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Abstract

This thesis is written with the main purpose of finding a new indirect method for deter-
mining the temperature dependent viscosity of a material. The method is to compare
intensities of reflected diffraction orders during surface relaxation, obtained by experi-
ment, where the temperature is known, and by simulation, where the viscosity is known.
Data inversion will then yield the temperature dependent viscosity.

The relaxation dynamics is derived within the small slope approximation which yields
relaxation times linear in the viscosity. As it turns out, we only need one simulation due
to this linear dependency. We then study scattering of polarized light from a periodic
nanostructured surface, which relaxes in time according to the relaxation dynamics.

Rigorous scattering simulations are carried out, confronted with theory and com-
pared to preliminary experimental data. The qualitative behavior of our simulation
results corresponds well with experimental results. It is found that the method shows
promising results.

Sammendrag

Målet med denne oppgaven er å finne en ny indirekte måte å måle et materials tem-
peraturavhengige viskositet p̊a. Metoden g̊ar ut p̊a å måle intensiteten i forskjellige
diffraksjonsordre over tid mens overflaten relakserer, b̊ade eksperimentelt, hvor temper-
aturen er kjent, og gjennom simuleringer, hvor viskositeten er kjent. Deretter inverterer
vi intensitetsdataene for å f̊a viskositet som funksjon av temperatur.

Dynamikken bak relakseringen er utledet ved å anta at overflaten er glatt, noe som
gir linear avhengighet mellom relakseringstid og viskositet. Dette gjør at vi kun trenger
én simulering for å finne den temperaturavhengige viskositeten. Deretter studerer vi
spredning av polarisert lys fra en nanostrukturert overflate som relakserer i tid i henhold
til relakseringsdynamikken.

Vi gjør rigorøse spredningssimuleringer som blir satt opp mot teori og deretter sam-
menlignet med innledende eksperimentelle resultater. Den kvalitative oppførselen til
simuleringene stemmer godt overens med eksperimentelle resultater. Sammenligningene
viser at metoden virker lovende.
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Preface

This thesis is the result of the course TFY4900 Physics, Master’s Thesis. The duration
of the course was one semester with a suggested workload of 48 hours per week.

I have worked with electromagnetic scattering from a relaxing surface with a goal
to find a way to indirectly measure the temperature dependent viscosity of a material.
The experimentalists in Paris had problems with their experimental setup and therefore
could not provide me with the experimental data I needed to reach my goal. Neverthe-
less, I have investigated several aspects of this surface scattering which might help the
experimentalists make better decisions when designing the experimental setup.

I have learned a lot by working on this thesis. At first I had to learn myself Fortran90,
which I had never touched upon before. Then I had to delve into electromagnetic
theory and how to solve scattering problems numerically. Finally I had to combine the
scattering with the hydrodynamical model I derived in my specialization project last
semester. It has been interesting and rewarding. All in all, I am happy with the final
result.
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Chapter1
Introduction

Nanoimprint lithography is a method of making nanostructured surfaces, usually in thin
polymer films. It was first invented by S. Chou et al. [1] in 1995. Several variations and
implementations have since been developed.

Chou’s method is elegant in its simplicity. The polymer film is heated to a tempera-
ture above its glass transition temperature, Tg, while a mold, with a predefined pattern,
is pressed into the film. The glass transition temperature is the temperature where an
amorphous solid, like a polymer, becomes soft on heating. When the polymer has filled
the depressions of the mold, a cooling process is initiated. After cooling the polymer
down to a temperature below Tg, the mold is removed and the nanostructured polymer
film is ready for use. Figure 1.1 illustrates the process. The polymer films are usually
prepared by spin coating [3]. This is a simple method where a solution is placed on a
substrate which then is rotated at high speed to obtain the desired thickness, see fig-
ure 1.2. This is caused by centrifugal forces that spread the solution over the substrate.
The higher the speed, the thinner the film.

Devices made with nanolithography imprinting are used in electrical, optical and bi-
ological applications. Examples include MOSFET transistors, polarizers, anti-reflective
structures and biomolecular sorting devices.

There are still challenges with this method. For instance, how are the depressions
in the mold filled by the polymer? An array of narrow depressions is more quickly filled

Figure 1.1: Illustration of the imprinting process. a: The mold is pressed into the
polymer film of temperature T > Tg. b: The polymer fills the depressions of the mold.
c: The mold is removed after cooling the polymer to a temperature T < Tg. Figure is
inspired by Reference [2].

1



2 Chapter 1 Introduction

Figure 1.2: Illustration of the principle behind spin coating. Centrifugal forces push
the solution outwards during the rotation. The figure is taken from Reference [2].

Figure 1.3: Illustration of imprinting problems. Top: An array of thin depressions is
more quickly filled on the edges than in the center. Bottom: Wide depressions tend to
fill slower than thin depressions. The figure is taken from Reference [4].

on the edges than in the center. Wide depressions tend to be filled slower than narrow
depressions. This is illustrated in figure 1.3. Both of these problems may result in
inaccurate imprinting.

For industrial purposes, time- and cost efficient large scale manufacturing is of great
interest. Gravitational effects prevail when the mold gets large, which may result in
uneven imprinting. How long should the cooling process go on before the polymer film
is solid and the mold can be removed without destroying the structured film?

The temperature-dependent viscosity of the polymer is the interesting material pa-
rameter for this problem. Near the glass transition temperature, the viscosity changes
rapidly, see figure 1.4. By knowing the temperature dependence, a manufacturer knows
exactly at which temperature it is safe to remove the mold, thus making the manufac-
turing process more efficient and profitable.

Unfortunately, it is hard to measure the viscosity directly. Therefore, with the aim
of an indirect way of determining this quantity, an optical diffraction experiment was
designed and conducted to measure the intensities of the various diffraction orders during
the time period of relaxation after heating. The idea is to compare the experimental
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Figure 1.4: Viscosity, η, as function of temperature for PMMA of different molecular
weights, Mw in g/mol. The glass transition is seen as the sudden change in viscosity for
the two heaviest polymers. The two lighter polymers have Tg below 100◦C. The graph
is taken from Reference [5].

results with a hydrodynamical model to find viscosity as a function of temperature,
η(T ). This experiment was designed by a group of experimentalists at Saint-Gobain
Recherche, Paris. They have provided all experimental data used in this thesis. We have
done scattering simulations, theoretical contemplations and developed a hydrodynamical
model for the relaxation.

This hydrodynamical model was found in the specialization project. It is simple but
yields good qualitative results. Most of the theory behind and the derivation of this
model is included in this thesis to give the reader a complete description of the method.

The main focus of this thesis has been the scattering of light from the relaxing
surface. We use the simple hydrodynamical model to simulate the relaxation, while
a rigorous numerical method is used to solve the scattering problem. Unfortunately,
there were problems with the experimental setup which caused delays. Therefore, we
did not get enough experimental data to find η(T ) in time. Nevertheless, we compare
our simulation results with preliminary experimental results. We also investigate the
importance of different aspects of the experiment from a theoretical point of view, such
as polarization and mismatch between the dielectric functions of the different layers
of the experimental samples. The material we investigate is the polymer Poly-methyl
methacrylate (PMMA).



4 Chapter 1 Introduction

This thesis is organized as follows: In chapters 2 and 3, we outline fundamental
electromagnetic theory and surface scattering. The content of these two chapters is
used in chapter 4 to derive a rigorous numerical method for solving the surface scattering
problem. Chapters 5 and 6 present fundamental hydrodynamics and the derivation of
a simple model for how periodic nanostructured highly viscous fluid surfaces relax. In
chapter 7 we explain how we combine the hydrodynamical model with the rigorous
numerical method to solve the scattering from a relaxing surface. We also present how
we can do the optical diffraction experiment and how we compare the simulation results
with the experimental data to obtain the viscosity as a function of temperature. In
chapter 8, we present our results which are discussed in chapter 9 where future work is
also presented. Finally, we summarize and conclude in chapter 10.



Chapter2
Electromagnetism

In this section we will outline the basic electromagnetic equations which explain electro-
magnetic waves and their behavior at interfaces. We will also briefly explain polarization
and the energy carried by the electromagnetic waves. Lastly, we will introduce the grat-
ing equation which describes how electromagnetic waves behave when they are scattered
of a structured surface with period close to the wavelength of the waves.

2.1 Maxwell’s equations

All of electromagnetism is contained within four equations called Maxwell’s equations.
These are [6]

∇ ·E =
ρ

ǫ0
, (2.1a)

∇ · B = 0 , (2.1b)

∇×E = −∂B
∂t

, (2.1c)

∇× B = µ0J + µ0ǫ0
∂E

∂t
. (2.1d)

Here, E and B are the electric and magnetic field vectors. Bold symbols denote vectors
and · denotes a scalar product. The electromagnetic field in vacuum consists of these
two vectors. The constants ǫ0 and µ0 are the permittivity and permeability in vacuum,
respectively. Moreover, ρ and J denote the charge density and current density, respec-
tively. Equations (2.1) only apply to point charges in vacuum. To investigate large
collections of point charges, like dielectrics and metals, we have to introduce effective
fields. These are the electric displacement field D and the H-field1 defined via [6]

D = ǫE , (2.2a)

B = µH , (2.2b)

where ǫ = ǫrǫ0 denotes the permittivity of the medium and µ = µrµ0 denotes the
permeability of the medium. The dimensionless quantities ǫr and µr are the relative
permittivity and permeability which are 2nd order tensors depending on the spatial

1This field is often called the magnetic field, but as B is the fundamental quantity, we will call it just
H. [7]

5



6 Chapter 2 Electromagnetism

variable x, the field vectors E and H and the frequency, ω, of the field. However, when
the medium in question is isotropic and homogeneous, these tensors reduce to scalars.
Furthermore, if the field strengths are not too large, they can be treated as independent
of the field vectors. In this case, we are dealing with linear electromagnetic theory which
simplifies our problem significantly.

The permittivity is of great interest as it determines how the medium reacts to
electromagnetic fields. It is often called the dielectric function, which we will call it from
now. The dielectric function is a complex function where the real part is connected to
reflection and refraction of electromagnetic waves, while the imaginary part is connected
to the absorption of electromagnetic energy in the medium. The refractive index, n1, of
a medium is the real part of the square root of the relative permittivity,

√
ǫr = n1 + in2.

Finally, D and H are the effective fields which describe the effect of electromagnetic
fields in matter. Replacing the ǫ0 and µ0 in Maxwell’s equations (2.1) with ǫ and µ and
using equations (2.2), we obtain Maxwell’s equations in matter [6]

∇ ·D = ρ , (2.3a)

∇ ·B = 0 , (2.3b)

∇× E = −∂B
∂t

, (2.3c)

∇× H =
∂D

∂t
+ J . (2.3d)

The charge density ρ and the current density J act as sources for the electromagnetic
field in matter, E and H, and they fulfill the continuity equation

∂ρ

∂t
+ ∇ · J = 0 . (2.4)

2.2 Electromagnetic waves

We will now derive the wave equation for the electric field for the system most relevant
to this thesis, namely an isotropic, homogeneous and source-free medium (ρ = 0 and
J = 0). The dielectric function of a homogeneous medium is independent of x, and is
thus spatially constant. Taking the curl of equation (2.3c) and inserting equations (2.3d)
and (2.2) we obtain

∇× (∇× E) + µǫ
∂2E

∂t2
= 0 . (2.5)

Here, the electric field is dependent on both space and time, i.e E = E(x, t). By applying
the vector identity ∇ × (∇× A) = ∇(∇ · A) − ∇2A and equation (2.3a), we end up
with the wave equation for the electric field

∇2E − µǫ
∂2E

∂t2
= 0 . (2.6)

Solutions to this equation are known as electromagnetic waves. These solutions tend to
have a harmonic time dependence exp(−iωt). Inserting this time-dependence into the
wave equation (2.6) and using the relation µ0ǫ0 = 1/c2, where c is the velocity of light,
yields

(

∇2 + µrǫr
ω2

c2

)

E = 0 , (2.7)
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which is the Helmholtz equation. Here, the electric field is no longer time-dependent, i.e.
E = E(x|ω). The wave equation and its corresponding Helmholtz equation for H can
be found in the same manner by eliminating the electric field.

To find the dispersion relation we insert a plane wave, E = exp(ik·x) into Helmholtz
equation (2.7) and obtain

k · k− ǫrµr
ω2

c2
= 0 . (2.8)

By splitting the scalar product into a parallel and a perpendicular part, q and α(q, ω)
respectively, and taking the square root of the resulting expression we get

α(q, ω) =

√

ǫrµr
ω2

c2
− q2 . (2.9)

By parallel and perpendicular part we mean parallel and perpendicular to the xy-plane.

Electromagnetic waves travel in the direction of the wave vector k. When ρ = J = 0
we get the condition k ·E = 0 from Gauss’ law (2.3a) and k ·H = 0 from equation (2.3b)
when we insert a plane wave. Furthermore, by utilizing the plane wave and integrating
equation (2.3c) over time we get H ∼ k×E. Hence, electromagnetic waves are transverse
and the electric field and H are mutually perpendicular.

2.3 Polarization

The polarization of an electromagnetic field is determined by which field that is perpen-
dicular to the plane of incidence. The plane of incidence is defined as the plane formed
by the incident, reflected and transmitted wave vectors, see figure 2.1. There are two
kinds of polarization, namely s- and p-polarization. In the first case, the electric field is
perpendicular to the plane of incidence, while in the latter case, the electric field is paral-
lel. The notation s comes from the German word senkrecht which means perpendicular
while p comes from parallel.

+

k0

θ0

θr θt

z

qr

qt

−

Figure 2.1: Illustration of a incoming electromagnetic wave with wave vector k0 being
both reflected (qr) from and transmitted (qt) through an interface between two different
media labeled ±. The plane of incidence is the paper plane. θ0 is the angle of incidence,
θr is the angle of reflection and θt is the angle of refraction.
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−

+

t

n

z

x

Figure 2.2: Interface between two media, labeled ±. n and t are the normal and
tangential unit vectors to the interface.

2.4 Boundary conditions

Maxwell’s equations can be solved in regions without boundaries, but boundaries do
exist in the real world. Therefore it is useful to know how electromagnetic fields behave
at interfaces between two different media. Consider the geometry shown in figure 2.2.
It shows the interface between two isotropic, homogeneous and linear media labeled
±. n is a unit normal vector for the interface directed into medium +. The boundary
conditions are then

n · (B− − B+) = 0 , (2.10a)

n · (D− − D+) = ρs , (2.10b)

n× (E− − E+) = 0 , (2.10c)

n× (H− − H+) = Js , (2.10d)

where the indicies ± refers to the media where the fields are evaluated. ρs and Js are
the surface charge density and the surface current density respectively. The derivation
of these boundary conditions are found in nearly every book on electromagnetic theory.
See e.g. Jackson [6].

We require that the electromagnetic field vanishes at r = ±∞. If not, the energy
density would be infinite, which is unphysical.

2.5 Energy

The flow of electromagnetic energy is described by Poynting’s vector [6]

S = E × H∗ . (2.11)

It describes the energy transported by the electromagnetic field (E,H) per unit time
and unit area, i.e. it is the energy flux density. More useful is the time-average of this
quantity, due to experimental measurements. It is given by

〈S〉t =
1

2
E × H∗ . (2.12)
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Specifically, the flow of energy per time through a surface of area a, where mathbfa
is an area vector, is S · a. From this we get the power (energy flux) passing through the
xy-plane

P =

∫

dx

∫

dy Re〈Sz〉t , (2.13)

where Re〈Sz〉t denotes the time-averaged real part of the z-component of Poynting’s
vector (2.11). For an effective one-dimensional surface, i.e. where the surface is constant
in y-direction, the y-integration is trivial. Therefore the power reduces to

P = Ly

∫

dxRe〈Sz〉t , (2.14)

where Ly is the length of the surface in y-direction.

2.6 Fresnel’s equations

Fresnel’s equations give the amplitudes of the electromagnetic field for reflection from
and transmission through a plane surface. Due to the boundary conditions (2.10), Fres-
nel’s equations for s-polarized fields are different from those for p-polarized fields. The
reflection amplitudes can be expressed as [8]

rs =
cos θ0 −

√

n2 − sin2 θ0

cos θ0 +
√

n2 − sin2 θ0
, (2.15a)

rp =
−n2 cos θ0 +

√

n2 − sin2 θ0

n2 cos θ0 +
√

n2 − sin2 θ0
, (2.15b)

where rs and rp are the reflection amplitudes for s- and p-polarized fields respectively,
θ0 is the angle of incidence and n =

√

ǫ−/ǫ+ is the ratio of the refractive indices of the
two media. The corresponding amplitudes for transmission can be written as [8]

ts =
2cos θ0

cos θ0 +
√

n2 − sin2 θ0
, (2.16a)

tp =
2n cos θ0

n2 cos θ0 +
√

n2 − sin2 θ0
. (2.16b)

These amplitudes are the ratios of the reflected (transmitted) field and the incom-
ing field. Squaring them yields the so-called reflectance and transmittance, R and T ,
respectively [7]

Rν = |rν |2 =

∣

∣

∣

∣

Er
ν

Ei
ν

∣

∣

∣

∣

2

, (2.17a)

Tν = |tν |2 =

∣

∣

∣

∣

Et
ν

Ei
ν

∣

∣

∣

∣

2

. (2.17b)

Here, the index ν denotes the polarization of the field. The square of the field is propor-
tional to the value of Poynting’s vector (2.11). Hence, the sum of R and T should be
unity if there is no absorption

R+ T = 1 . (2.18)
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We must assume that there is no absorption for this relation to hold. The interpretation
of this relation is conservation of energy; the sum of reflected and transmitted energy is
equal to the incoming energy.

From now on, the reflectances from plane surfaces will be called Fresnel reflectances
and be denoted as RF

ν , where ν denotes the polarization.

2.7 Diffraction and gratings

A beam impinging onto an interface between two materials may be reflected and/or
transmitted depending on the properties of the materials and the beam. The dielectric
functions of the materials determine the amount of energy that is reflected and trans-
mitted. If the interface is periodic and the wavelength of the beam becomes comparable
to the periodicity of the interface, diffraction effects arise. The grating equation tells us
how many diffraction orders that appear and their location. Here, we will derive the
grating equation for both reflection and transmission. We assume that the media are of
some material of constant and real dielectric function. Furthermore, we only consider a
one-dimensional interface, as this corresponds to our system.

We begin with considering a plane wave impinging onto a periodic surface. The
boundary condition at the periodic surface implies that the incoming and reflected field
must be joined with the transmitted field, i.e. E0(x, t) + Er(x, t) = Et(x, t). It follows
from this equality that

Iei(k0·x−ωt) + Rei(qr ·x−ωt) = T ei(qt·x−ωt) , (2.19)

where I, R and T are the amplitudes of the incoming, reflected and transmitted field
respectively. These amplitudes are independent of the spatial variable x. Since each of
the fields come from the same source they have the same frequency. Hence, the time de-
pendent part of the exponentials of equation (2.19) are equal. Boundary condition (2.19)
has to hold for all x which implies

k0 · x = qr · x = qt · x . (2.20)

To describe a periodic surface we need a set of reciprocal vectors, G, which are the
inverse periodicity of the surface. For a one-dimensional interface the reciprocal vector
is [9]

Gm =
2πm

L
x̂ , (2.21)

where L is the period of the interface, x̂ is the real-space unit vector and m is an integer.

The difference between the incoming wave vector and the outgoing wave vectors, k0

and qr/t respectively, is called the scattering vector

∆q = qr/t − k0 . (2.22)

When the scattering vector differs significantly from the reciprocal vector, the amplitude
of the scattered wave is negligibly small, see e.g. chapter 2 of Kittel [9]. Therefore, the
diffraction orders appear at locations for which the scattering vector equals a reciprocal
vector

∆q = Gm (2.23)

for some m.
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At the surface, the lateral components of the wave vectors should be conserved.
These are of the form k|| =

√
ǫω

c sin θ. Looking at the parallel components of (2.23),
where ∆q = qr − k0, yields for reflection

√
ǫ+
ω

c
sin θ(m)

r −√
ǫ+
ω

c
sin θ0 =

2πm

L
, (2.24)

where θ0 is the angle of incidence and θ
(m)
r is the reflection angle of diffraction order m.

Using ω = 2πc/λ, where λ is the wavelength of the incident electromagnetic wave, with
equation (2.24) yields the reflection grating equation

sin θ(m)
r − sin θ0 =

mλ√
ǫ+L

. (2.25)

Doing the same for the scattering vector with transmission instead of reflection yields
the transmission grating equation

√
ǫ− sin θ

(m)
t −√

ǫ+ sin θ0 =
2πm

L
. (2.26)
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Chapter3
Surface scattering

In this section we will introduce a general geometry and derive the behavior of the
scattered fields. Furthermore, we introduce the concept of the mean differential reflection
coefficient which is a quantity related to experimental measurements. The last section
outlines multilayer thin film scattering where transmitted light is reflected from several
interfaces in a stack of thin films.

3.1 Scattering geometry

The surfaces we treat in this thesis are effectively one-dimensional as the surface profile
function has a non-trivial dependence only on x, and because they are constant along
the y–direction. The region above the surface is assumed to be air (ǫ+(ω) = 1) and the
one below consists of an isotropic, homogeneous dielectric medium characterized by a
frequency-dependent dielectric function (ǫ−(ω) = ǫ(ω)). Furthermore, we assume that
the material is non-magnetic (µr = 1) and that it is source-free (ρ = 0 and J = 0). The
geometry is shown in figure 3.1.

3.2 The scattered field

By assuming that the plane of incidence is the xz-plane and that the incident beam is
either s- or p-polarized, one field component is sufficient to fully describe the electro-
magnetic field. This reduces the problem of determining the field from a vector problem
to a scalar one. The primary field can thus be written as [10]

Φν(x, z|ω) =

{

Hy(x, z|ω) , ν = p ,

Ey(x, z|ω) , ν = s .
(3.1)

We have suppressed the harmonic time-dependence to simplify the notation. Using equa-
tion (2.3c) and (2.3d) together with (2.2) we can calculate the remaining components
from (3.1). For a p-polarized field, the components are

Ex = − i

ωǫ(ω)

∂

∂z
Hy(x, z|ω) , (3.2a)

Ez =
i

ωǫ(ω)

∂

∂x
Hy(x, z|ω) , (3.2b)

13
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10−1

10−1
n

q
(n)
t

θ
(n)
t

q
(m)
s

m

θ0

θ
(m)
s

z

z = h(x)
ǫ+(ω)

ǫ−(ω)

x

k0

Figure 3.1: Illustration of a general one-dimensional scattering geometry. The surface
is defined by z = h(x) where the region above is assumed to be air (ǫ+(ω) = 1), while the
one below is a dielectric with a frequency-dependent dielectric function ǫ−(ω) = ǫ(ω).

θ
(m)
s is the angle of diffraction order m for a reflected wave, while θ

(n)
t is the angle

of diffraction order n for a transmitted wave. The positive direction of the angles are
defined by the arrows. k0 is the wave vector of the incident beam with angle of incidence

θ0, while q
(n)
t and q

(m)
s are the transmitted and reflected, respectively, wave vectors.

and for an s-polarized field

Hx =
i

ωµ(ω)

∂

∂z
Ey(x, z|ω) , (3.3a)

Hz = − i

ωµ(ω)

∂

∂x
Ey(x, z|ω) . (3.3b)

Here, ǫ(ω) and µ(ω) are dependent on the medium where the fields are evaluated.

3.2.1 Boundary conditions

The primary field Φν(x, z|ω) is tangential to the surface for both polarizations. This
way, boundary conditions (2.10a) and (2.10b) yield

Φ+
ν (x, z|ω)

∣

∣

z=h(x) = Φ−
ν (x, z|ω)

∣

∣

z=h(x) , (3.4)

where h(x) denotes the interface between air and the dielectric.

In order to satisfy the remaining boundary conditions we assume for simplicity that
the surface h(x) is a single-valued function of x. By single-valued, we mean that h(x)
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has only one value for each x. Then, the unit normal vector of the surface n can be
expressed as [11]

n =
(−h′(x), 0, 1)
√

1 + (h′(x))2
, (3.5)

where h′(x) denotes the surface differentiated with respect to x. The normal derivative
of the surface ∂n is

∂n = n · ∇ =
−h′(x)∂x + ∂z
√

1 + (h′(x))2
, (3.6)

where ∂i denotes a partial derivative with respect to spatial coordinate i = x, z.
Using the normal vector and its derivative we obtain the last boundary conditions

for the primary field at the surface

1

κ+
ν (ω)

∂nΦ+
ν (x, z|ω)

∣

∣

z=h(x) =
1

κ−ν (ω)
∂nΦ−

ν (x, z|ω)
∣

∣

z=h(x) , (3.7)

where κ±ν are defined as

κ±ν =

{

ǫ±(ω) , ν = p

µ±(ω) , ν = s
. (3.8)

3.2.2 Asymptotic, far-field behavior of the scattered fields

Intensity measurements are in our case done far from the surface. Knowledge of the
asymptotic far-field behavior of the scattered fields is thus essential. The fields have
to satisfy the Maxwell’s equations (2.3) and the boundary conditions at infinity. When
we consider the scattering geometry depicted in figure 3.1, Maxwell’s equations (2.3)
are equivalent to the scalar version of the Helmholtz equation (2.7) of our primary field
(3.1). Here, we find the asymptotic far-field behavior of Φν(x, z|ω).

If the incoming field is a plane wave, it can be written as

Φinc
ν (x, z|ω) = eikx−iα0(k,ω)z , (3.9)

where α0(k, ω) is the wave number in z-direction defined as (from equation (2.9))

α0(k, ω) =







√

ω2

c2
− k2 , |k| < ω

c ,

i
√

k2 − ω2

c2
, |k| > ω

c .
(3.10)

Here, we have put ǫrµr = 1 since the incoming field is located in air. Then the field in
the region z > max h(x) can be written as [10]

Φ+
ν (x, z|ω) = Φinc

ν (x, z|ω) +

∫ ∞

−∞

dq

2π
Rν(q|k)eiqx+iα0(q,ω)z . (3.11)

The corresponding field in the region z < min h(x) is

Φ−
ν (x, z|ω) =

∫ ∞

−∞

dq

2π
Tν(q|k)eiqx−iα(q,ω)z , (3.12)

where

α(q, ω) =

√

ǫ(ω)
ω2

c2
− q2 , Re α , Im α > 0 . (3.13)
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Here Rν(q|k) and Tν(q|k) denote the amplitudes of the reflected and transmitted waves,
respectively.

If the incident field has a finite width, the above expressions change somewhat. The
incident field can then be written as a weighted sum of plane waves where the weight
distribution is contained in an envelope function F (k). The incident field is

Φinc
ν (x, z|ω) =

∫ ω

c

−ω

c

dk

2π
F (k)eikx−iα0(k,ω)z , (3.14)

and the scattered field is

Φsc
ν =

∫ ∞

−∞

dq

2π
Rν(q, ω)eiqx+iα0(q,ω)z , (3.15)

where the reflection amplitude is

Rν(q, ω) =

∫ ω

c

−ω

c

dk

2π
Rν(q|k)F (k) . (3.16)

The total far field above the surface, z > max h(x), is the sum of (3.14) and (3.15).
Expressions for the transmitted field and the transmission amplitude are obtained in
the same manner.

For this thesis, the so-called Gaussian finite beam is interesting since it represents a
good approximation for a laser beam. These beams have a Gaussian envelope function.
If the half-width of the incident beam is w, then the envelope can be expressed as [12]

F (k) =
wω

2
√
πc

1

α0(k, ω)
exp

[

−w
2ω2

4c2

(

arcsin
kc

ω
− θ0

)2
]

. (3.17)

3.3 Mean differential reflection coefficient

The differential reflection coefficient is the fraction of the total incident power scattered
into an angular interval dθs around the scattering angle θs. This is related to what is
measured in the experiments. Using equation (2.14) and inserting the field in region
+, equation (3.11), we get both the incident and scattered power. For a plane incident
wave, they are respectively [10]

P inc =
LxLy

2

c2

ω
α0(k, ω) , (3.18)

and

P sc =
Ly

2

c2

ω

∫ ω

c

−ω

c

dq

2π
α0(q, ω)|Rν(q|k)|2 =

∫ π

2

−π

2

dθs p
sc(θs) , (3.19)

where

psc(θs) =
Ly

4π
ω cos2 θs|Rν(q|k)|2 . (3.20)

Here, we have used that q = ω
c sin θs. p

sc(θs) is the angular dependent scattered power.
Thus we realize from the definition of the differential reflection coefficient that

∂Rν

∂θs
=
psc(θs)

P inc
=

1

Lx

ω

2πc

cos2 θs

cos θ0
|Rν(q|k)|2 , (3.21)
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where we have used k = ω
c sin θ0 where θ0 is the angle of incidence. However, if the

surface is randomly rough, the mean differential reflection coefficient is the quantity of
interest. We find the mean by averaging the differential reflection coefficient over an
ensemble of surface realizations. Such a quantity is given by

〈

∂Rν

∂θs

〉

=

〈

psc(θs)

P inc

〉

=
1

Lx

ω

2πc

cos2 θs

cos θ0

〈

|Rν(q|k)|2
〉

, (3.22)

where the brackets 〈...〉 denote an ensemble average.
It is customary to separate 〈∂Rν/∂θs〉 into two parts, one coherent and one incoherent

term. This is done by rewriting
〈

|Rν(q|k)|2
〉

= |〈Rν(q|k)〉|2 +
[〈

|Rν(q|k)|2
〉

− |〈Rν(q|k)〉|2
]

, (3.23)

where the first term on the right-hand side give rise to the coherent or specular con-
tribution to 〈∂Rν/∂θs〉, whereas the last term within the square brackets result in the
incoherent or diffuse contribution.

For an incident beam with finite width, the expressions for power and the differential
reflection coefficient change somewhat. The expressions for the incident and scattered
power are [10]

Pinc = Ly
wc

2
√

2π

[

erf

(

w√
2

ω

c

(π

2
− θ0

)

)

+ erf

(

w√
2

ω

c

(π

2
+ θ0

)

)]

, (3.24)

where erf(x) is the error-function [15], and

psc(θs) = Ly
ω

2π2
cos2 θs|Rν(q|k)|2 , (3.25)

respectively. Using the definition of the differential reflection coefficient (3.22), we get
the following expression for the mean differential reflection coefficient for a incident
beam of finite width

〈

∂Rν

∂θs

〉

=
2

(2π)
3

2

ω

cw
cos2 θs

〈

|Rν(q|k)|2
〉

1
2

[

erf
(

w√
2

ω
c

(

π
2 − θ0

)

)

+ erf
(

w√
2

ω
c

(

π
2 + θ0

)

)] . (3.26)

We can find corresponding expressions for the transmitted light in the same way as
we did for the reflected light here. Such a procedure will result in the mean differential

transmission coefficient
〈

∂Tν

∂θt

〉

. The only difference will be to change θs to θt and adjust

for the dielectric function of the medium where the light is transmitted. Note that we
in our case do not need to average since we are dealing with structured surface profiles.

The reflectance and the transmittance are obtained by integrating (3.22) and its
equivalent for transmission over all angles

Rν =

∫ π

2

−π

2

dθs

〈

∂Rν

∂θs

〉

, (3.27)

and likewise to get the transmittance, Tν . The sum of these two quantities is called
unitarity and defined as

U =

∫ π

2

−π

2

dθs

〈

∂Rν

∂θs

〉

+

∫ π

2

−π

2

dθt

〈

∂Tν

∂θt

〉

. (3.28)

When no absorption takes place in either media, i.e. the imaginary part of the dielectric
function is zero Im{ǫ} = 0, the unitarity should be one. This is a direct consequence of
energy conservation. We have already seen this relation in equation (2.18).



18 Chapter 3 Surface scattering

3.4 Multilayer thin film scattering

The behavior of an electromagnetic wave propagating through layers of different media
can be described by transfer matrices. For light at wavelength λ0 and angle of incidence
θ0, the transfer matrix for a thin film with n layers is [13]

(

B
C

)

=

{

n
∏

m=1

[

cos δm i sin δm

γm

iγm sin δm cos δm

]

}

(

1
γn+1

)

. (3.29)

Here, B and C represents the net electric and magnetic field at the first interface. The
phase differences are defined as

δm =
2π

λ0
dmnm cos θm , (3.30)

γm =

{

nm cos θm , s− polarized
nm

cos θm
, p− polarized

, (3.31)

where dm is the thickness of layer m, nm is the complex refractive index of layer m and
θm is obtained from Snell’s law [8]. From (3.29) we find the reflection coefficient for a
system with one layer between the initial and final media [13]

r =
γ0 cos δ + iγ0γ2

γ1
sin δ − iγ1 sin δ − γ2 cos δ

γ0 cos δ + iγ0γ2

γ1
sin δ + iγ1 sin δ + γ2 cos δ

. (3.32)

By squaring the reflection coefficient, equation (3.32), we find the reflectance

R = r∗r , (3.33)

where ∗ denotes the complex conjugate.
We will use the multilayer reflectance to compare one and two layer simulations.
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Numerical simulation approach

Only for ideal conditions the surface scattering problem can be solved exactly in an
analytical fashion. To determine the total field Φ±

ν (x, z|ω) for all points in space is a
tremendous task, excluding the plane surface case. Various techniques like many-body
perturbation theory and the reduced Rayleigh equation can be used [10]. However,
if the surface is too rough, higher order scattering processes become important. As
a consequence, the boundary conditions are dominated by non-local effects. That is,
the total field at some point at the surface becomes dependent on the total field at
other points at the surface. To overcome this problem, we have to resort to a rigorous
numerical approach.

The method presented here is based on deriving coupled integral equations to deter-
mine the source functions, fields and its normal derivatives. With these quantities known,
we can calculate the total field anywhere with the Ewald-Oseen extinction theorem. In
the following chapter, we will outline how we do this numerically. This derivation follows
closely that of Simonsen [10], from where also more details about the method can be
found.

4.1 The Extinction Theorem

The Ewald-Oseen extinction theorem states that when an electromagnetic field enters
a dispersive medium from vacuum, the incident field is extinguished by interference
and replaced by another field propagating at a characteristic velocity for the dispersive
medium [6]. We will here derive a mathematical expression for this by using Green’s
functions.

We start with the Helmholtz equation for the primary field (2.7) with an external
source term added

(

∇2 + ǫ(ω)
ω2

c2

)

Φν(r|ω) = −Jext
ν (r, ω) , (4.1)

where −Jext
ν (r, ω) is the external source term. The Green’s function, G(r|r′;ω), appro-

priate to (4.1) satisfies [6]

(

∇2 + ǫ(ω)
ω2

c2

)

G(r|r′;ω) = −4πδ(r − r′) . (4.2)

Furthermore, we are only interested in out-going solutions to this equation that satisfy

19
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n

Ω

Ω̄

Figure 4.1: Illustration of the geometry used in derivation of the extinction theorem.
Ω is an isotropic, homogeneous dielectric, while Ω̄ is the surrounding region containing
the external source. n is a unit normal vector pointing from Ω into Ω̄.

Sommerfeld’s radiation condition [14]

lim
r→∞

r(∂rG− ikG) = 0 , (4.3)

where r = |r|, k = ω/c is the wavenumber and ∂r denotes a partial derivative with
respect to r.

The two-dimensional solution to (4.2) that fulfills (4.3) is [6, 10]

G(r|r′;ω) = iπH
(1)
0

(

√

ǫ(ω)
ω

c
|r− r′|

)

, (4.4)

where H
(1)
0 (ζ) is the Hankel-function of first kind and zeroth order [15] and r = (x, z).

We consider a isotropic, homogeneous dielectric in region Ω surrounded by a region
Ω̄, see figure 4.1. The boundary of the dielectric ∂Ω as well as the boundary at infinity
is contained within the boundary of the surrounding region ∂Ω̄. We assume that the
external source Jext

ν (r, ω) is located somewhere in Ω̄, while no sources are located within
Ω.

Multiplying equation (4.1) by G(r|r′;ω) and equation (4.2) by −Φν(r|ω), adding the
resulting equations and then integrating over the exterior region Ω̄ yields

− 1

4π

∫

Ω̄
dr′

[

Φν(r
′|ω)∂2

r′G(r′|r;ω) − ∂2
r′Φν(r

′|ω)G(r′|r;ω)
]

= − 1

4π

∫

Ω̄
dr′ Jext

ν (r′, ω)G(r′|r;ω) +

{

Φν(r|ω) , r ∈ Ω̄

0 , r ∈ Ω
, (4.5)

where we have interchanged r′ and r for later convenience. The first term on the right-
hand side of this equation is in fact the incident field due to the source, that is

− 1

4π

∫

Ω̄
dr′ Jext

ν (r′, ω)G(r′|r;ω) = Φinc
ν (r|ω) . (4.6)

Furthermore, we use Green’s second integral identity [6] to rewrite equation (4.5) as

Φinc
ν (r|ω) +

1

4π

∫

∂Ω
dS′ [Φν(r

′|ω)∂n′G(r|r′;ω) − ∂n′Φν(r
′|ω)G(r|r′;ω)

]

=

{

Φν(r|ω) , r ∈ Ω̄

0 , r ∈ Ω
, (4.7)
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where dS′ is a surface element and ∂n denotes the outward normal derivative to the sur-
face ∂Ω. We have here used Sommerfeld’s radiation condition (4.3) due to the vanishing
integral over the surface at infinity, thus reducing the expression to an integral over ∂Ω.
Moreover, we have utilized ∂n = −∂n̄.

With the right-hand side set to zero, equation (4.7) is the extinction theorem. By
looking at this equation, we see that the incident field is extinguished by the induced field
represented by the second term on the left-hand side. In addition, this equation enables
us to calculate the field Φν(r|ω) at any point outside Ω by just performing a surface
integral over ∂Ω. However, we need to determine the integrand to do so. Hence, the
scattering problem reduces to finding the field and its normal derivative at the surface.

4.2 The scattered and transmitted fields

We will now focus on how to find the field for the scattering geometry shown in fig-
ure 3.1. Region + corresponds to region Ω̄ in figure 4.1, while region − corresponds to
region Ω. The boundary ∂Ω is described by the surface profile function h(x). From the
extinction theorem, equation (4.7), we can now find the scattered and transmitted fields
respectively

Θ(z − h(x))Φ+
ν (r) = Φinc

ν (r) +
1

4π

∫

dx′γ(x′)
[

Φ+
ν (r′)∂n′G+(r′|r)

−∂n′Φ+
ν (r′)G+(r′|r)

]
∣

∣

z=h(x) , (4.8a)

Θ(h(x) − z)Φ−
ν (r) = − 1

4π

∫

dx′γ(x′)
[

Φ−
ν (r′)∂n′G−(r′|r)

−∂n′Φ−
ν (r′)G−(r′|r)

] ∣

∣

z=h(x) , (4.8b)

where we have suppressed the explicit frequency dependence to ensure readability, and
we will continue to suppress it. Θ(ζ − a) denotes Heaviside’s step function, and the
superscripts ± indicate in which media the quantities are evaluated. Furthermore, we
have defined the normal derivative in equation (3.6) where

γ(x) =
√

1 + (h′(x))2 . (4.9)

The surface h(x) is still assumed to be a single-valued function of x so that its surface
element dS becomes

dS = γ(x)dx . (4.10)

By taking the boundary conditions to be satisfied at the surface (3.4) and (3.7) into
account, we see that the integral equations for the fields (4.8) become coupled. Hence,
we get

Θ(z − h(x))Φ+
ν (r) = Φinc

ν (r)

+
1

4π

∫

dx′
[

A+(r|x′)Fν(x′) −B+(r|x′)N (x)
]

, (4.11a)

Θ(h(x) − z)Φ−
ν (r) = − 1

4π

∫

dx′
[

A−(r|x′)Fν(x′) − κ−ν
κ+

ν
B−(r|x′)N (x)

]

, (4.11b)
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where κ±ν are defined in (3.8). Fν(x) and Nν(x) are defined as the source functions

Fν(x) = Φ+
ν (x, z)

∣

∣

z=h(x) , (4.12a)

Nν(x) = γ(x)∂nΦ+
ν (x, z)

∣

∣

z=h(x) , (4.12b)

while A±(r|x′) and B±(r|x′) are defined as kernels

A±(r|x′) =
1

4π
γ(x′)∂n′G±(x, z|x′, z′)

∣

∣

z′=h(x′) , (4.13a)

B±(r|x′) =
1

4π
G±(x, z|x′, z′)

∣

∣

z′=h(x′) . (4.13b)

Inserting the Fourier representation for the Green’s function [15]

G+(r|r′) =

∫ ∞

−∞

dq

2π

2πi

α0(q)
eiq(x−x′)+iα0(q)|z−z′| , (4.14)

into equations (4.13) and then into equation (4.11a), we find that the scattered field far
above the surface, z ≫ h(x), can be written as

Φsc
ν (r) =

∫ ∞

−∞

dq

2π
Rν(q)e

iqx+iα0(q)z , (4.15)

where the scattering amplitude is given by

Rν(q) =
i

2α0(q)

∫ ∞

−∞
dx e−iqx−iα0(q)h(x)

[

i
{

qh′(x) − α0(q)
}

Fν(x) −Nν(x)
]

. (4.16)

If the medium below the surface, z ≪ h(x), is transparent, we can find the transmit-
ted field by using the Green’s function, equivalent to (4.14), in a similar fashion as we
found the scattered field. The transmitted field is thus

Φtr
ν (r) =

∫ ∞

−∞

dq

2π
Tν(q)eiqx−iα(q)z , (4.17)

where the transmission amplitude is given by

Tν(q) = − i

2α(q)

∫ ∞

−∞
dx e−iqx+iα(q)h(x)

[

i
{

qh′(x) + α(q)
}

Fν(x) − κ−ν
κ+

ν
Nν(x)

]

. (4.18)

4.3 Determining the source functions

We have now changed the task of finding the field and its normal derivative to finding
the source terms (4.12). This is done by introducing a small perturbation β to h(x)
in equations (4.8) and then letting β → 0+. In doing so, we obtain a coupled set of
inhomogeneous integral equations for the sources

Fν(x) = F inc
ν (x) +

∫

dx′
[

A+(x|x′)Fν(x′) − B+(x|x′)Nν(x
′)
]

, (4.19a)

0 =

∫

dx′
[

A−(x|x′)Fν(x′) − κ−ν
κ+

ν
B−(x|x′)Nν(x

′)

]

, (4.19b)
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where we have defined the new kernels as

A±(x|x′) = lim
β→0+

A±(r|x′)
∣

∣

z=h(x)+β , (4.20a)

B±(x|x′) = lim
β→0+

B±(r|x′)
∣

∣

z=h(x)+β . (4.20b)

F inc
ν (x) is defined from equation (4.12a) where we have replaced Φ+

ν (x, z) with the
incoming field Φinc

ν (x, z).
In order to solve equations (4.19), we convert the equations into matrix equations by

discretizing the spatial variable x′ to a grid with N cells. The length of the infinitely long
surface is restricted to a finite length L, thus making the cell size ∆ξ = L/N . Finally,
we define the spatial integration to range from −L/2 to L/2. With these definitions, we
can express the grid as

ξn = −L
2

+

(

n− 1

2

)

∆ξ , n = 1, 2, 3, ..., N . (4.21)

By assuming that the source functions vary slowly over one cell, we can consider them
as constant over this spatial interval. This way, we can put them outside the integral
and rewrite equations (4.19) to the following matrix equations by setting x = ξm

Fν(ξm) = F inc
ν (ξm) +

N
∑

n=1

[

A+
mnFν(ξ′n) − B+

mnNν(ξ
′
n)
]

, (4.22a)

0 =
N
∑

n=1

[

A−
mnFν(ξ′n) − κ−ν

κ+
ν
B−

mnNν(ξ
′
m)

]

, (4.22b)

where the matrix elements A±
mn and B±

mn are defined as

A±
mn =

∫ ξn+∆ξ/2

ξn−∆ξ/2
dx′ A±(ξm|x′) , (4.23a)

B±
mn =

∫ ξn+∆ξ/2

ξn−∆ξ/2
dx′ A±(ξm|x′) . (4.23b)

The kernels (4.20) contains the Hankel function H
(1)
0 (ζ) and its normal derivative

which are singular when their arguments vanish, ζ = 0. Therefore, we have to be
careful when treating the kernels as they are also singular at x = x′. Fortunately, these
singularities are integrable so that the matrix elements (4.23) are well defined everywhere.
From [10] we get the following expressions for the matrix elements (4.23)

A±
mn =

{

∆ξA±(ξm|ξn) , m 6= n ,
1
2 + ∆ξ h′′(ξm)

4πγ2(ξm)
, m = n ,

(4.24a)

and

B±
mn =

{

∆ξB±(ξm|ξn) , m 6= n ,

− i
4∆ξH

(1)
0

(√
ǫ±

ω
c

γ(ξm)∆ξ
2e

)

, m = n ,
(4.24b)

where γ(x) is defined in equation (4.9).
The matrix equations for the source functions (4.22), together with the matrix ele-

ments (4.24), can be solved numerically by standard techniques from linear algebra [16].
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From this, we obtain the source functions which in turn enable us to find the scattering
amplitude (4.16) and, if applicable, the transmission amplitude (4.18). With the am-
plitudes known, we can determine the physically observable quantities, like the (mean)
differential reflection coefficient (3.22). Hence, we have solved the scattering problem.
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Figure 5.1: AFM image of an imprinted surface, seen from above. The periodicity in
the x-direction is clearly seen. The figure is taken from Reference [2].

The surfaces of our experimental samples are periodic in the x-direction and con-
stant in the y-direction (see figure 5.1), making our problem effectively one-dimensional.
When heated above the glass transition temperature, a relaxation process will gradually
smoothen the surface, and in time make it completely flat. This change in surface struc-
ture is governed by hydrodynamics, and the important material parameters controlling
this process are surface tension and viscosity.

In this section we plan to describe the relaxation process. We introduce the stream
function and find its general form for the system treated in this thesis. The general
boundary conditions are derived and we briefly explain the concepts of perturbation
theory and the glass transition temperature.
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5.1 Fundamental equations

Conservation of mass is a fundamental part of hydrodynamics. It is elegantly described
by the continuity equation [17]

∂ρm

∂t
+ ∇ · (ρmv) = 0 , (5.1)

where ρm is the mass density of the fluid and v = (u, v,w) is the velocity field of the
fluid. Notice the similarity to the continuity equation for electromagnetic charge and
current (2.4). For incompressible flow, the mass density can be treated as constant, and
thus the continuity equation (5.1) reduces to

∇ · v = 0 . (5.2)

The equations of motion of an incompressible viscous fluid are called Navier-Stokes
equations [18]

ρm
dv

dt
= η∇2v −∇p−∇φ , (5.3)

where d
dt = ∂

∂t + v · ∇, p is the pressure field and η is the viscosity of the fluid. The
∇φ term is added to include forces acting on the fluid, if applicable. Examples of such
forces include gravity, van der Waals forces etc.

Viscous behavior for fluids is described by the Reynolds number

Re =
vl

ν
, (5.4)

where v and l are the characteristic velocity and length of the system, and ν = η/ρm

is the kinematic viscosity. For very small Reynolds numbers, 0 < Re < 1, we have
so-called creeping flow where effects of inertia can be neglected. Medium range values,
1 < Re < 103 yield smooth laminar flow, whereas very high Re, i.e. 104 < Re, usually
means turbulent flow [19]. In the range 103 < Re < 104 we have transition from laminar
to turbulent flow.

The ratio of ρm
dv
dt and η∇2v is vl/ν, which is exactly the Reynolds number. Here

we treat creeping flow, hence equation (5.3), reduces to the simpler form

∇p = η∇2v . (5.5)

This is the equation of motion for creeping flow, where the ∇φ term is omitted for
simplicity.

The stress tensor of a fluid can be written as [17]

σik = −pδik + σ′ik , (5.6)

where σ′ik is the viscous stress tensor and δik denotes the Kronecker δ-function defined
so that it is 1 if i = k and 0 otherwise. σ′ik is a symmetric tensor, meaning σ′ik = σ′ki,
and for an incompressible fluid it can be written in terms of velocity gradients [17]

σ′ik = η

(

∂vi

∂xk
+
∂vk

∂xi

)

. (5.7)

The stress tensor σik represents the force in direction i on a surface oriented in direction
k.
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Navier-Stokes equations are nonlinear partial differential equations with four un-
known variables, p and the three components of v. Combining them with the incom-
pressible continuity equation (5.2) yields four equations with four unknown variables. It
is non-trivial to solve this system analytically, though it is possible through assumptions
and approximations.

5.2 The stream function

For two-dimensional incompressible flow, it is possible to reduce Navier-Stokes equations
(5.3) and the continuity equation (5.1) to equations of two variables (p,ψ) instead of four
(p,v) by introducing the stream function ψ = ψ(x, z). The incompressibility condition
(5.2) in two dimensions is satisfied if the stream function is defined as [19]

u =
∂ψ

∂z
, w = −∂ψ

∂x
. (5.8)

It can be shown by using vector identities that [19]

∇× v = −ŷ∇2ψ , (5.9)

where ŷ is the unit vector in the y-direction.
The stream function gives the stream lines of the flow. These are tangential to the

velocity field at any time, and the difference of two stream lines equals the volume flow
between these two lines.

Taking the curl on both sides of equation (5.5) yields

∇4ψ = 0 , (5.10)

due to the vanishing curl of a divergence and equation (5.9). A general solution to this
biharmonic equation is obtained by assuming that the stream function is separable in x
and z. The resulting stream function becomes

ψ(x, z) =
[

(b+z + c+) exp(kz) + (b−z + c−) exp(−kz)
]

cos(kx) , (5.11)

where b± and c± are constants to be determined by boundary conditions. In equation
(5.11) we have imposed the periodicity in the x-direction through the cosine factor.
k = 2π/L where L is the period of the surface.

5.3 Boundary conditions at a two-fluid interface

At the interface between two fluids in equilibrium, the forces of viscous friction must be
equal on both sides. If the surface is curved, surface tension also has to be taken into
account. This can be expressed as

(

σ
(−)
ik − σ

(+)
ik

)

nk = γκni , (5.12)

where γ is the surface tension coefficient (not related to the function γ(x) defined in
equation (4.9)), κ is the curvature of the surface, ni and nk are normal unit vector
components to the surface and the indices + and – refer to the fluids on the two sides
of the interface, see figure 2.2. Writing out the normal and tangential components of
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equation (5.13) yields the following general boundary conditions for an interface with
constant surface tension

niσ
(−)
ik nk − niσ

(+)
ik nk = γκ , (5.13a)

tiσ
(−)
ik nk − tiσ

(+)
ik nk = 0 . (5.13b)

Here ti is the tangential unit vector component to the surface. The normal and tangen-
tial unit vectors are defined as [11]

n =
(−h′(x), 0, 1)
√

1 + (h′(x))2
, (5.14)

t =
(1, 0, h′(x))
√

1 + (h′(x))2
, (5.15)

κ =
h′′(x)

(

1 + (h′(x))2
)3/2

, (5.16)

where z = h(x) defines the interface.
A free surface is an interface between two fluids where the tangential stress for at

least one of the fluids is essentially zero [20]. This is the situation here, where one of
the fluids is air with practically no viscosity. Thus, the stress tensor for air reduces to

σ
(+)
ik = −p0δik , (5.17)

where p0 is the atmospheric pressure. This simplifies the general boundary conditions
(5.13) for the considered system to

niσ
(−)
ik nk + p0 = γκ , (5.18a)

tiσ
(−)
ik nk = 0 . (5.18b)

Hence, the boundary conditions at a free surface expressed in terms of the stream
function (5.11) become

2η
√

1 + (∂xh)2

(

[

1 − (∂xh)
2
]

∂x∂zψ − (∂xh)
[

∂2
xψ − ∂2

zψ
]

)

+ p− p0 = −γκ , (5.19a)

4η
√

1 + (∂xh)2
(∂xh)∂x∂zψ +

η
√

1 + (∂xh)2

[

1 − (∂xh)
2
] (

∂2
xψ − ∂2

zψ
)

= 0 . (5.19b)

Both boundary conditions are evaluated at the surface z = h(x).

5.4 Perturbation theory

For samples where the surface profile h(x) satisfies

k|h(x, t)| ≪ 1 , (5.20a)

|∂xh(x, t)| ≪ 1 , (5.20b)

perturbation theory can be used to study the surface evolution. This method is inspired
by Reference [21], where wave scattering from randomly rough surfaces is treated at the
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Air

Polymer

x

z

z = 0

p(x, z)

p0

L

h(x)

z = −H

Figure 5.2: Illustration of the system treated in the stream function model. h(x) is the
polymer surface with mean height z = 0 (dashed line). p(x, z) and p0 are the pressure
distributions of the polymer and air respectively. z = −H denotes the polymer/substrate
boundary and L is the period.

mean value of the surface. The restrictions expressed by equations (5.20) say that the
surface does not deviate too much from the mean height. We assume that quantities
that are functions of the surface profile can be expanded as Taylor series around some
mean value of the surface. The mean value of a surface h(x) is defined as

〈h〉 =
1

L

∫ L/2

−L/2
dx h(x) , (5.21)

where L is the period of the surface.
For mean height z = 0 in Figure 5.2 the Taylor expansion of these quantities reads

f(x, h) = f(x, 0) + h∂zf(x, 0) +
h2

2!
∂2

zf(x, 0) + ... (5.22)

In our case, the quantities f(x, h) may be the stream function, the pressure, the stress
tensor and so on.

One of the advantages of using perturbation theory is that it makes analytical so-
lutions easy to obtain. Although these solutions are approximative solutions, they can
give valuable qualitative information.

5.5 Glass transition temperature

The glass transition temperature, Tg, is the temperature where an amorphous solid, like
a polymer, becomes soft on heating. Below this temperature, the bonds between the
polymer chains are intact. Above Tg the bonds start to break, making the polymer
bendable and thus ductile. Figure 1.4 shows the transition by the sudden decrease of
viscosity for different molecular weights of the polymer. The transition around 120◦C is
clearly visible only for the two heaviest polymers.
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Since the surface profiles we are concerned with in this work are periodic with period L,
they can be described by a Fourier series [22]

h(x, t) =

∞
∑

n=0

[

an(t) cos

(

2πnx

L

)

+ bn(t) sin

(

2πnx

L

)

]

. (6.1)

Including all terms with suitable choices of coefficients an(t) and bn(t) will give a square
wave profile like those produced by nanolithography imprinting. Experimentally, it has
been demonstrated that the higher order modes (large n) relax and disappear rather
quickly. Hence, the evolution of the surface profile in equation (6.1) can be determined
by treating the lower order modes (small n).

The temperature distribution over the polymer film is considered uniform and time in-
dependent. Hence, energy transport caused by temperature gradients can be neglected.

Figure 5.2 illustrates our sample. A polymer with a free surface at z = h(x, t)
is heated to a temperature above the glass transition temperature Tg. In the region
−H ≤ z ≤ h(x, t) the polymer film is present. A solid substrate with good adhesive
properties is placed below the polymer film, z ≤ −H. The region above the polymer
film, z ≥ h(x, t), is air. Here, we include the time-dependence from now on because the
surface is relaxing as time evolves.

6.1 Stream function model

The stream function model assumes incompressible creeping flow. Thus, the equation
of motion (5.5) is in component form and in terms of the stream function

∂p

∂x
= η

∂

∂z

(

∂2ψ

∂x2
+
∂2ψ

∂z2

)

, (6.2a)

∂p

∂z
= −η ∂

∂x

(

∂2ψ

∂x2
+
∂2ψ

∂z2

)

. (6.2b)

We neglect gravity due to the small thickness of the film. The hydrostatic pressure p
in a fluid in a gravitational field is [17]

p = p0 − ρmgz , (6.3)
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where p0 is the atmospheric pressure. Surface tension is omitted for simplicity. For small
polymer film thickness, H, as is assumed in our study, the pressure difference between
the surface z = h(x, t) and the polymer/substrate boundary is very small compared
to p0. Thus, we may neglect the gravitational contribution relative to the atmospheric
pressure. Hence, equations (6.2) are valid.

We are only considering the lowest order term of the perturbation theory, e.g. we
evaluate the boundary conditions at the mean value of the surface, z = 0, and we assume
∂xh ≪ 1 and kh ≪ 1. This makes our model linear in the surface profile h(x, t). A
practical choice of surface profile is the fundamental mode of the sine-part of equation
(6.1)

h(x, t) = h̃(t) sin(kx) , (6.4)

where h̃(t) is the time-dependent amplitude of the surface profile.

6.1.1 Boundary conditions

The stream function, ψ, is essential to this model. It is defined by the partial differential
equation (5.10), and the solution in our case is defined in equation (5.11) which contains
four unknown coefficients to be determined, b± and c±. This requires four boundary
conditions. We get two from the normal and tangential stresses, equations (5.19a) and
(5.19b) respectively, and two more from assuming no slip and no penetration at the poly-
mer/substrate boundary (v(x, z)|z=−H = 0). Considering only the lowest order term of
the perturbation theory (∂xh ≪ 1 and kh ≪ 1) simplifies the boundary conditions and
enables us to evaluate them at the mean height of the surface z = 0. The boundary
conditions within these approximations are

∂zψ(x, z)|z=−H = 0 , (6.5a)

∂xψ(x, z)|z=−H = 0 , (6.5b)

η
(

∂2
zψ − ∂2

xψ
)∣

∣

z=0
= 0 (6.5c)

and

p(x, z)|z=0 − p0 = −γ∂2
xh . (6.5d)

In the small slope approximation ∂xh ≪ 1, there should also be a viscous term
(2η ∂x∂zψ|z=0) at the left hand side of boundary condition (6.5d). However, this term
is omitted due to the creeping flow character of the fluid (∂xψ = −w ≪ 1). That is, the
pressure dominates normal stress and we are left with boundary condition (6.5d).

6.1.2 Determination of the coefficients b± and c±

By integrating equation (6.2a) with respect to x and equation (6.2b) with respect to
z and inserting the stream function (5.11), we get the pressure distribution within the
polymer

p(x, z) − p0 = 2ηk [b+ exp(kz) + b− exp(−kz)] sin kx . (6.6)

The lack of the coefficients c± in this expression does not mean they are zero. They are
still present via the boundary conditions (6.5a), (6.5b) and (6.5c).

Now we have all expressions needed to determine the unknown coefficients, b± and
c±. Calculating all needed derivatives of the stream function and evaluating them at
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the proper z-values according to the boundary conditions (6.5) yields three equations.
The fourth equation comes from inserting the pressure distribution (6.6) and the surface
profile (6.4) into the fourth boundary condition (6.5d). We are left with a linear set of
four equations for the four unknown coefficients
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0
0

γkh̃
2η
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, (6.7)

where E± = exp(±kH).
Solving this system of equations yields

b± =
γkh̃

2η

(

exp(±2kH) ∓ 4kH + 2

[exp(kH) + exp(−kH)]2

)

, (6.8a)

c± =
γh̃

2η

(∓(exp(±2kH) + 1) ∓ 2k2H2 + 2kH

[exp(kH) + exp(−kH)]2

)

. (6.8b)

Note that b± and c± are time-dependent due to h̃ = h̃(t) and that they are inversely
proportional to the viscosity, b± and c± ∼ 1/η.

6.1.3 Evolution of surface profile

The vertical velocity of the surface in the form of equation (6.4) is

w =
dh

dt
=
∂h

∂t
+ u

∂h

∂x
. (6.9)

When inserting the stream function relation to velocity (5.8) and applying the assump-
tion ∂xh≪ 1, this reduces to

−∂ψ
∂x

=
∂h

∂t
. (6.10)

By using the stream function (5.11) and the surface profile (6.4) together with equation
(6.10) and then evaluating the resulting expression at the mean height z = 0, we get

∂h̃

∂t
= k(c+ + c−) . (6.11)

Substituting the coefficients (6.8b) and solving this differential equation, the time de-
pendent amplitude of the surface profile is obtained

h̃(t) = h̃0 exp(−t/τ) . (6.12)

Here, h̃0 = h̃(t = 0) is the initial surface amplitude and τ is the characteristic relaxation
time of the surface profile given by

τ =
2η

γk

exp(2kH) + exp(−2kH) + 2

exp(2kH) − exp(−2kH) − 4kH
. (6.13)

Observe that the relaxation time is linearly proportional to the viscosity, τ ∼ η. As
it turns out, this linear dependence will simplify the task of finding the temperature
dependent viscosity, η(T ). Finally, we use the expression for the surface amplitude
(6.12) with the surface profile (6.4), and end up with the evolution equation of the
surface

h(x, t) = h̃0 exp(−t/τ) sin(kx) . (6.14)
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6.2 Dimensional analysis

Here, we discuss the possible combinations of the appropriate physical parameters that
give dimension time. This will tell us if there are other connections between relaxation
time and viscosity, besides the linear connection. The only appropriate physical param-
eters2 here are the surface tension γ, the viscosity η and the period of the system l. A
combination of these parameters will give the relaxation time, i.e.

τ ∼ ηαγβlσ , (6.15)

where α, β and σ are real numbers to be determined. By looking at the dimensions of
each physical parameter, we get enough equations to determine these numbers. These
are

[τ ] = s , (6.16a)

[η] =
kg

ms
, (6.16b)

[γ] =
kg

s2
, (6.16c)

[l] = m . (6.16d)

Applying these with equation (6.15) yields the following equation for the dimension

[τ ] = [η]α[γ]β [l]σ

=

(

kg

ms

)α(kg

s2

)β

mσ

= kgα+βs−α−2βmσ−α , (6.17)

which in turn yields three equations for the numbers due to (6.16a)

α+ β = 0 , (6.18a)

α+ 2β = −1 , (6.18b)

σ − α = 0 . (6.18c)

This set of equation solves to α = 1, β = −1 and σ = 1. Inserting these numbers into
equation (6.15) yields

τ ∼ η

γk
, (6.19)

where k ∼ 1/l is used to easier relate this result to the already obtained expression
for the relaxation time (6.13). We see that these two results are essentially the same.
Equation (6.19) is the only possible solution under these conditions. Hence, the relax-
ation is linearly dependent on viscosity. However, this method cannot exclude viscosity
factors appearing in exponential factors, e.g. if the relaxation time is on the form
τ ∼ η exp (η/A), where A is a constant of appropriate dimension.

2Strictly speaking from a dimensional analysis point of view, we should also include the thickness of
the polymer film, H . However, excluding this parameter from the dimensional analysis will not change
anything physically because the mean value of H is constant in our experiments.
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In this section we will describe how we simulate scattering from a relaxing surface,
how the experimental data is obtained and how we combine these to determine the
temperature dependent viscosity, η(T ).

7.1 Electromagnetic scattering simulation

Our scattering simulation method is quite powerful as we can include as many layers
of different materials as we wish, look at different angles of incidence and different
wavelengths. There is virtually no restriction besides the computer’s memory to what we
can include. Larger systems, higher temporal resolution and higher spatial discretization
will understandably require more computation time.

The initial profiles used in the experiments have steep profiles as shown in fig-
ure 1.1(c). To recreate this for the simulations, we use a Gaussian-like function

h(x, t) = h(t)

∞
∑

n=−∞
exp



−
(

x−
(

n− 1
2

)

L

∆x

)6


 , (7.1)

where h(t) is the time-dependent amplitude, L is the period and ∆x is the width of the
profile’s peak. Combining several of these functions in a row resemble the experimental
profiles without being too steep. If the simulation profile is too steep or we use bad
discretization, our simulations go wild due to infinite derivatives. This can be cured
by integrating along the surface instead of the x-axis, but this approach will not be
considered here.

A profile described by equation (7.1) is steep enough to resemble the experimental
profiles but smooth enough to get good results from the simulations. Figure 7.1 shows
a realization of the initial surface profile created by our simulations.

As mentioned in chapter 6, we can describe the surface profile as a Fourier series
(6.1). We do the same for our new profile and calculate relaxation times τn for each
Fourier mode in the same fashion as we did for the stream function model, section 6.1.3.
The only difference is that we replace k = 2π/L with kn = 2πn/L = kn in equation
(6.13). Hence the new relaxation times are described by

τn =
2η

γkn

exp(2knH) + exp(−2knH) + 2

exp(2knH) − exp(−2knH) − 4knH
, (7.2)
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Figure 7.1: Initial surface profile given as input to the simulation. Each peak has a
width of 0.4 µm and period L = 1 µm.

where n = 1, 2, ... We recall from chapter 6 that γ denotes the surface tension, η
denotes the viscosity and H denotes the mean thickness of the polymer. Furthermore,
the exponential part present in equation (7.2) is effectively 1 due to kH = 2 for our
configuration with L = 1 µm and H = 2 µm. This reduces the effective relaxation times
to

τn =
2η

γkn
. (7.3)

Now, the amplitude for each Fourier mode of the surface can be described by

hn(t) = h(t = 0) exp(−t/τn) . (7.4)

Evidently, the high order modes (larger n) relax much faster than the low order modes,
just as expected.

Our program receives an initial surface profile with period and width determined
by an input file which also contains all parameters needed to solve the electromagnetic
scattering problem. These parameters are all shown in the matrix elements (4.24). Note
that the surface profile h(x, t) has to be at least two times differentiable. We define
a surface of length L and discretize it into N intervals. Larger resolution (larger N)
requires longer computation time. Lastly, we define an initial and final relaxation time
and the number of time steps we wish to simulate. More time steps require longer
computation time.

At the first time step the scattering problem is solved by the method described
in chapter 4. After the first time step, we relax the surface by Fourier transforming
equation (7.1) and then relaxing each mode n according to equation (7.4). While the
surface is in Fourier space, we can also calculate the derivatives needed for the matrix
elements (4.24) by taking advantage of the following property of the Fourier transform

F
[

f (n)(x)
]

= (ik)n F [f(x)] , (7.5)

where F
[

f (n)(x)
]

denotes a Fourier transform of the n-th derivative of a function f(x).
After taking the inverse Fourier transform of the surface, we have obtained the new
relaxed surface profile. We now solve the scattering problem by the method described
in chapter 4. This is repeated for every time step. We end up with a data file which
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contains the mean differential reflection and transmission coefficients at each time step
for each wavelength and each angle of incidence.

The simulated laser light has a finite beam width described by equation (3.17). We
chose finite beam width to avoid edge-effects that arise when the beam is wider than
the surface it hits. A beam width of w = 10 µm worked well with a L = 30 µm long
surface.

For our purpose, the reflected light is the interesting quantity. From the simulations
we obtain the mean differential reflection coefficients (MDRC) as a function of scattering

angle, θ
(m)
s , where m denote the diffraction order. Since we use beams of finite width

scattering on a finite sized surface, the MDRC will be distributed in a small interval,

∂θm, around each scattering angle θ
(m)
s . To get the reflectance from each diffraction

order m, we integrate the MDRCs numerically as follows

R(m)
ν = ∆θ

∑

∂θm

MDRC
(

θ(m)
s

)

, (7.6)

where
∑

∂θm
indicates a sum of elements in the interval ∂θm. We split the whole angular

axis, −90◦ ≤ θ ≤ 90◦, into cells of size ∆θ = 180◦/j, where j is the discretization of
the angular axis. Equation (7.6) is the numerical equivalent of equation (3.27). The
reflectance is proportional to intensity, hence we get intensity as a function of time for
a given diffraction order m at a given viscosity η and polarization ν. We denote this
intensity by Isim

ν .

7.2 Optical diffraction experiment

Figure 7.2 shows an illustration of the instrumental setup of the optical diffraction
experiment. A couple of photos of the experimental setup are shown in figures 7.3.
The periodic structure of the polymer surface acts like a reflection grating because the
period is comparable to the wavelength of the incident light [8]. An incident beam will
be reflected and creates a diffraction pattern. Intensity is measured for the lowest orders
of diffraction during the relaxation process. As time evolves, the surface will relax and
its grating structure will decline. Still, the period L will remain constant, thus making
the positions of the diffractions orders remain in place. The reflection grating equation
(2.25) shows this. Both the angle of incidence and the wavelength of the laser are held
constant, thus making the angles of diffraction fixed if the period does not change.

The experimental samples consist of a nanostructured layer of PMMA of mean thick-
ness 2µm on top of a 2 mm thick glass layer of similar dielectric function. The interface
between these two layers is planar. Underneath the glass is a Ni substrate which is
painted black to absorb all incident light.

At the start of the experiment, the samples are heated slowly to ensure that the
temperature is distributed evenly over the whole sample. When the sample has reached
the desired temperature, it is held constant at this level through the whole experiment.
The intensity measurements are started as the temperature approaches this level, and
are carried out until the surface is completely flat. This yields the intensity as a function
of time for a given diffraction order m at a constant temperature T . We denote it Iexp

ν .
Note that extra measures have to be taken to control the polarization in the experiments.
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Figure 7.2: Instrumental setup of the optical diffraction experiment. A laser beam is
pointed with a given angle of incidence θi at the periodic polymer surface. Photodiodes
measure the intensity of the different diffraction orders and send the data to a computer.
Temperature is controlled and measured by the same computer. The figure is taken
from reference [2] and translated to English. Photos of this setup is shown in figures 7.3.

7.3 Determining η(T )

The determination of η(T ) is done by comparing the experimental data with our simu-
lations. For each set of experimental data we do simulations to find the viscosity that
corresponds to the experimentally measured temperature, i.e. when Iexp

ν = Isim
ν . By

repeating this process for each data set we get a set of viscosities and their corresponding
temperatures, {η, T}. Plotting this data set yields a graph of the viscosity as a function
of temperature. We call this procedure optical inversion of data.

However, the relaxation times are proportional to the viscosity, τn ∼ η, so strictly
speaking only one set of simulation results for one η is needed. It is the time scale
t/τc(η), where τc(η) is the viscosity dependent characteristic time, that matters. We
define the characteristic time as the prefactor of the relaxation time, equation (7.2),

τc(η) =
2η

γk
. (7.7)

Results for other viscosities can be obtained by a simple rescaling of time, i.e. by
changing the viscosity η. Note that this only applies within the current approximation,
i.e. the small slope approximation where ∂xh ≪ 1. If this approximation is not used,
τn ∼ η is not necessarily the case.

Even though we only need to simulate for one viscosity, there is still need for exper-
imental results at many different temperatures to obtain η(T ).
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(a) A is the laser which acts as the source for electromagnetic
waves. B is where the sample is placed.

(b) C is one of the four photodiodes which measure the intensity.

Figure 7.3: Photos of the current experimental setup.
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Chapter8
Results

In this chapter, we intend to present the results obtained from simulations and exper-
iments. The experiments were done by a group of experimentalists at Saint-Gobain
Recherche, Paris. We start by showing the correspondence between the simulated re-
laxation and the experimental relaxation. Then we show that the relaxation is strongly
dependent on the viscosity. Furthermore, we present the results obtained from the
scattering simulations and compare them to the scattering experiments.

8.1 Relaxation process

Experimental data for the relaxation of the surface profiles are obtained by prepar-
ing samples as described in the introduction of this thesis and measuring the resulting
surfaces using atomic force microscopy (AFM). Then the samples are heated to a tem-
perature above the glass transition temperature, which is Tg ≈ 90◦C for PMMA. The
samples are held at a constant temperature above Tg through the entire experiment.
After given relaxation times, the surfaces of the samples are again characterized with
AFM. Results for the surface profile at four different times are shown in figures 8.1. We
observe that as time increases, the relaxed structure becomes more and more flat. More-
over, the initial shape is not equal for each experimental sample. They are not exactly
square-shaped, and there is a possibility of local differences like the spikes on top of
figures 8.1(b) and 8.1(c). Also note that the vertical scale is different for each figure
due to the calibration of the AFM. The experimental parameters are listed in table 8.1.
These are also used in our simulations for the relaxation. Figures 8.2 show the simu-
lated relaxation of a profile at different times and two different viscosities. These two
figures show that as the viscosity is increased, the relaxation process is slower. Notice
that the period of the surface remains constant during the relaxation. As we can see in

Table 8.1: Values used in the simulation of the relaxation process.

Parameter Symbol Value

Period λ 1 µm
Surface tension γ 0.041 · 10−3 J/m
Thickness of polymer film H 2 µm

Initial height of profile h̃0 150 nm

41
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(a) Relaxation time 5 minutes.
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(b) Relaxation time 15 minutes.

0 0.2 0.4 0.6 0.8 1
−100

−80

−60

−40

−20

0

20

40

60

80

100

120

x [µm]

h
(x

) 
[n

m
]

(c) Relaxation time 30 minutes.
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(d) Relaxation time 90 minutes.

Figure 8.1: Surface profiles for different relaxation times. Black dashed lines are AFM
measurements of the initial profile. Red solid lines are the experimentally obtained
profiles after the noted relaxation times. Observe that as time increases, the relaxed
structure flats out. The viscosities of the samples are approximately 5 · 108 Pa s. Note
that the vertical scale is different in each figure. This is due to the calibration of the
AFM.
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Figure 8.2: Surface profiles at different times and different viscosities obtained by
stream function model. The time is measured in minutes.



44 Chapter 8 Results

Table 8.2: Values used in scattering simulations.

Parameter Value

Width of top 0.4 µm
Width of valley 0.6 µm
Period 1 µm
Angle of incidence 20◦

Wavelength of laser 405 nm
Dielectric function PMMA, ǫ 2.25

figure 8.2(a), the surface evolves to an approximate sine-shape after about 30 minutes
as a consequence of the fast relaxation of the high-order modes. In the end, it becomes
completely flat as expected. This corresponds well with experimentally obtained AFM
measurements, see figures 8.1.

8.2 Scattering simulation with one interface

In this section we show different aspects of the results obtained from rigorous computer
simulations of the scattering problem. We used the numerical approach outlined in
section 7.1 with input parameters as listed in table 8.2. These parameters were cho-
sen to replicate the experimental setup. The simulations assume that the PMMA layer
is infinitely thick when considering the scattering, while it is H = 2 µm when con-
sidering relaxation, cf. table 8.1. The reason for the different treatment is that the
glass transition temperature of the glass layer is much higher than PMMA. Therefore
only PMMA will relax, while glass will act as the impenetrable substrate mentioned
in chapter 6. When considering scattering, glass and PMMA have very similar optical
properties. Hence, we can treat H as infinite for scattering, whereas H must be the
actual PMMA thickness, 2 µm, for relaxation.

Before we confront our simulation results with the experimental results, we ensure
the simulations’ validity by comparing them to theory. Inserting the appropriate values
from table 8.2 into equations (2.15) and squaring them, we obtain the following Fresnel
reflectances for s- and p-polarized light respectively

RF
s = 0.0471 , RF

p = 0.0335 (8.1)

The relaxation time dependent reflectances for the fundamental diffraction order, m = 0,
are plotted in figures 8.3. The figures show that our simulations yield the Fresnel
reflectances, equation (8.1), when the surface becomes flat.

Using the appropriate parameters listed in table 8.2 together with the grating equa-
tions (2.25) and (2.26) yields the number of possible diffraction orders and where these
are located. We have listed the reflection diffraction orders and their angles in table 8.3
and the transmitted angles in table 8.4. The simulations yield angular distributions
for s- and p-polarized light as shown in figures 8.4 and 8.5 for reflected and transmitted
light respectively. The peaks of the figures are located at the same angles as the ones
calculated with the grating equation, see tables 8.3 and 8.4.

In figures 8.6 we show how the reflectance in the different diffraction orders evolve
in time for s- and p-polarized light, figures 8.6(a) and 8.6(b) respectively. Each figure is
normalized with the Fresnel reflectance to make it easier to compare with experiments.
We see that the reflectance of the fundamental diffraction order increases to the Fresnel



8.2 Scattering simulation with one interface 45

0 1 2 3 4 5 6
0

0.01

0.02

0.03

0.04

0.05

Time [h]

R
e

fl
e

c
ta

n
c
e

, 
R

(m
)

s

 

 

m = 0

Fresnel R
s

F

(a) s-polarized light.

0 1 2 3 4 5 6
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time [h]

R
e

fl
e

c
ta

n
c
e

, 
R

(m
)

p

 

 

m = 0

Fresnel R
p

F

(b) p-polarized light.

Figure 8.3: The blue lines show the reflectance R
(m)
ν from the fundamental diffraction

orders as a function of time and the red dashed lines show the theoretically calculated
Fresnel reflectances RF

ν for s- and p-polarized light, see equation (8.1). The viscosity is
η = 5 · 108 Pa s.
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Figure 8.4: Simulated angular distribution of reflected light for s- and p-polarized light
before relaxation (t = 0).
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Figure 8.5: Simulated angular distribution of transmitted light for s- and p-polarized
light before relaxation (t = 0).
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Table 8.3: The different reflection diffraction orders m and their theoretical angular

position θ
(m)
s . Calculated with equation (2.25).

Quantity Value

m 1 0 −1 −2 −3

θ
(m)
s [◦] 48.33 20 −3.61 −27.90 −60.81

Table 8.4: The different transmission diffraction orders n and their theoretical angular

position θ
(n)
t . Calculated with equation (2.26).

Quantity Value

n 2 1 0 −1 −2 −3 −4

θ
(n)
t [◦] 50.18 29.87 13.18 −2.41 −18.18 −35.59 −58.43

reflectance, while the other diffraction orders decrease and vanish when the surface
becomes flat. Observe that diffraction order m = 1 behaves very differently for the two
polarizations.

We also show experimental results in figure 8.7(a), where we have normalized with
the sum of the last experimentally measured reflectances for each diffraction order, i.e.

Rexp = R(0) +R(1) +R(−1) . (8.2)

Since we do not have experimental data for when the surface is completely flat, we have
to do it like this to get a normalization constant which resembles the Fresnel reflectance.
Figure 8.7(a) shows the same behavior for the experimental data as the simulated results
in figures 8.6. Even though the experimental data never reaches the Fresnel reflectance,
we see that it will most likely level out to the Fresnel reflectance as it should. Ideally,
we should have had better experimental data, but this is what we have and therefore
we have to make do with it.

The polarization of the source used in the experiments is not known. We see from
comparing figures 8.6 with figure 8.7(a) that the source is neither s- or p-polarized.
Therefore we try to combine s- and p-polarized light to get a result more similar to the
experimental data in figure 8.7(a). By weighting the amount of s- and p-polarized light
from figures 8.6 in the following combination

Ru = 0.24Rs + 0.76Rp , (8.3)

we get a result very similar to the experimental figure 8.7(a). Our weighted sum is
shown in figure 8.7(b), where we have normalized with RF

u = 0.24RF
s + 0.76RF

p . We
observe that the weighted sum and the experimental data behaves similarly.

If the source emits light with fluctuating intensity, it might be better to look at the
ratio between reflectances for the two polarizations. We define this ratio as

χm =
R

(m)
s

R
(m)
p

. (8.4)

This is plotted in figure 8.8 for viscosity η = 5 · 107 Pa s. The figure shows that more s-
polarized light is reflected than p-polarized light. We also see that after some time, when
the reflectance from diffraction orders m 6= 0 is almost zero, the ratio starts to fluctuate
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Figure 8.6: Comparison of different polarizations. The figure shows the simulated

reflectance, R
(m)
ν , for each diffraction order m as a function of time. The graphs are

normalized with the Fresnel reflectance, RF
ν . The viscosity is η = 5 · 107 Pa s.
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Figure 8.7: Reflectance R
(m)
u , for each diffraction order m as a function of time for

the weighted sum of s– and p–polarized light, see equation (8.3). Figure (a) shows the

experimental time evolution of the reflectance, R
(m)
exp . It is normalized with the sum of

the last reflectance values, Rexp, defined by equation (8.2). Figure (b) is normalized

with the Fresnel reflectance, RF
u , weighted in the same manner as R

(m)
u , i.e. RF

u =
0.24RF

s + 0.76RF
p . The viscosity used in this simulation is η = 5 · 107 Pa s.
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Figure 8.8: The ratio between reflectances, χm, as a function of time for the different
diffraction orders m.

wildly. This is a numerical artifact which comes from dividing with zero. Finally, we also
observe that the ratio between the fundamental diffraction orders, χ0, is well defined for
all times and contains a peak. This peak will make it easy compare simulations with
experimental data.

Figures 8.9 and 8.10 show the reflectance as a function of time and viscosity at
diffraction orders m = 0,±1 for both s- and p-polarized light. As we can see, the
reflectances decrease at orders m = ±1, while it increases and converges to the Fresnel
reflectance RF

ν for long times for order m = 0. Higher viscosities require longer time.
Moreover, we observe the linear connection between relaxation time and viscosity, τn ∼ η,
by the colors forming straight lines. This connection can also be seen in figure 8.11. It
shows the ratio of the fundamental diffraction order χ0 for viscosities η = 5·107 Pa s and
η = 5 ·108 Pa s. In this figure we have plotted the ratio χ0 versus the dimensionless time
scale defined by t/τc(η), where the characteristic time τc(η) is defined in equation (7.7).
We observe that the ratio is the same for both viscosities, thus also showing this linear
connection between relaxation time and viscosity. Discrepancies between the two graphs
are due to different time steps in the simulations, and possibly numerical noise.

To illustrate how the data inversion works, we rescale the time by τc(η) for both the
experimental data from figure 8.7(a) and our weighted sum in figure 8.7(b), and plot
them in the same figure. By adjusting the viscosity of the experimental time scale, we
can fit the experimental data to the simulation results. Hence, we find the viscosity
that corresponds to the temperature measured experimentally. Figure 8.12 shows this
fitting. Here, η(103◦C) = 6 · 107 Pa s. Note that the experimental samples might not
be perfectly periodic, and there might be local differences from sample to sample. After
some relaxation, these local differences should be gone. As a consequence, comparing
the long term behavior of the reflectances will probably be better than comparing at
early times.
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Figure 8.9: Reflectance R
(m)
s as a function of time for different viscosities. Figures

show diffraction orders m = 0 and m = ±1 for s-polarized light. The color bars show

the reflectance, R
(m)
s . We observe that the fundamental diffraction order increases while

the other two decreases.
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Figure 8.10: Reflectance R
(m)
p as a function of time for different viscosities. Figures

show diffraction orders m = 0 and m = ±1 for p-polarized light. The color bars show

the reflectance, R
(m)
p . We observe that the fundamental diffraction order increases while

the other two decreases.
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Table 8.5: Theoretically calculated Fresnel reflectances.

Polarization, ν ∆ǫ One layer Two layers Difference, ∆RF
ν

+5% 0.0525 0.0530 0.0095
s 0 0.0471 0.0471 0

−5% 0.0416 0.0420 0.0096

+5% 0.0376 0.0380 0.0105
p 0 0.0335 0.0335 0

−5% 0.0293 0.0296 0.0102

Table 8.6: Simulated Fresnel reflectances.

Polarization, ν ∆ǫ One layer Two layers Difference, ∆RF
ν

+5% 0.0526 0.0537 0.0209
s 0 0.0471 0.0453 −0.0382

−5% 0.0417 0.0380 −0.0887

+5% 0.0376 0.0348 −0.0745
p 0 0.0334 0.0351 0.0509

−5% 0.0293 0.0252 −0.1399

8.3 Scattering simulation with two interfaces

As mentioned in section 7.2, the experimental samples consist of a structured PMMA
layer on top of a glass layer. We thought it would be interesting to examine effects that
may arise when there is a mismatch between the dielectric functions of glass and PMMA.
Therefore we ran simulations with the glass layer included and varied the dielectric
functions of PMMA. Figures 8.13 show the reflectance evolution for the fundamental
diffraction order for both polarizations where we have a 2 µm thick layer of PMMA
on top of glass with similar dielectric function3. The reflectance is compared with the
Fresnel reflectance calculated for only one layer of PMMA and no glass, see equation
(8.1). We see that the reflectance differs when we vary the dielectric function. Note that
when ∆ǫ = 0, i.e. the equivalent of one layer, the two layer Fresnel reflectance differs
from the one layer Fresnel reflectance. This should not happen.

All results here are obtained by using the same parameters as listed in table 8.2. The
other diffraction orders behave just as shown for the no glass case shown in figures 8.6
with different numerical values. Therefore we chose to not include figures for them here.

We use equation (3.33) to calculate the Fresnel reflectances for a two layer sample
where we vary the dielectric function of PMMA with ±5%. We define the variation of
the PMMA dielectric function as ∆ǫ. Tables 8.5 and 8.6 show reflectances, theoretical
and simulated respectively, for one- and two-layer samples where ∆ǫ = 0,±5%.

Figures 8.14 show the difference between the two and one layer Fresnel reflectances
for both polarizations. The dielectric function of the glass layer is held constant at
ǫglass = 2.25, while the dielectric function of the PMMA layer is varied. We define the
difference by

∆RF
ν =

R
(m)
ν (2) −R

(m)
ν (1)

R
(m)
ν (1)

, (8.5)

3Note that the symbol for the dielectric function in the figures is slightly different from the current
notation. They denote the same quantity, i.e. ε ≡ ǫ.
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Figure 8.13: Reflectance as a function of time for the fundamental diffraction order

R
(0)
ν at different PMMA dielectric functions for both polarizations, ν. The dashed black

lines show the Fresnel reflectance RF
ν for the case where there is no glass and ∆ǫ = 0.

The cause of the sharp edges for the reflectances at early times is few time steps.
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where R
(m)
ν (1) and R

(m)
ν (2) denote the Fresnel reflectance for polarization ν and diffrac-

tion order m from one and two layers respectively. From table 8.5 and figure 8.14 we
observe that theoretically, there is just a very small difference in reflectance when in-
cluding a second layer of similar dielectric function. Therefore, we can use one layer
simulations without compromising our results.
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Figure 8.14: The change in Fresnel reflectance ∆RF
ν as a function of dielectric function

of PMMA, ǫPMMA, when we include a glass layer underneath the PMMA. ǫglass is held
constant at 2.25. The change is defined by equation (8.5).
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Chapter9
Discussion

In this chapter we discuss the results presented in the previous chapter. We have divided
this chapter into sections just like the results chapter. Finally we include a section where
we discuss future work and improvements.

9.1 Relaxation process

The initial shape of the samples to be used in the relaxation experiments is a square-
wave, where the slope becomes infinite (∂xh = ∞) at periodical intervals, see figure 1.1.
As mentioned in chapter 6 and 7, a square-wave can be described by a Fourier series,
equation (6.1). The higher order modes of this series are needed to describe the sharp
corners, while the lower order modes are the foundation of the profile. The lowest order
mode is just a simple sine-function of a period equal to that of the initial profile. All
higher order modes have smaller periods than the lowest order mode. Equation (7.2)
shows that the higher the order, the faster it relaxes, i.e. larger kn yield smaller relax-
ation time, τn. Thus, we expect that the experimental profiles converge asymptotically
to a sine-shape with the period of the fundamental mode during the relaxation process.
Figures 8.1 show AFM measurements of experimental samples. We observe that the
surface gradually becomes sine-shaped, thus confirming our expectation. Moreover, fig-
ure 8.2(a) shows that our model for the relaxation also behaves accordingly. Note that
the period stays constant, thus making the diffraction orders stay in the same location
through the entire relaxation in accordance with the grating equations (2.25) and (2.26).

Studying figures 8.1 reveals that the initial profiles of the experimental samples
are not exactly square-shaped. This discrepancy may be caused by the problems with
imprinting discussed in the introduction, or by the AFM readings. The steep slopes
of the samples make it difficult to obtain accurate measurements by AFM due to tip
effects. In addition, the experimental samples have local differences, like the small spikes
at the top in figures 8.1(b) and 8.1(c). We observe that after a short period of relaxation
the local peaks are gone and that the experimental samples’ shape corresponds to the
ones obtained from our stream function model in figures 8.2. This indicates that the
uncertainty of the surface profiles is much larger at early times than at later stages of
relaxation. Hence, we might not need a more accurate model for the relaxation at early
times due to experimental limitations.

Figures 8.2 show that the higher order modes relax faster than the low order modes
thus making the profile more smooth. These figures also describe the strong viscosity-
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dependency for the relaxation times. After three hours a profile of viscosity η = 5 · 108

Pa s is almost completely flat, see figure 8.2(a), while a profile of viscosity η = 5 · 109

Pa s is far from flat, see figure 8.2(b). The similar behavior between our model and
the experiments, figures 8.2(a) and 8.1 respectively, in addition to the strong viscosity
dependence of the relaxation presented in figures 8.2, indicate that our simple stream
function model describes the general behavior of relaxation quite well.

Note that to get the relaxation times τn, we have assumed the small slope approxima-
tion ∂xh≪ 1 for each mode even though the total surface is steep ∂xh≫ 1. Nevertheless,
we assume that this is ok since our simulations show both qualitative and quantitative
similarities to the experiments. Hence, our model for relaxation is well suited for the
optical diffraction simulations.

There is also an issue with the experimental setup worth mentioning. There is no way
of knowing for sure if the temperature distribution really is uniform within the polymer
film. Inhomogeneous temperature distribution may give rise to different relaxations
at different positions in the sample due to energy transport caused by temperature
gradients. Note that we have here assumed that these effects are small and therefore
negligible.

Temperature is probably the quantity which is most difficult to control experimen-
tally in our case, and therefore gives rise to high uncertainty. One improvement could
be to encase the sample in a glass box covered with some thin opaque material. Cover-
ing the box with some fabric, removes diffusely scattered light from the glass box. The
laser light will propagate through the fabric without being attenuated due to the fabric’s
small thickness. By keeping the temperature inside this box relatively high, the heat
transport from PMMA to air will be reduced. This way we can hopefully obtain a more
uniform temperature distribution within the sample during the experiment.

9.2 Scattering simulation with one interface

The first results presented in section 8.2 show that our simulations correspond well with
theory. This is necessary to ensure the validity of our simulations. Scattering from
a flat surface without absorption will give the Fresnel reflectance calculated from the
appropriate Fresnel’s equation (2.17a). As we can see from figures 8.3, the simulated
fundamental order reflectances from the surface converge with the Fresnel reflectances,
equations (8.1) for our setup, when the surface becomes flat.

Furthermore, we expect that the reflectance from the other diffraction orders will
decrease as time evolves and the interface between air and PMMA becomes planar. Ex-
amination of figures 8.6 show that these reflectances diminish when the surface becomes
flat. Hence, the behavior of the reflectances at large times is correct. An interesting
feature is that the reflectance from the fundamental diffraction order decreases before it
starts to increase to the Fresnel reflectance. It could be interesting to find what causes
this “dip”.

Moreover, the diffraction orders should be located at the same angles as the ones we
calculated from the grating equations (2.25) and (2.26). Comparing figures 8.4 and 8.5
with tables 8.3 and 8.4 show that both the reflected and transmitted diffraction orders
from our simulations appear at the correct positions according to theory.

The cause of the splitting of the m = −2 and m = −3 peaks in figure 8.4(b) for
p-polarized light is unknown. It does not come from the sharp edges at early relaxation
times, because it persists through the entire relaxation process. This also excludes mul-
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tiple scattering effects which might cause destructive interference. Multiple scattering
is when the light is scattered on the surface more than one time before it leaves the
vicinity of the surface. The question remains unanswered.

Another test for the accuracy of our simulations is the unitarity, equation (3.28).
If this quantity differs significantly from one, we know that some energy is lost in the
simulation, for instance by absorption. When there is no absorption in the system, a
unitarity much different from one indicates that the simulation is most likely wrong. The
reason for this can be some numerical artifact coming from poorly chosen discretization
or system properties, or it might be some physical effect like multiple scattering.

Multiple scattering will very likely happen when our surface is in its early stages of
relaxation. We observe this by looking at the unitarity from our simulations. At the
early stages, when the surface has sharp edges and is quite rough, the unitarity lies below
one. Still, the values are above 0.9 for p-polarized light and above 0.94 for s-polarized
light, which is good enough, especially since the unitarity increases quickly to one as
the surface gradually smoothens. Hence, our simulations conserve energy after a short
period of time.

When we take the uncertainty of the experimental samples’ early shape into consid-
eration, we realize that the unitarity problem at early times does not matter. No matter
how close the unitarity is to one, we cannot get accurate results at early stages when we
compare experimental data with simulation results due to the experimental uncertainty.
After a short period of relaxation the uncertainty of the samples’ shape is much smaller
and the unitarity is approximately one. Taking the correct behavior of the reflectances
and the correct positioning of the diffraction orders into account, we conclude that our
simulations are valid for all times except at the earliest stages of relaxation.

We can probably improve the unitarity by better discretization, which requires more
computer memory than we have had at our disposal. Changing the way we discretize
the surface from along the x-axis to along the actual surface might yield better unitarity.

The width of the diffraction orders is caused by the finite width of the incoming laser
beam and the finite length of the surface. If we used a plane wave and infinite length
surface, the angular distribution figures 8.4 and 8.5 would have had δ-function spikes
at the calculated angles. Due to numerical limitations it is impossible to simulate this
system, therefore we used the finite width beam impinging onto a finite width surface. As
stated before, a finite width beam represents the laser quite well and a finite size surface
corresponds to the finite sized experimental samples. To get the correct reflectance,
we integrate the MDRCs according to equation (7.6) for each diffraction order over
an interval around the calculated angles listed in table 8.3, to make reflectance versus
time-plots like figures 8.6 show.

Figures 8.6 indicate polarization dependent behavior of the different diffraction or-
ders m. For instance, order m = 1 for s-polarized light is dominant at early times, while
m = 1 for p-polarized light has a quite low reflectance. To compare the experimental
results with simulation results, the time evolution of the reflectances should be similar.
Hence, it is important to know the polarization of the laser used in the experiments.
We also see the different behavior between the diffraction orders of both polarizations
in figure 8.8. It is clearly shown that the reflectance of s-polarized light is larger than
p-polarized light. The reason for the oscillations for orders m 6= 0 is that the reflectances

R
(m)
ν are approximately zero due to the relaxing surface. We observe that the ratio of

the fundamental diffraction order χ0 behaves nicely, which it should because R
(m)
ν is

always finite.
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Figure 8.7(a) is made from preliminary experimental data where neither the tem-
perature or the polarization is controlled very well. By adjusting the fractions of s-
and p-polarized light we found a combination, see equation (8.3), that reproduces the
qualitative behavior of the experimental data for diffraction orders m = 0,±1. Com-
paring figure 8.7(a) and figure 8.7(b) we see the similar behavior. The mismatch in
the numerical values for normalized reflectance is due to the normalization. If we had
experimental data for longer times, i.e. when the surface is relaxed and completely flat,
we could have normalized with the correct normalization constant which corresponds
to the Fresnel reflectance. As we can see from figure 8.7(a), the reflectance from the
fundamental diffraction order is still increasing, therefore we get the wrong normaliza-
tion constant when normalizing with the last value as this does not correspond to the
Fresnel reflectance. The reason for the normalization is that the experiments do not
measure absolute intensity. Therefore, we have to normalize to compare experiments
with simulation.

Inspection of figures 8.9 and 8.10 shows how the reflectance evolves in time for dif-
ferent viscosities. As expected, we see that higher viscosity results in longer relaxation
times and thus the reflectance changes more slowly. Moreover, we see that the relax-
ation time is linearly dependent on viscosity from the colors forming straight lines. We
stated in section 7.3 that it is the time scale that matters. Figure 8.11 shows the ra-
tio χ0 for two different viscosities as a function of the dimensionless time scale t/τc(η),
where the characteristic relaxation time τc(η) is defined in equation (7.7). We observe
that the ratio for both viscosities coincide. Hence, one simulation with a given set of
parameters should suffice to determine the time-evolution of the reflectance regardless
of viscosity. If we wish to look at the behavior of another viscosity, we only need to
change η in the characteristic time τc(η) to obtain the correct time-evolution for this
viscosity. Again, note that this only applies in the small slope approximation. Without
this approximation, the linear dependence between the relaxation time and the viscosity
is not necessarily the case. The dimensional analysis in section 6.2 strengthens the linear
connection between the relaxation time and the viscosity, but as mentioned, we cannot
fully exclude other possibilities like τ ∼ η exp (η/A).

Even though we only have one incomplete set of experimental data, there are clearly
similarities to be seen between the experiment and the simulations, figures 8.7(a) and
8.7(b) respectively. The behavior in time and the values for the reflectance for all the
orders are very similar. Figure 8.12 shows a way to determine the temperature dependent
viscosity. The time scale of the simulation result is rescaled with the characteristic time
for the viscosity used in the simulation, η = 5·107 Pa s. Then we rescale the time scale of
the experimental data with similar characteristic time. By adjusting the viscosity used
for the experimental characteristic time, we try to fit the experimental reflectances to
the simulated reflectances. The viscosity which gives best fit is most likely the viscosity
of PMMA at the measured temperature.

Here, the viscosity at the measured temperature T = 103◦C is η = 6 · 107 Pa s,
though it is probably not correct since we do not know the polarization of the source
and because the reflectance never reaches the Fresnel reflectance. We used the sum of
the last reflectance value of each diffraction order from the experimental data to get
an approximate Fresnel reflectance, RF . Better experimental results and knowledge of
polarization is needed to use this method. Still, figure 8.12 illustrates how the method
works and it shows promising results.

The rescaling of time by the characteristic relaxation time τc(η) can be done for all
figures showing reflectance as a function of time. We have chosen to show most of these
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figures without rescaling to give the reader a view of the times that are characteristic
for the relaxation process.

Placing a polarization switching device in front of the laser makes us able to measure
the intensity of both polarizations, Iν , at approximately the same time. The ratio be-
tween intensities is proportional to the ratio between reflectances. By comparing χ0 the
fundamental diffraction order, shown in figure 8.11, with the ratio of the experimentally
obtained intensities, Is/Ip, we can find the viscosity that corresponds to the measured
temperature. Since the ratio χ0 has only one peak, it is easy to fit it to experimental
data by adjusting the viscosity of the characteristic relaxation time which we use to
rescale the time. We also have to compare with the other diffraction orders m 6= 0 too,
but by first comparing with the fundamental order gives a good indication to whether
we are close or not. This method is equivalent to the method proposed a earlier in
this section, but might be better suited for determining η(T ) if the intensity from the
source fluctuates in time. The ratio between the two polarizations should be the same
regardless of intensity. We assume that the intensity fluctuations are much slower than
the polarization switching device such that the measurements of Rs and Rp are done at
the same intensity.

9.3 Scattering simulation with two interfaces

As the experimental samples consist of a structured PMMA layer on top of glass of sim-
ilar dielectric function, we include the glass in our simulations to see how the glass layer
will affect the simulations. The reflectance from the fundamental order is reduced for s-
polarized light while it is increased for p-polarized light, see figure 8.13. Something must
be wrong with our simulations. Even if the experimental results are preliminary, they
do not deviate much from the simulations done without the glass layer, see figures 8.6,
8.7 and 8.12.

Theoretically, the inclusion of the glass layer with dielectric function close to the
dielectric function of PMMA should not affect the reflectance the way it is shown in
figure 8.13. Figures 8.14 show that the change in reflectance ∆RF

ν between one layer
and two layers with almost equal dielectric function is very small. Comparing the
theoretically calculated one layer reflectances from table 8.5 with the simulated ones
in table 8.6 shows that theory and simulation correspond very well. When comparing
the two layer reflectances we see big differences that should not be there. Even when
ǫPMMA = ǫglass, which is the equivalent of having just one layer, there is a difference
which should not be there.

The angular distribution for the diffraction orders from the two layer simulations
is the same as for the distribution from the one layer simulations shown in figures 8.4
and 8.5. Hence, this is not the problem. Furthermore, the unitarity evolves just like for
the one layer simulations, so this is not the problem either. When including an extra
layer, the simulation requires much more memory. Still, we had enough memory to use
the same discretization and system size as for the one layer simulations. One possible
reason for the strange behavior might be that we get a singular set of equations when
the dielectric function is equal at both sides of the interface. Anyhow, for the time being
we should dismiss the two layer simulations.

Fortunately, we only need one layer simulations to determine the viscosity. Fig-
ures 8.14 show that the theoretical difference between one and two layers with similar
dielectric functions is negligible, i.e. ∆RF

ν < 0.01. PMMA and the glass used in the
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experiments have almost equal dielectric functions and therefore the glass will not affect
the reflectances noticeably. Moreover, when we compare experiments with our one layer
simulations, we see that the behavior is very similar, see figures 8.7. Hence, we can
still determine the viscosity even though our program halts when including the glass
layer. The difficulties with controlling temperature and energy transport within the re-
laxing samples will most likely affect the measurements much more than the mismatch
in dielectric functions.

9.4 Future work

Basically, the only thing that remains is to obtain many sets of experimental data for
different temperatures and fitting them to the simulation result. Before we can do
this, we have to ensure that the experimental data is usable. First, we need to control
the polarization of the source, either by measuring the polarization or by applying a
polarization switching device in front of the source, as mentioned in the previous section.
We also need to control temperature to ensure the same relaxation at all positions in
the sample. The box solution proposed is a possible way of improving this.

Lastly, the experimentalists should do some experiments where they check if there
is a noticeable difference between one or more layers of equal and slightly different
dielectric function. They should also find which interface that contributes the most to
the reflectance. Is it the air/PMMA-, PMMA/glass or glass/substrate-interface? This
can easily be checked by doing experiments with completely flat surfaces. In doing this,
it is also easy to compare with theory as the measured reflectance should be equal to
the Fresnel reflectance.

As soon as this is done, we are ready to determine the viscosity as a function of
temperature by the method proposed in this thesis.

One of the questions that remains unanswered is the cause of the “dip” in the re-
flectance from the fundamental diffraction order at early times. This “dip” also appears
in the experimental results, so it is not a numerical artifact. Another question is the
split of the m = −2 and m = −3 peaks for p-polarized light.

Finally, it would be interesting to find the cause of the weird behavior of the simu-
lations when including more than one layer.
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Conclusion

The main purpose of this thesis was to study scattering of polarized light from a relaxing
periodic nanostructured highly viscous surface. This is one of the steps in developing
a new indirect method of determining the viscosity as a function of temperature for a
polymer material. By comparing scattering simulations where the viscosity is known
with scattering experiments where the temperature is held constant, we can find the
temperature dependent viscosity by data inversion.

We have studied the fundamental electromagnetic equations and rederived a method
to solve the scattering problem by rigorous numerical simulations. Applying our simple
model for relaxation to higher orders of the Fourier expansion of the surface profile
and implementing it in the scattering program, enabled us to simulate scattering from
a relaxing surface. Our simulation results was confronted with theory to ensure the
validity of the numerical approach, and then compared to preliminary experimental
data.

The simulations indicate that there are differences between the behavior of the two
polarizations, which means that polarization control is important when doing the ex-
periments. Furthermore, we have discovered that the numerical method used here yield
strange results when we include several layers. Fortunately, simulations with only one
layer still give results that corresponds nicely with experimental results.

We also find that we only need one simulation due to the linear connection between
relaxation time and viscosity. With just a simple rescaling of time, we are able to fit
experimental data to the simulation results. Hence, the data inversion will require much
less time than if we had to run simulations for each viscosity. Taking the preliminary
experimental results into consideration, we see that this method shows promising results.
With more experimental results we would have been able to determine the viscosity as
a function of temperature.
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