian model with
only one non-Gaussian hyperparameter, u ¼ s2

u. The heritability,
as defined in (4), is a function of only one random variable, s2

u, and
can therefore easily be calculated from s2

u’s marginal posterior
distribution.

Animal model for (zero-inflated) Poisson data: Count data are often
modeled as Poisson distributed: yi ~ Poisson (mi) with mi = Eili, where
Ei is the known exposure, e.g., the lifetime, and li is the intensity, e.g.,
the annual reproductive success. We assume an exponential link func-
tion hi = log(li), and model the linear predictor h as in (3).

Datasets which are almost Poisson, but have too many zero-
observations, often occur. Then a zero-inflated Poisson (ZIP)
distribution might be useful. ZIP models are a mixture of a Poisson
distribution and a distribution with point mass one at zero. There are
several versions of zero-inflated Poisson, we will use ZIP(p, mi) defined
as: Prob(y|. . .) = p · 1[y=0] + (1 2 p) · Poisson(y; mi), where 1[y = 0] is
an indicator function and Poisson(y; mi) indicates the Poisson likeli-
hood with mean mi, and p is the proportion of extra zeros. Poisson
and zero-inflated Poisson animal models are latent Gaussian fields
with hyperparameter vectors u ¼ s2

u and u ¼ ðs2
u; pÞ, respectively.

In the Poisson case it has been proposed that the heritability on the
log scale can be defined as (Foulley et al. 1987, Matos et al. 1997,
Vazquez et al. 2009)

h2 ¼ s2
u

s2
u þ l21 (5)

where l is the average intensity; l ¼ 1
nd

Pnd
i¼1li ¼

1
nd

Pnd
i¼1

expðhiÞ.
The heritability (5) is then a function of one hyper-parameter and

the random variable l which is a linear combination of functions of
predictors hi. Such a quantity is (at least currently) not possible to
compute using R-INLA. An approximated estimate of h2 can be
computed by using a point estimate for l together with the mar-
ginal posterior of s2

u. The point estimate can either be calculated
directly from data, or by plugging in point estimates for the pre-
dictors h. With this model we calculate the heritability of the in-
tensity, e.g., ARI, although the data are individual lifetime
reproductive success. If the heritability of lifetime reproductive
success (LRS) is of interest, this can be estimated by setting the
exposure Ei = 1 (and only using individuals that are uncensored at
either end of the study period).

Simulation-based evaluation of DIC: We often want to check
whether an additive genetic effect should be included in the model or
not. In a classical approach to hypothesis testing, this corresponds to
a null hypothesis of no genetic effects (no heritability), and an
alternative hypothesis of some genetic effect (heritability). This can be
seen as a model selection between a model without genetic effects and
an animal model. That is, in our formulation from the section Animal
Models, between a model with some likelihood and latent field,

H0 : hi ¼ b0 þ zTi b (6)

or

H1 : hi ¼ b0 þ zTi bþ ui: (7)

To evaluate the ability of the difference in DIC to correctly choose
between these models we suggest the use of simulations. We use the
pedigree, explanatory variables, priors, and missing structure of the
dataset and a model we want to compare. To find an estimate of
the probability of type I error, concluding that there are genetic effects
when in truth there is none, we sample S new data sets from a model
without genetic effects, i.e., with (6), and impose the same missing
structure as in the original data set. For each of these S data sets we fit
both models, i.e., with and without genetic effects, and find the
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difference in DIC, DDIC = DIC model (6) 2 DIC model (7). The
resulting S values of DDIC is an approximation to the sampling
distribution of DDIC under the null hypothesis. If we use the recom-
mended limit of DDIC. 10 to reject the null-hypothesis, we can find
an estimate of the corresponding significance level from the propor-
tion of the S DDIC values larger than 10. We can also chose a signif-
icance level a, and find the corresponding limit of DDIC from the
simulations.

The other important quantity regarding hypothesis tests is the
power function of the test, i.e., the probability the H0 is rejected when
there are some genetic effects. To estimate the power for a specific
value of s2

u or h
2, we follow the same simulation approach, except that

simulations are now done from a model with genetic effects, i.e., from
(7) with s2

u as chosen. The proportion of these S DDIC values larger
than our chosen limit is an estimate of the power for a given s2

u.

RESULTS

Synthetic case studies
In this section we illustrate the INLA methodology using a series of
synthetic case studies for the models (described in the section Animal
models). We report here results for the Gaussian and the Binomial
model. For corresponding results for the Poisson model see Table S1.

To make our simulated data set as realistic as possible we do the
following: first, we simulate data based on the pedigree of the house
sparrow dataset with np = 3574 individuals (as described in the section
Data). Second, we replicate in the simulated data set the same missing
data structure that we find in the house sparrow data set. Inference is
done using the AnimalINLA package. See File S3 for R code. As priors
for s2

u, s
2
e , and s2

b we use inverse gamma distribution InvGamma(a,
b) (parametrized such that it has mean ð b

a2 1Þ and variance ð b2

ða21Þ2ða2 2ÞÞ).
InvGamma(0.5, 0.5) for s2

u and s2
e and InvGamma(e, e210) for s2

b.

Synthetic Gaussian case study: In our first experiment we simulated
Gaussian data from:

yi
��mi;s

2
e � N �

mi;s
2
e

�
(8)

hi ¼ mi ¼ b0 þ ui (9)

where ujA;s2
u � Nð0;s2

uAÞ, and A21 is computed from the house
sparrow pedigree.

We simulate data for b0 = 0 and values of s2
u and s2

e between
0 and 1 such that s2

u þ s2
e ¼ 1. Moreover, we assume as missing all

measurements that are missing for bill depth in the house sparrow
data set. We follow Steinsland and Jensen (2010) and fit the model
assuming a sum to zero constraint on the breeding values,

P
ui ¼ 0.

In this experiment we are interested in the variance parameters and
use the model formulation described in the section Animal model for
Gaussian data (i.e., MF1 in File S1).

Figure 1A shows the estimated posterior mean together with stan-
dard deviations, and the 95% credible interval (CI) for s2

u and s
2
e . The

posterior means are quite close to the true values of s2
u and s2

e , with
small standard deviations and 95% CIs that contain the true value.
However, for small values for s2

u (,0.1) the posterior mean of the
genetic variance seems to be systematically different from the param-
eter value used in the simulations. We will refer to this as a systematic
error. It is caused by influential priors (discussed in the house sparrow
case studies). As the likelihood is Gaussian, the Laplace approximation
is exact and hence its accuracy comes from the numerical integration
scheme.

For each simulated data set we also fit a model without genetic
effect, hence where the model in (8) and (9) simplifies to:

yi
��mi;s

2
e � N �

mi;s
2
e

�
(10)

hi ¼ mi ¼ b0: (11)

We now test, using DDIC whether a model with or without genetic
affects will be chosen. The DDIC results are presented as stars (�) in

Figure 1 Results from the synthetic Gaussian case study. (A) Posterior
mean (solid lines) with 95% CI (dashed lines) for s2

u (black and open
squares) and s2

e (gray and closed squares) from the Gaussian synthetic
case study against the value of s2

u used in the simulations (together
with s2

e ¼ 12s2
u). The power of a model selection test using DDIC .

10 as limit is plotted as x and solid lines. The power is estimated using
the simulation approach described in the text. (B) Boxplots of simu-
lated values of DDIC against the value of s2

u used in the simulations
(together with s2

e ¼ 12s2
u). The values of DDIC from the synthetic

case study are plotted as stars. DDIC equal to 10 is indicated by
a horizontal line.
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Figure 1B, and we find that using a limit DDIC . 10 we chose the
animal model for s2

u $ 0:05.
To evaluate the ability of DDIC to choose between models, we use

the simulation methodology suggested in the section Simulation-based
evaluation of DIC. We use the same sets of ðs2

u;s
2
eÞ as in the synthetic

case study and simulated S = 100 synthetic data sets for each param-
eter sets. Boxplots of the corresponding DDIC are found in Figure 1B,
whereas the power of the test for the different sets of ðs2

u;s
2
e Þ are

given in Figure 1A. We first notice that the significance level (the
power for s2

u ¼ 0) is approximately 0.18. The power rapidly increases,
and for s2

u ¼ 0:1 it is 0.77, and already for s2
u ¼ 0:2 it is 0.98. Hence,

for Gaussian data with pedigree and missing structure as the house
sparrow case study using difference in DIC as model selection criteria
we have a good chance of identifying additive genetic variance above
0.1.

Synthetic binomial case study: Binomial data can be challenging to
analyze, especially when the number of trials ni is very low (Fong et al.
2010). To analyze the performance of INLA for binomial data we
have carried out different simulation studies and compared the
estimates obtained with INLA with those obtained using MCMC
(MCMCglmm; Hadfield 2010). We simulate data from the model
yi|pi ~ Bin(ni, pi) with a logit link function hi = logit(pi) = a + ui.
Where ujA;s2

u � Nð0;s2
uAÞ, and A21 is computed from the house

sparrow pedigree. We simulate data for a = 0 and values of s2
u such

that the corresponding heritability, computed as in equation (4), varies
between 0 and 1.

In our first experiment we let ni = 1, "i = 1, . . . , np, hence we have
binary data for all the individuals in the pedigree. This case is, in
general, particularly difficult, because with no replicates for any of
the individuals the genetic variance is not identifiable (Sorensen and
Gianola 2002). When we look at the posterior estimate for s2

u, we see
that the performance of INLA is quite bad (see Figure 2A). Looking at
Figure 2A, we find that the posterior of the heritability differs between
MCMC and INLA, MCMC follows the true value, INLA does not.
INLA is based on a Gaussian approximation of the log-likelihood
functions which, in this case, has a very non-Gaussian distribution,
and the Laplace approximation is poor. Although MCMC follows the
true value is has quite large credible intervals. The dependency struc-
ture induced by the house sparrow pedigree is not strong enough to
allow for a precise estimation of the genetic variance. In practice, it is
almost impossible to distinguish between cases with high and low
heritability of the binary trait. We further find that for small herita-
bility the estimates have systematic errors, as in the Gaussian case.

The performance of INLA improves very quickly with increasing
number of trials. In our second experiment we let ni = 2, "i = 1, . . . ,
np, hence we have two trials for each individual in the pedigree. In this
case, the presence of replicated measures makes it possible to estimate
the genetic variance more accurately. Figure 2B shows that the pos-
terior means computed by INLA are very close to those computed
using MCMC and close to the true value of h2. We still see a small
systematic error for small values of h2 but not such that it would be
problematic in a real data scenario. Even better estimates are obtained
in the third experiment where the number of trials ni changes from
individual to individual in the pedigree and is randomly sampled
between 1 and 9 (see Figure 2C).

In the last experiment the number of trials ni is as in the house
sparrow breeding season success data set (see the section Data). More-
over, in the simulated data we reproduce the same missing structure as
in the real data set. In this experiment the number of trials is sampled
uniformly between 1 and 9, and there are 1182 individuals with data.

That is, for more than 65% of the individuals in the pedigree the trait
under consideration was not recorded. Results shown in Figure 2D,
are similar to those for the two previous cases. The estimates seem to
be rather accurate with a small systematic error for very small values
of the heritability. Moreover, results from INLA agree well with those
from MCMC. In this experiment we have larger CI around the pos-
terior mean when compared to the one in Figure 2C. This is attribut-
able to the presence of missing data.

To test prior sensitivity, we performed a sensitivity analysis for all
three likelihoods and for both no heritability (h2 = 0), and high
heritabilities. Each dataset was analyzed with five different priors for
s2
u and, when relevant, s2

e ; InvGamma(a, b) with a = b = 0.0001, 0.01,
0.5, 1, 10. The sensitivity analyses are described in File S2 and results
are shown in Figure S3. The general findings are that for low herit-
abilities the results are very prior sensitive, while for higher heritabil-
ities only extremely informative priors (a = b = 10) change the
posterior considerably.

House sparrow case studies
In this section we analyze the data introduced in the section Data
using the animal models in the section Animal models. To perform
inference we use INLA, described in the section Latent Gaussian
models and INLA. We have three case studies; bill depth, breeding
season success, and ARI. For each case study, we first do model
comparison using DIC to choose which fixed effects (sex, hatch
year, and hatch island) and random effect (additive genetic effect)
to include in our model. For the best model we do further analysis
according to the chosen model and the case study. This includes
estimating parameters, heritability and mean breeding values for
each cohort.

For all models we use these priors: b � Nð0;s2
b ¼ 2:2 � 104Þ,

s2
u � InvGammað0:5; 0:5Þ and (when needed) s2

e � InvGammað0:5;
0:5Þ. To choose the best model, we start with the full model and
remove one variable at the time in a stepwise manner. In each step
all nested models are examined, but only the one with lowest DIC
(i.e., the best one at each step) is reported in Table 1.

Bill depth
Bill depth is a Gaussian trait, and we use the animal model described
in the section Animal model for Gaussian data. We first looked at bill
depth when first (time) measured and age of the individual at that
time. The full model can be written as; hi = b0 + bsex(i) + byear(i) +
bisland(i) + bagexage(i) + ui, where sex, year, and island are group-level
factors and xage(i) is a linear covariate with same prior as for b. The
results from the model selection procedure are presented in Table 1.
We see that the full model without age as a linear effect turns out to be
the best;

hi ¼ b0 þ bsexðiÞ þ byearðiÞ þ bislandðiÞ þ ui: (12)

Our further analyses for bill depth are based on this model.
We find the marginal posterior distribution for the variances; s2

u
has posterior mean 0.24 (SD 0.05) and 95% CI 0.1520.35. For s2

e we
get a posterior mean 0.47 (SD 0.05) with 95% CI 0.3920.58. We also
calculate the marginal posterior of h2 using MF2 (see File S1); mean
0.35 (SD = 0.07) with 95% CI 0.2120.48. The posteriors for s2

u, s
2
e ,

and h2 are plotted in Figure 3, A and B.
To explore interesting features and evolutionary processes that

may influence our study system we investigate trends in the breeding
values over years (Sorensen et al. 1994), by estimating linear combi-
nations of breeding values. We find the posterior distribution of
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average breeding values for each hatch year year (i.e., cohort);
ayear¼ 1

nyear

P
i2Cyear ui, where nyear is the number of individuals with hatch

year year, and the sum is over all these individuals. We fit the model
specified in equation 12 (which includes hatch year as a factor), and
the results are given in Figure 3C (posterior of byear) and Figure 3D
(posteriors of mean breeding values for each cohort). We also calcu-
late the posterior of the difference in average breeding values between
the first (1993) and last (2002) cohorts in the study; adiff = a1993 2
a2002, which gave a posterior mean 20.025 (SD 0.068) and 95% CI
20.161 – 0.108. The posterior marginal of the difference is given in
Figure S5. From Figure 3, C and D we see that almost all the differ-
ences in the phenotype seems to be explained by the year specific fixed
factor byear, and from Figure 3D there seems to be no trends in the
breeding values, and hence no microevolution is going on. This is
further supported by the posterior of the difference in breeding values
between 1993 and 2002 cohorts adiff|y, where 0 is well within a 95%
credible interval.

We also model an individual specific random effect indi, to include
repeated measurement j for individual i, with latent field hi = b0 +

bsex(i) + byear(i) + bisland(i) + ui + indi, where indi is a independent
random effect and s2

ind � InvGammað1; 0:001Þ. When including in-
dividual as a random effect, we find that the marginal posterior dis-
tribution for the variances; s2

u has posterior mean 0.25 (SD .05) and
95% CI 0.1720.37. For s2

e we get a posterior mean 0.42 (SD 0.02)
with 95% CI 0.3820.46. For s2

ind we get the posterior mean 0.13 (SD
0.04) and 95% CI 0.0720.21.

Breeding season success
Breeding season success is the number of breeding seasons that is
a success, i.e., results in at least one recruit. These data are in nature
binomial, and are analyzed using the animal model in the section
Animal model for Binomial data. We start with the full model:

hi ¼ b0 þ bsexðiÞ þ byearðiÞ þ bislandðiÞ þ ui; (13)

where the elements are described under equation 12. Results from
the model selection procedure are reported in Table 1. We find that
the best model does not include linear additive genetic effects, and

Figure 2 Results from the synthetic Binomial case study. True vs. estimated heritability: posterior mean (solid line) and 95% credible intervals
(dashed lines) for INLA (black, open squares) and MCMC (gray, closed squares). The number of trials is in (A) 1, (B) 2, (C) uniform between 1 and 9,
and (D) distributed as in the house sparrow data set.
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hence that the inherited part of breeding season success probably is
very close to zero.

However, if we use the full model (equation 13) to estimate s2
u we

get posterior mean 0.13, SD 0.05, and 95% CI 0.0720.24. Further-
more, using (4) gives posterior heritability with mean 0.04 (SD 0.01)
and 95% CI 0.0220.07. These estimates are similar to those from the
synthetic dataset when heritability is equal or close to zero in the
section Synthetic binomial case study (Figure 2).

Average reproductive intensity
ARI for an individual is the average number of recruits it produces
during its lifetime. Thus, we are modeling data on LRS in such a way
that lifetime is controlled for and the likelihood of any estimate of
heritability will be for the ARI. This is count data, and we analyzed
this trait by using the animal model in the section Animal model for
(zero-inflated) Poisson data with Ei = ni, where ni is the number of
breeding seasons individual i was alive during the study period. Be-
cause of the large number of zeros, we suspected that we needed
a model that accounts for overdispersion. Therefore, we first fitted
the full model as in equation 13 with two different likelihood mod-
els; Poisson (DIC = 2421.465) and zero-inflated Poisson (DIC =
2275.140). Because zero-inflated Poisson gave lowest DIC, we pro-
ceeded with this likelihood when choosing which fixed and random
effects to include in the model. Also the histogram of LRS divided by
lifespan indicated a zero-inflated Poisson distribution (see Figure S6).
The model with lowest DIC is the full model (equation 13), although
very close in DIC to the model without additive genetic effects (Table
1). We proceeded with the full model in our analysis of ARI. Hence,
the results suggest that annual reproductive intensity might be heri-
table. Accordingly, the posterior for s2

u is 0.11 (SD 0.03) with 95% CI
0.0620.18. To obtain the posterior of h2 defined as in (5), we plugged

in the point estimate l� ¼
P

yiP
ni
. This gives a posterior mean of the

heritability of 0.03 (SD 0.01), 95% CI 0.0220.05. Posterior distribu-
tions for s2

u and h2 are given in Figure 4.
The models used in the case studies can be extended. For example

when modeling breeding season success, we might want year as
a specific explanatory variable. This can be done by modeling it as

repeated binary trait (each breeding season). When one uses binomial
and Poisson likelihoods overdispersion is often a challenge. Common
solutions are to include a random effect to the latent field or to use
beta-binomial and negative binomial likelihoods, respectively, instead.
All these options are available in INLA and R-codes for how to
implement a random effect for Gaussian, binomal and Poisson
likelihoods are presented in File S4. For small values of s2

u we ob-
served systematic errors and prior sensitivity in all case studies. Priors
for variances are discussed in Gelman (2006), and this topic should be
further investigated, but it is outside the scope of this work.

Computation time
To compare the computation time used by INLA and MCMC,
inference for the Gaussian case study and for the synthetic Gaussian
case study for a large pedigree was performed with both MCMCglmm
and INLA. All computation times reported are for a dual-core 2.67-
GHz laptop. We visually inspect the posteriors of s2

u and s2
e of INLA

and MCMCglmm for an increasing number of iterations ((10.000,
100.000, 200.000) for the Gaussian case study and (10.000, 100.000,
500.000) for the synthetic Gaussian case study). MCMCglmm gave
the same estimates as INLA (see Figure S2 and Figure S4). For the
Gaussian case study, the computation time for INLA was 7 sec for
both model formulations for Gaussian data. For 200,000 iterations
MCMCglmm used 17 min to achieve about the same accuracy as
INLA (the Monte Carlo error is, however, still visible).

To demonstrate the fast inference of INLA, we created a large
pedigree from the existing house sparrow pedigree by merging 28
identical pedigrees and simulated data based on this pedigree with
np = 100,072 individuals. We simulated Gaussian data for b0 = 0 and
for s2

u ¼ 0:4 and s2
e ¼ 0:6 as in section Synthetic Gaussian case study,

with data for all individuals as in the pedigree. The computation time
for INLA was 7.4 min. To achieve approximately the same accuracy as
INLA, 500,000 iterations in MCMCglmm were needed; this took 17.9
hr, which is 145 times longer than INLA. As shown in Figure S4, we
found that even for 500,000 iterations, the Monte Carlo error was still
visible.

DISCUSSION
We compared inference obtained for animal models by using INLA
and MCMC. The general conclusion is that INLA is a fast and ac-
curate approximation method that gives us the opportunity to per-
form simulation studies to explore models and identifiability issues.
However, INLA is less flexible than MCMC methods, and we ex-
perienced this in case study three (ARI-data, Poisson likelihood), for
which we were not able to calculate the heritability as defined in (5)
using INLA. Although an approximated estimate could be obtained,
in the Gaussian case heritability estimates can be obtained with INLA
by using a tailored reparametrization. In the synthetic case study of
binary traits, we experienced that INLA performed poorly for the
additive genetic variance s2

u (for the pedigree we have used). Hence,
we recommend that one should not use INLA for a binary animal
model unless a simulation study suggests that INLA gives correct
results for the pedigree and missing data structure of the case in
question.

Our study of average breeding value for bill depth (Figure 3D) did
not indicate any change across cohorts. The posteriors of the levels of
the factor year; (byear, Figure 3C) suggests that the observed pheno-
typic change is influenced by changes in the environment. Note that
the estimates of linear combinations we obtain here take into account
dependencies and uncertainties of breeding values and parameters.

n Table 1 Model selection in house sparrow case studies

DIC Best Model

Bill depth~
Year + sex + island + age + u 2468.208
Year + sex + island + u 2466.415 �
Year + sex + u 2467.077
Year + u 2477.196
Year 2591.390

Breeding season success~
Sex + year + island + u 1718.687
Sex + year + island 1709.878 �
Year + island 1710.776
Year 1713.180

ARI~
Year + sex + island + u 2275.140 �
Year + sex + island 2275.729
Year + sex 2283.010
Sex 2291.700

Deviance information criteria (DIC) for different models explaining variance in
bill depth, breeding season success, and average reproductive intensity (ARI) of
Norwegian house sparrows are shown. Best models (lowest DIC) for bill depth,
breeding season success and ARI are indicated by �.
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Hence, they do not suffer from the same systematic errors as when
using regression on BLUP estimates obtained from REML-based anal-
yses as discussed in Wilson et al. (2009) and Hadfield et al. (2010).

When we extend the animal model for bill depth to account for
repeated measurements and use individual as a random effect, we find
that s2

e decreases. Some of the variance can now be explained by the
individual effects, and the residual error can be interpreted as a mea-
surement error and/or individual changes in bill depth during a house
sparrow’s lifetime. The additive genetic variance did however remain
the same.

The evolutionary process of selection may act on multiple
(genetically linked) traits simultaneously (Lande and Arnold 1983).
Hence, genetic correlations may impose constraints on the evolution
of a given trait. A multivariate animal model which incorporates
multiple traits simultaneously to estimate the genetic correlation be-
tween traits (i.e., the additive genetic variance-covariance matrix) is
therefore often of interest (Meyer 1991; Lynch andWalsh 1998; Kruuk
2004; Jensen et al. 2008). This extension of the animal model is in
principle possible using the INLA methodology, but is limited by the

number of hyperparameters and is not yet implemented in the
software.

A growing interest in quantitative genetics is for instance the use
of genome-based data, such as high-density single-nucleotide poly-
morphism, in combination with a pedigree to be able to do better
predictions of phenotypes (e.g., Goddard and Hayes 2009). The model
by Yang and Tempelman (2012) uses pedigree information together
with a single-nucleotide polymorphism model that takes into account
the within chromosome dependency. With some adjustments it will fit
the INLA framework, but this requires further research.

Both breeding season success and annual reproductive success are
traits closely related to fitness. Fitness related traits have previously
been found to be largely influenced by the environment and thus have
low heritability (Merilä and Sheldon 2000). In our study the breeding
season success was not found to be heritable, and annual reproductive
success had very low heritability. Consequently, our results coincide
with other studies in natural populations (see Jones 1987; Merilä and
Sheldon 2000), finding low heritability for fitness-related traits. Note
however that the environmental variance of fitness related traits

Figure 3 Results from house sparrow case study on bill depth. All posterior estimates are obtained using INLA. (A) Posterior distribution of s2
u

(solid line) and s2
e (dotted line). (B) Posterior distribution of heritabililty h2. (C) Left: Mean phenotopic (standardized) bill depth for each hatch year

(with 95% confidence interval). (C) Right: Posterior mean (with 95% credible interval) of the levels byear for the factor year. (D) Posterior mean (with
95% credible interval) for average breeding values for each hatch year.
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usually is large, and that this will result in a low heritability of such
traits even if they have some additive genetic variance (e.g., Foerster
et al. 2007). Consequently, despite their low heritability these traits
may still have evolutionary potential (Hansen et al. 2011).

In this work we demonstrated that INLA provides a suitable
methodology for performing inference for a range of animal
models. We have showed that because of the fast and accurate
inference of INLA, we are able to use simulation studies for large
pedigrees to examine different models and demonstrated the
applicability of examining the difference in DIC as a method for
model selection when using simulation studies. In our case studies
we considered models with additive genetic effects (breeding values
u), individual effects (environmental effects e), and several fixed
effects. These case studies required animal models with Gaussian,
Binomial (with logit link), Poisson, and zero-inflated Poisson (with
log link) likelihoods. Animal models might have a range of like-
lihoods. The R-INLA software also support different zero-inflated
Gaussian and Binomial likelihoods, survival models (exponential,
Weibull, and Cox likelihoods), Student’s t, and skew-normal like-
lihoods (see www.r-inla.org). It is also straightforward to make
inference with INLA for animal models extended with other addi-
tive random effects, such as maternal effects or litter effects, as well
as covariates.

The R-package AnimalINLA has been developed for performing
inference using INLA for animal models with likelihoods applied in
this paper. It can be downloaded at www.r-inla.org. This package
includes functionality for calculating the inverse of the relationship
matrix A from a pedigree and simulation of data from pedigree.
Furthermore, there are tailored functions for finding posteriors for
s2
u, s

2
e , the heritability for Gaussian, binomial and Poisson likelihoods

and linear combinations such as
P

i2Cui. These functions use R-INLA
with suitable default settings. The R-INLA code is also included to
give a good starting point to users who wants to make modifications,
e.g., other likelihoods or more random effects. Through providing easy
to use software which gives results fast we hope Bayesian animal
models become accessible to a wider audience of biologists and animal
breeders.
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