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Abstract

This study is part of a project with the goal of studying PbTiO3 tetragonal
perovskite films grown on SrTiO3 cubic perovskite substrates. This structure
can be used in computational storage units since PbTiO3 tetragonal perovskite
is ferroelectric at room temperature. In the future, this film-substrate structure
will be studied by a reactive force field, ReaxFF, for strontium, oxygen, lead,
and titanium. The data set for parametrizing the force field is made by using
Amsterdam Density Functional, a program package using Density Functional
Theory (DFT) and a Slater-type orbital basis set. The RPBE exchange and
correlation functional is used, with zeroth-order regular approximation with
spin-orbit coupling to correct for relativistic effects. In this thesis, DFT is used
for finding the energy for different lattice constants of 6 crystal structures and
the energy of 22 variations in bond lengths, valence angles, and torsion angles
of molecules, as these energies are to be added to the data set. Hydrogen atoms
were included in many of the molecules to make closed shell systems. A ReaxFF
force field for lead, fit against DFT energies for 4 crystal lattices, is made, and
compared to those crystals, in addition to two other lead crystals and a Pb2

molecule. The force field fits well for some of the crystals, e.g. BCC and HCP ,
but less well for others, e.g. the cubic diamond structure and SC. Comparing
energies for the Pb2 molecule shows that the ReaxFF force field binding energy
might be weaker than the DFT binding energy. The Pb2 molecule otherwise
demonstrates a good fit to the data set, indicating that the transferability of
the ReaxFF force field might be good.
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Sammendrag

Denne studien er en del av et prosjekt som har som m̊al å studere PbTiO3

tetragonal perovskitt filmer grodd p̊a SrTiO3 kubisk perovskitt underlag. Denne
strukturen kan bli brukt i lagringsenheter fordi PbTiO3 tetragonal perovskitt
er ferroelektrisk i romtemperatur. Denne film-underlag-strukturen vil senere
bli studert med et reaktivt kraftfelt, ReaxFF, for strontium, oksygen, bly og
titan. Databasen for å parametrisere kraftfeltet er lagd ved å bruke Amsterdam
Density Functional, en programpakke som benytter seg av Tetthetsfunksjonal-
teori (DFT) og bruker Slater-type orbitaler som basissett. En utveksling-og
korrelasjonsfunksjonal, RPBE, er brukt, med en nullteordens ordinær tilnærm-
ing med spinn-bane-kobling for å korrigere for relativistiske effekter. I denne
tésen blir DFT brukt til å finne energien for forskjellige gitterkonstanter til 6
krystallstrukturer og energien til 22 variasjoner i bindingslengder, valensvin-
kler, og torsjonsvinkler i molekyler, da disse energiene vil bli lagt til databasen.
Hydrogenatomer er lagt til molekylene for å lage lukkede skall-systemer. Et
ReaxFF kraftfelt for bly, tilpasset DFT energier for 4 krystallgitter, er lagd
og sammenlignet med krystallgitterene det ble tilpasset, i tillegg til to andre
blykrystaller og et Pb2-molekyl. Kraftfelt passer bra for noen av krystallene,
f.eks. BCC og HCP , men mindre bra for andre, f.eks. kubisk diamant og SC.
Ved å sammenligne energier for Pb2-molekylet viser vi at ReaxFF kraftfeltets
bindingsenergi kanskje er noe svakere enn bindingsenergien for DFT. Ellers
viser det seg at Pb2-molekylet er godt tilpasset databasen, noe som taler for at
overføringsevn til kraftfeltet er god.
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Table 1: Definition of symbols and expressions
Symbols/expressions Explanation
SC, BCC, FCC,
HCP, diamond, cubic
l10 or just l10, B1,
B2, α

Crystal lattices, described in appendix A.

ADF Amsterdam Density Functional, a program package for
calculating molecular and crystal energies and electronic
and magnetic properties with DFT.

Data set A set of data. In this report the data set contains ADF
energies, electric properties, and magnetic properties for
different geometries, although only ADF energies are
used in this report.

Volume/atom or vol-
ume/atoms

The volume for a unit cell divided on the number of atoms
in that unit cell. For unit cells with two different atoms
with a 1 to 1 ratio, the volume/atoms are the volume per
those two atoms.

V0 Volume/atom or volume/atoms when the geometry is
optimized.

ReaxFF A force field developed to be able to describe continuous
bond formations and breakings.

Valence angle The angle between two interatomic bonds a1-a2 and a2-
a3, where a1, a2, and a3 are atoms. The valence angle is
also called ’bond angle’.

Torsion angle The angle between two interatomic bonds a1-a2 and a3-a4

when the bonds are projected down to the normal plane
of the a2-a3 bond.

ZORASR, ZORASO Zeroth-Order Regular Approximation. A method for
compensating for relativistic effects in atoms, specially
for the most tightly bound electrons in heavy atoms.
ZORASR ZORASO

Å Ångstrom, = 10−10 meters

Gaute force field A force field made by fitting ReaxFF to data for FCC,
HCP , SC, and BCC lead crystals.
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1 Introduction

1.1 Research on a PbTiO3 film on a SrTiO3 substrate

Lead titanate (PbTiO3) is ferroelectric for temperatures below 490 ◦C, having a
tetragonal cell structure (the lattice constants a = b 6= c) [1]. In Fig. 1, the sponta-
neous polarizations is along the z axis (up), as the oxygen and titanium atoms are
displaced in that direction.

Figure 1: Lead titanate perovskite struc-
ture. The lead atoms are placed in the
corners while the oxygen atoms are at the
sides and the titanium atom is placed in the
center. The oxygen atoms are displaced in
positive z direction (up) while the titanium
atom is displaced in negative z direction.

Figure 2: Conventional cross-section TEM
sample preparation. The lead titanate
crystals are aligned with the quadratic side
towards the strontium titanate crystals.

The experimental value for the lattice constant a in SrTiO3 is 3.905 Å [2], while
the experimental value for a in PbTiO3 is 3.904 Å and the value for c is 4.150 Å
[3]. Both values were measured at room temperature. Because these differences are
so small, it is possible to grow a lead titanate film on a strontium titanate surface,
getting the lead titanate cells to align as shown in Fig. 2. Because all the cells are
aligned in the same direction, a controlled change in the polarization happens when
an electric field is applied, making PbTiO3 film on SrTiO3 usable in computational
storage units.

1.2 Earlier works on the PbTiO3 film - SrTiO3 substrate

Some experiments on the film-substrate structure have already been conducted, shown
in Ref. [4, 5]. T. van Helvoort, B. G. Soleim, R. Holmestad, T. Tybell and Ø. Dahl
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have done experiments using a TEM microscope [6]. In TEM, electrons at a spe-
sific wavelength are sent towards a sample material, and some of the electrons are
diffracted by the sample and absorbed by a camera or a film on the other side (here,
a film). The film used in this experiment was originally dark, but after developing
the film, the areas that were hit by electrons were brightened. The experiments gave
results such as shown in Fig. 3.

Figure 3: A TEM film showing a PbTiO3 film on a SrTiO3 substrate. The intensity
(brightness) shows the density of electrons captured by the film. Lead titanate is the
material you see in the middle, covering most of the film, and strontium titanate is the
darker material at the bottom. The PbTiO3 film thickness is 191 Å. The increased intensity
at the upper film surface is related to an extrinsic effect related to charging of the sample.
The increased intensity in the lead titanate film near the strontium titanate surface is not
fully understood.
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The very bright interface between lead and strontium near the bottom of the figure
could not be explained, but some possible reasons have been suggested by the team:

1. Pb deficiency introduced during film growth.

2. Oxygen vacancies in the first layers of the film growth.

3. Static displacements/ distortions in the perovskite structure close to the inter-
face.

4. Strain out of the interface plane due to volume conservation or polarization
change.

5. Charge accumulation. The film is a ferroelectric with polar structure. Interface
charge can arise from polarity discontinuities.

The possibilities 2), 3), 4), and 5) are coupled, as strain and charge are two sides
of the same thing in perovskite, oxygen vacancies are coupled to charge and cation
displacements. Another important question is: ’What happens to the polarizability
when the film thickness is reduced?’ Some TEM experiments were also done using
very thin films, shown in Fig. 4. The figure shows that the lattice constant ratio
c/a is decreased with decreasing film thickness, and the polarizability might cease to
exist at some point.

Figure 4: The lattice constant ratio c/a as a function of PbTiO3 thickness. N is the
thickness of the film in number of unit cells.
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In Ref. [7], ferroelectric behaviour of PbTiO3 film on SrTiO3 substrate has been
explored for films only a few unit cells thick, by using simulations fit to first-principles
calculations.

1.3 Motivations for this thesis

The most important motivation for this thesis is to work towards making a force field
consisting of lead, strontium, oxygen, and titanium parameters. After the force field
is finished, one should be able to do different kinds of simulations:

• Simulations to look at lead titanate for different film thicknesses. The polariz-
ability is correlated to the displacement of oxygen and titanium in lead titanate,
and it should therefore be possible to say something about what happens to the
polarizability for thin films.

• Simulations for looking at film growth on the strontium titanate.

• A more careful study of what happens at and near the lead titanate and stron-
tium titanate interface.

• Studies on other systems, involving some or all of the parametrized atoms.

In addition, the parameters in the force field are transferable to other systems, de-
creasing the amount of work needed for making another force field containing 1 or
more of these atoms. An important point here is, however, that the constants in a
force field would vary when fit to different data sets.

1.4 Parameters for a reactive force field with DFT calcula-
tions

In this study, we have used DFT (Density Functional Theory) to add data to a data
set meant for parametrizing a reactive force field with ReaxFF. DFT can not be used
directly to reach the goals as described in section 1.3, as it is a quantum mechani-
cal energy minimization method, and is therefore computationally too expensive for
systems containing large numbers of atoms. Earlier studies for adding data to the
data set have been conducted for crystals containing lead, strontium, oxygen, and
titanium [8, 9]. Those studies have not produced results for crystals consisting of
any of these combinations: Lead and strontium, strontium and oxygen, and stron-
tium and titanium crystals. Another study is being conducted parallel to this one by
K. T. Olsen [10]. We and K. T. Olsen have found data for lacking crystal structures.
In addition, data for molecules consisting of strontium, lead, oxygen and titanium

5



have been found in both studies, as values for molecules are necessary for making a
good force field. The process of finding data is described in detail in sections 4.1 and
4.2.

1.5 Making a ReaxFF force field for lead, using lead crystal
parameters

In addition to finding data for the reactive force field to be fit against, some work has
been done to produce a reactive force field for lead, using the crystal structure data
from Ref. [9]. This process is described in section 4.4.
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2 Theory

2.1 ReaxFF [11]

ReaxFF is a force field developed by Adri van Duin, William A. Goddard III, and
co-workers at the California Institute of Technology. Traditional force fields describe
molecular or condensed phase systems by simple harmonic equations that describe
the streching and compression of bonds and the bending of valence angles, and add
van der Waals potential functions and Coulomb interactions to describe non-bonded
interactions. However, harmonic equations for the streching and compression of bonds
only hold near the energy equilibrium. Traditional force fields therefore only work
for describing systems where interatomic distances and valence angles are close to
the energy equilibriumn, as these force fields are unable to model continuous bond
formations and breakings. ReaxFF is a better tool for this, as all valence terms
(bonds, valence angles, and torsion angles) are dependent on the bond order between
atoms, and this bond order is determined uniquely from the interatomic distances.
The bond order goes towards zero when these distances become large. Another feature
of ReaxFF is that instead of finding constants that match the input data set, it finds
more fundamental constants, transferable to other systems. ReaxFF is composed of
different energy terms, written as

Esystem = Ebond + Elp + Eover + Eunder + Eval + Ecoa + Etors + Econj + EHbond

+ EC2 + Etriple + EvdWaals + ECoulomb
(1)

In the following, we will look at each energy term. The constants in the different terms
are displayed in table 2. These constants vary for each atom/ atom combination used
in the force field, and are found by fitting the constants in ReaxFF to experimental
data or computer simulation data. How this is done is explained in some detail in
section 2.2.
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Table 2: Constants used in the energy terms in ReaxFF.
Parameter Description Parameter Description
rσ σ reference bond length rπ π reference bond length
rππ ππ reference bond length valei # of valences electrons of atom i
pbo,1 bond order parameter pbo,2 bond order parameter
pbo,3 bond order parameter pbo,4 bond order parameter
pbo,5 bond order parameter pbo,6 bond order parameter
pboc1 BO correction param pboc2 BO correction param
pboc3 BO correction param pboc4 BO correction param
pboc5 BO correction param pbe,1 bond energy param
pbe,2 bond energy param Dσ

e σ bond energy param
Dπ
e π bond energy param Dππ

e ππ bond energy param
plp1 lone pair parameter plp2 lone pair parameter
nlp,opt optimal nr. of lone pairs pval1 valence angle param
pval2 valence angle param pval3 valence angle param
pval4 valence angle param pval5 valence angle param
pval6 valence angle param pval7 valence angle param
pval8 valence angle param pval9 valence angle param
pval10 valence angle param pval11 valence angle param
pval12 valence angle param pval13 valence angle param
pval14 valence angle param p3con1 3-body conjugation param
p3con2 3-body conjugation param p3con3 3-body conjugation param
p3con4 3-body conjugation param ptor1 torsion parameter
ptor2 torsion parameter p4con1 4-body conjugation param
p4con2 4-body conjugation param phb1 hydrogen bond param
phb2 hydrogen bond param phb3 hydrogen bond param
pc carbon triple bond param ptrip1 carbon-oxygen param
ptrip2 carbon-oxygen param ptrip3 carbon-oxygen param
ptrip4 carbon-oxygen param povun1 atom over/underb. param
povun2 atom over/underb. param povun3 atom over/underb. param
povun4 atom over/underb. param povun5 atom over/underb. param
povun6 atom over/underb. param povun7 atom over/underb. param
povun8 atom over/underb. param Θ0,0 valence angle param
V1 torsion parameter V2 torsion parameter
V3 torsion parameter Rcut Taper cutoff radius
pvdW vdW parameter αij vdW parameter
γw vdW parameter Dij vdW parameter
γij Coulomb parameter C Coulomb parameter
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2.1.1 Bond Order (BO) and bond energy

ReaxFF describes continuous bond formation and breaking by using a function for
the bond order between any two atoms i and j. The uncorrected bond order, BOunc

ij ,
is shown in eq. 2.

BOunc
ij = BOunc,σ

ij +BOunc,π
ij +BOunc,ππ

ij

= exp

(
pbo,1

(
rij
rσ

)pbo,2
)

+ exp

(
pbo,3

(
rij
rπ

)pbo,4
)

+ exp

(
pbo,5

(
rij
rππ

)pbo,6
)
(2)

Here, rσ, rπ, and rππ are the reference lengths for the bonds, and pbo,1, pbo,3, pbo,5 are
less than 0, making the terms disappear for large rijs. The constants pbo,2, pbo,4, and
pbo,6 are greater than 0. The three bond terms vary from 1 (for low rij values) to 0 (for
high rij values). Only the σ term is used for bonds involving 1 or 2 atoms with only 1
valence, giving a maximum bond order of 1. For bonds between atoms with only two
valences, only the σ term and the π term are used, giving a maximum bond order
of 2. The total bond order for an atom should be equal to the number of valences
electrons of that atom. This is often not the case, and therefore the uncorrected bond
order terms are corrected by introducing some multipliers.

BOσ
ij = BOunc,σ

ij f1(∆
unc
i ,∆unc

j )f4(∆
unc
i , BOunc

ij )f5(∆
unc
j , BOunc

ij )

BOπ
ij = BOunc,π

ij

[
f1(∆

unc
i ,∆unc

j )
]2
f4(∆

unc
i , BOunc

ij )f5(∆
unc
j , BOunc

ij )

BOππ
ij = BOunc,ππ

ij

[
f1(∆

unc
i ,∆unc

j )
]2
f4(∆

unc
i , BOunc

ij )f5(∆
unc
j , BOunc

ij )

BOij = BOσ
ij +BOπ

ij +BOππ
ij

(3)

f1(∆
unc
i ,∆unc

j ) =
1

2

vali + f2(∆
unc
i ,∆unc

j )

vali + f2(∆unc
i ,∆unc

j ) + f3(∆unc
i ,∆unc

j )

+
1

2

valj + f2(∆
unc
i ,∆unc

j )

valj + f2(∆unc
i ,∆unc

j ) + f3(∆unc
i ,∆unc

j )
(4)

f2(∆
unc
i ,∆unc

j ) = exp(−pboc1∆unc
i ) + exp(−pboc1∆unc

j ) (5)

f3(∆
unc
i ,∆unc

j ) =
1

pboc2
ln

(
1

2
[exp(−pboc2∆unc

i ) + exp(−pboc2∆unc
j )]

)
(6)

f4(∆
unc
i , BOunc

ij ) =
[
1 + exp(−pboc3[pboc4BOunc

ij BOunc
ij −∆unc

i ] + pboc5)
]−1

(7)

f5(∆
unc
j , BOunc

ij ) =
[
1 + exp(−pboc3[pboc4BOunc

ij BOunc
ij −∆unc

j ] + pboc5)
]−1

(8)

9



The valences of atom i is denoted as vali (as an example 4 for carbon, 1 for hydrogen).
The degree of deviation for the sum of the corrected bond orders around an atomic
center denoted from it’s atomic center, ∆i, is

∆i =

neighbours(i)∑
j=1

BOij − vali (9)

The energy, Ebond, is due to the interatomic distance between a pair of atoms, and is
given as

Ebond = −Dσ
eBO

σ
ij exp(pbe,1[1− (BOσ

ij)
pbe,2 ])−Dπ

eBO
π
ij −Dππ

e BOππ
ij (10)

2.1.2 Lone pair energy

Eq. (11) is used to determine the number of lone pairs around an atom. The ”int”
operator rounds the number down to nearest integer.

nlp,i = int

(
∆e
i

2

)
+ exp

(
−plp1

[
2 + ∆e

i − 2int

(
∆e
i

2

)]2
)

(11)

In (12), ∆e
i is determined. It describes the difference between the total number of

outer shell electrons, valei and the sum of bond orders around an atom i.

∆e
i = valei −

neighbours(i)∑
j=1

BOij (12)

For oxygen with normal coordination, (11) leads to 2 lone pairs. Oxygen has six
electrons in the outer shell, and the preferred bond order for oxygen is 2. Because ∆e

i

is 4, int(∆e
i/2) is 2, and the exponential is very small, meaning nlp,i ≈ 2. As the total

bond order associated with a particular oxygen atom starts to exceed 2, (11) causes
a lone pair to gradually break up, causing a deviation ∆lp

i , defined in (13), from the
optimal number of lone pairs nlp,opt (2 for oxygen, 0 for silicon and hydrogen).

∆lp
i = nlp,opt − nlp,i (13)

This is accompanied by an energy penalty, as calculated in (14).

Elp =
plp2∆

lp
i

1 + exp(−75∆lp
i )

(14)

10



2.1.3 Atom under-/overcoordination

Even after correction of the original bond orders BOunc
ij , a degree of overcoordination

(∆i > 0) may remain in the molecule. The overcoordination term has been added to
handle this error. The overcoordination term is given as

Eover =

∑n
j=1 povun1D

σ
eBOij

∆lpcorr
i + vali

∆lpcorr
i (1 + exp[povun2∆

lpcorr
i ])−1 (15)

∆lpcorr
i = ∆i −

∆lp
i

1 + povun3 exp
(
povun4

[∑neighbours(i)
j=1 (∆j −∆lp

j )(BOπ
ij +BOππ

ij )
])

(16)
For an undercoordinated atom (∆i < 0), the energy contribution for the resonance
of the π-electron between attached under-coordinated atomic centers is taken into
account. This is done in (17). Eunder is only important if the bonds between under-
coordinated atoms partly have π-bond character.

Eunder = −povun5
1− exp(povun6∆

lpcorr
i )

1 + exp(−povun2∆
lpcorr
i )

(17)

·

1 + povun7 exp

povun8

neightbours(i)∑
j=1

[
∆j −∆lp

j

]
[BOπ

ij +BOππ
ij ]

−1

2.1.4 Valence angle

The valence angle energy for valence angle i-j-k, where i, j, and k are locations for 3
atoms, is

Eval = f7(BOij)f7(BOjk)f8(∆j)(pval1 − pval1 exp[−pval2(Θ0(BO)−Θijk)
2]) (18)

f7(BOij) = 1− exp(−pval3BOpval4
ij ) (19)

f8(∆j) = pval5 − (pval5 − 1)
2 + exp(pval6∆

angle
j )

1 + exp(pval6∆
angle
j ) + exp(−pval7∆angle

j )
(20)

SBO =

neighbours(j)∑
n=1

(BOπ
jn +BOππ

jn )

+

1−
neighbours(j)∏

n=1

exp[−BOjn]

 (−∆angle
j − pval8nlp,j)

(21)

11



∆angle
j = −valj +

neighbours(j)∑
n=1

BOjn (22)

SBO2 = 0 if SBO ≤ 0

SBO2 = SBOpval9 if 0 < SBO < 1

SBO2 = 2− (2− SBO)pval9 if 1 < SBO < 2

SBO2 = 2 if SBO > 2

(23)

Θ0(BO) = π −Θ0,0(1− exp[−λ18(2− SBO2)]) (24)

Eq. 18 is the calculated energy associated with deviations in valence angle Θijk from
its equilibrium value Θ0. Eq. 19 describes f7(BOij), that is a term that ensures that
the angle energy disappears smoothly if one of the two bonds in the angle breaks.
Eq. 20 deals with the over/undercoordination in the central atom j on the valence
angle energy. Eq. 21 shows the equilibrium angle Θ0 around the central atom j, as
the angle is dependent on the order of π - bonds between j and the two atoms it is
bound to. To reproduce the stability of systems with two double bonds sharing an
atom in a valence angle, an additional energy penalty has to be accounted for, shown
in eq. 25 and eq. 26.

Epen = pval11f9(∆j) exp(−pval12[BOij − 2]2) exp(−pval12[BOjk − 2]2) (25)

2 + exp(−pval13∆j)

1 + exp(−pval13∆j) + exp(pval14∆j)
(26)

2.1.5 Three body conjugation term

The three-body conjugation energy is given in (27)

Ecoa = p3con1(1 + exp[p3con2∆
val
j ])−1 exp

−p3con3

−BOij +

neighbours(i)∑
n=1

BOin

2
· exp

−p3con3

−BOjk +

neighbours(i)∑
n=1

BOkn

2
· exp(−p3con4[BOij − 1.5]2) exp(−p3con4[BOjk − 1.5]2)

(27)
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2.1.6 Torsion angle energy

The torsion energy is described in eq. 28. The equations give a good description
of what happens when the BO → 0 and when the BO is greater than 1. The
sin(Θijk) sin(Θjkl) term in eq. 28 ensures that the torsion energy disappears when
one of the valence angles approaches π. Eq. 29 describes a smooth disappearance of
the torsion energy when one of the bonds in the torsion angle breaks. The torsion
angle is denoted as ωijkl.

Etors = f10(BOij, BOjk, BOkl) sin Θijk sin Θjkl

· [1
2
V1(1 + cosωijkl)

+
1

2
V2 exp[ptor1(BOjk − 1 + f11(∆j,∆k))

2](1− cos 2ωijkl)

+
1

2
V3(1 + cos 3ωijkl)]

(28)

f10(BOij, BOjk, BOkl) = (1− exp[−ptor2BOij])

· (1− exp[−ptor2BOjk])(1− exp[−ptor2BOkl])
(29)

2.1.7 Four body conjugation term

This is the energy contribution of conjugation effects in the moleculecular energy
for four atoms. A maximum contribution of conjugation energy is obtained when
successive bonds have bond order values of 1.5. The energy is given in eq. 30 and 31:

Econj = f11(BOij, BOjk, BOkl)p4con1(1 + [cos2 ωijkl − 1] sin Θijk sin Θjkl) (30)

f11(BOij, BOjk, BOkl) = exp

(
−p4con2

[
BOij −

1

2

]2
)

· exp

(
−p4con2

[
BOjk −

1

2

]2
)

exp

(
−p4con2

[
BOkl −

1

2

]2
)

(31)

2.1.8 Hydrogen bond interactions

In eq. 32 the bond-order dependent hydrogen bond term for a X-H − Z system is
described, where X and Z are random atoms, and H is a hydrogen atom.

EHbond = phb1(1− exp[phb2BOXH ]) exp

(
phb3

[
r0
hb

rHZ
+
rHZ
r0
hb

− 2

])
sin8

(
θXHZ

2

)
(32)
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The distance between atom X and the hydrogen atom at equilibrium is r0
hb, while rHZ

is the distance between the hydrogen atom and atom Z.

2.1.9 Correction for C2

A correction for a too strong triple bond between two carbon atoms is shown in
eq. 33.

EC2 = pc(BOij −∆i − 0.04∆4
i − 3)2 if BOij −∆i − 0.04∆4

i > 3

EC2 = 0 if BOij −∆i − 0.04∆4
i ≤ 3 (33)

2.1.10 Carbon-oxygen triple bond energy correction

To better describe the triple bond in carbon monoxide the energy correction in eq. 34
is used.

Etrip1 = ptrip1 exp(−ptrip2[BOij − 2.5]2)

·
exp

(
−ptrip4

[∑neighbours(i)
k=1 BOik −BOij

])
1 + 25 exp(ptrip3[∆i + ∆j])

+
exp

(
−ptrip4

[∑neighbours(i)
k=1 BOjk −BOij

])
1 + 25 exp(ptrip3[∆i + ∆j])

(34)

2.1.11 Taper correction

In addition to valence interactions which depend on overlap, there are repulsive in-
teractions at short interatomic distances due to the Pauli principle, and attraction
energies at long distances due to dispersion. These interactions are van der Waals and
Coulomb forces, and are included for all atom pairs. To avoid energy discontinuities
when charges move in and out of the non-bonded cutoff radius, ReaxFF employs a
Taper correction, developed by de Vos Burchart (1995). Each nonbonded energy and
derivative is multiplied by a Taper-term, which is taken from a distance-dependent
7th order polynomial (35).

Tap = Tap7r
7
ij+Tap6r

6
ij+Tap5r

5
ij+Tap4r

4
ij+Tap3r

3
ij+Tap2r

2
ij+Tap1rij+Tap0 (35)

The terms in this polynomial are chosen to ensure that all 1st, 2nd, and 3rd derivatives
of the nonbonded interactions to the distance are continuous and go to zero at the
cutoff boundary. To that end, the terms Tap0 to Tap7 in (35) are calculated in (36),
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where Rcut is the non-bonded cutoff radius.

Tap7 = 20/R7
cut

Tap6 = −70/R6
cut

Tap5 = 84/R5
cut

Tap4 = −35/R4
cut

Tap3 = 0 (36)

Tap2 = 0

Tap1 = 0

Tap0 = 1

2.1.12 van der Waals interactions

One uses a distance-corrected Morse-potential for the van der Waals interaction,
shown in eq 37. To avoid an excessively high repulsion between bonded atoms and
atoms sharing a valence angle, a shielded interaction, eq. 38, is included in the
equation.

EvdWaals = Tap ·Dij

(
exp

[
αij

(
1− f12(rij)

rvdW

)]
− 2 exp

[
1

2
αij

(
1− f12(rij)

rvdW

)])
(37)

f12(rij) =

(
rpvdW
ij +

[
1

γw

]1/pvdW

)
(38)

2.1.13 Coulomb interactions

As with van der Waals interactions, this interaction is between all atom pairs. To
adjust for orbital overlap between atoms at close distances, a shielded Coulomb-
potential is used (39).

ECoulomb = Tap · C qiqj
(r3
ij + [1/γij]3)1/3

(39)

The atomic charges, qi and qj, are calculated using the Electron Equilibration Method
[12, 13].

2.2 ReaxFF software

The recipe for making a force field using ReaxFF software is described in this section.
The files important for this study are described here, although more are included in
the software. The file names and a short description of each file are shown in table 3.
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Table 3: Overview of ReaxFF input files used in this study.
File name Short description
geo the geometries for the system
ffield the force field constants
trainset.in the data set with weighting
params optimizable force field parameters
fort.4 the force field output
fort.99 the file displaying the error

2.2.1 geo

The geo file describes the geometries for the system, both for crystals and molecules.
The file is divided into blocks, where each block describes one geometry, and is iden-
tified in the DESCRP line. An example of a block is shown in Fig. 5, using an FCC
lead structure.
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Figure 5: A geo example file showing two blocks of FCC with different lattice constants.
The first line of a block tells ReaxFF what format is used for that block. The DESCRP line
works as an identifier for that block, so that the block can be identified with parameters
in the trainset.in file. The three first numbers in the CRYSTX line are the lengths of the
three lattice vectors, and the three last numbers are the angles between these vectors. Each
HETATM line describes the basis vector in cartesian coordinates for each atom in the lattice
cell. The other lines are different kinds of remarks, not necessary to the geo file.

2.2.2 ffield

This file contains all constants used in the force field. A rough overview of these
constants is given in Fig. 2.

2.2.3 trainset.in

This file contains all data in the data set except for the molecule/crystal geometries.
As this study only focuses on making a force field for lead, using lead crystals, there
are no polarizations, so the only block in trainset.in is the energy block. An example
of this file is shown in Fig. 6.
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Figure 6: A data set file when using lead crystals. In the second and third column, one
crystal structure is substracted from another. The energy is per atom, so each crystal
structure is divided by the number of atoms in the unit cell. The fourth line is the energy,
here in kcal/mol, found experimentally or by computations. The numbers in the first
column are the weighting of each energy comparison, the importance of the comparison is
1/weight2.

The energy in the trainset.in file is here the energy difference between two crystal
structures from the geo file. In this file, one also decides the weight for each of these
energies.
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2.2.4 fort.99

The error is displayed in the fort.99 file, and is a measurement of the difference
between the ReaxFF force field and the data set for a given geometry. When only
using energy differences as parameters in trainset.in, the error is found by (40).

ERROR = ([ffieldenergy − trainsetvalue]/weight)2 (40)

Here, trainsetvalue is the energy defined in the trainset.in file, and ffieldenergy is
the corresponding energy calculated by the current force field. The total error of the
force field is the sum of all ERRORs, one ERROR for each line in the trainset.in
file. An example of a fort.99 file is shown in Fig. 7.

19



Figure 7: A fort.99 file using lead crystals FCC, BCC, SC, and HCP . fort.99 is the file
reporting the error in the force field. The first column is the column stating what type of
parameter ReaxFF is comparing, only energy (kcal/mol) in this case. The next columns are
energy comparisons between different crystal structures, divided by the number of atoms in
the basis to get the energy per atom, instead of energy per unit cell. The next two columns,
’FField value’ and ’QM/Lit value’, are respectively the force field value and the data set
value (found from the trainset.in file) of the energies of the crystal structures described in
the foregoing columns. The ’Weight’ column is the weighting (importance) of each row,
also taken from the trainset.in file. The ’Error’ column is calculated as shown in eq. 40.
The ’Total error’ column is summing up the parts in the ’Error’ column.
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2.2.5 params

In the params file one decides which ffield constants to vary for an optimization of the
force field, the minimum and maximum value to vary between, and what step-size to
use.

2.2.6 fort.4

After a force field optimization, the new force field constants are written into this file.
The format of this file is exactly the same as the format for the ffield file, and can be
used for a new force field optimization.

2.2.7 Optimizing a force field

The recipe for making/optimizing a force field, only taking the energy in the data set
into consideration, is as follows:

1. Make a ffield file by inserting start values for all the constants that are to be
included in the force field.

2. Make a params file and decide which of these constants ReaxFF should vary,
and decide the minimum value, maximum value and step size for the process.

3. Make a trainset.in file. This file contains all the energies in the data set, and
the weighting of each such energy.

4. Make a geo file. This file contains the geometries for the energies used in
trainset.in.

5. Run a force field optimization job. The program will then vary each of the
ffield constants as specified in the params file, one constant at a time, from the
minimum to the maximum value. The value for the constant that makes the
total error as small as possible, shown in the fort.99 file, is then chosen. This is
done for all the constants refered to in the params file. The force field energy
for the comparison is calculated by using the constants in the ffield file and the
parameters in the geo file.

6. The new force field constants are displayed in the fort.4 file, so one should
overwrite the ffield file with the fort.4 file.

7. Change some of the parameters in the trainset.in file and the params file if
necessary.
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8. The weighting in the trainset.in file, parameters in the params file, and constants
in the ffield file can be varied. Go to point 5, and run the job until the results
are satisfactory.

2.3 Density Functional Theory (DFT)

Density functional theory is an energy minimization method, using quantum mechan-
ics. The main idea is to have the atom cores in fixed positions, and state that the
electrons around the cores can be described as an electron density. The energy mini-
mum is found by finding the corresponding electron density. The time-independend
Schrödinger equation states that

ĤΨ = EΨ (41)

where E is the total energy of the system, Ψ is the wavefunction of the system and Ĥ is
the Hamiltonian (the total energy operator). For a molecular system with no external
field, excluding core-core repulsion, and approximating the nuclei to be point-charges
at rest, the Hamiltonian is

Ĥ = V̂ext + K̂ + V̂ee = −
N∑
i=1

M∑
A=1

ZA

|~RA − ~ri|
− 1

2

N∑
i=1

∇2
i +

N∑
j=1

j−1∑
i=1

1

rij
(42)

Here, V̂ext is the attractive Coulomb operator due to the core potential, K̂ is the kinetic
energy operator for each separate electron, and V̂ee is the electron-electron repulsion
operator. N is the number of electrons in the system, M the number of nuclei, ZA
the number of protons for the different nuclei, rij the distance between electron i and

j, and |~RA − ~ri| is the distance between the different nuclei and electrons.

2.3.1 Variational principle

For systems with two or more electrons, it is impossible to find the solution analyt-
ically. This is because of the electron-electron repulsion term V̂ee. Therefore it is
necessary to use the variational principle, which states

E ≤ 〈Ψt|Ĥ|Ψt〉 (43)

that means for any trial wavefunction Ψt used in a system, the energy E of the ground
state wavefunction will always be lower. This is because the ground state is defined as
the state where the wavefunction will give the lowest possible energy. Therefore the
challenge is to find a basis set of functions so that the total wavefunction Ψt gives an
energy close enough to the real value to be satisfactory. There are two requirements
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for the trial function Ψt. The first one, Ψt has to be square integrable and the
square integral over all space,

∫
Ψt†Ψtd3r, have to give the number of electrons in the

system, N , as Ψt has to be normalized. The second requirement is the antisymmetry
requirement, i.e, if any two electrons change wavefunctions the total wavefunction will
change sign. Because the Shrödinger equation does not exclude the trial functions that
do not meet the second requirement, the wavefunction to should be antisymmetric.

2.3.2 The first Hohenberg-Kohn Theroem

To prove that it is possible to define the whole system by using the electron density
instead of the potential (that means the potential can be determined by only looking
at the electron density), Hohenberg and Kohn have developed a theorem [14, 15]: Take
two different external potentials V̂ext1 and V̂ext2 that differ by more than a constant.
They will of course have different electron wavefunctions Ψ1 and Ψ2 as gound states.
Then let us say the electrons in the two potentials have the same density. Then use
Ψ2 as a trial wavefunction for the potential V̂ext1. Then, by the variational principle
(43) using the hamiltonian (42) we get

〈Ψ1|V̂ext1 + K̂ + V̂ee|Ψ1〉 ≤ 〈Ψ2|V̂ext1 + K̂ + V̂ee|Ψ2〉 (44)

Because
〈Ψ1|V̂ext1|Ψ1〉 = 〈Ψ1|Ψ1〉V̂ext1 (45)

and
〈Ψ2|V̂ext1|Ψ2〉 = 〈Ψ2|Ψ2〉V̂ext1 = 〈Ψ1|Ψ1〉V̂ext1 (46)

(the densities are supposed to be equal), (44) becomes

〈Ψ1|K̂ + V̂ee|Ψ1〉 ≤ 〈Ψ2|K̂ + V̂ee|Ψ2〉 (47)

The kinetic energy operator and electron-electron interaction operator are the same
in both expressions. If you use Ψ2 as the ground state and Ψ1 as the trialfunction,
you get the same expression where just the wavefunctions are interchanged. This
creates a contradiction unless the wavefunctions are the same, by the assumption of
no degeneracy of the ground state. That means there is only one density allowed
for any potential, which makes it possible to define the potential from the density,
making it further possible to define the whole system by the density.

2.3.3 The second Hohenberg-Kohn Theorem

The second Hohenberg-Kohn theorem proves that the variational principle holds for
an electron density as well as an electron wavefunction, i.e,

E(ρ(r)) ≤ E(ρ′(r)) (48)

23



Here, ρ determines V̂ext, V̂ext determines Ĥ, and Ĥ determines Ψ. Therefore, Ψ is a
functional of ρ(r), and so the expectation value of Ĥ is

E(ρ(r)) = 〈Ψ|Ĥ|Ψ〉 (49)

Here, E(ρ(r)) is the ground state energy and E(ρ′(r)) is the energy caused by the
electron density ρ′(r). Ψ is the wavefunction corresponding to the ground state elec-
tron density ρ(r), and Ψ′ is the wavefunction corresponding to the electron density
ρ′(r).

E(ρ′(r)) = 〈Ψ′|Ĥ|Ψ′〉 (50)

Inserting (49) and (50) into (43) for these two densities, it is found

〈Ψ|Ĥ|Ψ〉 ≤ 〈Ψ′|Ĥ|Ψ′〉 (51)

and therefore
E(ρ(r)) ≤ E(ρ′(r)) (52)

2.3.4 The Kohn-Sham procedure

The density of electrons can be defined as [16]

ρ(r) =
N∑
i=1

|ψi(r)|2 (53)

where ψi(r) are wavefunctions. Using the electron density, ρ(r), we can write the
total energy obtained from the Schrödinger equation as

E = 〈Ψ|Ĥ|Ψ〉 =

∫
V̂ext(r)ρ(r)dr + 〈Ψ|K̂ + V̂ee|Ψ〉 (54)

Now, consider the hamiltonian

Ĥ = V̂extλ + K̂ + λV̂ee (55)

where λ can vary between 0 and 1. Here, V̂extλ is a potential that varies with λ such
that the electron density ρ always is that of the real system. Then, for λ = 1, the
hamiltonian is equal to the energy operator of the real system (42). λ = 0 corresponds
to a system without the electron-electron interaction term V̂ee, with the density of
the real system in the potential V̂ext1. The Hellmann-Feynman theorem [17] states

dE

dλ
=
〈Ψ|∂Ĥ/∂λ|Ψ〉

ΨΨ
(56)
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When integrating (56) from λ = 0 to λ = 1, the result is

E(λ = 1)− E(λ = 0) =

∫ 1

0

〈Ψ|∂Ĥ/∂λ|Ψ〉
ΨΨ

dλ (57)

Calculating the derivative ∂Ĥ/∂λ one obtains

∂Ĥ

∂λ
=
∂(K̂ + V̂extλ + λV̂ee)

∂λ
=
∂V̂extλ
∂λ

+ V̂ee (58)

Putting (58) into (56), and moving E(λ = 0) over to the right side of the equation,
and writing out for E(λ = 0), one obtains

E(λ = 1) = Kni + Vext0 +

∫ 1

0

〈Ψ|V̂ee|Ψ〉dλ+

∫ 1

0

〈Ψ|∂Vextλ/∂λ|Ψ〉
ΨΨ

dλ (59)

= Kni + Vext0 +

∫ 1

0

〈Ψ|V̂ee|Ψ〉dλ+ Vext1 − Vext0 = Kni + Vext1 +

∫ 1

0

〈Ψ|V̂ee|Ψ〉dλ (60)

The electron density is the same for the interacting and the non-interacting system,
Kni and Vext1 are easily found, just using the kinetic energy operator and potential
operator on the Slater-determinant [18] of the non-interacting density. The integral

over the electron-electron interaction
∫ 1

0
〈Ψ|V̂ee|Ψ〉dλ still remains unsolved. Splitting

the integral into a classical Coloumb interaction part and an exchange-correlation part
makes it more convenient for later on. The exchange and the correlation energies are
the final unknown pieces of energy. Correlation energy is an energy term used for
correcting the total energy. It is needed for correcting for the equation found in [19]
that is an equation obtained using first order perturbation theory:

Ek =

∫
Ψk∆v(r1)Ψkd

3r (61)

where ∆v is the perturbation. The equation is used for finding (56). The correlation
energy also corrects for approximations made later on. Writing out for the integral∫ 1

0

〈Ψ|V̂ee|Ψ〉dλ =
1

2

∫ ∫
dr1dr2

ρ(r1)ρ(r2)

|r1 − r2|
+ EXC(ρ) (62)

The total energy is then shown:

E(ρ) = Kni(ρ) + Vext1(ρ) + Vclassee(ρ) + EXC(ρ) (63)

The only energy term that is not determined is EXC(ρ), the exchange and correlation
energy. The exchange energy is the electron-electron interaction of the non-diagonal
elements in the Slater determinant.
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2.3.5 Local Density Approximation

The first expression made for finding EXC was the local density approximation, LDA.
Here you ignore all other electron densities than the one you look at right now, i.e
you do not look at electron densities close by to determine the density gradient. The
ideal electron gas requires a uniform positive charge of equal density to be stationary.
This causes the potentials in (63) to cancel out, and the LDA energy becomes

E(ρ)LDA = KLDA
ni (ρ) + ELDA

XC (ρ) (64)

For an infinitely deep cubic well the energy levels (only kinetic energy) for a particle
are given as [20]

ε =
h2

8ml2
(n2

x + n2
y + n2

z) =
h2

8ml2
R2 (65)

Here, l is the lenght of the sides of the cube, m is the electron mass, h is Planck’s
constant and nx, ny, and nz are the excitation numbers in the different directions.
The number of energy levels Φ with less energy than ε can then be written as one
octant of a sphere with radius R.

Φ(ε) =
1

8

4πR3

3
=
π

6

(
8ml2ε

h2

)3/2

(66)

The number of energy levels between ε and ε+ dε is then (differentiating (66))

g(ε)dε = Φ(ε+ dε)− Φ(ε) =
π

4

(
8ml2

h2

)3/2

ε1/2dε (67)

At zero temperature the Fermi energy εF is the upper energy limit of occupied states,
and all states below this energy are occupied (no excited states at 0K.) The total
energy of all the electrons in this well is

KLDA
ni = 2

∫ εF

0

εg(ε)dε = 4π

(
2m

h2

)3/2

l3
∫ εF

0

ε3/2dε =
8π

5

(
2m

h2

)3/2

l3ε
5/2
F (68)

where the factor 2 comes from the Pauli principle. The number of electrons in the
well as a function of the Fermi energy is

N = 2

∫ εF

0

g(ε)dε =
8π

3

(
2m

h2

)3/2

ε
3/2
F (69)

Eliminating εF by combining (68) and (69) gives

KLDA
ni =

3h2

10m

(
3

8π

)2/3

l3
(
N

l3

)5/3

=
3h2

10m

(
3

8π

)2/3

l3ρ5/3 (70)

26



Here, ρ is the electron density, the number of electrons N divided by the volume l3. To
include electron-electron interaction in the system, exchange and correlation energy
is also required. The total exchange energy ELDA

X between electrons in spin-orbitals
χi and χj is [21]

ELDA
X =

N∑
i=1

N∑
j=i+1

∫ ∫
d3r1d

3r2χi(1)χj(2)

(
1

r12

)
χi(2)χj(1) (71)

Evaluating this equation using the Slater determinant for plane waves in an infinitely
deep well, you get

ELDA
X = −

∫
d3r

3

4

(
3

π
ρ

)1/3

ρ

= −3

4

(
3

π

)1/3 ∫
d3rρ4/3

(72)

The correlation energy is much more complicated, as it depends on the physical
ground state, and not on the non-interacting ground state. We will therefore not go
much into detail here. By studying the limits of the density, ρ → ∞ and ρ → 0, one
finds the energy using perturbation theory. The two expressions found for each limit
can be extrapolated for the section between the two limits of ρ. The total expression
is found to be [22]

ELDA
C = 1.105r−2

s − 0.458r−1
s + 0.0311 ln rs

− 0.048− 0.018rs + 0.009rs ln rs +O(r2
s ln rs)

(73)

where rs = (4πρ/3)−1/3, and rs is the radius of a sphere with volume equal to V/N
where V is the volume and N is the number of electrons in a uniform electron gas.
In Ref. [22] units of Rydberg instead of Hartree were used, so all numbers here are
divided by two in comparison to the original formula. For rs between 2 and 5, (73) will
not give an accurate account, i.e, the error is larger than 5 ·10−3 due to extrapolation
errors.

2.3.6 Generalized Gradient Approximation (GGA)

Some researchers have seen the need for improvement of the energy predicted by LDA.
This is because not all the kinetic energy is included in the LDA, giving energies
calculated with LDA a lower energy than the real system. This is because GGAs
are a function of the gradient of the density (∇ρ) as well as the density (ρ). GGAs
then favor density inhomogenety more than LDA, as commented in Ref. [23]. Here is
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described three of the GGAs available in the ADF package. The global Lieb-Oxford
bound [24] states the maximum underestimation error LDA can make for the exchange
and correlation energy, and all GGA exchange energy functionals can be written as

EX =

∫
d3rεLDAX F (ρ,∇ρ) (74)

If the exchange enhancement factor F (ρ,∇ρ) exceeds the Lieb-Oxford bound, it will
always overestimate the energy correction. None of the functionals below are in
conflict with the global Lieb-Oxford bound. The local Lieb-Oxford bound states
the maximum limit of the GGA exchange and correlation energy density, εLDAX ·
F (ρ,∇ρ). The energy densities εLDAC and εLDAX are the local values of the correlation
and exchange energy density, respectively.

PW91 Perdew-Wang exchange and correlation functional PW91 is designed to be
a first-principles numerical GGA and to be fitting several conditions as commented
in Ref. [25]. The functional has a scary number of terms [26, 27, 28]

EPW91
X = ELDA

X

(
1 + sa1 sinh−1(sa2) + (a3 + a4e

−100s2)s2

1 + sa1 sinh−1 + a5s
4

)
(75)

s =
|∇ρ|

(24π2)1/3ρ4/3
(76)

Here, a1 = 0.19645, a2 = 7.7956, a3 = 0.2743, a4 = -0.1508, and a5 = 0.004. The
correlation energy is

EPW91
C = ELDA

C + ρ
β2

2α
ln

(
1 +

2α

β

t2 + At4

1 + At2 + A2t4

)
+Cc0(Cc(ρ)−Cc1)t2e−100s2 (77)

A =
2α

β

(
e−2α ELDA

C /(ρβ2) − 1
)−1

(78)

t =
(π/3)1/6

4

|∇ρ|
ρ7/6

(79)

α = 0.09, β = 0.0667263212, Cc0 = 15.7559, Cc1 = 0.0035521

Cc(ρ) = C1 +
C2 + C3rs + C4r

2
s

1 + C5rs + C6r2
s + C7r3

s

. (80)

C1 = 0.001667, C2 = 0.002568, C3 = 0.023266, C4 = 7.389 · 10−6, C5 = 8.723, C6 =
0.472, C7 = 0.07389. As in 2.3.5, rs = (4πρ/3)−1/3.
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BLYP The Becke exchange functional is implemented to give the correct 1/r be-
havior of the exchange energy density for r →∞ [29]. This criterion is not statisfied
in PW91. The Becke88 exchange energy is given as [29]

EB88
X = ELDA

X − β
∑
σ

∫
ρ4/3
σ

x2

1 + 6βx sinh−1 x
d3r (81)

where σ denotes either ”up” or ”down” spin.

x =
|∇ρσ|
ρ

4/3
σ

(82)

Becke obtained the constant β = 0.0042 by fitting to Hartree-Fock calculations of the
noble gas atoms. The LYP (Lee, Yang, Parr) correlation functional is [30]

ELY P
C = −a 1

1 + dρ−1/3

(
ρ+ bρ−2/3(CFρ

5/3 − 2tW +
1

9
(tW +

1

2
∇2ρ))e−cρ

−1/3

)
(83)

tW =
1

8

(
|∇ρ|2

ρ
−∇2ρ

)
(84)

with CF = 3
10

(3π2)2/3, a = 0.04918, b = 0.132, c = 0.2533, and d = 0.349. The LYP
functional is the density-functional form of the Colle-Salvetti formula [31] that gives
an approximate calculation for the correlation energy in the form of the density and
a Laplacian of the second-order density matrix used in Hartree-Fock theory. The
LYP functional has been tested against the Colle-Salvetti formulas and found to have
about the same accuracy [30], about a few percent off.

RPBE The PBE (Perdew Burke Ernzerhof) exchange and correlation GGA func-
tional only contains components that are fundamental constants [32] (except the LDA
ones). The functional is meant to be a simplification of PW91 by removing less en-
ergetically significant conditions. These are:

• Correct second-order gradient coefficient for slowly varying limits.

• Correct uniform scaling of EX where s→∞ (s is the reduced gradient that has
already appeared in PW91).

In addition to simplifying the functional, there are some problems in PW91 that PBE
fixes. These are described in Ref. [32]. The PBE exchange and correlation functionals
are [32]

EPBE
X =

∫
d3rρeunifx FX(s) (85)
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FX(s) = 1 + κ− κ

1 + µs2/κ
(86)

κ = 0.804, µ = β(π2/3) and β is the same as for PW91, 0.066725. s is the reduced
density gradient (here the density is denoted as n.)

s(r) =
|∇n|
2kFn

(87)

where kF is the Fermi wave-vector.

EPBE
C =

∫
d3rn ·

(
εLDAC + FC

)
(88)

FC =
e2

a0

γφ3 ln

(
1 +

β

γ
t2
(

1 + At2

1 + At2 + A2t4

))
(89)

where

A =
β

γ

(
exp

[
−εLDAC /

(
γφ3e2/a0

)]
− 1
)−1

(90)

Here, e = the electron charge, a0 = the Bohr radius, γ = (1− ln 2)/π2,
t = |∇n|/(2φ

√
4kF/(πa0)n, φ = ((1 + ξ)2/3 + (1 − ξ)2/3)/2. ξ is the relative spin

polarization, (n↑−n↓)/n. RPBE [33] is a modification of PBE, using another exchange
enhancement factor FX , changing it from (86) to

FX(s) = 1 + κ
(

1− e−µs2/κ
)

(91)

κ is still 0.804. This form gives better values for medium and high s values and
satisfies the local Lieb-Oxford bound [33].

2.3.7 Zeroth-Order Regular Approximation (ZORA)

ZORA is a method for correcting the hamiltonian for relativistic energy and spin-orbit
coupling. Without such corrections, the kinetic energy operator K̂ is

K̂ =
1

2
~p · ~p (92)

where ~p is the momentum operator, ∇/i.
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ZORA Scalar Relativistic The total energy for scalar (not quantum mechanical)
relativistic energy WSR is

WSR = (c4 + p2c2)1/2 + V (93)

Using atomic units, the electron mass, m, has been set to 1. Disregarding the rest-
mass energy, the energy is

ESR = WSR − c2 (94)

Substituting for WSR by inserting (93) in (94) gives

ESR = (c4 + p2c2)1/2 − c2 + V (95)

which may be rewritten as, by multiplying with and dividing by c2 + (c4 + p2c2)1/2,

ESR =
p2c2

c2 + (c4 + p2c2)1/2
+ V (96)

By substituting (c4 + p2c2)1/2 − c2 with ESR − V from (95), (96) can be rewritten to

ESR =
p2c2

2c2 + ESR − V
+ V (97)

Because 2c2− V is much larger than ESR, (97) can be approximated to, or expanded
in the zeroth order to

ESR ≈
p2c2

2c2 − V
+ V = KZORA

SR + V (98)

For the kinetic energy, (p2c2)/(2c2 − V ), the behavior is good also for r → 0 where
V →∞. The scalar relativistic energy matrix element is

EZORA
SR,ab = 〈ψa|V + ~p

c2

2c2 − V
~p|ψb〉 (99)

ZORA spin-orbit The quantum mechanical relativistic energy operator is given
by the Dirac equation as [34]

Ĥ ′SO = (c4 + c2~p2)1/2 = c~α · ~p+ βc2 (100)

Adding a potential operator V̂ and substracting for the electron rest mass energy
gives an energy operator suitable for DFT:

ĤSO = (c4 + ~p2c2)1/2 + V̂ − c2 = c~α · ~p+ βc2 + V̂ − c2 (101)
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Here, α and β are given in Ref. [35] as

~αk =

(
0 ~σk
~σk 0

)
, β =

(
1 0
0 −1

)
(102)

Here, k = 1, 2, 3, and 1, 0, and ~σk represent 2×2 matrices, and ~σk are the Pauli
matrices:

~σ1 =

(
0 1
1 0

)
, ~σ2 =

(
0 −i
i 0

)
, ~σ3 =

(
1 0
0 −1

)
(103)

and

0 =

(
0 0
0 0

)
, 1 =

(
1 0
0 1

)
(104)

Putting the 2×2 matrices for β and ~α into (101), and using ĤSOΨ = ESOΨ gives two
equations (Ψ has two components, φ and ξ, where φ and ξ are both two-component
wavefunctions):

V φ+ c~σ · ~pξ = ESOφ (105)

and
c~σ · ~pφ+ (V − 2c2)ξ ≡ ESOξ (106)

Expressing ξ explicitly and eliminating ξ from (105) and (106) gives

ξ =
1

2c2 + ESO − V
c~σ · ~pφ ≡ X̂φ (107)

and

V φ+
1

2
~σ · ~p

(
1 +

ESO − V
2c2

)−1

φ ≡ Ĥ1
SOφ = E1

SOφ (108)

where Ψ is normalized, whereas φ is not. Further, Φ = Oφ where Φ is a twocomponent
and normalized wavefunction and O is the normalization operator to be derived below.
Writing out for the normalization of Ψ∫

Φ†Φd3r =

∫
φ†O†Oφd3r =

∫
Ψ†Ψd3r

=

∫
(φ†ξ + ξ†φ+ φ†φ+ ξ†ξ)d3r) =

∫
(φ†φ+ ξ†ξ)d3r = 1

(109)

The cross-terms
∫
φ†ξd3r and

∫
ξ†φd3r vanish because the wavefunctions are orthog-

onal. Eliminating ξ when using (107) gives

1 =

∫
(φ†φ+ ξ†ξ)d3r =

∫
φ†(1 + X̂†X̂)φd3r (110)
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One of the two solutions for O is then

O = (1 + X̂†X̂)1/2 (111)

The hamiltonian ĤSO for Φ becomes

ĤSO = OĤ1
SOO

−1 = (1 + X̂†X̂)1/2(V + c~σ · ~pX̂)(1 + X̂†X̂)−1/2 (112)

Expanding O to zeroth order (remember ~σ2 = 1), and eliminating (ESO−V )/(2c2)�
1 in O gives

O ≈ (1 + p2/4c2 + ...) ≈ 1 (113)

Writing out for ĤZORA
SO gives

ĤZORA
SO = V + c~σ · ~p 1

2c2 + EZORA
SO − V

~σ · ~p (114)

Because 2c2 − V is much larger than EZORA
SO , ĤZORA

SO can be approximated to, or
expanded in the zeroth order to

ĤZORA
SO = V + c~σ · ~p 1

2c2 − V
~σ · ~p = K̂ZORA

SO + V (115)

The energy matrix element EZORA
SO,ab is then

EZORA
SO,ab = 〈ψa|V + ~σ · ~p c2

2c2 − V
~σ · ~p|ψb〉 (116)

2.3.8 Basis sets

Now we finally have the energy operator ready. The next step is to decide on a basis
set that can give a good physical description of the system. We will here only look
at basis sets that include linear combinations of wavefunctions φa.

ψi =
K∑
a

caiφa (117)

Here, φa is one of the basis functions constructing the electron orbital i, ψi, and
cai are the coefficients for each of these basis functions. For DFT, the basis sets of
this form are Slater orbitals, Gaussian functions and numerical basis functions. The
hydrogen atom wavefunctions are wavefunctions in a system with no electron-electron
interaction, only interacting with one core Coulomb potential. The hydrogen atom
orbitals are not particularly convenient even if the screening effect (the outermost
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electrons are pushed outwards and the innermost are pushed closer to the nucleus)
is accounted for. This is due to the complicated functional form of the hydrogen
orbitals. The hydrogen orbitals have the form

ψnlm = Rnl(r)Ylm(θ, φ) (118)

Here θ and φ are angles. R is a radial function and Y is a spherical harmonic function.

Slater Type Orbitals (STOs) To make a wavefunction easier to calculate, Slater
(1930) [36] suggested a simpler analytical form for the radial functions, that only
depends on the radial excitation, n.

Rn = (2ζ)n+1/2((2n)!)−1/2rn−1e−ζr (119)

Here, (2ζ)n+1/2((2n))−1/2 is the normalization constant and n is an integer. ζ differs
for different orbitals and atoms (the 2s orbital in oxygen is different from 2s orbital
in lead,) and was found from experimental data (STOs today use better ζ values). Y
is still the same as in hydrogen atom wavefunctions. It is not possible to integrate
Slater type orbitals analytically.

Gaussian Type Orbitals (GTOs) Gaussian type orbitals have been used fre-
quently in the Hartree-Fock method, and it is no surprise it has been tested for DFT.
For cartesian coordinates they have the form [37]

xaybzc exp(−αr2) (120)

and are normalized. Here, a, b, and c are positive integers or zero. The STOs are
much closer to the real orbitals than GTOs. However, a linear combination of more
Gaussians can give an imitation of a Slater orbital. You need at least 3 such orbitals
to get any reasonable results. The reason to use Gaussians is that the product of two
Gaussian functions (centered at different atoms) is just another Gaussian function.
Because of this, they can be integrated analytically and therefore takes less CPU
time.

Numerical basis functions Numerical basis functions can be generated by solving
the Kohn-Sham equations for isolated atoms. Solving the integrals numerically, you
get a set of values for the density in a polar grid centered on each atom. Then you
calculate the density gradient around all atoms.

34



Use of spin in basis functions For systems with closed outermost shells, all
electrons are paired, with spin up or down. This property is used to greatly reduce
the size of closed shell systems as the orbitals are the same for two and two electrons.
For an open shell (i.e the outermost shell is not filled up) the electrons in the outermost
shell often have the same spin as this will push them away from each other to lower
the energy. The pairing of electrons will in this case give a wavefunction that is not
the ground state.

2.3.9 The DFT version of the Roothaan-Hall equations

The Shrödinger equation is
ĤΨ = EΨ (121)

where Ĥ is the energy operator and E is the energy. The Shrödinger equation for
molecular orbital ψi (interacting with all other orbitals) looks like

Ĥψi = εiψi (122)

⇒ Ĥ
F∑
a=1

ciaφa = εi

F∑
a=1

ciaφa (123)

Here we used (117) to substitute ψi. Multiplying each side by φb and integrating each
side gives

F∑
a=1

cia

∫
d3rφbĤφa = εi

F∑
a=1

cia

∫
d3rφbφa (124)

On matrix form (124) becomes
HC = SCE (125)

where ca,b are the basis function coefficients

C =


c1,1 c1,2 ... c1,D
c2,1 c2,2 ... c2,D
... ... ... ...
cD,1 cD,2 ... cD,D

 (126)

and εa are the energies for each orbital

E =


ε1 0 ... 0
0 ε2 ... 0
... ... ... ...
0 0 ... εD

 (127)
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and H is the energy contribution for all orbital combinations.

H =


H1,1 H1,2 ... H1,D

H2,1 H2,2 ... H2,D

... ... ... ...
HD,1 HD,2 ... HD,D

 (128)

Here, Ha,b is the energy produced by the density 〈φa|φb〉. When not using ZORA Ha,b

is given by equation (63)∫
d3r1φbĤφa = Ha,b =

∫
d3r1φb(r1)

(
−∇

2

2
−

M∑
A=1

ZA
r1A

)
φa(r1)

+

∫
d3r

∂EXC(r1)

∂ρ(r1)
+

∫ ∫
d3r1d

3r2φb(r1)
ρ(r2)

r12

φa(r1)

(129)

The overlap matrix that decides how much two orbitals overlap each other,

S =


∫
d3rφ1φ1

∫
d3rφ1φ2 ...

∫
d3rφ1φD∫

d3rφ2φ1

∫
d3rφ2φ2 ...

∫
d3rφ2φD

... ... ... ...∫
d3rφDφ1

∫
d3rφDφ2 ...

∫
d3rφDφD

 (130)

All the elements in Ha,b have low CPU cost except the Coloumb interaction part∫ ∫
d3r1d

3r2
ρ(r2)φaφb

r12

(131)

Poisson’s equation states that

Vel(r1) =

∫
ρ(r2)

|r1 − r2|
d3r2 (132)

A well-known derivation from Maxwell equations states the differential Poisson’s equa-
tion

∇2V (r1) = −4πρ(r1) (133)

and so, combining (132) and (133) gives

∇2

∫
ρ(r2)

|r1 − r2|
d3r2 = −4πρ(r1) (134)

To find Vel(r1), eq. (134) can be solved numerically on a grid. Then Vel(r1) can be
inserted into (131) giving∫ ∫

d3r1d
3r2

ρ(r2)φaφb
r12

=

∫
d3r1φa(r1)Vel(r1)φb(r1) (135)
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This integral is then solved numerically using the same grid used for finding Vel(r1).
To find the coefficients ca,b, you need to have a matrix of the form FC = CE. This
is done by finding a matrix Ξ that has the ability ΞTSΞ = I. How to do that will
not be shown. From now on ΞT is to be denoted as S−1/2. By multiplying (125) by
S−1/2 on both sides of the equation, you get

S−1/2HC = S1/2CE (136)

Inserting the identity matrix I in the form of S−1/2S1/2 between H and C on the left
side gives

S−1/2HS−1/2S1/2C = S1/2CE (137)

You can now express the matrix equation by C′ = S1/2C, H′ = S−1/2HS−1/2, and E:

H′C′ = C′E (138)

The eigenvalues of E can be found by solving the determinant |H′ - EI| = 0. Then, as
the matrix of coefficients C′ are the eigenvectors of H′, you can find the coefficients
in C′ by diagonalising H. Then it is easy to extract the coefficients of C = S−1/2C′.
From C you can calculate a density ρ. The whole process goes as:

1. Calculate the integrals for kinetic energy, potential energy and the exchange
correlation function to form the Energy matrix, H.

2. Calculate the overlap matrix, S

3. Form S−1/2

4. Guess or calculate an initial density, ρ, that is
∑N

i=1 ccicdiφcφd for the N basis
functions.

5. Form the H matrix using the integrals above and the density ρ

6. Form H′ = S−1/2FS−1/2

7. Find the eigenvalues of E from |H′ - EI| = 0. Find the C′ coefficients by
diagonalising H′. Calculate the coefficients in C from C′

8. Calculate ρ

9. Check the calculation for convergence (check if ρ is the same as before). If the
calculation has not converged, go back to step 5.
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The total energy is given by [38]

E =
N∑
i=1

εi − Vclassee + EXC −
∫
∂EXC
∂ρ

ρdr (139)

∂EXC/∂ρ is the functional derivative of the density. It is important to notice that
this method is only for finding the minimum energy given nuclei locked in position.
To find the minimum for systems where the nuclei can be moved, one has to use some
method for finding the coordinate derivative for the cores in respect to the energy,
and also include the core-core repulsion energy that is normal Coloumb repulsion.

2.4 Approximations

An approximation always used, except for when dealing with small systems, is an
approximation that neglects some overlaps (what we choose to call zero overlap ap-
proximation), as the overlap of basis functions centered far from each other are very
small. When many of the terms in the overlap matrix are zero, fewer integrals need
to be calculated. The frozen core approximation freezes the orbitals of the electrons
closest to the core when atoms are brought together to make molecules. Although
the change in kinetic energy close to the core can be an order of magnitude larger
than the change in total energy, the total energy error is low [39].

2.5 Crystal structures

A crystal lattice is described by 3 primitive vectors, a ~A1 + b ~A2 + c ~A3 where a, b,
and c are integers. For each point in this lattice, the basis vectors, ~B1, ~B2, ... ~BN

determine the coordinates relative distance from the lattice points, where atoms of
a certain type are placed, denoted C1, C2, ... CM . Atoms of a certain type can
have more than one location in a unit cell, so that more than one basis vector can
correspond to for example C1. A cell made of the 3 primitive vectors, with volume
~A1 · ( ~A2× ~A3), is called a unit cell. An example on a lattice is the diamond structure
shown in Fig. 8:
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Figure 8: A crystal lattice example, diamond.

The primitive vectors for diamond are

~A1 =
1

2
a~y +

1

2
a~z

~A2 =
1

2
a~x+

1

2
a~z

~A3 =
1

2
a~x+

1

2
a~y

and the basis vectors for atom C1 are

C1 : ~B1 = 0

C1 : ~B2 =
1

4
a~x+

1

4
a~y +

1

4
a~z

The unit cell volume V of this structure is

V = ~A1 · ( ~A2 × ~A3) = a3

(
1

2
~y +

1

2
~z

)
·

∣∣∣∣∣∣
x̂ ŷ ẑ

1/2 0 1/2
1/2 1/2 0

∣∣∣∣∣∣ =
1

4
a3 (140)

The volume/atom for a crystal is the unit cell volume divided on the number of atoms
in the unit cell.
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3 Computational details

3.1 Hardware

Njord [40] is a supercomputer with 59 compute nodes, each compute node having
a total of 15.2GHz distributed over 8 dual-core processors. Njord is localized in
Trondheim. Stallo [41] is a supercomputer with 704 servers, each with two 2.66GHz
quad-core processors. Stallo is localized in Tromsø.

3.2 Amsterdam Density Functional [42]

Amsterdam Density Functional is a program package used for calculation of energies
and magnetic and electron properties of atomic systems with the DFT method. The
molecular orbitals used in the ADF package are a combination of Slater orbitals and
numerical basis functions. In the ADF package there is a program called ”ADF” that
is used for molecular calculations, and a program called ”BAND” that is used for
crystal structure calculations. The reasons for using the package are:

1. It contains many important exchange and correlation functionals.

2. It uses a basis set containing Slater orbitals.

3. The database contains basis sets for atoms up to atom number 118, and 5
different basis sets for each atom to choose between, in addition to the ZORA
basis sets.

4. ZORASO makes it possible to get good results for heavy atoms.

5. In the ADF program, full molecular symmetry is available, including non-
Abelian groups as well as Abelian groups.

6. It has all the important approximations, making it possible to calculate complex
systems with high accuracy.

7. The CPU time scales fairly well with the number of processors that are working
in parallell on a job.

8. As the BAND program and the ADF program are in the same package, there
will be better consistency in the input parameters for the force field.

9. To get results consistent with earlier work [8, 9]

10. It contains programs for visualizing the results of ADF and BAND jobs.
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The input parameters for the calculation used in the ADF program, ADF2007.01,
relevant for this study are

1. What kind of exchange and correlation functional to use.

2. Whether to include Zeroth-Order Regular Approximation.

3. The basis set for the calculation.

4. The frozen core size.

5. Electron wave function (SCF) parameters: Max number of iterations, the wave
function convergence criterion.

6. The DIIS procedure; Mixing, DIIS, and NEWDIIS

7. Geometry parameters: Convergence criteria, maximum number of iterations.

8. An accuracy parameter for the numerical integration called INTEGRATION .

9. The type of atoms and their positions.

10. Whether to include spin and charge parameters: restricted vs. unrestricted,
collinear vs. noncollinear.

11. Whether to use ordinary molecular symmetry.

The input parameters for the calculation used in the BAND program, BAND2007.01,
relevant for this study are

1. What kind of exchange and correlation functional is NOT used as input parame-
ter in BAND2007.01. The program calculates the electron density by only using
LDA exchange and correlation functional, and then calculates all the GGAs for
that density.

2. Whether to include Zeroth-Order Regular Approximation.

3. The basis set for the calculation.

4. Frozen core size.

5. Two parameters for the accuracy of the integrals, called ACCURACY and
KSPACE.

6. The zero overlap criterion, called Dependency basis.

7. The crystal lattice used, i.e., the primitive vectors and basis vectors for atoms.
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3.2.1 DIIS procedure

For getting the electron wavefunctions for a given geometry to converge, one has to
run several cycles for optimizing the electron density, as shown in section 2.3.9. To
speed-up convergence and to avoid non-convergent oscillatory behavior, the electron
wavefunctions at the next cycle are constructed as a mixture of the computed new
data and those used in the cycles before. The default setting is to only include
the previous cycle. The DIIS (Direct Inversion in the Iterative Subspace) procedure
allows the program to include more previous iterations. The electron density can then
converge faster and avoid non-convergent oscillatory behavior between iterations. The
DIIS procedure starts after 10 cycles as default when DIIS is invoked. Mixing is
the relative weight of the new potential, when it is mixed with the potential that was
used in the previous cycle, and the default is set to 0.2. Mixing is only used as long
as the DIIS procedure is not. The Mixing and the DIIS procedures slow down the
convergence, but makes it more stable. The NEWDIIS keyword invokes a DIIS
procedure that was newly developed when ADF2007.01 became available.

3.2.2 ACCURACY , KSPACE, and Dependency basis

The parameter ACCURACY gives good results for values above 4.5, and is the value
that determines the number of integration points over the densities, along with other
variables determining the accuracy of the result. The parameter KSPACE is for the
accuracy of integration in k-space, giving good results for values above 3, but should
only be chosen as an odd number. Dependency basis is the minimum value for the
overlap matrix elements (approximating them to 0 when below the minimum value).

3.2.3 Basis sets used in ADF [43]

The basis sets available in ADF are called Double zeta (DZ), Triple zeta one polar-
ization function (TZP), Triple zeta two polarization functions (TZ2P) and Quadruple
zeta four polarization functions (QZ4P). All the basis sets have a frozen core approx-
imation available. The difference is the complexity of each molecular orbital, being
composed by more than one Slater orbital. In the core region of DZ, TZP, and TZ2P,
the orbitals are composed of two basis functions. Using the expression for Slater type
orbitals shown in eq. 119, an example with the 1s orbital is:

|1s〉 = c12ζ
3/2
1 e−ζ1r + c22ζ

3/2
2 e−ζ2r (141)

The QZ4P has three functions in the core region. In the valence region DZ has two
basis functions, TZP and TZ2P have three basis functions, and QZ4P has four basis
functions. In addition, the basis sets differ in the number of extra valence orbitals
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they include, going from including the least (DZ) to including the most (QZ4P). For
Scalar Relativistic ZORA, extra tight 1s and 2p core orbitals have been included (for
heavier atoms) in these basis sets to account for the relativistic effects. For Spin-Orbit
ZORA the same extra tight 1s and 2p core orbitals are included, except one has to
include orbitals for both spinors j = l − 1

2
and j = l + 1

2
(where the lowest j orbitals

are filled first). Only s, p, d and f-type spherical harmonics have been used to build
the basis sets due to limitations in the ADF program.

3.3 Input parameters for ADF and BAND programs

To be able to make a consistent data set, it is important to use the same input param-
eters for the ADF simulations as has been done earlier [8, 9]. The choice of energy
functional was therefore RPBE, using spin-orbit ZORA. For the crystal structures
in this master assignment, the choice in basis set was TZP, and the frozen core size
was set to ”small”. For the BAND program, the ACCURACY and KSPACE pa-
rameters were set to 6 and 5 respectively, and Dependency basis was set to 10−10.
Spin-orbit coupling does not have the ordinary molecular symmetry. Therefore sym-
metry in the ADF program has to be turned off. Unrestricted spin means that pairs
of electrons are not in the same orbital with spin in opposite directions if another
configuration gives lower energy. The spin is therefore chosen to be unrestricted. If
the key collinear is used, the magnetization is in one defined direction, while it is not
necessarily so with the key noncollinear. The key noncollinear is therefore used, as
the magnetization is not perfectly aligned when using spin-orbit coupling.
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4 Methods

4.1 Crystal structures

An important input parameter in ReaxFF is the energy for different crystal structures
and corresponding volume for each unit cell in the structure. Some crystal structures
for lead, strontium, titanium, and oxygen were calculated, as an addition to earlier
calculations [8, 9]. First, the minimum energy for these crystals and the corresponding
lattice constant a were found. Then the geometry optimized volume per SrO, per
PbSr, and per Pb, V0, was calculated. The energy was found as a function of the the
volume/atoms between 0.5 V0 and 1.5 V0, in steps of 0.1 V0. The crystal structures
used in this study are shown in Appendix A. The structures B1, B2, and L10 were
found for PbSr, the energy as a function of the volume/atoms shown in Fig. 9.
The structures B1 and L10 were found for SrO, the energy as a function of the
volume/atoms is shown in Fig. 10. The B2 crystal structure is also plotted into the
figure, as it was computed in Ref. [44]. Data for the α structure for lead was found,
without finding the energy minimum first. This structure was primarily made for
testing the ReaxFF force field described in section 4.4.

4.2 Molecules

In the ReaxFF force field, the three most important bond-order terms are the bond
energy, valence angle energy, and the torsion angle energy. It was therefore necessary
to make a data set that imitated these terms. We encountered some convergence
problems with geometry optimization methods on many of the molecules consisting
of lead, strontium, oxygen, and titanium. Hydrogen atoms were therefore added to
these molecules to increase the coordination number for the atoms. The number
of bonds were set to 4 for titanium and lead, and 2 for oxygen and strontium. As
oxygen was treated as having a negative oxidation state, instead of a positive as was
the case for the other atoms, bonds between oxygen and another atoms were treated
as a π (double) bond, as often as possible, reducing the number of hydrogen atoms
in the molecule by 2. In addition to using hydrogen atoms to satisfy the number of
valences, the DIIS procedure was applied. Still, some of the computations have failed
to converge for some of the bond lengths, valence angles, and torsion angles. Energy
from ADF calculations as a function of bond lengths, valence angles, and torsion
angles are shown in Appendix B.
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4.2.1 Bond length

First, the equilibrium geometry for molecules consisting of two heavy atoms and
hydrogen atoms was found. Then the bond lengths between the two heavy atoms were
varied, using a constricted geometry optimization per step. We found parameters for
7 molecules in total, though some of them would not converge for all bond lengths.
The molecules that were used are shown in table 4. Energy from ADF calculations
as a function of the O-O distance in the O2 molecule is illustrated in Fig. 12. As
the distance approaches infinity, the energy should approach the sum of the energy
of the two resulting fragments. As this fragment energy is important in ReaxFF, it
was important to calculate the energy of single atoms/atom groups, shown in table
5, as well as it was important to confirm how many hydrogen atoms were bonded to
each of the heavy atoms in the fragment. By looking at the distance-energy plots
in Appendix B, it was concluded that the energies would go towards values given in
table 6 when the distances would get large. The number of hydrogen atoms bonded
to each heavy atom was confirmed by using a grapical user interface, adfview.

4.2.2 Valence angle

First, the geometry was optimized for molecules consisting of three heavy atoms and
a number of hydrogen atoms. Then the valence angle of the three heavy atoms was
varied, using constricted geometry optimization for each step. For molecules with high
computational time, meaning more than 10 hours for finding the energy minimum,
fewer geometries were found parameters for. The energy minimization for three-atom
molecules did not converge for all the different atom configurations. Some of the
optimized molecules were triangle-shaped with only sharp angles. These were not
used because it would not be a good description of the valence angle at the energy
minimum when atom a1 and a3 in the a1-a2-a3 structure were bonded to each other.
A total of 9 molecules were found valence angle parameters for. Table 7 gives an
overview over the valence angles that were used/were not used. Energy from ADF
calculations as a function of the valence angle Pb-O-O is shown in Fig. 13.

4.2.3 Torsion angle

Parameters were found for torsion angles a1-a2-a3-a4, where a2 and a3 were Sr, Ti,
Pb, and O, with a number of hydrogen atoms bonded to them. Only hydrogen atoms
were used as atom a1 and a4, because this assignment would be too large otherwise;
those systems were already found equilibrium geometries for, the systems with less
heavy atoms would converge faster and have less chances of failing to converge. As
the symmetry repeats itself after turning 60 degrees for molecules with three hydrogen
atoms bonded to a2 or a3, the torsion angle was only varied that much. As hydrogen
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peroxide only has one hydrogen atom bonded to each oxygen atom, it was needed
to turn that angle 180 degrees. Energy from ADF calculations as a function of the
torsion angle H-Pb-O-H is shown in Fig. 14.

4.3 Computational time

To give an idea of the computational resources needed for ADF and BAND calcu-
lations, some of the crystal structures and molecules used in the calculations are
displayed in table 9. All computations in the table were done using Stallo, with 2
servers per computation.

4.4 The process of making a ReaxFF force field for lead,
using lead crystals as data set

The procedure for making a force field was done according to section 2.2.7. No
ReaxFF force field have been made for lead before, so the initial values for the con-
stants in the ffield file were guessed, based on values for other atoms parametrized
in ReaxFF, except for the number of valences, which was set to 4. The data set was
collected from work done in Ref. [9], and consisted of crystal structures for lead, cal-
culated with the RPBE functional with ZORASO. The crystal structures were FCC,
BCC, SC, HCP , and diamond (Appendix A has an overview of these). The first
attempt to make a satisfactory force field failed to match the data set used for making
it. This is seen by comparing between crystal structures produced by the force field,
Fig. 15 and the data set, Fig. 17. Because the diamond structure fit worst with
the data set, another force field was made without using diamond. The results for
that force field are illustrated in Fig. 18. This force field is from here on refered to
as the ”Gaute force field”. The fort.99 file belonging to that force field is shown in
Fig. 16. The figure shows which energies were used for optimizing the force field, in
addition to the weight for each of these energies. The weight was set to 0.1 for the
relative minima between the structures, and because SC was more stable for 3.50 Å
than for 3.37 Å which was the energy minimum for DFT calculations, 3.50 Å was
used to compare relative minima for that crystal. The weight value was high where
the energy derivative was high, because one can still get a good result with larger
deviations in those areas. As a reminder of the expression for calculating the error,
eq. 40 is repeated as eq. 142.

ERROR = ([ffieldenergy − datasetvalue]/weight)2 (142)

To be able to say something about the transferability of the ReaxFF force field, en-
ergies for different geometries were found for the diamond structure, the α structure,
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and the Pb-Pb molecule with the ReaxFF force field, as said geometries would be
compared to DFT calculations of the same systems. The diamond structure and the
α structure are included into Fig. 18. The energy for the Pb2 molecule as a function
of the interatomic distance is displayed in Fig. 19, using both the ReaxFF force field
and data set values.
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5 Results

Figure 9: Energy from ADF calculations as a function of the volume per PbSr for PbSr
crystal structures. The crystal structures are explained in Figs. 28-30.
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Figure 10: Energy from ADF calculations as a function of the volume per SrO for SrO crystal
structures. Data for B2 is found from Ref. [44]. The crystal structures are explained in
Figs. 28-30.
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Figure 11: Energy from ADF calculations as a function of the volume per atom for Pb α
structure. The crystal structure is explained in Fig. 33.

Table 4: Molecules used for finding bond stretch energies. d= distance, measured between
the two atoms, and is measured in Å. The energy as functions of the distance are displayed
in Figs. 34-40, and the corresponding molecules are illustrated in Figs. 55-60.

Bond Hydrogen Equilibrium d. Min. d. Max. d.
Pb-Pb Pb2 3.00 2.05 3.95
Pb-Pb PbH3PbH3 2.95 2.05 4.45
Pb-O PbH2O 1.95 1.35 3.15
Pb-Sr PbSr 3.35 2.35 5.65
Pb-Ti PbTi 2.79 1.95 3.75
O-O O2 1.24 0.84 1.84
O-O OHOH 1.49 1.04 2.14
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Figure 12: Energy from ADF calculations as a function of the interatomic distance in the
O2 molecule.

Table 5: Energies for atoms/molecules used
in bond length parametrizations. Titanium
did not converge.
Atom/molecule Energy (kcal/mol)
O -45.06
OH -174.67
Pb -96.06
Ti no convergence
Sr -2.98
PbH2 -248.77
PbH3 -305.25

Table 6: The energy for infinite distance
between atoms. Because the single point
energy for titanium did not converge, there
are no energy value for ’Pb + Ti’
Atoms/molecules Energy (kcal/mol)
PbH3 + PbH3 -610.50
PbH2 + O -293.83
O + O -90.12
OH + OH -349.34
Pb + Pb -192.12
Pb + Ti no value
Pb + Sr -99.04

51



Table 7: Molecules used for finding valence angle energies. v = Valence angle. The angles are
measured in degrees. ”High comp. cost” means the computation to find energy minimum
took more than 10 hours, so the number of computations is decreased. ”triangle” means
that the three atoms form a triangle with only sharp angles, and therefore the valence angle
is not calculated. ”hydrogen bridge” refers to two atoms are bonded to one hydrogen. Why
this is a problem is explained in section 6.1.1. The energy as a function of the valence
angles are displayed in Figs. 41 - 49, and the corresponding molecules are illustrated in
Figs. 62-70.

Valence Angle Molecule Eq. v. Min. v. Max. v. Comment
Pb-O-O PbH3OOH 105 90 175 no problem
Pb-O-Pb PbH3OPbH3 - - - hydrogen bridge
Pb-O-Sr PbH3OSrH 165 115 180 no problem
Pb-O-Ti PbH3OTiH3 153 115 175 no problem
Pb-Pb-O PbH3PbHO 125 105 145 high comp. cost
Pb-Pb-Pb PbH3PbH2PbH3 114 95 135 high comp. cost
Pb-Pb-Sr PbH3PbH2SrH - - - triangle
Pb-Pb-Ti PbH3PbH2TiH3 109 90 150 high comp. cost
Pb-Sr-O PbH3SrOH 137 90 180 no problem
Pb-Sr-Pb PbH3SrPbH3 130 115 145 high comp. cost
Pb-Sr-Sr PbH3SrSrH - - - failed to converge
Pb-Sr-Ti PbH3SrTiH3 - - - failed to converge
Pb-Ti-O PbH3TiHO - - - failed to converge
Pb-Ti-Pb PbH3TiH2PbH3 105 95 125 high comp. cost
Pb-Ti-Sr PbH3TiH2SrH - - - triangle
Pb-Ti-Ti PbH3TiH2TiH3 - - - triangle
Sr-Pb-Sr SrHPbH2SrH - - - triangle
Sr-Pb-Ti SrHPbH2TiH3 - - - triangle
Sr-Sr-Sr SrHSrSrH - - - failed to converge
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Figure 13: Energy from ADF calculations as a function of the valence angle Pb-O-O. The
energy is found by using a start angle of 90 degrees, and increasing it in steps of 5 degrees,
doing a constrained geometry optimization for each step. The molecule is illustrated in Fig.
66.

Table 8: Molecules used for finding torsion angle energies. The angle is in units of degrees.
The energy as a function of the torsion angles are displayed in Figs. 50-54. The molecules
are illustrated in Figs. 55, 59, 60, 71, and 73.
Torsion angle Molecule Equilibrium angle. Minimum angle Maximum angle
H-Pb-Pb-H PbH3PbH3 60 0 60
H-Pb-O-H PbH3OH 60 0 120
H-Pb-Sr-H PbH3SrH 110 60 120
H-Pb-Ti-H PbH3TiH3 0 60 120
H-O-O-H OHOH 82 0 180
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Figure 14: Energy from ADF calculations as a function of the torsion angle H-Pb-O-H in
the PbH3OH molecule. The molecule is illustrated in Fig. 71.
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Table 9: Computational cost of different geometries. All ADF jobs were done using Stallo,
each job using 2 servers (2 processors per server, 2.66 GHz per processor). The time is
given in seconds, T = time. T/cycle = time per geometry optimization cycle. In T/cycle,
the time is an average over all geometry cycles. *: This computation is done in Ref. [44].
N/A = the geometry is set, so there is no geometry optimization.

Structure Description T. elapsed T/cycle
O2 single point energy 33 N/A
PbH3 geometry optimization 1693 81
PbH3PbH3 geometry optimization 6565 298
TiH3TiH3 * geometry optimization 43412 190
PbH3SrOH geometry optimization 33957 361
PbH3SrTiH3 geometry optimization 155254 1438
PbH3SrTiH3 geometry optimization 99754 1008
PbH3PbH3 Pb-Pb distance set to 2.05 Å 14758 351
PbH3PbH3 Pb-Pb distance set to 2.15 Å 7180 378
PbH3PbH3 Pb-Pb distance set to 5.05 Å 7843 1120
PbH3PbH2PbH3 Pb-Pb-Pb angle at 95 degrees 26890 1120
PbH3PbH2PbH3 Pb-Pb-Pb angle at 100 degrees 22606 1076
PbH3PbH2PbH3 Pb-Pb-Pb angle at 135 degrees 4775 796
SrO cubic l10 crystal lattice constant set to 300 5309 N/A
SrO cubic l10 crystal lattice constant set to 303 5847 N/A
SrPb cubic l10 crystal lattice constant set to 520 19532 N/A
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Figure 15: The ReaxFF energy as a function of the volume/atom for FCC, BCC, SC,
HCP , and diamond, the force field is fit to FCC, BCC, SC, HCP , and diamond lead
crystals from ADF calculations. The crystal structures are explained in Figs. 23-27.
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Figure 16: The fort.99 file for the Gaute force field. For an explanation of the columns in
the file, see Fig. 7.
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Figure 17: Energy from ADF calculations as a function of the volume/atom for Pb crystal
structures. Energies for FCC, BCC, HCP , SC, and diamond are found from Ref. [9].
The crystal structures are explained in Figs. 23-27 and 33.

Figure 18: The Gaute force field energy, denoted ReaxFF in this figure, as a function of the
volume/atom for lead lattices. The crystal structures are explained in Figs. 23-27 and 33.

58



Figure 19: The Gaute force field energy, denoted ReaxFF in this figure, as a function of the
Pb-Pb bond distance for Pb2, plotted against the same molecule calculated with ADF. The
bond distances for the energy minima are very close to each other. The largest deviation
between the plots is the binding energy, dvs. 2E(Pb)− Eeq(Pb2).
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Figure 20: The Gaute force field energy, denoted ReaxFF in these figures, as a function of
the volume/atom for different lattices, compared to lattices computed with ADF. The V0

energy for FCC has been set to 0 for both Gaute force field and ADF plots, and the energies
in the other lattices have been scaled according to that energy. The crystal structures are
explained in Figs. 23-27 and 33.

(a) The FCC lattice (b) The BCC lattice

(c) The HCP lattice (d) The SC lattice

(e) The diamond lattice (f) The α lattice
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6 Discussion

6.1 ADF

6.1.1 Excluded results

Inspection of the molecular structures in the graphical user interface, adfview, shows
that different unwanted geometries have taken place for some of the fixed bond
lengths/valence angles/torsion angles for some of the molecules. Unwanted geome-
tries are geometries that does not describe the bond length, valence angle, or torsion
angle. In these cases, the computations cannot be used:

• When an interatomic distance for a bond in the valence angle or torsion angle
is much larger than it is for other systems (a bond is broken).

• When a hydrogen atom is bound to more than one heavy atom. Because hy-
drogen is not meant to be part of the resulting force field, it would be too much
work to include a1-H-a3 interactions in the ReaxFF force field, and therefore
those terms should be avoided.

Not usable geometries are excluded from the plots in Appendix B.

6.1.2 Numerical integration errors

Some displacements in the energy have been caused by numerical integration errors,
and the size of these errors varies between different systems. Fig. 21 shows that the
lattice constant for the minimum of the cubic l10 structure may be displaced a few
pm, and maybe 0.01 or 0.02 kcal/mol.

Figure 21: Energy as a function of the lattice constant for a PbSr cubic l10 structure around
the energy minimum at 5.19 Å. The uneven nature of the plot is due to numerical integration
errors.
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The numerical integration error varies from system to system. The only ADF-plot
where the numerical integration error is possible to see is the plot for the H-Pb-Sr-H
torsion angle, Fig. 54, where the energy scale is very small.

6.1.3 The CPU time

As can be seen from table 9, the cpu-time differs a lot for different structures. Three
points worth noticing from looking at the table are:

• As to be expected, the cpu-time is much greater for large systems than for small
systems.

• By comparing PbH3PbH3 and TiH3TiH3, it is shown that systems containing
more electrons are not necessarily the systems that takes the longest time to
optimize. This is due to a much slower geometry convergence for TiH3TiH3

(229 geometry cycles, versus 22 for PbH3PbH3).

• The time for one constricted geometry optimization varies for the same set of
atoms for different aimed geometries.

6.2 The Gaute force field

A few plots have been made for comparing computations done with Gaute force field
and computations done with ADF: Fig. 18, Fig. 17, Fig. 19, and Fig. 20. By
studying these plots, some weaknesses in the force field can be mentioned:

• The equilibrium geometry is displaced for some of the systems, specially diamond
and SC, while other systems such as BCC and HCP fit very well, showing more
work is needed to be able to make a good force field.

• Fig. 17 shows that the bonding energy for Pb-Pb is much less when using the
ReaxFF force field than when using ADF results. This could also be the case
for the crystal lattices, but to be able to say more about this, ADF and ReaxFF
computations for larger lattice constants are needed.

• Fig. 17 shows a good fit for all Pb-Pb energies when the bond is not close
to breaking. This indicates that the transferability of the force field might be
good.

Possible reasons the force field is not better:

• Details in making the force field. As mentioned above, a bigger data set is
needed. The weighting of different terms in trainset.in could also have been
unoptimal.
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• The energy terms in the force field might not hold for the system, so a new
energy term might be needed, and some energy terms might need to be adjusted.
This possibility is not explored in this paper, and more work on the force field
should be done before exploring this possibility.

A combination of these two reasons is of course plausible.

6.3 The compatibility between results

In this study, and in Ref. [9], all computations for the data set are done with Spin-
Orbit ZORA (ZORASO) in the functional. In Ref. [8] and Ref. [44] the computations
have been/are conducted by including Scalar Relativistic ZORA (ZORASR). In Ref.
[8, 44] the systems do not contain lead atoms, so the heaviest atom is strontium. Data
in table 10 are copied from table 2 and 3 in Ref. [8]. The lattice constants used for
calculating the volume/atom at energy equilibrium (V0) are shown in the UV columns
in table 10, using the average lattice constant from the Eq. geo. column, as the
energy minimum is most probably located at that value. In table 11, V0 is calculated
from the lattice constants from the UV columns in table 10. The crystal structures
are described in Appendix A. Table 11 shows the deviation between ZORASO and
ZORASR for the volume/atom and the energy at V0.

Table 10: The energies and lattice constants for computations with ZORASR and ZORASO

for strontium FCC, BCC, SC, and diamond lattices. eq. geo. = equilibrium geometry in
Ångstrøm, SR = ZORASR, SO = ZORASO, the energy unit is kcal/mol, UV = Used lattice
constant Value, for calculating V0 (volume/atom at energy equilibrium) in table 11.

Crystal Eq. geo. SR UV Eq. geo. SO UV Energy SR Energy SO
FCC 6.16-6.17 6.16 6.17 6.17 -32.77 -33.05
BCC 4.87 4.87 4.90 4.90 -32.59 -32.63
SC 3.98 3.98 3.98 3.98 -21.45 -21.48

diamond 10.05-10.06 10.06 9.96-10.02 9.99 -22.51 -22.55

Table 11: Values for strontium lattices: The V0 (volume/atom at energy equilibrium) energy
for ZORASR, and the differences in the energy and V0 for ZORASO − ZORASR. ZORASO

− ZORASR = ∆.
Crystal V0 for ZORASR (Å3) ∆ V0 (Å3 ) ∆V0/V0 ∆ Energy (kcal/mol)
FCC 58.72 0.285 0.0049 -0.28
BCC 57.75 1.074 0.0186 -0.04
SC 63.04 0 0.0000 -0.03

diamond 127.26 -2.638 -0.0207 -0.04
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The relative volume/atom error, ∆V0/V0, is largest for diamond. To find out how
large that error is, the relative error is applied to the diamond crystal structure for
lead, showing the original diamond structure, and the diamond structure displaced
-0.0207 volumes/atom and -0.04kcal/mol in Fig. 22(a). In Fig. 22(b) the FCC
structure is displaced accordingly, because FCC has the largest energy error. One
should keep in mind that the energy displacement might not be the same for all
volumes/atom for an ADF computation.

(a) The diamond structure, and the same struc-
ture displaced -0.04 kcal/mol and -0.0207 vol-
umes/atom.

(b) The FCC structure, and the same struc-
ture displaced -0.28 kcal/mol and 0.0049 vol-
umes/atom

Figure 22: Energy as a function of the volume/atom for lead diamond and FCC struc-
ture, found for ADF with ZORASO, and the same diamond and FCC structures with a
displacement in energy and volume/atom.

When looking at Figs. 22(a) and 22(b), it is clear that the error from using
ZORASR rather than ZORASO in the ADF functional for strontium is significant,
although the error is smaller than the differences in Fig. 20. A more thorough inves-
tigation should be conducted on the matter, as the test conducted here is artificial,
as V0 for ZORASR was used to construct the whole energy plot. Because relativistic
effects in titanium are smaller, as it has atomic number 22, while strontium has 38,
ZORASR probably suffices calculations on titanium.
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7 Summary

We have now run density functional theory calculations on different geometries for
crystals and molecules, focused on finding parameters for a data set for lead, stron-
tium, titanium, and oxygen. More precisely, we have run calculations for 2 SrO
crystals, 3 PbSr crystals, and 1 Pb crystal for different lattice constants. The plots
for theenergy as a function of the volume/atoms are shown in Figs. 9-11. We have
run calculations on different bond lengths of 7 molecules, on different valence angle
of 9 molecules, and on different torsion angle of 5 molecules. The plots for the energy
as a function of the bond length/valence angle/torsion angle are shown in Figs. 34-54
Appendix B. This study is not the only study focused on finding parameters for the
data set. By adding results from Ref. [8], Ref. [9], and Ref. [44], parameters have
been found for for 9 bond lengths, 14 valence angles, 8 torsion angles, and 43 crystal
structures. Computations from Ref. [8] and [44] have, however, been done using
Scalar Relativistic ZORA, and there is a possibility the results for systems includ-
ing strontium are not good enough for the data set. We have made a ReaxFF force
field for lead, given the name ’Gaute force field’, that is fitted to energies of FCC,
HCP , SC, and BCC from the data set. When comparing the energy-volume plots
for geometries found with the ADF method to the same geometries made by the force
field, it is shown that the force field matches well for some of the geometries, and
less well for others. Comparing energies for Pb2 bond stretch values shows that the
transferability of the force field might be good.
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8 Further work

Based on this study, some suggestion at what to work on in the future are mentioned:

• It is necessary to find more parameters for the data set. Torsion angle data is
needed. Data for higher lattice constants might also be necessary to find, as it
currently is hard to say anything about good the force field fits for high lattice
constants.

• It might be necessary to evaluate strontium parameters for the data set found
by using ZORASR, as explained in section 6.3.

• It is necessary to continue building the Pb-Sr-Ti-O ReaxFF force field. This
work includes making a geo file that contains all the geometries from the data
set, making a trainset.in file with corresponding parameters for the geometries,
making a ffield and a params file, and optimizing the force field.

• When the force field is finished it should be used to study the PbTiO3 tetragonal
perovskite film on the SrTiO3 cubic perovskite substrate system. As mentioned
in section 1.3, this includes looking at PbTiO3 film growth, what happens when
the film thickness is decreased, and studying the PbTiO3-SrTiO3 surface more
carefully.

• The force field can of course be used for looking at other systems.

• Other atoms can be added to the force field, to be able to look at more systems.
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A Crystal structures with corresponding primitive

and basis vectors

The figures of B1, B2, l10, CP , PP , α and are found from Ref. [45].

Figure 23: Simple cubic SC.

The primitive vectors for SC are
~A1 = a~x
~A2 = a~y
~A3 = a~z
And the basis vectors are
C1 : ~B1 = 0

Figure 24: Body centered cubic BCC.

The primitive vectors for BCC are
~A1 = −1

2
a~x+ 1

2
a~y + 1

2
a~z

~A2 = 1
2
a~x− 1

2
a~y + 1

2
a~z

~A3 = 1
2
a~x+ 1

2
a~y − 1

2
a~z

And the basis vectors are
C1 : ~B1 = 0
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Figure 25: Hexagonal close packed lattice
HCP .

The primitive vectors for HCP are
~A1 = 1

2
a~x− 1

2
31/2a~y

~A2 = 1
2
a~x+ 1

2
31/2a~y

~A3 = c~z
And the basis vectors are
C1 : ~B1 = 1

2
a~x+ 1

2
31/2a~y + 1

4
c~z

C1 : ~B2 = 1
2
a~x− 1

2
31/2a~y + 3

4
c~z

Figure 26: Cubic diamond structure,
diamond.

The primitive vectors for cubic diamond

are
~A1 = 1

2
a~y + 1

2
a~z

~A2 = 1
2
a~x+ 1

2
a~z

~A3 = 1
2
a~x+ 1

2
a~y

And the basis vectors are
C1 : ~B1 = 0
C1 : ~B2 = 1

4
a~x+ 1

4
a~y + 1

4
a~z
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Figure 27: Face centered cubic FCC.

The primitive vectors for FCC are
~A1 = 1

2
a~y + 1

2
a~z

~A2 = 1
2
a~x+ 1

2
a~z

~A3 = 1
2
a~x+ 1

2
a~y

And the basis vectors are
C1 : ~B1 = 0

Figure 28: B1 structure.

The primitive vectors for B1 are
~A1 = 1

2
a~y + 1

2
a~z

~A2 = 1
2
a~x+ 1

2
a~z

~A3 = 1
2
a~x+ 1

2
a~y

And the basis vectors are
C1 : ~B1 = 0
C2 : ~B2 = 1

2
a~x+ 1

2
a~y + 1

2
a~z
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Figure 29: B2 structure.

The primitive vectors for B2 are
~A1 = a~x
~A2 = a~y
~A3 = a~z
And the basis vectors are
C1 : ~B1 = 0
C2 : ~B2 = 1

2
a~x+ 1

2
a~y + 1

2
a~z

Figure 30: Cubic l10 structure, l10.

The primitive vectors for cubic l10 are
~A1 = 1

2
a~x− 1

2
a~y

~A2 = 1
2
a~x+ 1

2
a~y

~A3 = a~z
And the basis vectors are
C1 : ~B1 = 0
C2 : ~B2 = 1

2
a~x+ 1

2
a~z
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Figure 31: Cubic perovskite lattice CP .

The primitive vectors for CP are
~A1 = a~x
~A2 = a~y
~A3 = a~z
And the basis vectors are
C1 : 0
C2 : ~B1 = 1

2
a~y + 1

2
a~z

C2 : ~B2 = 1
2
a~x+ 1

2
a~z

C2 : ~B3 = 1
2
a~x+ 1

2
a~y

C3 : 1
2
a~x+ 1

2
a~y + 1

2
a~z

Figure 32: Polarized perovskite lattice PP .

The δ1, δ2, and δ3, are displacements in the
z direction in comparison to a tetragonal
perovskite structure. The primitive vectors
for PP are
~A1 = a~x
~A2 = a~y
~A3 = c~z
And the basis vectors are
C1 : 0
C2 : ~B1 = 1

2
a~y + 1

2
c~z + δ1~z

C2 : ~B2 = 1
2
a~x+ 1

2
c~z + δ1~z

C2 : ~B3 = 1
2
a~x+ 1

2
~y + δ2~z

C3 : ~B4 = 1
2
a~x+ 1

2
a~y + 1

2
c~z + δ3~z
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Figure 33: The cubic α lattice.

The primitive vectors for cubic α are
~A1 = a~x
~A2 = a~y
~A3 = a~z
And the basis vectors are
C1 : 0
C2 : ~B1 = 1

2
a~x

C2 : ~B2 = 1
2
a~y

C2 : ~B3 = 1
2
a~z
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B Plots for bond stretches, valence angles, and

torsion angles

This appendix contains plots for all results for bond stretches, valence angles, and
torsion angles. It is the atom that is not hydrogen that is relevant to the distance,
valence angle, or torsion angle. I.e. for the distance PbH3-PbH3, it is the two lead
atoms the distance is measured between.

Figure 34: Energy as a function of the dis-
tance O-O in O2. The molecule is illus-
trated in Fig. 56

Figure 35: Energy as a function of the
Pb-O distance in PbH2O. The molecule is
illustrated in Fig. 57. The energy drop
at 2.5 Å is because the geometry changes
from being in a local energy minimum to
another, more stable energy minimum.

Figure 36: Energy as a function of the O-O
distance in OHOH. The molecule is illus-
trated in Fig. 55.

Figure 37: Energy as a function of the
Pb-Ti distance in PbTi. The molecule is
illustrated in Fig. 58.
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Figure 38: Energy as a function of the
Pb-Pb distance in Pb2. The molecule is
illustrated in Fig. 61.

Figure 39: Energy as a function of
the Pb-Pb distance in PbH3PbH3. The
molecule is illustrated in Fig. 60.

Figure 40: Energy as a function of the
Pb-Sr distance in PbSr. The molecule is
illustrated in Fig. 72.

Figure 41: Energy as a function of the
Pb-Sr-O valence angle in PbH3SrOH. The
molecule is illustrated in Fig. 62.
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Figure 42: Energy as a function of the
Pb-O-O valence angle in PbH3OOH. The
molecule is illustrated in Fig. 66.

Figure 43: Energy as a function of the
Pb-Sr-Pb valence angle in PbH3SrPbH3.
The molecule is illustrated in Fig. 63.

Figure 44: Energy as a function of the
Pb-O-Sr valence angle in PbH3OSrH. The
molecule is illustrated in Fig. 64.

Figure 45: Energy as a function
of the Pb-Pb-Pb valence angle in
PbH3PbH2PbH3. The molecule is
illustrated in Fig. 68.
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Figure 46: Energy as a function of the
Pb-Ti-Pb valence angle in PbH3TiH2PbH3.
The molecule is illustrated in Fig. 65.

Figure 47: Energy as a function of the
Pb-Pb-Ti valence angle in PbH3PbH2TiH3.
The molecule is illustrated in Fig. 69.

Figure 48: Energy as a function of the
Pb-Pb-O valence angle in PbH3PbHO. The
molecule is illustrated in Fig. 67.

Figure 49: Energy as a function of the
Pb-O-Ti valence angle in PbH3OTiH3. The
molecule is illustrated in Fig. 70.
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Figure 50: Energy as a function of the
H-O-O-H torsion angle in OHOH. The
molecule is illustrated in Fig. 55, and the
molecular structure implies that E(θ) =
E(−θ)

Figure 51: Energy as a function of the
H-Pb-O-H torsion angle in PbH3OH. The
geometry of the molecule, illustrated in
Fig. 71, implies that E(θ) = E(−θ), and
that the energy is periodic with a period of
120 degrees.

Figure 52: Energy as a function of the
H-Pb-Ti-H torsion angle in PbH3TiH3.
The geometry of the molecule, illustrated
in Fig. 73, implies that E(θ) = E(−θ), and
that the energy is periodic with a period of
120 degrees.

Figure 53: Energy as a function of the
H-Pb-Pb-H torsion angle in PbH3PbH3.
The geometry of the molecule, illustrated
in Fig. 59, implies that E(θ) = E(−θ), and
that the energy is periodic with a period of
120 degrees
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Figure 54: Energy as a function of the
H-Pb-Sr-H torsion angle in PbH3SrH. The
uneven plot is due to numerical errors. The
geometry of the molecule, illustrated in
Fig. 60, implies that E(θ) = E(−θ), and
that the energy is periodic with a period of
120 degrees.

C Molecules used in the computations

Figure 55: The OHOH molecule. Figure 56: The O2 molecule.

Figure 57: The PbH2O molecule. Figure 58: The PbTi molecule.
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Figure 59: The PbH3PbH3 molecule. Figure 60: The PbH3SrH molecule.

Figure 61: The Pb2 molecule.

Figure 62: The PbH3SrOH molecule. The
atom to the left is Pb, bound to 3 hydrogen
atoms and a Sr atom.
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Figure 63: The PbH3SrPbH3 molecule.

Figure 64: The PbH3OSrH molecule. The
atom to the left is Pb, O is in the middle,
and Sr is the atom to the right.

Figure 65: The PbH3TiH2PbH3 molecule. Figure 66: The PbH3OOH molecule.

Figure 67: The PbH3PbHO molecule. Figure 68: The PbH3PbH2PbH3 molecule.
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Figure 69: The PbH3PbH2TiH3 molecule.
The atom to the right is Ti. Figure 70: The PbH3OTiH3 molecule.

Figure 71: The PbH3OH molecule. Figure 72: The PbSr molecule.

Figure 73: The PbH3TiH3 molecule. The
largest atom is Pb.
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